
The Ergodic High SNR Capacity of the

Spatially-Correlated Non-Coherent MIMO Channel

Within an SNR-Independent Gap

Ramy H. Gohary and Halim Yanikomeroglu

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

1
Abstract—The ergodic capacity of spatially-correlated non-

coherent multiple-input multiple-output channels is not known.
In this paper upper and lower bounds are derived for this
capacity at asymptotically high signal-to-noise ratios (SNRs). The
bounds are accurate within an approximation error that decays
as 1/SNR, and the gap between these bounds depends solely
on the signalling dimensions and the condition number of the
transmitter correlation matrix. The upper bound on the high
SNR ergodic capacity is shown to decrease monotonically with
the logarithm of the condition number of the transmitter cor-
relation matrix. Furthermore, the lower bound on this capacity
is achieved by input signals in the form of the product of an
isotropically distributed random Grassmannian component and
a deterministic component comprising the eigenvectors and the
inverse of the eigenvalues of the transmitter correlation matrix.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) communication

systems can be classified into coherent systems [1] in which

the receiver has access to reliable channel state informa-

tion (CSI) and non-coherent systems [2] in which no CSI is

available at either the transmitter or the receiver. Coherent

systems are more straightforward to design [3] than their

non-coherent counterparts. However, the analysis of coherent

systems usually does not account for the cost of the resources

that have to be expended to acquire reliable CSI. While

ignoring this cost in static and slow fading scenarios is

generally tolerable, ignoring it in fast fading scenarios arising

in various wireless systems, including millimeter wave ones,

can be rather misleading [4].

To alleviate the cost of acquiring reliable CSI in fast

fading scenarios, it is desirable to use non-coherent signalling

strategies, that is, strategies that do not require the receiver

to have access to CSI. In [2] it was shown that, for spatially-

white MIMO channels with independent identically distributed

(i. i. d.) block Rayleigh fading coefficients, the input matrices

that achieve the ergodic capacity can be expressed in the

form of an isotropically distributed unitary component and

a diagonal component with non-negative entries. A closed

form expression for the asymptotically high signal-to-noise

ratio (SNR) ergodic capacity of this channel was obtained

in [5] when the coherence time of the channel exceeds a certain
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threshold and in [6] when the coherence time is below that

threshold. For the case in [5], the high SNR ergodic capacity

is achieved when the diagonal component of the input signal

is a scaled identity matrix and the unitary matrix component is

isotropically distributed on the so-called Grassmann manifold.

Various techniques for designing rate-efficient Grassmannian

constellations can be found in [7] and [8]. For the case in [6],

the unitary component was shown to have the same distribution

as that in [5], but the optimal distribution of the diagonal

component was shown to be that of the square root of the

eigenvalues of a beta-distributed random matrix. In contrast

with the high SNR cases, for the low SNR ones, the optimal

diagonal component has at most one nonzero entry [9].

The proximity of antennas in practical wireless systems,

including prospective massive MIMO ones, renders the re-

alization of spatially-white channels generally difficult, even

when the antenna spacing exceeds multiple wavelengths. This

proximity induces correlation between the random entries of

the channel matrix at the transmitter and receiver sides. A

convenient means for characterizing this correlation is the

so-called Kronecker model, whereby the spatially-correlated

channel matrix is represented by a spatially-white matrix

that is left and right multiplied with transmitter and receiver

correlation matrices, respectively. The correlation matrices are

dominated by the statistical properties of the propagation

environment, and the locations, geometries and beam patterns

of the transmit and receive antennas [10]. As such, these ma-

trices vary much more slowly than the instantaneous channel

parameters, and can therefore be accurately estimated and

made available to the transmitter and the receiver. As will be

shown herein, the impact of these matrices on the signalling

methodology and the achievable rate can be significant. The

case in which the correlation between the channel coefficients

is described by the Kronecker model in non-coherent commu-

nications was considered in [11] for arbitrary SNRs. Therein it

was shown that, in contrast with spatially-white channels [2],

[5], in spatially-correlated ones the optimal input covariance

can be expressed as the product of an isotropically distributed

unitary component, a non-negative diagonal component and

a deterministic component comprising the eigenvectors of the

transmitter correlation matrix.

