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Abstract—A friendly eavesdropper assists communication in

a broadcast scenario in which one transmitter wishes to send a
common message to two receivers in the presence of a malicious
jammer. The jammer attempts to disrupt communication by
transmitting a high power Gaussian signal, whereas the friendly
eavesdropper ‘hears’ the jammer’s transmission and sends an
assisting signal to the destinations over an orthogonal channel in
order to help them alleviate the jammer’s impact. We derive an
expression for capacity, i.e., the maximum data rate that can be
reliably communicated from the transmitter to the receivers and
we show that it is optimal for the friendly eavesdropper to send
a Gaussian description of the jamming signal with the help of a
scheme based on a modified compress-and-forward relaying that
uses a list decoding procedure.

I. INTRODUCTION

In various military applications a transmitter may wish to

send a common message to multiple receivers in the presence

of an antagonistic jammer. This situation arises, for instance

in the scenario illustrated in Fig 1 when an unmanned drone

wishes to send a description of the battlefield to ground troops,

and the adversary attempts to disrupt communication. The

impact of the jammer can be partially alleviated by an ally

agent in the geographic proximity of the jammer which acts

as a friendly eavesdropper that ‘hears’ the jammer’s signal

and sends a description thereof to multiple receivers over an

orthogonal channel. Neither the optimal signalling strategy of

the eavesdropper nor a quantification of its utility is available,

and the focus of this paper is to investigate these aspects.

Fig. 1. An illustration of the considered communication system.

The impact of jamming has been considered in various

communication scenarios. For instance, cases in which the

jammer sends a correlated version of the transmitter’s signal

were considered in [1] from a mean-squared error perspective
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and in [2] from a capacity perspective. The case in which

the jammer’s signal are not correlated with the transmitter’s

signal was considered in [3]. It was shown therein that under

individual average power constraints the transmitter signal that

enables the highest data rate to be communicated is Gaussian

distributed and the jammer’s signal that minimizes the com-

municated rate is also Gaussian distributed. Applications of

Gaussian jamming and counter jamming were studied in [4]–

[6]. For instance, service disruption due to the injection of

malicious signals into an all-optical-network was considered

in [4], whereas the effect of multiple antenna jamming and the

potential of counter jamming in multi-carrier direct-sequence

spread-spectrum systems were considered in [5] and [6],

respectively. Other instances of communication scenarios in

the presence of jamming can be found in [7]–[9].

In this paper, we consider the situation in which a

friendly eavesdropper assists communication in a broadcast

scenario [10]. In this scenario one transmitter wishes to send

a common message to two receivers in the presence of a

malicious jammer that sends a zero mean Gaussian signal;

the jammer and the transmitter’s signals are uncorrelated. The

received power of the jammer’s signal is much higher than

that of the receivers’ background noises, which are therefore

assumed to be negligible, see e.g., [6]. A friendly eavesdropper

is able to pick the jammer’s signal and attempts to assist the

receivers by sending a description of the jammer’s signal on

an orthogonal channel. The channel between the eavesdrop-

per and the receivers can be modelled as another Gaussian

broadcast one. In fact, it is the noises on the links between

the eavesdropper and the receivers that render rate-efficient

communication challenging; without these noises the eaves-

dropper can simply forward its observation to the receivers

in order to eliminate the jammer’s signal. The eavesdropper

has a maximum power budget which induces a constraint

on its maximum transmission rate. To ensure causality, the

eavesdropper’s transmitted signal lags its received signal by

one block. This implies that the jammer’s, and subsequently

the receivers’ signals, are statistically independent of the

eavesdropper transmitted signal. To analyze the maximum data

rate that can be communicated between the transmitter and the

receivers, we conceive the role of the friendly eavesdropper as

that of a standard relay, but with the exception that the relay

(eavesdropper) in this case has no access to the transmitter’s

signal. Hence, the channel between the transmitter and the

receivers resembles a broadcast relay channel with strictly

causal side information at the relay, but with the key difference



with this broadcast scenario [11] being that the eavesdropper

does not have access to the transmitter’s codebooks, and

the key difference with relaying schemes with strictly causal

side information being that these schemes do not consider

a broadcasting scenario [12]. A counterpart of the scenario

considered herein is the one in [13]. Therein the eavesdropper

was malicious and a friendly jammer (relay) forwarded noise

to the eavesdropper to confuse it.

