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Abstract

The energy consumption of mobile networks is rapidly growing as operators de­

ploy increasingly dense networks of base stations (BSs). This has resulted in an 

increased focus on improving energy efficiency. A major energy saving opportunity 

lies in being able to switch off cells during periods of light traffic.

One approach for constructing the cell switch-off problem is to define a minimum 

rate requirement for each user terminal (UT). Niu et al. follow this approach in [1], 

but omit inter-cell interference. We also construct our problem using the minimum 

rate requirement approach, but explore more realistic interference scenarios. We start 

by formulating an optimization problem using a constant interference model and find 

the optimal solution, for networks that are not very large, using binary integer lin­

ear programming (BILP). For larger networks, we improve the “cell zooming” (CZ) 

heuristic from [1] to bring it closer to the optimal solution; we call this “enhanced 

cell zooming” (ECZ). We then develop a more realistic construction of the problem 

by allowing interference to be a function of the active cells. The resulting complex­

ity makes it extremely difficult to find the optimal solution through conventional 

optimization approaches. We built upon our ECZ heuristic to develop a scheme 

which takes into account the reduction in interference when cells are switched off. 

This interference-awareness allows a greater number of cells to be switched off when 

compared to the worst-case constant interference scenarios. Finally, we construct a 

genetic algorithm (GA) for the problem, and show that it yields considerable gains 

in energy savings under a wide range of test scenarios. We also show that our GA is 

able to save more energy while achieving lower blocking probability in the network.
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Chapter 1

Introduction

The mobile industry has experienced massive growth over the past decade. The 

introduction of smartphones and tablets, which combine cellular connectivity with 

powerful processing capabilities, has allowed the mobile application space to grow into 

areas such as social networking, online gaming, music and video streaming, online 

file storage, and other cloud-based services. Due to the scarcity of wireless spectrum, 

the most practical way for mobile operators to boost network capacity in order to 

serve this massive demand has been in aggressive frequency re-use through the de­

ployment of more base stations (BSs). However, the rapidly growing number of BSs 

has contributed heavily to the growing energy consumption of cellular networks. In 

addition to the environmental concerns associated with the sharp rise in global energy 

consumption, energy consumption has also become a major component of operating 

expenditures (OPEX) for mobile network operators. Nokia-Siemens Networks, the 

world’s number-two network equipment manufacturer, states in a 2011 article that 

energy consumption accounts for 13.5% of OPEX in mature markets and 26.3% in 

maturing markets [5]. Therefore, there is great interest in the research community 

towards reducing the overall energy consumption of cellular networks [6]. The BSs 

account for 65-75% of the total energy consumed by cellular networks [5, 7], and so 

one of the major energy saving opportunities for cellular networks lies in developing
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cell switch-off schemes which allow some cells to be switched off during non-peak 

periods.

As operators deploy greater numbers of BSs to fulfill their needs for higher ca­

pacity, cell sizes are reduced and therefore less transmit power is required to satisfy 

cell edge users. This allows for gains in energy efficiency, since power amplifiers 

account for upwards of 40% of a BS’s total energy consumption [7]. Figure 1.0.1 

shows the energy consumption break-down for a typical 3G BS as measured by Er­

icsson. However, there are still overhead energy costs in keeping a large number of 

BSs powered on at all times. Modern cellular networks are interference-limited (as 

opposed to noise-limited), and therefore in off-peak periods it can be possible to serve 

the same number of users with fewer BSs while keeping the transmit power fixed. 

Traffic-adaptive cellular networks could save energy by reconfiguring cell parameters 

and switching them on or off based on spatial and temporal fluctuations in network 

traffic. For example, business areas would experience higher traffic load than resi­

dential areas in the daytime, whereas the reverse would likely be true during evening 

hours. Since cellular networks are designed to meet demand during periods of heavy 

traffic, there will always be areas in the network which are underutilized throughout 

the day.

Mobile network operators are moving towards the deployment of a much greater 

number of small cells (namely femtocells, picocells, and microcells) as the most eco­

nomically and technically feasible strategy to better service the rapidly growing de­

mand for wireless traffic [8]. As mobile network architecture becomes more and more 

dominated by the presence of small cells, the motivation for developing cell switch-off 

schemes will grow stronger since the number of unutilized and underutilized cells at 

any given time of the day will undoubtedly increase.

2
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Figure 1.0.1: Energy consumption break-down at a 3G BS with multi-carrier power

1.1 Thesis Contributions

Cell switch-off is a difficult problem to solve when all parameters such as interfer­

ence and quality of service requirements are taken into account. Other issues which 

arise in real-world deployments but are often not considered in existing research can 

complicate matters even further; examples include irregular cell layouts, user traffic 

and mobility models, cell-specific pathloss models, or differing parameters across cells 

such as transmit powers, antenna heights and downtilts, and energy consumption lev­

els. Existing research makes various assumptions to simplify the problem and offers 

some heuristics to solve it. Niu et al. study the problem and develop a heuristic 

which they call “cell zooming” in [1] under the assumption that inter-cell interfer­

ence coordination (ICIC) has been used to eliminate all interference in the network. 

We observe that even if ICIC is used, it can not fully eliminate interference and it 

also results in a reduction of the total bandwidth available for use in the network. 

We examine their heuristic in the context of a constant interference scenario, but we 

assume worst-case interference since this yields an achievable solution, whereas the 

assumption of no interference results in a high likelihood of yielding an unachievable

amplifier. [3]
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solution in a real-world system.

Under the worst-case interference assumption, we formulate the cell switch-off 

problem mathematically using binary integer linear programming. This BILP for­

mulation is equivalent to the bin-packing problem, which is NP-hard, if the spectral 

efficiency of each UT to all cells is fixed to a constant. Nonetheless, the formula­

tion can be solved within seconds to find the optimal solution for scenarios with a 

relatively small number of users (about 9 users per cell with 57 cells). We compare 

the optimal solution with the “cell zooming” algorithm, and observe that there is a 

substantial performance gap. We then improve the heuristic to bring it closer to the 

optimal solution, which we call enhanced cell zooming.

Allowing the interference to be a function of the user assignment, which allows for 

a more realistic construction of the problem, increases the complexity of the problem 

(which, in the above case, is already NP-hard) even further and thereby necessitates 

a heuristic method. We built upon the enhanced cell zooming algorithm to address 

the variations in inter-cell interference which occur as a result of switching on and off 

different cells in the network. The results show that adding interference-awareness 

allows more flexibility in turning off a greater number of cells when compared with the 

worst-case interference scenarios. However, the optimal solution for the interference- 

aware scenario is not known, due to the difficulty in formulating it mathematically 

as an optimization problem. In order to further improve the results, we formulated 

the problem as a genetic algorithm (GA). We analyze the performance of the above 

algorithms under different user distributions and when energy consumption varies 

across BSs. We also study the trade-off between energy saving and user satisfaction. 

We evaluated the algorithms using a non-regular cell layout as well, and found that 

our GA-based algorithm continued to perform well.
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The contributions of this thesis can be summarized as follows:

•  We formulated and solved the cell switch-off problem with constant-interference 

as a BILP problem.

•  We improved the heuristic from [1] and obtained substantial energy saving gains 

while maintaining linear complexity.

•  We re-constructed the problem to allow interference to be a function of the 

UT assignment, and developed a heuristic to solve it. We showed that this 

interference-aware scheme can save dramatically more energy when compared 

to the worst-case (constant) interference scheme.

•  We designed and implemented a GA for the interference-aware problem and 

obtained further improved results.

1.2 Published Work

•  Furkan Alaca, Akram Bin Sediq, and Halim Yanikomeroglu, “A Genetic Al­

gorithm Based Cell Switch-off Scheme for Energy Saving in Dense Cell De­

ployments” , accepted for IEEE GLOBECOM’12, December 2012, Anaheim, 

California, USA.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

•  Chapter 2: We review the existing work available in the literature which relates 

to cell switch-off and identify some associated research issues and challenges.
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We also give a brief overview of schemes which are related to our work, such as 

“cell zooming” . We also describe GAs, which we later use in developing one of 

our schemes.

•  Chapter 3: We describe in detail the schemes which we have developed. We 

start with the BILP formulation, which gives the optimal solution for the 

constant-interference scenario. Since BILP is computationally intensive, we 

aim to develop a heuristic which yields close to optimal results. We improve 

the “cell zooming” scheme from [1] to bring it closer to the optimal solution, 

which we call the enhanced cell zooming scheme. We then describe how we add 

interference-awareness to the enhanced cell zooming scheme, and describe how 

we develop a GA to obtain further improved results. We also describe how we 

select our parameters for the GA.

•  Chapter 4: We give a detailed overview of how we built and evaluated the 

accuracy of our simulator, and describe our methodology for evaluating the 

performance of our schemes.

•  Chapter 5: We present our simulation results, which show how much energy 

savings can be achieved through the schemes previously discussed. We also 

examine the trade-off between energy saving and user satisfaction.

• Chapter 6: We summarize our work and discuss some advantages, disadvan­

tages, and limitations of the schemes which were presented. We also share some 

insights on future directions for this line of research.
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Chapter 2

Background and Literature Review

Green communications is a new research area to which contributions have been 

made by researchers specializing in many different aspects of telecommunications. 

Optimizing the energy efficiency of cellular networks requires work on many aspects 

such as software, hardware, and network planning and management. For example, 

electronic components such as power amplifiers need to be designed to be made more 

energy-efficient, and energy-saving protocols need to be designed at both the media 

access control (MAC) and network layers. Network planning also play a role in energy 

efficiency through the careful selection of cell sites, backhaul, cooling mechanisms, 

and even the use of alternative “off-grid” energy sources. A more exhaustive survey 

of research issues and challenges for green cellular networks can be found in [6].

2.1 Research Challenges and Practical Issues in Cell Switch-OfF

One of the recently explored issues in green communications is the concept of 

selectively switching off BSs during periods of low network activity. This issue has 

been a discussion topic among industry members at 3GPP meetings [9,10]. Some of 

the possible use case scenarios for switching on and off cells in the network have been 

described as follows:

•  Where there are two cells operating on different frequency bands which cover

7



the same geographical area, one of the cells could be deactivated during times 

of light traffic.

•  In a hierarchical cell structure where a macro-cell is deployed to provide con­

tinuous coverage to a large area and femto-cells are deployed to increase the 

capacity of specific sub-areas, the femto cells can be switched off when no traffic 

is detected.