Although non-coherent MIMO channels that arise in prac-

tice are likely to be spatially-correlated, no closed-form ex-



pressions or bounds are currently available for their capacity,

neither is there a constructive signalling strategy that ap-

proaches it. To investigate the impact of spatial correlation,

we herein derive an expression for the ergodic high SNR

non-coherent channel capacity for the case of in which the

channel is block Rayleigh fading and the correlation is de-

scribed by the Kronecker model with known transmitter and

receiver correlation matrices [11]. The capacity expression that

we derive is accurate within an SNR-independent gap (cf.

Theorem 1 below) and an approximation error that decays

with 1/SNR [12]. We also derive an upper bound on the gap

to capacity and we show that this gap decreases monotonically

with the logarithm of the transmit condition number. Finally, it

is shown that the input signals that achieve the asymptotically-

tight capacity is in the form of the product of an isotropically

distributed random Grassmannian component and a determin-

istic component comprising the eigenvectors and the inverse

of the eigenvalues of the transmitter correlation matrix.

Notation: Random and deterministic matrices will be de-

noted by boldface and regular face upper case letters, respec-

tively. The m×m identity matrix will be denoted by Im, and

the O(·) notation will be used to imply that g1(x) = O
(

g2(x)
)

if g1(x)/g2(x) → a as x → ∞, a is a constant.

II. SYSTEM MODEL

We consider a frequency-flat block Rayleigh fading channel

in which the signals emitted from the transmit antennas are

correlated and those impinging on the receiver antennas are

also correlated. This situation arises in practice when the

antenna elements are not sufficiently spaced for the channel

gains to be statistically independent. Denoting the number

of transmit and receive antennas by M and N , respectively,

the channel matrix can be expressed as H = A1/2HwB1/2,

where A ∈ C
M×M and B ∈ C

N×N are the Hermitian posi-

tive semidefinite transmitter and receiver correlation matrices,

respectively, and Hw ∈ C
M×N is a random matrix with

zero-mean unit-variance i. i. d. circularly-symmetric complex

Gaussian entries. To avoid degenerate scenarios, we will

assume that both A and B are full rank.

In the block fading model, the channel assumes a statis-

tically independent realization over each block of T channel

uses and remains essentially constant within each block. This

model is realistic in perfectly interleaved frequency-hopping

systems [5] and is useful in characterizing high mobility sce-

narios in current Long Term Evolution (LTE) cellular systems.

In such cases, the received signal matrix can be expressed as

Y = XA1/2HwB1/2 + V , (1)

where X ∈ C
T×M represents the transmitted signal matrix,

and V ∈ C
T×N represents the additive noise matrix; the

entries of V are i. i. d. zero mean unit variance circularly-

symmetric complex Gaussian random variables. The matrices

A and B are normalized so that Tr(A) = Tr(B) = 1, and,
assuming that the power budget of the transmitter is P , we

have the following power constraint:

E{Tr(XX†)} ≤ TP. (2)

The correlation matrices A and B can be estimated from

the physical properties of the propagation environment and

the antenna pattern [13], and can hence be assumed to be

known. The communication scenario that we consider is non-

coherent, thereby the matrix Hw in (1) is not known to either

the transmitter or the receiver.

III. BACKGROUND

Let vec(·) be the operator that stacks the columns of the

matrix argument on top of each other [14]. Conditioned on

X , the matrix Y in (1) is Gaussian distributed with vec(Y ) =
(B1/2 ⊗ XA1/2) vec(Hw) + vec(V ), and

E{vec(Y ) vec†(Y )|X} = B ⊗ XAX† + INT , (3)

which implies that

p(Y |X) =

exp
(

− vec†(Y )
(

B ⊗ XAX† + INT

)−1
vec(Y )

)

πTN det
(

B ⊗ XAX† + INT

) . (4)

Using this expression with the mixed product property in [14],

it can be readily verified that for any deterministic T × T
unitary matrix Φ, p(ΦY |ΦX) = p(Y |X), which satisfies

Property 4 in [2]. This with Lemma 1 in [2] were used in [11]

to show that the matrix X that achieves the ergodic non-

coherent capacity of the channel in (1) can be expressed as

X = QXDU†
A, (5)

where QX is an isotropically distributed2 unitary matrix,

D is a random diagonal matrix with non-negative entries

and UA is the matrix containing the eigenvectors of A, i.e.,

A = UAΛAU†
A, where ΛA is the diagonal matrix containing

the eigenvalues of A. Building on [11], we derive an asymp-

totically tight expression for the ergodic non-coherent capacity

of the channel in (1) as P goes to infinity.