To derive an expression for the capacity of the channel con-

sidered herein, we derive an expression for the cut-set upper

bound [14]. We then show that this bound can be achieved by

a signalling strategy in which the friendly eavesdropper uses

a scheme based on compress-and-forward (CF) [15] to send a

description of the Gaussian jamming signal to the receivers.

To decode the eavesdropper’s signal and to subsequently use

it to alleviate the effect of jamming, the receivers use a list

decoding [16] scheme rather than the standard CF one.

Although other relaying techniques might be able to achieve

the capacity of the channel considered herein, neither amplify-

and-forward [17] nor decode-and-forward [15] does: amplify-

and-forward yields a strictly lower rate, as will be shown be-

low, and decode-and-forward can be readily excluded because

the jammer does not cooperate with the eavesdropper.

Notation: Regular face upper and lower case letters will

refer to random variables and their corresponding realizations,

respectively. Boldface letters will refer to length-n sequences

and the calligraphic font will be used to refer to codebooks.

Throughout the paper, we will use A
(n)
ǫ to denote the jointly

ǫ-typical set of length-n sequences.

II. CHANNEL MODEL

Consider the channel model depicted in Fig. 2. In this figure,

the transmitter sends a common signal to two receivers that

cannot collaborate. A malicious jammer attempts to disrupt

communication by sending an independent Gaussian signal.

The jammer’s signal is ‘heard’ by a friendly eavesdropper,

which attempts to assist the receivers by sending a description

of the jammer’s signal over an orthogonal channel.

Let the transmitter signal be denoted by X and let the signal

sent by the eavesdropper on an orthogonal channel be denoted

by Xe. The jamming signal is denoted by J ∼ N (0, PJ ).
The jammer-eavesdropper channel gain is normalized to 1,

the transmitter-receiver i channel gain is ai and the jammer-

receiver i channel gain is bi, i = 1, 2. The received signal of

the eavesdropper is denoted by Ye. Each receiver i, receives
two orthogonal signals: one from the transmitter contami-

nated by the jammer’s signal, Yi, and one from the friendly

eavesdropper contaminated by additive Gaussian noise, Ys,i,

i = 1, 2. We denote the additive Gaussian noise component of

Ys,i by Zi ∼ N (0, Ni), i = 1, 2. The friendly eavesdropper

transmission rate is Re ≤ supp(xe) maxi=1,2 I(Xe;Ys,i). Using
this notation, the received signals at the eavesdropper and the

receivers can be expressed as

Ye = J,
Y1 = a1X + b1J, Y2 = a2X + b2J,
Ys,1 = Xe + Z1, Ys,2 = Xe + Z2.

(1)

The average power of the jammer’s Gaussian signal is given

by E(J2) = PJ , whereas the transmitter and the friendly

eavesdropper each is subject to its individual average transmit

power constraint, E(X2) ≤ P , and E(X2
e ) ≤ Pe, respectively.

In the next section, we will show that a modified CF scheme
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Fig. 2. A broadcast channel in the presence of a Gaussian jammer with a
friendly eavesdropper, J ∼ N (0, PJ ).

that uses list decoding achieves the channel capacity.

III. CAPACITY RESULTS

Let the maximum signal-to-jamming power ratio (SJR)

of the transmitter-receiver i channel be denoted by γi =
a2

i P

b2
i
PJ

, i = 1, 2, and let the maximum signal-to-noise ra-

tio (SNR) of the eavesdropper-receiver i channel be denoted

by γe,i = Pe

Ni
, i = 1, 2. Let C(x) , 1

2 log2(1 + x). Our main

result is recorded in the following theorem.

Theorem 1: The capacity of the channel in Fig. 2 can be

achieved when the eavesdropper sends a Gaussian description

of the jammer’s signal at a rate Re = max{C(γe,1), C(γe,2)}.
This capacity is given by

C = min
{

C(γ1) + C(γe,1), C(γ2)+ C(γe,2)
}

. (2)

Proof: To prove the converse, in Appendix A-A we

show that choosing X and Xe to be Gaussian-distributed with

average powers P and Pe, respectively, maximizes the cut-set

upper bound [18, Sect. 18.1].