•  In areas where the coverage area of an LTE cell is completely overlapped by 

a legacy cell (e.g., UMTS or GSM), the LTE cell could be de-activated when 

there is no demand for high-speed data.

Although implementation details are not discussed at these meetings, the above 

simple scenarios would be relatively easy to implement. There are, however, some 

practical issues with the first and third scenarios, since there are many subscribers 

with older devices which may not support all frequency bands or which may be 

operating on the legacy network.

There is also some work presented in academic literature which discusses other 

use case scenarios for cell switch-off. For example, one study proposes a scheme where 

mobile operators offering service in the same area can save energy by switching off BSs 

and allowing customers to roam on each other’s networks [11]. Coordination between 

competing operators would surely offer greater potential for energy savings, but it 

is difficult to determine what type of arrangement would be acceptable or feasible 

both from a business perspective and also from a technical perspective, since different 

network operators often hold licenses for different bands and may even operate on 

different network technologies.
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The energy savings made possible by some of the above techniques which are more 

limited in scope would not be as significant as a more flexible scheme which adapts 

to user traffic and allows some BSs to switch off while allowing the remaining BSs to 

expand their coverage regions. The following subsections describe the various layers 

and aspects which must be considered when developing a scheme for the deployment 

and management of a green wireless network which supports cell switch-off.

2.1.1 Network Planning

Effective network planning can contribute to the energy efficiency of a network if 

either the cell sites are chosen in a way which makes it easier to switch off cells while 

allowing neighbouring cells to compensate for the reduced coverage, or if coverage 

extension technologies such as relays are strategically deployed. One study discusses 

various patterns in which cells can be deployed and shows that some layouts make 

it easier to switch off cells when compared to other layouts [12]. The authors also 

argue that it is more energy-efficient to deploy a network with a greater amount of 

small cells where switching off a single cell has less of an impact when compared to 

switching off a cell in a network which has a smaller number of large cells.

2.1.2 BS Configuration in Heterogeneous Networks

When energy consumption at all BSs is equal, the objective in order to maxi­

mize the energy savings would be to maximize the number of cells to be switched 

off. However, in heterogeneous networks (HetNets), it is typical for cells to differ 

dramatically with respect to the size of the coverage region they are designed to 

serve, and therefore the amount of energy which they consume. A cell switch-off 

scheme for HetNets would need to distinguish between different types of cells such as

9



macrocells, microcells, picocells, and femtocells, and accurately be able to model the 

energy consumption of these different types of cells in order to effectively maximize 

the aggregate energy savings in the network. Detailed energy consumption models 

for macrocells and microcells can be found in [13]. Another aspect of HetNets which 

differs from traditional networks is the use of multi-hop relaying. While relays are 

useful for improving cell-edge performance, and could therefore improve coverage 

when some cells are switched off, it would also need to be investigated how much 

energy a relay consumes and when, if at all, it is advantageous to switch them off.

2.1.3 UT Assignment

Optimizing UT-to-BS assignment through load-balancing techniques, even with­

out modifying the transmit power of the BSs, can have a dramatic effect on quality 

of service [14]. Effectively load balancing UTs between the active BSs and taking ad­

vantage of technologies such as Coordinated Multipoint Transmission and Reception 

(CoMP) can help to offset any potential loss in coverage or quality of service during 

periods where some BSs are powered down.

2.1.4 Cell Parameter Optimization

Cell parameters such as transmit power, hand-off thresholds, and antenna tilt can 

be configured to guarantee coverage in areas where neighbouring cells are switched 

off. Antenna tilting limits the range of a cell by restricting the radiated power 

to a smaller geographic region, and is therefore used to minimize interference to 

neighbouring cells. While this is advantageous in a fully-utilized network, it impairs 

the ability of cells to serve UTs which fall in the coverage area of neighbouring cells 

that are switched off. Mechanical solutions to adaptively change the antenna tilt of
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a cell may be undesirable due to reliability concerns, but “virtual” antenna tilting is 

feasible through the use of remote electrical tilt (RET), which is an electrical beam 

tilting mechanism [15].

2.1.5 Interference Management

Since modern cellular networks are heavily interference-limited, cell switch-off 

schemes would benefit from taking into account the effects of interference when select­

ing which cells to switch off. Continued research in the area of inter-cell interference 

co-ordination (ICIC) shows that carefully assigning the bandwidth resources and lim­

iting frequency re-use in some scenarios can improve overall network throughput [16]. 

Some cells may be stronger interferers than others due to high transmit power, an­

tenna height, or close proximity to loaded neighbouring cells. Switching them off 

or strategically restricting the bandwidth made available to them can significantly 

increase the spectral efficiency of UTs in other parts of the network. This, in turn, 

could allow more cells to be switched off since the high spectral efficiency would al­

low the remaining cells to serve a greater number of UTs. In fact, some researchers 

are considering dynamic spectrum reduction as another technique to save energy [17]. 

This technique could therefore be used both to save energy and to reduce interference, 

and could be done jointly with cell switch-off.

2.1.6 Time Scale

Cell switch-off can be done using both short-term and long-term approaches. The 

following strategies describe a short-term cell switch-off approach, which can be used 

independently by each cell, and a long-term approach which must be co-ordinated at 

the network level [17]:
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2.1.6.1 Short-term approach

The short-term approach, called micro-sleep, entails buffering frames and schedul­

ing them such that there are time slices where the cell is fully loaded followed by time 

slices where the cell is non-loaded. This occurs on the scale of milliseconds and allows 

the signal processing units to spend more time in sleep mode and the power amplifiers 

to operate at peak efficiency, which is typically at close to full load. The disadvantage 

of this approach is that beyond-4G networks are expected to provide service for hard 

real-time machine-to-machine communication applications which are delay-sensitive 

(e.g., vehicle-to-vehicle communication). Therefore, the maximum time during which 

a cell can be allowed to micro-sleep would be bounded by the delay requirements for 

these applications, which may be in the order of 20 milliseconds [17].

2.1.6.2 Long-term approach

The long-term approach entails periodically re-configuring the base stations in 

the network by switching them on or off. This could occur on the scale of minutes 

or even hours, and would allow more significant energy savings than the short-term 

approach by allowing more BS components to be shut off. Typically, when long­

term approaches are discussed, it is assumed that some BSs will be shut off and 

that its users will be handed off to neighbouring BSs. However, as research in this 

field progresses and the development of radio access technology moves more towards 

energy efficiency, it may eventually be possible for this long-term approach to be 

incorporated at an even shorter scale of several sub-frames so that it may be done 

jointly with other co-ordinated techniques such as CoMP or ICIC.
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2.1.7 User Traffic Prediction and Modeling

Another technique which would be useful for performing cell switch-off is UT 

traffic prediction. Being able to predict UT traffic is advantageous since it can allow 

the cell switch-off scheme to consider not only the current traffic trends in the network 

but how they may change until the time arrives to re-configure the network. Since 

it is not practical to expect that cells can be repeatedly switched on or off within 

short time windows, it is useful to be able to make accurate predictions of UT traffic. 

Some early work in this area has been done in this [18].

2.2 Tools for Developing Cell Switch-Off Schemes

In the following sub-sections, we discuss three possible strategies that can be used 

to develop cell switch-off schemes, namely by following an analytical approach, or 

by constructing a problem-specific heuristic, or by using general-purpose techniques 

which have been well studied in the field of artificial intelligence.

2.2.1 Analytical Aspects

It is a big challenge to design a comprehensive scheme that captures all of the 

configurable aspects of a cellular network by following the analytical approach of 

formulating closed-form mathematical expressions and solving optimization problems 

to minimize the energy consumption. In fact, it is likely that most schemes which 

are eventually used in practice will be based on computationally efficient heuristics 

or which yield reasonably good quality results in real-world conditions. Nevertheless, 

analytical work may prove useful in determining the potential for energy savings and 

for calculating bounds to evaluate the performance of sub-optimal schemes. The
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work presented in [19] and [20] use analytical methods to characterize the amount of 

energy that can be saved by reducing the number of active BSs during periods of low 

traffic.

2.2.2 Problem-Specific Heuristics

When it is too difficult, computationally too expensive, or even impossible to 

analytically obtain the optimal solution to a problem, the most popular alternative is 

to develop a heuristic which is specifically tailored to the problem. Computationally 

efficient heuristics can be designed to obtain very good sub-optimal solutions for 

many problems. However, one of the most common pitfalls with some heuristics is 

that they may perform very well in the problem setting which it was designed for, 

but may perform poorly under special circumstances which were not anticipated by 

the designer [21]. Another design challenge is to determine how well the heuristic 

performs when it has incomplete knowledge of the environment. As a result, problem- 

specific, heuristics are ideal for many types of problems where all the possible test 

conditions can be easily be taken into account in the design process.

2.2.3 Artificial Intelligence

Artificial Intelligence (AI) techniques which can help in learning and decision­

making are useful for problem domains where the environment and objectives are 

too complex to be fully characterized by closed-form mathematical expressions, such 

as in cognitive radio [22]. The study in [23] presents a survey of a wide variety of 

research in wireless which takes advantage of AI techniques such as artificial neural 

networks, fuzzy logic, and biologically-inspired search algorithms such as genetic al­

gorithms (GAs), ant-colony optimization, and simulated annealing. Machine learning
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is another aspect of AI which allows the system to adapt to changing environments 

based on accumulated experience. An interesting study which takes advantage of ma­

chine learning can be found in [24], where an aggregate interference control scheme is 

developed for the IEEE 802.22 Wireless Regional Area Network (WRAN) standard.

We later show that the cell switch-off problem becomes very difficult to solve when 

a greater number of parameters are taken into account in the problem formulation. 

This necessitates the use of a search heuristic to solve the problem with reasonable 

complexity and computation time. We chose to explore the use of GAs since it was 

found that the construction of the cell switch-off problem allowed us to formulate it 

in a way which could be readily solved with a GA. Moreover, GAs have been shown 

to offer impressive performance in a wide variety of problem domains, and this gave 

us confidence that it would offer robust performance for our problem as well [25].

2.3 Overview of Genetic Algorithms

GAs belong to a larger class of algorithms studied in evolutionary computation 

(a field of artificial intelligence) which use mechanisms that are inspired by aspects of 

genetic evolution such as mutation, chromosomal crossover, and natural selection [26]. 