IV. THE ERGODIC HIGH SNR NON-COHERENT CAPACITY

WITHIN AN SNR-INDEPENDENT GAP

Let C(P ) denote the ergodic non-coherent capacity of the

channel in (1), for a given power budget P in (2). Hence,

C(P ) = max
p(X), E{Tr(XX†)}≤TP

1

T

(

h(Y ) − h(Y |X)
)

. (6)

Our goal is to evaluate C(P ) as P goes to infinity.

A. Evaluating h(Y |X)

To evaluate the second term in (6), we use (3) and the fact

that, conditioned on X , Y is Gaussian distributed to write

h(Y |X) = NT log πe + E
{

log det
(

B ⊗ XAX† + INT

)}

= NT log πe +
M
∑

i=1

N
∑

j=1

E{log(λBj
λAi

d2
i + 1)}, (7)

2An m×n matrix Q with m ≥ n is said to be isotropically distributed if
p(Q) = p(ΦQ) for any m × m deterministic unitary matrix Φ.



where in writing (7) we invoked (5) and the eigen properties

of the Kronecker product [15] and used λAi
and λBj

to denote

the i-th and j-th eigenvalues of A and B, respectively, and di

to denote the i-th diagonal entry of D. As the transmit power

goes to infinity, it can be seen that (7) can be expressed as

h(Y |X) = NT log πe +

M
∑

i=1

N
∑

j=1

E{log λBj
λAi

d2
i } + O(1/P )

= NT log πe + N log detA + M log detB

+ N E{log detD2} + O(1/P ). (8)

This approximation is valid only when D is full rank and its

entries scale with P . This condition will be shown to hold

for the matrix D to achieve the upper and lower bounds on

the high SNR ergodic capacity derived in Section IV-C below.

For simplicity, we will henceforth focus on the case of equal

number of transmit and receive antennas, i.e., M = N , and

the coherence time T ≥ 2M .

B. Asymptotic Bound on h(Y )

To provide a high SNR approximation of the first term

in (6), we will invoke the results in [5, Section III-B] for

the case of M = N and T ≥ 2M .

As P goes to infinity, the differential entropy, h(Y ), is

dominated by the differential entropy of XA1/2HwB1/2. In

particular, using the results in [12] we have

h(Y ) = h(XA1/2HwB1/2) + O(1/P ). (9)

Herein we assume that D, and subsequently X , are full rank.

We will later show that the distribution of D that achieves the

asymptotic capacity satisfies this condition.

Expressing the matrix A in terms of its eigen decomposition,

and noting that Hw is isotropically distributed, we can write

Hw
d
= U†

AHw, where ‘
d
=’ denotes equality in distribution.

Using this fact and invoking (5) yields

h(XA1/2HwB1/2) = h(QXDΛ
1/2
A HwB1/2)

= h
(

(B1/2 ⊗ IT ) vec(QXDΛ
1/2
A Hw)

)

= h(QXDΛ
1/2
A Hw) + T log detB, (10)

where (10) follows from [16, corollary 9.6.4].

To evaluate h(QXDΛ
1/2
A Hw), we follow the methodology

in [5] to express this entropy in the coordinate system cor-

responding to the QR decomposition. In particular, because

QX ∈ C
T×M is isotropically distributed and T > M ,

the matrix QXΨ is also isotropically distributed, where

Ψ ∈ C
M×M is unitary with arbitrary distribution, but for

later purposes, Ψ is chosen to be isotropically distributed.