To complete the proof of the theorem, in Appendix A-B

we show that the cut-set upper bound can be achieved when

the eavesdropper uses a strategy that resembles standard CF

relaying, but with a list decoding procedure. In particular, the

eavesdropper uses two Gaussian codebooks Ŷe and Xe with the

powers and rates described in Appendix A-B. Upon receiving

the jammer’s signal, the eavesdropper finds a codeword in Ŷe

that is jointly typical with it. The eavesdropper uses Wyner-

Ziv binning [19] to determine the codeword to be transmitted

in the next block from Xe. Instead of using standard CF

decoding, the receivers use a list decoding procedure similar

to the one described in [16] to recover the eavesdropper’s

message. In list decoding, each receiver uses its knowledge

of the codebooks Ŷe and X as side information to recover the

message from the eavesdropper and subsequently the message

from the transmitter. (In standard CF Ŷe and X are not used

in recovering the message from the eavesdropper.)



The proof of Theorem 1 assumes that both receivers use the

list decoding procedure. However, the statement of the theorem

holds if the receiver with less noise power on the eavesdropper

link uses standard CF decoding, which is more straightforward

than list decoding, to recover the eavesdropper’s message.

So far, we have shown that the capacity of the channel

described in Section II can be achieved when the eavesdropper

sends a Gaussian description of the jammer’s signal at a rate

Re = max{C(γe,1), C(γe,2)}. Since this rate is higher than

the capacity of the link between the eavesdropper and the

receiver with the higher noise, this receiver will not be able

to recover the eavesdropper message if it uses standard CF

decoding [12], but will be able to recover it if it uses list

decoding; list decoding incorporates X , cf. Appendix A-B.

IV. COMPARISON WITH OTHER EAVESDROPPING

SIGNALLING SCHEMES

We now compare the rates that can be achieved in the ab-

sence of the friendly eavesdropper, and when this eavesdropper

uses either CF with standard decoding or AF relaying.

A. No Eavesdropper Case

In the absence of the eavesdropper, the channel capacity can

be readily seen to be

CNo Eavesdropper = min
i=1,2

C(γi). (3)

Hence, using ∆ , |C(γ1) − C(γ2)|, the rate gain provided by

the friendly eavesdropper can be expressed as

min
{

∆ + C(γe,1), C(γe,2)
}

, γ1 ≥ γ2,

min
{

C(γe,1),∆ + C(γe,2)
}

, γ1 < γ2.

It is of interest to note that when the transmitter (the drone)

is sufficiently far from the receivers (ground troops), ∆ ≈ 0
and the advantage of having the eavesdropper is approximately

min
{

C(γe,1), C(γe,2)
}

. This is in contrast with the eavesdrop-

per rate, which is given by max
{

C(γe,1), C(γe,2)
}

.

B. CF With Standard Decoding Case

Using standard CF decoding [12] at both receivers to

recover the eavesdropper’s message without using Ŷe and

X induces a constraint on the eavesdropper’s transmission

rate, Re. In particular, Re ≤ mini=1,2 I(Xe;Ys,i). Using the

standard approach, it can be verified that CF with Gaussian

codebooks and standard decoding achieves the following rate:

RCF ≤ min
i=1,2

C(γi) + min
i=1,2

C(γe,i), (4)

which is generally less than capacity, cf. Section V.

C. Amplify-and-Forward Case

When the eavesdropper uses non-regenerative AF relaying,

the optimal receivers’ strategy can be readily seen to be using

the signal received from the eavesdropper to partially cancel

the jamming signal. The maximum rate that can be achieved

by this scheme is given by

RAF = min
i=1,2

{C
(

γi(1 + γe,i)
)

}. (5)

Proof: See details in Appendix. B.
Although the eavesdropper receives a noiseless replica of

the jamming signal, AF achieves a rate strictly below capacity.

V. NUMERICAL COMPARISON

To illustrate the advantage of CF with list decoding, in Fig. 3

we compare the rates achieved by the schemes outlined in Sec-

tion IV with the capacity expression provided in Theorem 1.