GAs come in many different variations, and can be applied to both single-objective 

and multi-objective problems [27]. In fact, there are even mechanisms which allow for 

GAs to be executed in a distributed manner [28]. However, all GAs share the same 

general approach of performing a heuristic search of a solution space with the goal 

of finding the optimal solution using the aforementioned evolutionary techniques. In 

order to apply a GA to a problem, the following two requirements must be met:

i. It must be possible to encode any solution from the solution domain as a string
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of “alleles” , called a “chromosome” .

ii. The quality of any solution, based on the objective of the optimization problem, 

should be quantifiable by using a “fitness function” .

There are a number of key principles which should be followed when designing the 

fitness function and the chromosome representation for a problem [26]. For example, 

the chromosome representation should be as concise as possible and should lend well 

to mixing and matching alleles for generating new, higher quality solutions. Also, a 

fitness function should be computationally efficient, since it will be used many times 

throughout the optimization process and will therefore have a high influence on the 

total computation time. The procedure for a basic GA, known as the steady-state 

GA, is as follows [29]:

1. Generate an initial population of chromosomes either randomly or by using a 

heuristic which can find some good sub-optimal solutions.

2. Assign each chromosome a fitness value.

3. Select two chromosomes, either randomly or probabilistically based on their 

fitness values -  these will be the parent chromosomes.

4. Perform a genetic crossover, which is a mechanism for exchanging alleles be­

tween the two parent chromosomes, to generate two child chromosomes.

5. Assign a fitness value to the two child chromosomes and insert them into the 

population by displacing two of the existing chromosomes -  again, chosen either 

randomly or probabilistically based on their fitness values.
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6. Return to Step 3, unless either the maximum number of iterations has been 

reached or the population has converged to a solution.

7. Select the chromosome with the highest fitness value as the optimal solution.

In the subsections that follow, we will discuss the various aspects and components 

of a GA as described above. A more detailed discussion of these various elements 

can be found in Chapter 2 of [30].

2.3.1 Initial Population

The two major considerations when generating the initial population are (1) the 

number of individual chromosomes to generate, and (2) the mechanism through which 

the individuals are generated. There is no particular rule for selecting the popula­

tion size, but the general consensus is that larger chromosome lengths require larger 

populations. Studies cited by [30] suggest a linear dependence between population 

size and chromosome length, and it is also indicated that in many cases good results 

can be obtained with population sizes as small as 30. An approach suggested in [31] 

is to choose the population size as a multiple of the chromosome length.

Regarding the mechanism through which the initial population is generated, the 

general approach is to randomly generate the chromosomes. However, since randomly 

generated chromosomes do not always uniformly cover the entire search space, more 

“intelligent” techniques can sometimes be used in order to ensure that the entire 

search space is reachable from the initial population through crossover. There is also 

the possibility of inserting known good solutions (perhaps obtained through a simple 

heuristic) into the initial population. This can sometimes help the GA find better 

solutions more quickly, but it can also have the drawback of leading to premature
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convergence to a poor solution or a local optimum.

2.3.2 Chromosome Selection

The chromosome selection problem is that of selecting which chromosomes will 

reproduce through crossover and which chromosomes will be removed from the pop­

ulation. Since the goal of the GA is to find a solution which maximizes or minimizes 

a given fitness function, it follows that the selection procedure should somehow relate 

to fitness. However, always selecting the best solutions in the population for crossover 

can have the undesirable effect of premature convergence to a local optimum. More­

over, while some solutions may have a low fitness value, they may contain useful 

“genes” which can be used to improve other solutions in the population. For these 

reasons, chromosome selection typically follows a stochastic approach. The most 

widespread selection mechanisms are known as Roulette Wheel Selection (RWS) and 

Tournament Selection (TS). RWS constructs a probability distribution where each 

chromosome is assigned a selection probability which is directly proportional to its 

fitness. The RWS technique in its unmodified form can perform poorly under many 

circumstances, and often requires some level of tweaking. Some possible techniques 

include scaling the fitness values or constructing the probability distribution based 

on rank rather than absolute fitness values. TS, on the other hand, randomly se­

lects with uniform probability a group of chromosomes from the population which 

then “compete” against each other to select, either stochastically or deterministically 

based on fitness, which two chromosomes will be used to generate the two new child 

chromosomes through crossover. TS has the interesting computational advantage 

that it does not necessarily need to know the exact fitness values of the chromo­

somes. In many cases, it may be enough for it to only carry out a partial evaluation
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of the fitness function in order to determine which chromosomes in the tournament 

group are the most fit.

The remaining issue regarding chromosome selection is the mechanism through 

which the new child chromosomes are inserted into the population. There are two 

general approaches, which are known as generational and steady-state strategies. GAs 

in their original form used a generational strategy, where crossover and mutation 

were applied to a population of N  chromosomes to generate a new generation of 

N  chromosomes. A concept called population overlap was later introduced as a 

modification to this strategy, which worked by only replacing a fixed fraction of the 

population at each generation. The steady-state approach takes this concept further 

and inserts the child chromosomes directly into the current population. It has been 

shown that the generational and steady-state approaches behave similarly over the 

long-run, but the steady-state approach can often reach better solutions in less time 

than the generational approach, since it allows high-fitness offspring to propagate 

more quickly throughout the population [32].

2.3.3 Crossover

The crossover operator in a GA is the mechanism which takes two parent chro­

mosomes and recombines them to produce two child chromosomes. Crossover allows 

the GA to explore the search space and gradually improve the fitness of the popu­

lation. A simple crossover technique, called the one-point crossover, is illustrated in 

Figure 2.3.1. Different crossover techniques may be more suitable for certain types 

of problems; we will discuss this issue in Section 3.4 when we design our GA.
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Parents:

Children:

1 1 1 1 1 1 1

0 0 0 0 0 0 0

Crossover point

0 0 1 1 1 1 1

1 1 0 0 0 0 0

Figure 2.3.1: One-point crossover.

2.3.4 Mutation

The mutation operator is designed to maintain diversity in the population. Mu­

tation makes slight alterations such as flipping a binary bit at a random position in 

the chromosome or exchanging the positions of two alleles. Mutation only operates 

on a single chromosome at a time, as opposed to crossover which requires two parent 

chromosomes. Mutation occurs based on a user-defined probability, and helps the 

GA to avoid local optima by preventing the chromosomes from becoming too similar 

to each other.

2.3.5 Termination

Stochastic search methods such as GAs, and also other methods such as ACO 

which were previously discussed, could theoretically continue running indefinitely. 

However, for the GA to be useful in practice, a termination condition needs to be 

placed so that a solution can be obtained. The simplest way of terminating a GA is 

to limit the computation time, number of fitness evaluations, or number of crossovers. 

The advantage of these approaches is that they allow the execution time of the GA to 

be bounded by some deterministic amount of time. Another approach is to monitor 

the diversity of the population and formulate a termination condition which is based
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on some measure of convergence.

2.4 Related Work in Cell Switch-Off Algorithms

2.4.1 Cell Zooming

Niu et al. present a centralized and a distributed version of a scheme, which 

they name “Cell Zooming” , which executes at a pre-defined interval to shut off un­

derutilized BSs [1]. The authors show that their centralized scheme significantly 

outperforms their decentralized scheme. The scheme assumes that each user has a 

fixed minimum rate requirement, and BSs are only switched off if its users’ traffic 

demands can be satisfied by neighbouring BSs.

2-4-1-1 Centralized scheme

Algorithm 2.1 describes the steps of the centralized cell zooming scheme, with 

the variables defined as follows:

•  The algorithm is executed periodically at a fixed interval of T  minutes

•  User terminal (UT) to BS associations are specified by the binary matrix X =  

[Xy], where X{j =  1 if UT i is associated with BS j ,  or 0 otherwise

•  The downlink bandwidth at BS j  is Bj

•  The minimum rate requirement of a UT i is r,

• The spectral efficiency of a UT i served by BS j  is pij

•  The bandwidth required for a BS j  to satisfy the rate requirement of UT i is



• The traffic load each BS j  serving their respective set of users M j  is given by

•  A protection margin a3 € [0,1] can be defined, which reduces the aggressiveness 

of the algorithm by reserving a portion of the BS’s bandwidth so that the idle 

downlink bandwidth at BS j  is Bj  =  (1 — Qj)Bj

Algorithm 2.1 Cell zooming algorithm
Input: W, B
Output: X

1 L 4= 0
2 X ^  0ixj
3 for each UT i do
4 Assign UT to BS j  with highest Pij with condition L j B j + b i j  < B j .  Otherwise, 

UT i is blocked.
5 Update L and X.
6 end for
7 Shut off all BSs with M j  =  $ .

8 loop
9 Select BS j  with smallest L j

10 Re-associate, if possible, all users from M j  to other BSs in the network.
11 if M j  = 0 then
12 Shut off BS j
13 Update X and L
14 else
15 Terminate loop
16 end if
17 end loop

Algorithm 2.1, by design, shuts off BSs only in increasing order based on traffic 

load. Although it intuitively makes sense to attem pt to first shut off BSs with low 

traffic load, following this strict ordering does not yield optimal results since the traffic 

load of neighbouring BSs would also be relevant to finding the optimal configuration.

the vector L, where Lj =
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It should be noted that Algorithm 2.1 does not cause any users to go into outage 

at the instant the algorithm is executed. However, as time passes, there is a chance 

that the UT distribution could change significantly before the next time the algorithm 

is scheduled to be executed. This is the reason why the authors proposed that a 

protection margin ctj be introduced, which restricts the available bandwidth of the 

BSs to B j  — (1 — o t j ) B j  in the execution phase of the algorithm. This results in 

less BSs being shut off and leaves some spare bandwidth at each BS to decrease the 

blocking probability of subsequent users entering the network.

Another issue is that in order for the algorithm to be executed, all of the users 

must have SINR measurements from all of the nearby BSs in order to identify the 

BSs with which their spectral efficiency is high enough to meet their minimum rate 

requirement. The authors of [1] suggest that every time when the algorithm is to be 

executed, all of the BSs should be turned on for a short period to allow the UTs to 

collect the required SINR measurements. We believe that this would be undesirable 

for real-world applications. However, the idea of separating data from signalling in 

green wireless networks is already being proposed by some researchers in academia 

and industry [33]. As the mobile industry continues to put higher emphasis on energy 

efficiency, it very conceivable that future wireless network equipment will be equipped 

with efficient, low-power components dedicated for signalling purposes. This would 

allow cells to switch off data capabilities and go into a low-power sleep mode which 

allows signalling activity to continue.