Now, the (unique) QR decomposition of DΛ
1/2
A Hw can be

expressed as ΦR, where Φ ∈ C
M×M is unitary, but not

necessarily isotropically distributed, and R is a random upper

triangular matrix. Since Ψ is isotropically distributed, the

matrix ΨΦ is also isotropically distributed [5]. This implies

that QXDΛ
1/2
A Hw

d
= QXΨΦR

d
= QXR. However, because

QX is isotropically distributed, it is statistically independent

of R and we have

h(QXDΛ
1/2
A Hw) = h(QX) + h(R) + E{log J1}, (11)

where h(QX) is computed with respect to the Haar measure,

h(R) is computed with respect to the space of upper trian-

gular matrices, and J1 is the Jacobian of the transformation

from Cartesian to QR coordinates and is given by [5], [17]

J1 =
∏M

i=1 R
2(T−i)+1
ii . Similarly, the differential entropy of

ΨDΛ
1/2
A Hw = ΨΦR

d
= ΨR can be expressed as

h(ΨDΛ
1/2
A Hw) = h(Ψ) + h(R) + E{log J2}, (12)

where J2 =
∏M

i=1 R
2(M−i)+1
ii .

Substituting for h(R) from (12) into (11) yields

h(QXDΛ
1/2
A Hw) = h(ΨDΛ

1/2
A Hw) + h(QX)

− h(Ψ) + E{log J1/J2}

= h(ΨDΛ
1/2
A Hw) + log |GM (CT )|

+ (T − M) E{log detH†
wD2ΛAHw}, (13)

where GM (CT ) is the Grassmann manifold of M -dimensional

subspaces in an ambient T -dimensional Euclidean space.

In (13) we used the fact that QX and Ψ are isotropically dis-

tributed to express h(QX)−h(Ψ) as the logarithm of the vol-

ume of GM (CT ) [5], i.e., |GM (CT )| =
QT

i=T−M+1
2πi(i−1)!

Q

M
i=1

2πi(i−1)!
.

To obtain an upper bound on h(ΨDΛ
1/2
A Hw), we note that

E{(IM ⊗ ΨDΛ
1/2
A ) vec(Hw) vec†(Hw)(IM ⊗ Λ

1/2
A DΨ

†)}

= IM ⊗ E{ΨD2ΛAΨ
†} (14)

To evaluate (14) we use the following lemma.

Lemma 1 ( [18]): For any isotropically distributed unitary

matrix Φ ∈ C
n×n, E{[Φ]∗ij [Φ]kℓ} = 1

nδikδjℓ, where δik is

the Kronecker delta. ✷

This implies that E{ΨD2ΛAΨ
†} = 1

M Tr
(

E{D2}ΛA

)

IM ,

whence an upper bound on h(ΨDΛ
1/2
A Hw) can be readily

obtained by applying Theorem 9.6.5 in [16], which yields

h(ΨDΛ
1/2
A Hw) ≤ log det

πe

M
Tr

(

E{D2}ΛA

)

IM2 (15)

= M2 log
πe

M
Tr

(

E{D2}ΛA

)

, (16)

and equality holds if and only if ΨDΛ
1/2
A Hw is Gaussian

distributed with covariance 1
M Tr

(

E{D2}ΛA

)

IM2 , that is, if

and only if the entries of ΨDΛ
1/2
A Hw are i. i. d. zero mean

Gaussian random variables with variance 1
M Tr

(

E{D2}ΛA

)

.

C. Upper and Lower Bounds on Capacity

1) Upper Bound: To obtain an upper bound on capacity, we

invoke (2) to bound the right hand side of (16). In particular,

let λA1
≥ · · · ≥ λAM

> 0, then we have

h(ΨDΛ
1/2
A Hw) ≤ M2 log

πeT

M
λA1

P, (17)

Notice that this bound is not achievable unless A and E{D2}
are scaled identities, i.e., A = 1

M IM , E{D2} = PT
M IM .



Using (17) with (13), (10) and (9), we have

h(Y ) ≤ M2 log
πeT

M
λA1

P + log |GM (CT )|

+(T−M) E{log detH†
wD2ΛAHw}+T log detB+O(1/P ).