In particular, the capacity expression (2) is compared with: 1)

the capacity of the broadcast channel in the absence of the

friendly eavesdropper, cf. (3); 2) the rate achieved when the

eavesdropper uses CF, but the receivers use standard (non-list)

decoders to recover the eavesdropper message, cf. (4); and 3)

the rate achieved when the eavesdropper uses AF, cf. (5). We

consider instances in which the SJR of receiver 1, γ1, varies

from 0 to 4.5 and the SJR of receiver 2 is γ2 = 4, and the SNRs
of the eavesdropper to the receivers channels are γe,1 = 3
and γe,2 = 2. Fig. 3 shows that the achievable rate of CF

with standard decoding is strictly below capacity in the high

jamming regime, e.g., when γ1 < 4. When the jamming signal

power is relatively low, e.g., when γ1 ≥ 4, CF with standard

decoding also achieves capacity. In contrast, the rate achieved

by AF is strictly below capacity. The gap between the rate

achieved when the eavesdropper uses AF and when it uses CF

with list decoding (capacity) is reduced as γ1 increases from

0 to 3. For γ1 ≥ 3, this gap is constant and strictly greater

than zero. Without the friendly eavesdropper, the capacity is

strictly below the rate achieved when the eavesdropper uses

CF with either standard or list decoding.
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Fig. 3. Comparison between capacity (Theorem 1) and the rates achievable
using the schemes in Section IV, for γ2 = 4, γe,1 = 3, γe,2 = 2.

VI. CONCLUSION

We considered a two-receiver broadcast channel with a

Gaussian jammer and a friendly eavesdropper. The friendly

eavesdropper ‘hears’ the jamming signal and sends a de-

scription thereof to the receivers to help them to reduce the

jammer’s impact. We showed that the capacity of this channel

can be achieved when the eavesdropper uses CF relaying with

Gaussian codebooks and the receivers use list decoding to

recover the eavesdropper’s message. Our results are confirmed

by analytical and numerical comparisons.



APPENDIX A

PROOF OF THEOREM 1

A. Proof of converse

Using the cut-set bound, the rate, R, of the common

message to both receivers can be upper bounded by

R ≤ min
i=1,2

I(X,Xe;Yi, Ys,i). (6)

From (6), it follows that, for i = 1, 2,

R ≤I(X,Xe;Yi, Ys,i)

=h(aiX + J,Xe + Zi) − h(J, Zi).

Since J and Zi are independent, and X and Xe are inde-

pendent of J and Zi, choosing X and Xe to be indepen-

dent maximizes h(aiX + J,Xe + Zi), and hence maximizes

I(X,Xe;Yi, Ys,i). The independence of (X,Yi) and (Xe, Ys,i)
implies that

R ≤ I(X;Yi) + I(Xe;Ys,i), i = 1, 2. (7)

Since Ys,i and Yi are received on orthogonal channels,

and X and Xe must satisfy their respective average power

constraints, it can be readily seen that choosing X and Xe

to be independent Gaussian random variables maximizes the

right hand side of (7), whence R ≤ C(γi) + C(γe,i).

B. Proof of achievability

The proposed approach uses list instead of standard CF

decoding approach, but for codebook generation and encoding

it follows standard CF. Throughout the proof we will assume,

without loss of generality, that N1 ≤ N2.

Codebook Generation: Generate 2nR i.i.d. x(m) following

p(x) =
∏n

i=1 p(xi), m ∈ [1, 2nR]. Generate 2nI(Xe;Ys,1) i.i.d.

xe(s) following p(xe) =
∏n

i=1 p(xei), s ∈ [1, 2nI(Xe;Ys,1)]. For

each xe(s), generate 2nR̂e i.i.d. ŷe(z|s) following p(ŷe|xe) =
∏n

i=1 p(ŷei|xei), z ∈ [1, 2nR̂e ].

Random Binning: The set {1, · · · , 2nR̂e} is randomly binned

in 2nI(Xe;Ys,1) cells. Denote the mapping by s = B(z).
Encoding: In block b, the eavesdropper finds an index zb

such that (xe(sb), ŷe(zb|sb),ye(b)) ∈ A
(n)
ǫ . From the covering

lemma [18], such zb exists if n is sufficiently large and

R̂e ≥ I(Ŷe;Ye|Xe). (8)

If more than one z is found, choose the smallest z and

let sb+1 = B(zb). Index mb and sb are transmitted by the

transmitter and the eavesdropper, respectively.

Decoding: Assume that at the end of block b, receiver 1 and

receiver 2 have correctly decoded mb−1 and sb−1.

1) Decoding sb: Receiver i, i = 1, 2, does two steps:

a) The receiver determines two sets, S
(b−1)
z and S

(b)
s :

• The set S
(b−1)
z contains the indices ẑ for which

(x(mb−1),xe(sb−1), ŷe(ẑ|sb−1),ys,i(b − 1),yi(b−

1)) ∈ A
(n)
ǫ .