2-4-1.2 Distributed scheme

Niu et al. also consider a distributed scheme in order to achieve lower information 

exchange requirements when compared to their centralized scheme. The distributed
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scheme follows a very simple approach where each UT chooses which cell to associate 

with based on the function defined as

precedence to cells which offer high spectral efficiency but which can accommodate 

the UT but are already highly loaded. Since UTs are made to prefer cells which are 

already highly loaded, some cells are left unutilized after all the UTs have chosen 

which cells to associate with, and these unutilized cells are then switched off.

cantly inferior results when compared to the centralized scheme. Although the low 

co-ordination and computational requirements of distributed algorithms are a de­

sirable trait, there is no pressing need to avoid co-ordination between cells in the 

context of cell switch-off since the information being exchanged is relatively small 

in size and is delay-insensitive. In this case, we believe that the superior results of­

fered by the centralized algorithm outweighs the low overhead requirements of the 

distributed algorithm.

2.4.2 Dynamic Base Station Energy Saving

Zhou et al. present a scheme in [34] which they call dynamic base station energy 

saving. Algorithm 2.2 describes the steps followed by their scheme. B  is defined as 

the set of BSs, and U is defined as the set of all UTs. The spectral efficiency between 

a UT i and BS b is denoted by pu and the minimum rate requirement of each UT is 

defined by r*. The energy consumed by BS b and the maximum bandwidth available

(2.4.1)

The scheme ranks the cells in order of preference using Equation 2.4.1, which gives

The results presented in [1] show that the distributed scheme produces signifi-
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for use by a BS 6 are defined by W[nax and Pb, respectively. The main difference 

between the operation of this scheme and the one presented in [1] is that it tries 

to perform the UT assignment and cell switch-off jointly by assuming that each cell 

is switched off by default and then switching on as few cells as possible while UTs 

are being assigned. In contrast, the scheme in [1] assigns the UTs first with the 

assumption that all of the cells are switched on, and then attem pts to switch off as 

many as possible. Both approaches carry benefits and drawbacks, some of which we 

will discuss in the following chapter.

Algorithm 2.2 Dynamic Base Station Energy Saving

Input: B,U, Bb, {u}, {pbi}, {P6}, { W ^ ax}, {ab}
Output: {x ib} ,B  

1: while U ^  0 and B ^  0 do 
For V b e B , U b = Uh nU .
Find the BS bj in B  with largest — “6 ^  . Set W  = (1 — a b.)WPax. 
while W  > 0 and U ±  0 do 

Find i* = arg minieW £

9
10
11

12

13

if  w > m  thenpu*
U = U - { i * }  
Ub j = U bj - { i * }
w = W - m

P b i *

end if
end while
B = B - { b j }  

end while
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Chapter 3

Proposed Cell Switch-Off Schemes

In this chapter, we present our proposed cell switch-off schemes. We first de­

scribe our BILP formulation in Section 3.1, under the assumption that interference 

is constant. We then present a computationally efficient heuristic based on the “cell 

zooming” scheme given in [1], which we call “enhanced cell zooming” (ECZ) in Sec­

tion 3.2. We then adapt the ECZ scheme to work in scenarios where interference is 

a function of the set of active cells in the network, which we call “interference-aware 

cell zooming” (IACZ) in Section 3.3. In Section 3.4 we present our GA-based algo­

rithm, which we call “interference-aware genetic algorithm” (IAGA), along with the 

description of its parameters and crossover and mutation operators.

In all of our schemes which we present in this chapter, the objective is to maximize 

the number of cells switched off in the network. We believe that this is a good 

approximation of energy savings, due to studies such as [13] which show that the 

static portion of a cell’s energy consumption is much greater than the dynamic energy 

consumption which depends on traffic. When we switch off a cell, we assume that all 

the equipment such as the baseband processing chips and power amplifiers are shut 

down, which make up the majority of a cell’s energy consumption as was shown in 

Figure 1.0.1. Since these components are also responsible for generating heat, this 

would also allow the cooling mechanisms to switch off shortly afterwards. We assume,
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as envisioned by researchers in [33], that there will be dedicated low-power signalling 

equipment which would facilitate for the cell to be switched on when required at a 

later time. It was suggested in [1] that the cell switch-off algorithm could be executed 

at fixed intervals to decide which cells to switch off (or to switch on). We believe that 

a more effective approach would be to monitor the traffic and outage levels across 

all the cells in the network. A high traffic load or outage level would indicate that 

it is an appropriate time to re-execute the algorithm to allow some more cells to be 

switched on. Similarly, a low traffic load would indicate that the algorithm should 

be re-executed to allow some cells to be switched off.

3.1 Binary Integer Linear Programming Formulation

We begin by defining the variables and parameters which we need in order to 

formulate the problem as a BILP problem:

•  Xif.  binary variable such that x itj — 1 if user i is connected to sector1 j

•  tjj: binary variable such that yj =  1 if sector j  is active

•  p i j : spectral efficiency for user i if it is associated to sector j

•  B j : total bandwidth for sector j

•  Ri\ minimum rate requirement for user i

•  I: number of users

•  J: number of sectors

1 In 4G terminology, each sector is in fact a cell. We use the term “sector” here to re-inforce that 
each of the cells located at a particular site can be switched off independently from the rest.
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We first consider the assumption where the spectral efficiencies p y  are indepen­

dent from the binary variables ijj and x tJ . As a result, the interference power must 

be fixed as a constant for all users. Two possible ways of doing this are by assuming 

either (a) the best-case scenario, which occurs when interference power is zero (i.e., 

SINR equals SNR for all users); or (b) the worst-case scenario, which occurs when 

all resource blocks are used at all the cells. We observe that assumption (a) yields 

the upper-bound and assumption (b) yields the lower-bound for the number of cells 

which can be switched off, since (a) over-estimates and (b) under-estimates the spec­

tral efficiencies of the UTs. The authors of [1] followed assumption (a). However, it 

should be noted that (a) is an unachievable bound, since it is physically impossible 

for there to be no interference in the network; even if inter-cell interference coor­

dination is used, it is at the expense of bandwidth and it still can not completely 

eliminate interference. On the other hand, (b) yields an achievable bound since it is 

the worst-case scenario. Following either assumption, the problem can be formulated 

as a BILP problem as follows:

It should be noted that integer programming problems (IP) are NP-hard. The 

satisfiability problem for BILP, a special case of IP, was one of the 21 problems shown

j
minim ize (3.1.1a)

subject to (3.1.1b)

(3.1.1c)
j

(3.1.Id)

Xij,yj  <E {0,1}, (3.1.1e)
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to be NP-complete by Karp in his landmark paper in computational complexity 

theory [35]. Nevertheless, the problem can be solved efficiently for a relatively small 

number of users and can therefore serve as a benchmark for other heuristics. However, 

defining the spectral efficiencies pij  as a function of the cell configuration yj or UT 

assignment x^j makes the problem non-linear and hence much more difficult to solve, 

thereby necessitating a good heuristic.

3.2 Enhanced Cell Zooming Heuristic

Our heuristic, presented in Algorithm 3.1, is an improvement to the CZ algo­

rithm given in [1], which we described in Algorithm 2.1. The CZ algorithm tries to 

switch off the cell with the lowest utilization, and it terminates if it is not able to 

do so, even if there are other cells which could potentially be switched off instead. 

Algorithm 3.1, which we call enhanced cell zooming (ECZ), also tries to switch off 

cells with low utilization, but it does not terminate until it has attem pted to switch 

off each individual cell in the network. Although the changes which we made to 

Algorithm 2.1 were relatively small, we see that they yield substantial improvements 

in the results. This is because utilization can not be treated as the exclusive factor 

which determines how easily a cell can be switched off. Other important factors 

include the utilization at neighbouring cells and the spectral efficiency between the 

UTs and neighbouring cells, which both determine how easily the network can hand 

off the UTs from a cell and subsequently switch it off.

3.3 Interference-Aware Cell Switch-Off Scheme

We now proceed by considering how to design an algorithm which is interference- 

aware. In other words, instead of assuming worst-case interference, which occurs
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A lgorithm  3.1 Enhanced cell zooming (ECZ) algorithm
In p u t:  W ,B  
O u tp u t:  X

l: L <= 0  
2: X  <=
3: for  each UT i d o
4: Assign UT to BS j  with highest p i j  with condition L j B j + b i j  < B j .  Otherwise,

UT i is blocked.
5: Update L and X .
6: e n d  for
7: Switch off all BSs with M j  =  0.
8: A  4= Set of all currently active BSs 
9: w h ile  A  ^  0 d o  

10: Select BS j  with smallest Lj
11: Re-associate, if possible, all users from M j  to other BSs in the network.
12: i f  M j  =  0 t h e n
13: Switch off BS j
14: Update X  and L
15: e n d  i f
16: A  = A  -  { B S  j }
17: e n d  w h ile

when all radio resources are being used by all cells, we only consider the interference 

from the cells which are active. Following the interference-aware approach allows for a 

more realistic modelling of the network. However, in order to maintain a reasonable 

level of computational complexity, the interference is still calculated based on the 

assumption that each active cell is using all of its radio resources. Assuming full 

resource utilization at the active cells provides a significant computational advantage 

since as a result, interference only needs to be calculated when a cell is switched 

on or off as opposed to each time a UT is assigned to a cell. This is also a more 

reasonable worst-case bound, since switching off cells will cause the utilization levels 

at the remaining cells to increase due to the extra bandwidth needed to satisfy UTs 

absorbed from neighbouring cells.
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As we discussed in Sections 2.4.1 and 2.4.2, an iterative solution for the cell 

switch-off problem can be built either by initializing all cells to be switched on and 

then incrementally switching them off, or by initializing all cells to be switched off 

and then incrementally switch them on. These two approaches are comparable in 

the constant-interference case. However, in the interference-aware case, the second 

approach is more problematic, since the interference introduced by switching on a cell 

can cause a highly loaded nearby cell to become overloaded. This does not occur when 

the first approach is used, which is why we continued to build upon Algorithm 3.1 to 

develop our interference-aware algorithm, which we present in Algorithm 3.2.