Using this bound and setting M = N in (8), we have from (6)

C(P ) ≤ M
(M

T
−1

)

log πe+
M2

T
log

TP

M
+

M

T

M
∑

i=2

log
λA1

λAi

+
(

1 −
2M

T

)

E{log detD2} +
1

T
log |GM (CT )|

+
(

1 −
M

T

)

E{log det ΛAHwH†
w}

+
(

1 −
M

T

)

log detB + O(1/P ). (18)

When T ≥ 2M , C(P ) can be further bounded by using

Jensen’s inequality and the concavity of log det(·). In par-

ticular, E{log detD2} ≤ log detE{D2}, with equality if

and only if D is deterministic. Subject to (2), E{D2} ≤

M log TP
M , which is achieved when D =

√

PT
M IM . Hence,

C(P ) ≤M
(

1 −
M

T

)

log
TP

πeM

+
(

1 −
2M

T

)

log detA +
(

1 −
M

T

)

log detB

+
M2

T
log λA1

+
1

T
log |GM (CT )|

+
(

1 −
M

T

)

E{log detHwH†
w} + O(1/P ). (19)

Since Tr(A) = Tr(B) = 1, the arithmetic-geometric mean

inequality can be invoked to show that det A ≤ M−M and

det B ≤ M−M , with equality if and only if λAi
= λBi

= 1
M ,

i = 1, . . . ,M . Using this observation yields

C(P ) ≤M
(

1 −
M

T

)

log
TP

πe

− M
(

3 −
4M

T

)

log M +
1

T
log |GM (CT )|

+
(

1 −
M

T

)

E{log detHwH†
w} + O(1/P ). (20)

Note that C(P ) < ∞ for P < ∞ and does not depend on

the system parameters.

2) Lower Bound: Recall that, for an arbitrary distribution

of D, the right hand side of (15) is achievable if and only if

the entries of ΨDΛ
1/2
A Hw are i. i. d. Gaussian distributed.

This condition is satisfied if D is deterministic and given by

D =
√

TP
Tr Λ−1

A

Λ
−1/2
A , cf. (2). Although this choice of D is sub-

optimal, the gap of the rate it yields to capacity will be shown

to be bounded by a SNR-independent constant. Substituting

this D in (16) yields h(ΨDΛ
1/2
A Hw) = M2 log πeTP

Tr Λ−1

A

, and

h(Y ) = M2 log πe + log |GM (CT )|

+ (T − M) E{log detHwH†
w}

+ MT log
TP

Tr Λ−1
A

+ T log detB + O(1/P ),

h(Y |X)

= MT log πe+M log detB +M2 log
TP

Tr Λ−1
A

+O(1/P ).

Since this setting of D is not necessarily optimal, we have

C(P ) ≥ M
(

1 −
M

T

)

log
TP

πeTr Λ−1
A

+
1

T
log |GM (CT )|

+
(

1 −
M

T

)

log detB +
(

1 −
M

T

)

E{log detHwH†
w}

+ O(1/P ). (21)

D. Bounds on Gap to Capacity

Comparing (19) with (21), it can be seen that setting D =
√

TP
Tr Λ−1

A

Λ
−1/2
A yields a gap to capacity, ∆, where

∆ = (T−2M) log detA+M2 log λA1
+M(T−M) log

Tr A−1

M
.

We note that, when A = 1
M IM , ∆ = 0. Otherwise, ∆ is

strictly greater than zero, and an upper bound on it can be

derived as follows. Let κA be the transmit condition number,

i.e., κA = λA1
/λAM

. Hence,

∆ =
(

1 − 2
M

T

)

log
M
∏

i=1

λAi

λA1

+ M
(

1 −
M

T

)

log
M
∑

i=1

λA1

λAi

− M
(

1 −
M

T

)

log M. (22)

To obtain a bound on ∆, we note that, because λA1
≥ · · · ≥

λAM
, the first term in (22) is nonpositive, and the argument of

the logarithm in the second term is bounded by MκA. Using

these observations, we have

∆ ≤ M
(

1 −
M

T

)

log κA. (23)

Hence, we have shown that the upper and lower bounds

obtained on capacity are within a gap proportional to the

logarithm of the transmit condition number, and that that gap

does not depend on the SNR or the receiver correlation matrix.

E. Main Theorem

We now summarize the results of our analysis.