• The receiver determines the set S
(b)
s which contains

the indices ŝ = B(ẑ) for each ẑ ∈ S
(b−1)
z .

b) The receiver declares that sb = ŝ was sent in block b
if there exists a unique index ŝ ∈ S

(b)
s such that

(

x(m̂),xe(ŝ),ys,i(b),yi(b)
)

∈ A
(n)
ǫ for some m̂.

2) Recovering mb: Using the index sb obtained in Step 1,

receiver i constructs a set S
′(b)
z,i = {ẑ|

(

xe(sb), ŷe(ẑ|sb),

ys,i(b),yi(b)
)

∈ A
(n)
ǫ ,

(

xe(ŝ),ys,i(b + 1),yi(b + 1)
)

∈

A
(n)
ǫ , ŝ = B(ẑ)}. The receiver declares that mb = m̂ was

sent in block b if, for some ẑ ∈ S
′(b)
z,i , there is a unique m̂

such that
(

x(m̂), ŷe(ẑ|sb),xe(sb),ys,i(b),yi(b)
)

∈ A
(n)
ǫ .

Next we analyze the probability of error.

Without loss of generality, assume that the index pair

(m, s) = (1, 1) is transmitted in block b and block b + 1.
We define the following error events for the recovery of sb.

Es,i = {(x(1),xe(1), ŷe(1|1),ys,i(b − 1),yi(b − 1))

/∈ A(n)
ǫ ∪ (x(1),xe(1),ys,i(b),yi(b)) /∈ A(n)

ǫ

for some z 6= 1};

Es,2 = {(x(1),xe(1), ŷe(z|1),ys,i(b − 1),yi(b − 1))

∈ A(n)
ǫ ∩ (x(1),xe(s),ys,i(b),yi(b)) ∈ A(n)

ǫ

for some z 6= 1, s = B(z) 6= 1};

Es,3 = {(x(1),xe(1), ŷe(z|1),ys,i(b − 1),yi(b − 1))

∈ A(n)
ǫ ∩ (x(m),xe(s),ys,i(b),yi(b)) ∈ A(n)

ǫ

for some z 6= 1, s = B(z) 6= 1,m 6= 1}.

The receiver makes an error if any events in Es =
∪3

j=1Es,j occurs. Using the union bound, we have P (Es) =

P (∪3
j=1Es,j) ≤

∑3
j=1P (Es,j).

Let Ŷe = J + Z ′, where Z ′ ∼ N (0, N ′). Define γ′ = N ′

PJ
.

Using Ye = J and Yi = aiX + biJ , we have

I(Ŷe;Ye|X,Xe, Yi, Ys,i) = h(Z ′) − h(Z ′) = 0. (9)

Since (9) holds for any value of γ′, it can be arbitrarily chosen.

Now we upper bound P (Es,j), j = 1, 2, 3. By the condi-

tional joint typicality lemma [18], P (Es,1) → 0 as n → ∞.

The probability of Es,2 can be upper bounded by P (Es,2) ≤

2n(R̂−I(Ŷe;X,Yi,Ys,i|Xe)−I(Xe;Yi,Ys,i|X)). Because of (9), we

have I(Xe;Yi, Ys,i|X) ≥ I(Ŷi;Ye|X,Xe, Yi, Ys,i). Hence us-

ing (8), P (Es,2) → 0 as n → ∞.

The probability of Es,3 can be upper bounded by P (Es,3) ≤

2n(R+R̂−I(Ŷe;X,Yi,Ys,i|Xe)−I(X,Xe;Yi,Ys,i)). Using (8), we have

P (Es,3) → 0 as n → ∞ if R ≤ I(X,Xe;Yi, Ys,i) −
I(Ŷe;Ye|X,Xe, Yi, Ys,i), which using (9) yields

R ≤ I(X,Xe;Yi, Ys,i) = I(X;Yi) + I(Xe;Ys,i). (10)

Thus, when (10) is satisfied, P (Es) tends to 0 as n → ∞.