Algorithm 3.2 Interference-aware cell zooming (IACZ) algorithm
Input: W, B 
Output: X

1: L -4= 0
2: X <£= Ojxj
3: for each UT i do
4: Assign UT to BS j  with highest p tJ with condition LjBj+bij < Bj. Otherwise,

UT i is blocked.
5: Update L and X.
6: end for
7: Switch off all BSs with M j  — 0.
8: A  4= Set of all currently active BSs 
9: while A  7^ 0 do 

10: Select BS j  with smallest Lj
11: Recalculate BS load vector L and all spectral efficiencies assuming that

BS j  is switch off
12: Re-associate, if possible, all users from M j  to other BSs in the network.
13: if Mj  = 0 then
14: Switch off BS j
15: Update W, X and L
16: e n d  i f
17: A  = A - { B S j }
18: e n d  w h ile
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3.4 G enetic A lgorithm  Based Interference-Aware Cell Switch-O ff Schem e

Using an iterative approach to solve a problem as we have done is a widely 

used technique for solving problems that are otherwise too complex to be solved 

mathematically in a single step. However, the performance of iterative algorithms 

must be carefully evaluated since they do not necessarily produce optimal results. The 

solution generated by an iterative algorithm inherently depends on the quality of the 

decision-making at each iteration. In the case of a cell switch-off algorithm, making a 

poor decision on which cell to switch off at any given iteration reduces the quality of 

the final result. This is especially the case in an interference-aware algorithm, since 

each cell produces a different amount of interference to the UTs in the network. We 

have already shown that while aiming to switch off cells with low utilization can be 

used as a reasonable guideline, strictly following this approach yields poor results. 

While we were able to solve the constant-interference case as an optimization problem 

and compare the results with Algorithm 2.1, the high complexity in the interference- 

aware case did not allow us to do the same for Algorithm 3.2. Instead, we designed 

a GA in order to search for the best ordering in which to iteratively switch off the 

cells and bring our results from Algorithm 3.2 closer to optimality. The following 

sub-sections describe how each of the GA’s components, as listed in Section 2.3, were 

designed.

3.4.1 Chromosome Representation and Fitness Function

The chromosome representation which we chose for the problem is an array of 

numbers where each number represents a cell (denoted by B  in Algorithm 3.3). The
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order of the numbers represents the order in which the algorithm will attem pt to 

switch off the cells.

The fitness value of each chromosome is the number of cells that are successfully 

turned off using this ordering, less the average cell load in the network. This way, if 

there are two different solutions which both succeed in switching off the same number 

of cells, the solution which results in a lower average load will be favoured since this 

is indicative of a more spectrally efficient UT assignment. The fitness function uses 

Algorithm 3.3 to calculate how many cells can be switched off given a chromosome 

B .

Algorithm 3.3 Fitness function for GA-based sheme
Input: B ,  W, B 
Output: X

1: L -4= 0
2: X •<= Ojxj
3: for each UT i do
4: Assign UT to BS j  with highest p t j  with condition L j B j + b i j  < B j .  Otherwise,

UT i is blocked.
5: Update L and X.
6: end for
7: Switch off all BSs with M j  = 0 and remove from B  

8: for each BS j  in B  do
9: Recalculate BS load vector L and all spectral efficiencies pij assuming that

BS j  is switch off
10: Re-associate, if possible, all users from M j  to other BSs in the network.
11: if M j  = 0 then
12: Switch off BS j
13: Update W, X and L
14: end if
15: end for
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3.4.2 Crossover Operators

Designing or choosing an appropriate crossover operator can often have a major 

impact on the success of a genetic algorithm. The performance of a crossover operator 

may vary significantly across different problem domains, and may even be incompat­

ible with some types of problems. For example, our problem is an ordering problem 

where each gene must appear exactly once in the chromosome. Consequently, the 

one-point crossover operator discussed in Chapter 2 can not be used since it would 

not preserve the validity of the chromosomes (i.e., some genes may be duplicated 

and others may be removed). However, there are other crossover operators which 

were designed to solve problems which require ordered chromosomes such as the 

well-known travelling salesman problem (TSP). These crossover operators are often 

referred to as ordered crossover. Among the most widely used ordered crossover op­

erators are the partially matched crossover (PMX) and the order crossover (OX) [36]. 

We implemented both of these crossover operators, and describe their operation in 

the subsections that follow .

3.4-2.1 Partially matched crossover

Partially matched crossover is implemented by randomly picking two positions 

which form a matching section between the two parent chromosomes. Each of the two 

child chromosomes are generated by copying the alleles which fall within the matching 

section from one parent into the other parent, while moving the displaced alleles into 

other positions in a way which preserves the validity of the child chromosome. An 

example of how this is done can be seen in Figure 3.4.1.

34



Noctange

6 2 3 14 11 j 7 5 | 6 2 | 3 l l l 4 l 7 l 5 l 6 2 4 1 31715
♦

15 2 | 4 | 1 | 3 l 7 | 6 5 | 2 | 4 | 1 | 3 | 7 | 6 | 5 2 14 11131716

First offspring: I 6 2 4 1 13 7 5

6 2 3 4 1 7 5 6 2 3 4 1 7 5 6 2 3 4 1 7 5
*

5 2 4 113 7 6 Q[ 2 1 413 7 6 1* 2 3 14 1 17 6

t l *
No change

Second offspring: | 5 2 3 4 1 7 6

Figure 3.4.1: Partially matched crossover (figure taken from [4]).

3.4 -2.2 Order crossover

Order crossover is implemented by generating a binary mask string of the same 

length as the parents. The child is constructed by copying all of the alleles of the first 

parent which correspond to the Is of the mask string. The alleles which correspond 

to the Os of the mask string are then re-ordered according to how they appear in the 

second parent. An example of how this is done can be seen in Figure 3.4.2.

First parent 6 2 3 4 1 7 5 Second parent 5 7 4 1 3 2 6

Mask 1 0  1 0  1 0  1

First offspring 6 7 3 4 1 2 5 Second offspring [ 5 | 2 | 4 | 1  | 3 | 7 j 6

Figure 3.4.2: Example for order crossover.
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3.4.3 Mutation

In ordered chromosomes, the two most popular ways to perform a mutation is to 

randomly select two sites and to either swap the positions of the respective genes, or 

to invert the order of the genes which lie between the two sites.

3.4.4 Initial Population, Chromosome Selection, and Termination Conditions

Although there are some general guidelines which help in GA parameter selec­

tion, there are no particular set of rules and therefore the parameters are typically 

chosen experimentally. For choosing the size of the initial population, we follow the 

approach suggested by [31], which is to choose the population size as a multiple of 

the chromosome length. After experimentation, we found that choosing the initial 

population to be equal to the chromosome length (i.e., the number of cells, which is 

57 for the regular hexagonal cell layout scenario), generated good results. Increasing 

the initial population beyond this point did not yield any improvements. Decreasing 

this number, on the other hand, yielded poorer results.

For chromosome selection, we implemented tournament selection, since Roulette 

Wheel Selection usually requires major modifications to yield good results. When 

choosing the tournament group size, it was found (unsurprisingly) that choosing 

relatively large numbers such as 15 resulted in premature convergence to the current 

best solution in the population. Choosing smaller numbers such as 5 slowed down the 

convergence process and generated higher quality results. Termination should occur 

after the population converges to an optimal solution, and we found experimentally 

that this would occur after about 50 to 70 crossover operators. We set the termination 

condition of the GA to 70 crossover operations in order to be sure that the best result 

has been found.
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Chapter 4

Simulation System Model

Conventional system-level simulation tools for cellular networks typically operate 

at a very fine time scale in the order of milliseconds, which is close to the typical 

duration of a subframe. This is essential for evaluating the performance of many 

advanced physical (PHY) and media-access control (MAC) layer technologies such 

as Multiple Input Multiple Output (MIMO), Coordinated Multiple Point Transmis­

sion/Reception (CoMP), and Intercell Interference Coordination (ICIC). However, 

wireless systems are also evolving with technologies which operate at the network 

level. For example, 3GPP members have been investigating self-optimizing network 

(SON) use cases for 4G networks and beyond [37]. Some use cases of SON, among 

many, include energy saving, load balancing between cells, handover parameter op­

timization, and modification of antenna tilts for coverage and capacity optimization. 

These type of use cases require algorithms which operate at much slower speeds 

when compared to PHY or MAC technologies, since the underlying variations (e.g., 

users entering and leaving the network, fluctuations in traffic load, or environmental 

changes) occur at time scales in the order of minutes, hours, or even days. Therefore, 

when evaluating these algorithms, it is not necessary to take into account small-scale 

variations such as fast fading which occur in the order of milliseconds. The authors 

of [38] present a mathematical framework for simulating SONs and also present vari­

ous use cases and some simulation results. Since our cell switch-off scheme is designed
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to operate over a slow time scale, we use a similar simulation framework which fol­

lows the standard parameters and assumptions from the ITU-R guidelines in [2] for 

evaluating IMT-Advanced systems but omits scheduling and fast fading.

4.1 Channel and Interference Model

The power PRx(i, j ) received by the i-th UT from the j- th  cell is calculated with 

the expression

where Prx( j )  is the transmit power of the j- th  cell, PL( i , j )  is the large-scale atten-

and j- th  cell, and A(i , j )  is the antenna pattern gain based on the directionality of 

the antenna. The formulae for P L ( i , j ) and A ( i , j ) are given below:

where dij is the distance (in meters) between the Tth UT and j- th  cell, f c is the 

carrier frequency (in GHz), and X G is a Gaussian random variable with a mean of 

0 dB and standard deviation of a dB;

uation caused by shadowing and distance-dependent pathloss between the i-th UT

PL( i , j )  [dB] =  36.71og10( c y  +  22.7 +  261og10( /c) +  X a, (4.1.2)

A(i , j )  [dB] =  -  min [ -  (A(6i:j) + A (< ^)), 20 dB ], (4.1.3)

where A(6ij) is calculated as

min 12 (4.1.4)

and A{4>ij) is calculated as

A(<f>ij) [dB] =  — min 12 (4.1.5)
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As mentioned above, we do not consider small-scale fading, since it averages out over 

the longer time scale in which our scheme operates. The SINR between the z-th user 

and jf-th cell can then be calculated by the expression

SINR(i,j) =  Eŝ hj} , (4.1.6)
Pn + Y , P^ ( i , k )

where Pjv is the noise power, and Paxih  j )  is given by Equation 4.1.1. The bandwidth 

B( i , j )  required by the z-th UT to achieve a bit rate R  with the j- th  cell is then 

calculated with the Shannon capacity formula

B { , - 3)  = log2 (l + SINR(i,j))' (4'17)

4.2 Simulation Scenarios

We consider three types of scenarios, which we discuss in the sections that follow, 

in which to evaluate the performance of our cell switch-off schemes.