Theorem 1: For the communication scenario described

by (1) and (2) when T ≥ 2M and M = N , the ergodic

high SNR capacity, C(P ), satisfies

log
TP

πeTr Λ−1
A

≤
C(P ) − c

M(1 − M/T )
≤ log

TPκA

πeTr Λ−1
A

,

where c = 1
T log |GM (CT )| +

(

1 − M
T

)

log detB +
(

1 −

M
T

)

E{log detHwH†
w} + O(1/P ). Furthermore, the lower

bound on C(P ) is achieved by input signal matrices of the

form in (5), with D =
√

TP
Tr Λ−1

A

Λ
−1/2
A . ✷

This result asserts that the rate achieved by the signalling

strategy in which the input matrices assume the form in (5),

with D =
√

TP
Tr Λ−1

A

Λ
−1/2
A is within M

(

1 − M
T

)

log κA



from capacity. This implies that: 1) The signalling strategy

of Theorem 1 is optimal when the channel coefficients are

possibly correlated at the receiver but independent at the

transmitter; 2) For channels with transmit condition number

slightly greater than 1, the rate loss due to the signalling

strategy in Theorem 1 is relatively small; and 3) The rate

loss due to the signalling strategy in Theorem 1 is unbounded

as κA goes to infinity, even though C(P ) itself is finite as

shown (20). In the latter case it is more beneficial that only

the non-negligible eigenmodes of the channel are excited.

F. Effect of Transmit Condition Number on Achievable rate

The rate on the right hand side of (21) is achievable using

the technique in Theorem 1. That theorem shows that, up to

an O(1/P ) approximation error, the rate in (21) is within

M
(

1 − M
T

)

log κA of the channel capacity. To investigate

the effect of increasing κA, we will derive upper and lower

bounds on that (achievable) rate and we will show that both

bounds decrease with κA, which indicates that high transmit

correlation is generally deleterious to the rate achieved by the

signalling strategy of Theorem 1.

Transmit correlation affects the right hand side of (21)

through log Tr Λ−1
A . Hence, upper and lower bounds on the

achievable rate can be derived by obtaining lower and upper

bounds on log Tr Λ−1
A . We will prove the following result.

Lemma 2: Any positive definite matrix A, satisfies

log(M − 1 + κA) ≤ log Tr Λ−1
A

≤ log
(

2(M − 1) +
1

κA
+ (M − 1)2κA

)

. (24)

Proof: To prove the first inequality, we write

log Tr Λ−1
A = log

(

1

λAM

(λAM

λA1

+ · · · +
λAM

λAM−1

+ 1
)

)

= log(M − 1 + κA).

To prove the second inequality, we write

log Tr Λ−1
A = log

(

1

λA1

(

1 +
λA1

λA2

+ · · · +
λA1

λAM

)

)

≤ log
(

2(M − 1) +
1

κA
+ (M − 1)2κA

)

.

Equality hold when M = 2. Otherwise, inequality is strict if

the eigenvalues of A are distinct.

It can be verified that both inequalities are monotonically

increasing in κA. Hence, using the result of this lemma in the

right hand side of (21), it can be seen that both the lower

and upper bounds on the rates achievable by the strategy

outlined in Theorem 1 are monotonically decreasing with

the condition number of the transmitter correlation matrix,

which indicates that the more ill-conditioned this matrix is,

the less the rate that can be achieved with this strategy. This

result has an intuitive explanation: The signalling strategy in

Theorem 1 allocates more power to the weakest eigenmode of

the channel. Hence, the power allocated to that eigenmode in

ill-conditioned situations infringes on the power available for

transmission over the stronger eigenmodes.

V. CONCLUSION

We obtained closed-form expressions for a lower and an

upper bound on the high SNR ergodic capacity of spatially-

correlated MIMO channels and we showed that the difference

between these bounds is monotonically decreasing in the

condition number of the transmitter correlation matrix; cf.

Theorem 1. In particular, we obtained an expression for the

high SNR ergodic capacity of the considered channel that is

tight within an approximation error that decays as 1/SNR and

a constant that depends solely on the signalling dimension and

the condition number of the transmitter correlation matrix.
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