To analyze the probability of error for the recovery of mb,

we define the following error events for i = 1, 2, respectively:

Em,1 = {(x(1),xe(1), ŷe(1|1),ys,i(b),yi(b)) /∈ A(n)
ǫ

∪ (xe(1),ys,i(b + 1),yi(b + 1)) /∈ A(n)
ǫ };

Em,2 = {(x(m),xe(1), ŷe(1|1),ys,i(b),yi(b)) ∈ A(n)
ǫ };

Em,3 = {(x(m),xe(1), ŷe(z|1),ys,i(b),yi(b)) ∈ A(n)
ǫ



∩ (xe(1),ys,i(b + 1),yi(b + 1)) ∈ A(n)
ǫ

for m 6= 1, z 6= 1};

Em,4 = {(x(m),xe(1), ŷe(z|1),ys,i(b),yi(b)) ∈ A(n)
ǫ

∩ (xe(s),ys,i(b + 1),yi(b + 1)) ∈ A(n)
ǫ

for m 6= 1, z 6= 1, s = B(z) 6= 1}.

The receiver makes an error if any events in Em = ∪4
j=1Em,j

occurs. Hence, P (Em) ≤
∑4

j=1 P (Em,j).
Now we bound P (Em,j), j = 1, 2, 3, 4. By the conditional

joint typicality lemma [18], P (Em,1) → 0 as n → ∞.

For Em,2, we have P (Em,2) ≤ 2n(R−I(X;Ŷe,Yi,Ys,i|Xe)).

Hence, P (Em,2) → 0 as n → ∞ if for i = 1, 2,

R ≤ I(X; Ŷe, Yi, Ys,i|Xe). (11)

The probability of Em,3 can be bounded by P (Em,3) ≤

2n(R+R̂e−I(X;Ys,1)−I(X;Ys,i,Yi|Xe)−I(Ŷe;X,Ys,i,Yi|Xe)). Using (8),

yields P (Em,3) → 0 as n → ∞ if R ≤ I(X;Ys,i, Yi|Xe) −
I(Ŷe;Ye|X,Xe, Ys,i, Yi) + I(X;Ys,1). Using (9), the latter

condition is satisfied for i = 1, 2, when

R ≤ I(X;Ys,i, Yi|Xe) + I(X;Ys,1) = I(X;Yi) + I(Xe;Ys,1).
(12)

The probability of Em,4 can be bounded by P (Em,4) ≤

2n(R+R̂e−I(X;Ys,i,Yi|Xe)−I(Ŷe;X,Yi,Ys,i|Xe)−I(Xe;Yi,Ys,i)).

Using (8), we have P (Em,4) → 0 as n → ∞ if

R ≤ I(X,Xe;Yi, Ys,i) − I(Ŷe;Ye|X,Xe, Yi, Ys,i). Using (9),

the latter condition yields the same constraint as (10).

Now we analyze the constraints in (10) and (12). We note

that I(Xe;Ys,1) ≥ I(Xe;Ys,2) since N1 ≤ N2. Hence, the

constraint in (10) is tighter than that in (12) for i = 2. Using
this observation, the constraints in (12) can be dropped.

Using Gaussian codebooks (10) yields R ≤ C(γi)+C(γe,i).
Next, consider (11). We have

R ≤ I(X; Ŷe, Yi, Ys,i|Xe) = C
(

γi(1 + 1/γ′)
)

. (13)

It can be shown that, when γ′ ≥ 0 such that

γ′ ≤ min
i=1,2

γi

(1 + γi)γe,i

is satisfied, the right hand side of (13) is larger than the smaller

of the two arguments of the minimization of (2). This choice

of γ′ renders (13) redundant and completes the proof.

APPENDIX B

PROOF OF THE ACHIEVABLE RATE BY AF

Let the signal transmitted by eavesdropper be denoted by

cJ , where c is the gain of the amplifier. Hence,

c2 = Pe/PJ . (14)

At receiver i, the received signal from the eavesdropper can

be expressed as Ys,i = cJ + Zi. Receiver i linearly combines

the received signal Yi and Ys,i to recover the message from

the transmitter. The combined signal can be expressed as

Yi + αYs,i = aiX + biJ − α(cJ + Zi), where α is the

combining weight to be optimized. The maximum rate that

can be achieved by AF is given by

RAF = min
i=1,2

max
α

C
( a2

i P

PJ,Zi

)

, (15)

where PJ,Zi
= (bi − αC)2PJ + α2Ni is the jamming and

noise power.

Optimizing α yields P ∗
J,Zi

=
b2i PJNi

c2PJ+Ni
. Using this result

and (14) in (15) yields

RAF ≤ C
(a2

i P (Pe + N)

b2
i PJNi

)

= C
(

γi(1 + γe,i)
)

, i = 1, 2,

which completes the proof.
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