4.2.1 Regular Hexagonal Layout

Dense micro-cell deployments are one of the most relevant test environments for 

evaluating cell switch-off schemes, since there is a greater amount of underutilization 

which occurs during off-peak hours when compared to rural macro-cell deployments. 

Micro-cell environments are heavily interference-limited, which should make it rela­

tively easy to maintain good coverage even when a large number of cells are shut off. 

For this scenario, we ran our simulations using 19 BSs on a regular hexagonal grid, 

each serving 3 cells with full frequency re-use as shown in Figure 4.2.1. Table 4.2.1 

summarizes the parameters used for this scenario, which are defined in the urban 

micro-cell (UMi) downlink scenario from the ITU-R guidelines in [2].
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Parameter Assumption or Value

Cellular layout Hexagonal grid with wrap-around

Number of cells 57 (19 sites with 3 cells each)
Inter-site distance 200 m
Minimum distance b/w  UT and BS 10 m

UT locations
2D uniform probability distribution, 

50% UTs indoors & 50% UTs outdoors

Outdoor-to-Indoor Pathloss 20 dB
Bandwidth (downlink) 10 MHz
Carrier frequency 2.5 GHz
Thermal noise level -174 dBm/Hz

BS antenna height 10 m

BS antenna gain 17 dBi
UT height 1.5 m
UT antenna gain 0 dBi

BS transmit power 41 dBm

Antenna tilt {4>tut) 12° [39]

Feeder loss 2 dB

Shadowing standard dev. (a) 4 dB

Table 4.2.1: Summary of simulation parameters [2]
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4.2.2 Regular Hexagonal Layout with Varying Energy Consumption Levels

In real-world deployments, different BSs can consume different amounts of energy 

due to a variety of reasons. The most obvious reason would be that macro-cells with 

large coverage areas consume significantly more energy than micro-cells which cover 

smaller areas. There are, however, other factors as well. Recent deployments may 

use more modern and innovative cooling equipment which, for example, can extract 

cold outdoor air during the winter. Studies have also shown that the implementation 

of the backhaul also has a measurable impact on the total energy consumption at a 

BS [40]. Moreover, as transistor sizes continue to shrink in accordance with Moore’s 

Law, processing chips continue to offer significantly better performance per Watt 

consumed. Research and development for higher efficiency power amplifiers is also 

ongoing. Some cell sites may even make use of off-grid energy sources such as solar 

energy. In future smart power grids, energy will even have different costs at different 

times of the day depending on the supply and demand in the area.

For this scenario, we use the same parameters for the UMi scenario referred to for 

the previous scenario, but we label each BS as either an energy-efficient or energy- 

inefficient BS. For the sake of simplicity in implementation and in presenting the 

results, we assume that a randomly selected set of 9 energy-inefficient BSs consume 

double the energy of the remaining 10 energy-efficient BSs. Although this is a syn­

thetic scenario, and in reality there would be a larger variety of energy consumption 

levels due to the aforementioned reasons, we believe that it is nonetheless an inter­

esting scenario to examine in order to determine if varying the energy consumption 

can have an impact on the performance of the algorithms being evaluated.
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4.2.3 Non-Regular Layout

The previous scenarios are based on a regular hexagonal cell layout in accor­

dance with the ITU-R guidelines. We now consider what happens in non-regular 

layouts, since real-world deployments are typically non-regular in nature, as can be 

seen in Figure 4.2.3, which shows the Rogers cell site locations in downtown Mon­

treal. We consider two non-regular layouts as described in the following subsections, 

one of which is a synthetic scenario and the other which approximates a real-world 

deployment.

The SOCRATES (Self-Optimisation and self-ConfiguRATion in wirelEss net­

works) research project, funded by the European Union, was recently completed 

by a group of leading European industry and research institutions [41]. The aim 

of the project was to develop and evaluate algorithms for self-configuration, self­

optimization, and self-healing for 3GPP LTE based wireless networks. One of the 

synthetic simulation scenarios which they considered was the Springwald layout, de­

scribed in [14]. The Springwald layout is constructed by sampling 12 points on an 

Archimedian Spiral. In order to facilitate the simulation and wrap-around, which we 

discuss in the subsequent section, we replicated the Springwald layout by overlaying 

it on the 19-site hexagonal layout as shown in Figure 4.2.2.

4.3 Wrap-Around

When simulating a network, only a limited number of cells can be generated. 

This causes an edge effect in the outer cells, where UTs experience less interference 

and therefore have higher SINRs due to the fewer number of neighbouring cells. For 

this reason, we wrap around the cells as shown in Figure 4.3.1 in order to ensure that
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Figure 4.2.3: Rogers cell site locations in downtown Montreal, denoted by the blue 
hexagons (image retrieved from http://www.loxcel.com/celltower).

the SINR distributions are consistent across cells. In order to verify the accuracy 

of the simulator, the UT SINR distributions were compared against the WINNER+ 

calibration data found in [39]. Figure 4.3.3 shows the SINR distribution without 

wrap-around, and it can be seen that the UTs located in cells on the outer ring 

have a higher SINR distribution compared to the UTs located in the inner cells. 

Figure 4.3.3 shows the SINR distribution with wrap-around, where all cells have the 

same SINR distribution.

4.4 User Distribution and Traffic Model

We consider two types of user distributions in our simulations. Firstly, we con­

sider a uniform distribution in which UTs have a uniform probability of appearing 

anywhere in the network. We also consider an overlaid hotspot distribution, where
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Figure 4.3.1: Regular hexagonal cell layout with wrap-around.
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a certain percentage of UTs are distributed uniformly within three chosen hotspots, 

and the remaining users are distributed with uniform probability anywhere in the 

network. The UT concentration in the hotspots is chosen to be approximately dou­

ble the concentration compared to non-hotspot areas. We also present two types of 

results:

•  Instantaneous results showing how many cells were deactivated immediately 

following the execution of the algorithm. Although we call these results in­

stantaneous, we could also consider them as time-averaged results if the UT 

positions (or in practice, SINR distributions) given as input to the algorithm 

are chosen based on statistical UT distribution during a particular time inter­

vals throughout the day.

•  Outage probability over a one-hour time period, which is generated by fixing 

the average number of UTs at a specific value and allowing UTs to enter and 

leave the network. New UTs enter the network according to a Poisson process, 

and the time for which they remain in the network is exponentially distributed 

with a mean of 1 minute.
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Chapter 5

Simulation Results and Performance Analysis

In this chapter, we present and discuss the results which were obtained by simu­

lating the algorithms described in Chapter 3 in the scenarios described in Chapter 4. 

We start by evaluating the algorithms in a regular hexagonal cell layout in Sections

5.1 and 5.2, which cover the constant interference and dynamic interference envi­

ronments, respectively. We also discuss the implications of varying levels of energy 

consumption at different BSs in Section 5.3. We then move on to non-regular cell 

layouts in Section 5.4. Finally, we analyze the trade-offs between energy savings 

and user satisfaction in Section 5.5. For simplicity and ease of comparison between 

results, the performance curves found in the results are expressed as percentage of 

energy saved, which corresponds to the ratio of cells which have been switched off 

in the network. We present the tabulated raw simulation data alongside the figures 

in order to also allow easy comparison of the absolute number of cells which were 

switched off.

5.1 Results for Schemes with Constant Interference

Table 5.1.1 compares the results obtained by CZ (Algorithm 2.1), ECZ (Al­

gorithm 3.1), and the optimal solution from the BILP formulation simulated with 

uniform and hotspot UT distributions using the worst-case interference assumption.
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Cell zooming Enhanced cell zooming Optimal solution

Num. of UTs Uniform Hotspots Uniform Hotspots Uniform Hotspots

285 1.04 1.36 8.72 12.4 10.52 14.04
342 0.76 1.28 6.40 9.64 7.96 11.8
399 0.52 0.88 4.24 7.36 5.88 9.64
456 0.20 0.40 3.04 5.24 4.52 6.96
513 0.12 0.12 2.08 4.40 3.92 6.32

Table 5.1.1: Simulation results with regular hexagonal cell layout with 57 cells and 
constant interference for uniform and hotspot UT distributions. Results 
represent the number of cells which were switched off.

We note that the results for the CZ algorithm were obtained using our simulator, 

which takes into account interference. It can be seen that there is a big improve­

ment going from CZ to ECZ, and a further improvement with the BILP solution. 

Figures 5.1.1 and 5.1.2, which plot the results for the uniform and hotspot scenarios 

respectively, show that the performance improvement is similar in both cases and 

is relatively consistent across different numbers of UTs. The BILP solutions were 

obtained in MATLAB using the MOSEK toolbox, which was able to calculate the 

solution within seconds on a machine with a quad-core 3.4 GHz processor and 8 GB 

of RAM. However, when the number of UTs exceeded 513 (9 UTs per cell), it would 

fail to generate a solution.

5.2 Results for Schemes with Dynamic Interference

Table 5.2.1 compares the results obtained by IACZ (Algorithm 3.2) and IAGA 

simulated with uniform and hotspot UT distributions where interference is a function 

of the set of active cells. The uniform and hotspot scenarios are plotted in Figure 5.2.1 

and Figure 5.2.2, respectively.
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Interference-aware cell zooming Interference-aware GA

Number of UTs Uniform Hotspots Uniform Hotspots

456 40.16 39.76 41.56 41.36
570 35.44 35.12 36.92 36.56
684 29.88 30.4 32.24 32.4
798 23.84 25 26.48 26.84
912 18.72 18.04 21.24 20.84
1026 14 11.44 15.96 14.28
1140 8.76 7.48 11.4 9.2
1254 4.6 3.96 5.96 5.04

Table 5.2.1: Simulation results with regular hexagonal cell layout with 57 cells and 
dynamic interference for uniform and hotspot UT distributions. Results 
represent the number of cells which were switched off.

0.8
-e— Interference-Aware Cell Zooming 

Interference-Aware GA

-Co
5 0.5 
(0
<n
S 0.4

•4—o
c 0.3 o
t  
9 0.2Q.
2

CL
0.1

1200 1400600 800 1000 
Number of UTs in network

00

Figure 5.2.1: Plot of simulation results with regular hexagonal cell layout with 57 cells
and dynamic interference for uniform UT distribution. Results represent
the proportion of cells which were switched off.
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The IAGA was set up with an initial population of 57 random orderings, and 

reproduction was done by randomly selecting 8 solutions from the population and 

replacing the two lowest-fitness solutions with the offspring of the 2 highest-fit ness 

solutions after doing a PMX crossover. The mutation operator was not used, since 

it did not result in any improvements in our tests. Using these parameters, the pop­

ulation converges after about 70 crossover operations, as can be seen in Figure 5.2.3. 

Comparing the performance of the IAGA with the IACZ, which is a single-iteration 

interference-aware heuristic, we are able to see how much of an improvement is gained 

by using a GA to search through different orderings to find the best solution.

We observe from the results obtained by both of the interference-aware algorithms 

in Table 5.2.1 that many more cells have been switched off when compared to the 

results obtained by the non-interference-aware algorithms presented in Table 5.1.1. 

This is because if worst-case interference is always considered, it becomes much more 

difficult to hand off UTs from one cell to a neighbouring cell due to the high interfer­

ence which causes low spectral efficiency. However, if the spectral efficiency of a UT 

with a neighbouring cell is re-calculated by ignoring the received power from the cell 

with which it is currently associated, it allows for more flexibility in handing off UTs 

which then results in more cells being switched off. It is also seen by both Tables

5.2.1 and 5.1.1 that choosing which BSs to shut off becomes harder as the number 

of UTs increases. Although the numerical values of the number of cells switched off 

decreases as the number of UTs increases, the percentage gap between ECZ (Algo­

rithm 3.1) and the optimal BILP solution increases, as does the gap between IACZ 

(Algorithm 3.2) and IAGA. This is due to the fact that a micro-cell environment is 

heavily interference-limited, and also that the UTs only require a certain minimum 

rate in order to be satisfied. This is made more clear in the extreme situation where
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there is only one active UT in the network and only a single BS will be needed in 

order to satisfy the demand. Due to the dense cell deployment, any of the available 

BSs will be able to satisfy the single UT if all the other BSs are switched off, due to 

the high spectral efficiency which is a result of both close proximity and the lack of 

interference.

5.3 Results with Variable Energy Consumption at BSs

In this section, we compare the performance of the ECZ and IAGA in the variable 

energy consumption scenario where a random set of 9 BSs is assigned an energy con­

sumption weight of 2, which implies that they consume double the energy compared 

to the remaining 10 BSs. The results are presented in Table 5.3.1, and the results for 

the uniform and hotspot UT distribution are plotted in Figure 5.3.1 and Figure 5.3.2, 

respectively. Intuitively, it can be realized that if the different energy consumption 

levels across cells are not taken into account by the algorithms, the plots presented 

in this section should simply be identical to those in the previous section but scaled 

by the average energy consumption of all the cells. For easy comparison, we have 

included those scaled results in the plots that follow.

In both Figure 5.3.1 and Figure 5.3.2 it can be seen that the results generated 

by IACZ in the variable consumption are indeed comparable to the scaled results 

from the previous scenario with uniform energy consumption. However, this is not 

the case with IAGA, where the performance of the algorithm in the variable energy 

consumption scenario surpasses the scaled results from the previous uniform energy 

consumption scenario. This shows that the performance advantage of IAGA grows 

with respect to IACZ in this scenario, since it is able to strategically select which 

cells to switch off based on the total energy savings rather than treating all cells in
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Interference-aware cell zooming Interference-aware GA

Number of UTs Uniform Hotspots Uniform Hotspots

456 59.72 59 62.64 63.44
570 52.32 52.92 55.92 56.56
684 43.76 44.4 47.68 47.52
798 35.92 37.64 40.28 41.8
912 27.72 29.96 32.48 35.28
1026 19.84 19.16 24.64 24.68
1140 13.12 11.18 17.84 14.8
1254 7.48 6.24 9.92 8.12

Table 5.3.1: Simulation results with regular hexagonal cell layout with 57 cells, dynamic 
interference, and variable energy consumption for uniform and hotspot 
UT distributions. Results represent the energy saved relative to a single 
energy-efficient cell.

the same way.

5.4 Results for Springwald Layout

In this section, we compare the performance of the ECZ and IAGA using the 

Springwald cell layout. The results with the Springwald layout are presented in 

Table 5.4.1, and the results for the uniform and hotspot UT distribution are plotted 

in Figure 5.4.1 and Figure 5.4.2, respectively. For this scenario, we ran the simulations 

with a reduced number of UTs when compared to the previous scenarios, since there 

are only 36 cells (12 cites) as opposed to 57 cells (19 cells). The performance trend 

of both algorithms is similar to the previous scenarios, but it can be seen that IAGA 

has a relatively larger performance lead in the non-regular Springwald layout.
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Figure 5.3.1: Plot of simulation results with regular hexagonal cell layout with 57 cells, 
variable energy consumption, dynamic interference, and uniform UT dis­
tribution. Results represent the weighted proportion of cells switched off.

Interference-aware cell zooming Interference-aware GA

Number of UTs Uniform Hotspots Uniform Hotspots

342 22.72 23.4 24.4 25.08
456 16.72 16.92 18.76 18.96
570 8.64 9.2 11 12.32
684 4 2.96 5 3.92

Table 5.4.1: Simulation results with Springwald cell layout and dynamic interference
for uniform and hotspot UT distribution. Results represent the number
of cells which were switched off.
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Figure 5.3.2: Plot of simulation results with regular hexagonal cell layout with 57 cells, 
variable energy consumption, dynamic interference, and hotspot UT dis­
tribution. Results represent the weighted proportion of cells switched off.

5.5 Trade-offs Between Energy Saving and User Satisfaction

In order to evaluate the trade-off between energy saving and user satisfaction, we 

ran simulations with a UT traffic model as described in Section 4.4. In the perfor­

mance figures presented in this section, the vertical axis represents energy savings in 

the same way as the figures presented in previous sections. However, the horizontal 

axis represents the ratio of UTs whose minimum rate requirements were not satisfied 

by the network to the total number of UTs which were simulated. The figures in this 

section give an idea of the nature of the trade-off between energy saving and user 

satisfaction.

We first present the results for the regular hexagonal cell layout scenario. The raw 

simulation data is tabulated in Table 5.5.1 and Table 5.5.2, and the outage curves
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Figure 5.4.1: Plot of simulation results with Springwald cell layout and dynamic inter­
ference for uniform UT distribution. Results represent the proportion of 
cells which were switched off.
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Figure 5.4.2: Plot of simulation results with Springwald cell layout and dynamic inter­
ference for hotspot UT distribution. Results represent the proportion of
cells which were switched off.
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are plotted in Figure 5.5.1 and Figure 5.5.2 for the results obtained with uniform 

and hotspot UT distributions, respectively. In order to generate these results, we 

varied the parameter a , where a  G [0,1], in order to cap the maximum bandwidth 

utilization of the cells during the execution of the cell switch-off algorithm as was 

done in [1], This effectively reserves some spare bandwidth at each cell and restricts 

the number of cells which can be turned off, allowing us to tune the algorithm to 

operate at different trade-off regions between energy saving and user satisfaction. It 

can be seen from the figures that the curves generated by IAGA appear to the left of 

IACZ in both figures. This indicates that in the regions where IAGA switches off the 

same number of cells as IACZ, it is able to achieve higher user satisfaction. Another 

way of interpreting the results is that IAGA can achieve higher energy savings than 

IACZ without any additional penalty in user satisfaction. A final observation is that 

in both Figures 5.5.1 and 5.5.2, and especially in Figure 5.5.2, the user satisfaction 

penalty at the left-hand side of the plot for the first few cells that are switched off 

are negligible. The IAGA also performs quite well in this region. This is a positive 

sign, since it shows that some energy can easily be saved without any impact to the 

user experience.

Finally, for thoroughness, we present the results for the Springwald cell layout 

scenario. The raw simulation data is tabulated in Table 5.5.3 and Table 5.5.4, and 

the outage curves are plotted in Figure 5.5.3 and Figure 5.5.4 for the results ob­

tained with uniform and hotspot UT distributions, respectively. We observe that 

the performance trends are similar to the regular hexagonal cell layout scenario, but 

we observe especially in Figure 5.5.3 that the performance advantage of IAGA over 

IACZ is larger when using the Springwald layout.
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Cells switched off UTs simulated UTs unsatisfied

a IAGA IACZ IAGA IACZ IAGA IACZ

1 31 27 41796 41840 4912 4395
0.95 29 26 41978 41441 4846 3444
0.9 27 26 41852 41730 3546 3628

0.85 26 22 41751 41534 2627 1591
0.80 23 21 41899 41891 1910 1695
0.75 21 18 41689 41667 1116 952
0.70 17 13 41330 41342 633 337
0.65 14 11 41953 41892 238 192
0.60 10 7 41221 42027 112 51
0.55 4 3 41957 41496 22 18
0.50 2 2 41551 41601 7 4

Table 5.5.1: Trade-off between energy saving and user satisfaction with uniform distri­
bution and average of 684 UTs in network.
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Figure 5.5.1: Plot of simulation results with a regular hexagonal layout for uniform
UT distribution with 684 UTs. Results represent the proportion of users
blocked as a function of the proportion of cells were switched off.
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Cells switched off UTs simulated UTs unsatisfied

a IAGA IACZ IAGA IACZ IAGA IACZ

1 32 31 41885 41718 4779 4401
0.95 30 30 41793 41811 3809 4509
0.9 28 24 41595 41448 2710 1751

0.85 26 24 41850 41890 2176 1665
0.80 24 21 41844 41732 1576 1285
0.75 22 20 41657 41978 1081 1053
0.70 20 18 41867 41725 996 733
0.65 18 15 41705 41877 802 913
0.60 14 10 42102 41740 507 320
0.55 13 8 41493 41591 350 328
0.50 9 7 42017 41210 340 302

Table 5.5.2: Trade-off between energy saving and user satisfaction with hotspot distri­
bution and average of 684 UTs in network.
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Figure 5.5.2: Plot of simulation results with a regular hexagonal layout for hotspot
UT distribution with 684 UTs. Results represent the proportion of users
blocked as a function of the proportion of cells were switched off.
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Cells switched off UTs simulated UTs unsatisfied

a IAGA IACZ IAGA IACZ IAGA IACZ

1 24 20 21887 22185 2533 2400
0.95 22 19 21909 22211 1720 1425
0.9 21 18 22056 22129 1201 1268

0.85 21 18 22208 22156 1422 850
0.80 19 15 22231 21913 715 395
0.75 17 13 22046 21503 436 277
0.70 15 13 21973 22279 251 285
0.65 13 8 22169 22096 93 97
0.60 10 9 22097 22005 50 39
0.55 9 7 22193 22066 56 52
0.50 8 8 22040 21711 51 53

Table 5.5.3: Trade-off between energy saving and user satisfaction with uniform UT 
distribution and average of 361 UTs in network with Springwald cell layout 
with 57 cells.
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Figure 5.5.3: Plot of simulation results with Springwald cell layout with 57 cells for
uniform UT distribution with 361 UTs. Results represent the proportion
of users blocked as a function of the proportion of cells were switched off.
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Cells switched off UTs simulated UTs unsatisfied

a IAGA IACZ IAGA IACZ IAGA IACZ

1 22 20 26287 26077 3561 2699
0.95 21 20 26555 26264 3168 2781
0.9 19 17 26344 26698 1990 2284

0.85 17 13 26502 26314 2025 947
0.80 13 9 26431 26556 854 637
0.75 10 8 26520 26553 478 588
0.70 8 7 26321 26299 364 413
0.65 8 6 26525 26488 419 464
0.60 6 5 26545 26242 446 444
0.55 4 3 26330 26178 444 256
0.50 3 2 26105 26557 228 322

Table 5.5.4: Trade-off between energy saving and user satisfaction with hotspot UT 
distribution and average of 432 UTs in network with Springwald cell layout 
with 57 cells.
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Figure 5.5.4: Plot of simulation results with Springwald cell layout with 57 cells for
hotspot UT distribution with 432 UTs. Results represent the proportion
of users blocked as a function of the proportion of cells were switched off.
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5.6 Implementation and Complexity

The main challenge associated with the implementation of schemes which require 

inter-cell communication of symbol-level data, such as ICIC and CoMP, lies in the 

requirement of a low-latency communication link between neighbouring cells. In 

order to address this challenge, future LTE networks will support a new interface 

called X2, which will enable mesh interconnectivity between cells [42]. However, as 

discussed in Chapter 4, our cell switch-off schemes operate on a much longer time scale 

than these algorithms, and therefore the latency requirements are not as stringent. 

Consequently, our cell switch-off scheme would not even require X2 links and could 

instead operate using the IP backhaul. For the BILP and ECZ schemes, described in 

Sections 3.1 and 3.2, the only channel state information (CSI) required is the SINRs 

of the UTs with those cells that are able to satisfy their minimum rate requirement. 

The CSI required by the IACZ and IAGA schemes, described in Sections 3.3 and 3.4, 

is the power received by all UTs from all the cells within their range. This information 

could be collected relatively easily over the control channels and then transmitted 

over the IP backhaul to a central entity which can execute the algorithm.

While BILP is NP-hard, all of the other algorithms which we presented, namely 

ECZ, IACZ, and IAGA, have linear complexity. However, IACZ and IAGA require 

additional computations when compared to ECZ since they are interference-aware 

and therefore need to frequently re-calculate the spectral efficiencies of all the UTs. 

IAGA also requires more computations when compared to IACZ, based on the pop­

ulation size and termination condition. Although the complexity of IAGA is still 

linear, it is shifted by a constant due to the extra computations. However, in the 

context of cell switch-off this is not of big importance since, as mentioned above, our
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scheme operates on a relatively long time interval. Furthermore, in absolute terms, 

the execution time of IAGA is not particularly long. For example, it takes about 90 

seconds to execute IAGA with 684 users, compared to about 0.5 seconds to execute 

IACZ on a machine with a quad-core 3.4 GHz processor and 8 GB of RAM. However, 

in our simulations, more than half of the time is spent by MATLAB (according to 

the profiler tool) in copying matrices since it is very inefficient at accessing struc­

tures and does not support pointer arrays, which forced us to repeatedly copy data 

out of structures into matrices before running computations. The execution time of 

IAGA could easily be reduced by implementing it in a more efficient language such as 

C/C-|—b and also including some additional enhancements such as the partial fitness 

function evaluation technique discussed in Section 2.3.2.
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Chapter 6

Conclusions and Future Work

6.1 Summary and Discussion of Contributions

We have shown that in some simplified scenarios, the cell switch-off problem 

can be formulated as a binary linear integer programming problem. However, even 

in the constant-interference scenario that we considered, the problem formulation 

can be turned into the bin-packing problem which is NP-hard. In more sophisti­

cated system models, as in the scenario we considered where interference is made 

a function of BS configuration, or in other scenarios where advanced tools such as 

coordinated multiple point transmission/reception (CoMP) or inter-cell interference 

coordination (ICIC) are taken into account, it is necessary to develop a suboptimal 

scheme which is computationally efficient. After improving upon a reference heuris­

tic with linear complexity for the non-interference-aware scenario, we extended the 

heuristic to be interference-aware while still maintaining linear complexity. We then 

further improved its performance by using a GA.

In addition to the partially matched crossover, we implemented the order crossover 

operator as in the example which we previously discussed in Section 3.4. However, it 

offered inferior performance to the partially matched crossover. We also implemented 

two customized crossover operators which we designed based on the order crossover 

but with a binary mask which was a function of the cells that were switched off us-
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ing the parent chromosomes. We found that these order crossover operators did not 

improve the results obtained from the partially matched crossover.

The performance advantage of the GA lies in the fact that it is free from having 

to follow a fixed ordering when turning off cells. Following a fixed ordering results 

in fewer cells being switched off, since virtually any single cell in the network can 

be switched off in periods of light traffic, and therefore making poor decisions in the 

early steps will impact the quality of the final solution. Each cell that is switched 

off has a different impact on the network based on the resulting spectral efficiency 

between the UTs and remaining cells in the network. This is why it is important for 

the algorithm to intelligently select the cells which will allow the maximum number 

of cells switched off (or maximum energy savings).

The simulation results in the variable-interference scenarios show that IAGA 

consistently produces better results than IACZ. We have also seen in the constant- 

interference case that the performance of ECZ is not very far behind the optimal 

BILP solution. This leads us to believe that the results generated by IAGA are likely 

to be relatively close to the optimal solution.

6.2 Future Research Directions and Possible Extensions

Cell switch-off is a research problem which is still in its early phases, and there 

are still many aspects of the problem which need to be investigated. Some future 

research directions and possible extensions are as follows:

6.2.1 Cell Parameter Optimization

Cell parameter optimization, which can control parameters such as transmit 

power, antenna tilt, or hand-off thresholds, can be integrated into cell switch-off
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schemes. This would allow future networks with cell switch-off to emulate the be­

haviour of CDMA networks with “cell breathing” , where the coverage area of a cell 

expands and contracts based on the current load. This allows for a more spectrally 

efficient UT-to-cell assignment which improves the quality of service. As discussed in 

Chapter 2, there is already some existing work such as [14] dealing with the dynamic 

adjustment of cell hand-off thresholds for the purposes of load balancing, and this 

work could be adapted to be used in the context of cell switch-off along with other 

techniques such as power control and remote antenna tilting.

6.2.2 Advanced Radio Access Networks

Advanced techniques such as CoMP, multi-hop relaying, and ICIC can be inte­

grated into the cell switch-off decision-making process in order to help in maintaining 

good coverage in areas where cells are switched off.

6.2.3 Traffic Prediction and Machine Learning

Traffic prediction mechanisms can be used to improve cell switch-off decisions. 

There are a number of advantages in following this approach. For example, machine 

learning can allow the network to learn from the association between historical UT 

distributions and the results of its previous cell switch-off decisions. This can reduce 

computational complexity, since the network can recognize UT distribution patterns 

which it had already seen in the past and make use of the “knowledge” which it accu­

mulated from its previous decisions instead of needlessly repeating computationally 

expensive calculations. A further advantage would be that by anticipating UT traffic 

patterns in advance, the network could make more intelligent cell switch-off decisions, 

and could also make more frequent reconfigurations while avoiding frequent on/off
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transitions at specific cells since it could anticipate in advance how often each cell 

would need to be reconfigured.

6.2.4 Parallel GAs

We presented our GA-based scheme as a centralized scheme, due to the algo­

rithm ’s requirement that the received power of all UTs in the network be given as 

input. However, it would be possible to modify the scheme to allow distributed ex­

ecution of the existing algorithm across the BSs in the network. This would reduce 

computational time and negate the need for a central entity to perform the calcula­

tions. In fact, there has been an abundance of research in the last several years in 

the parallel execution of GAs, and one of the more current research trends has been 

in executing GAs on geographically separated clusters for applications such as grid 

computing (see Section 5.4.3 in [28]).

An implementation issue which is relevant to cell switch-off or any other network­

wide algorithms in a large network is the question of whether the algorithm should be 

executed in one step for the entire network or if the network should be divided into 

small regions such that the algorithm can be executed in each region independently. 

In the latter case, a clustering algorithm would be needed in order to effectively divide 

the BSs into regions. Consequently, the algorithm would need to have some mech­

anism to deal with edge effects and would likely require some level of co-ordination 

between the regions.

6.2.5 Multiple Power States and Frequency Bands

Some other BS energy saving techniques which have been proposed include dy­

namic spectrum reduction, which reduces the spectrum available at a BS, and dy­
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namic voltage adjustment, which allows a BS to save energy by reducing the voltage 

and clock speeds of its processing chips [17], [43]. These techniques could be used 

in conjunction with cell switch-off in order to obtain a better trade-off between en­

ergy efficiency and user satisfaction. Dynamic spectrum reduction in particular is a 

tool which could be used in order to reduce both energy consumption and inter-cell 

interference simultaneously.

Another issue related to dynamic spectrum reduction is how to deal with multiple 

frequency bands. Many wireless network operators have licenses in multiple frequency 

bands, such as 850 MHz, 1700 MHz, and 1900 MHz in North America, or 900 MHz, 

1800 MHz, and 2100 MHz in Europe. In fact, operators which have multiple licenses 

typically operate overlayed networks where antennas are deployed for both frequency 

bands at most BSs. Often, voice traffic is prioritized on the lower bands to allow more 

consistent coverage, whereas the upper bands are used more for extra data capacity. 

For this reason, it would be a good idea to extend this research to consider multiple 

frequency bands and how cells should be switched on or off in that scenario.

6.2.6 Larger Scale Simulation

In a future study which takes into account some new techniques such as the ones 

mentioned above, it would be interesting to do a more sophisticated performance 

analysis which includes uplink performance, more detailed UT models involving real­

istic data traffic and UT mobility, and more detailed BS energy consumption models.
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