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Abstract—In this paper, we develop a geometry-inspired
methodology for generating systematic and structured Grass-
mannian constellations with large cardinalities. In the proposed
methodology we begin with a small close-to-optimal “parent”
Grassmann constellation. Each point in this constellation is
augmented with a number of “children” points, which are
generated along a set of geodesics emanating from that point.
These geodesics are chosen to ensure close-to-maximal spacing.
In particular, the directions of the geodesics and the distance
that each “children” point is moved are chosen to maximize the
pairwise Frobenius distance between the resulting constellation
points. Although finding these directions directly seems difficult,
by embedding the Grassmann manifold on a sphere of larger
dimension, we were able to develop structures that are not only
simple to generate but that also yield constellations that, under
certain conditions, satisfy the maximum distance criterion and
lie within a decaying gap from a tight upper bound. Numerical
results suggest that the performance of the new constellations is
comparable to that of the ones generated directly and significantly
better than the performance of the ones generated using the
exponential map.

I. INTRODUCTION

Non-coherent multiple-input multiple-output (MIMO) com-
munication systems are those systems in which neither the
receiver nor the transmitter has access to channel state in-
formation (CSI). As such, these systems do not require the
transmitter to waste valuable communication resources in
order for the receiver to learn the channel. This feature of
non-coherent systems renders them attractive for a variety
of wireless communication systems, including the massive
MIMO ones and those with bursty traffic which are likely to
arise in the emerging area of Internet-of-Things. In fact, non-
coherent systems have been identified by the European 2020
METIS project [1] as one of the enablers of the prospective
5G cellular networks.

Unfortunately, in the general case the rate-optimal non-
coherent signaling over block-fading channels is still an open
problem. However, at asymptotically high signal-to-noise ra-
tios (SNRs), the signals that approach capacity were shown
in [2] to be in the form of matrices that span isotropically
distributed points on the so-called compact Grassmann mani-
fold, that is, the set comprising the subspaces spanned by all
unitary matrices with certain dimensions. Several approaches
for designing non-coherent constellations have been explored
in the literature. These approaches can be classified into two
main categories.

In the first category, the Grassmannian constellation is
designed based on information-theoritic arguments, which

amount to maximizing various pairwise distance metrics be-
tween constellation points [3], [4]. In particular, in this cate-
gory the constellation design is formulated as a sphere-packing
problem on the Grassmann manifold, which is known to
constitute a formidable task even in a spaces with less intricate
structures. Using numerical optimization approaches, several
‘good’ constellation were generated, see e.g., [3] and [4].
However, this approach suffers from a number of drawbacks:
first, constellations designed with this approach do not possess
a particular structure that can facilitate their detection; second,
since Grassmannian constellations are desirable for high SNR
operation, the cardinality of these constellations is usually
very high, which renders their storage and manipulation rather
unwieldy [2]; and finally, the computational cost of generating
constellations with unitarity constraints is generally high even
for relatively small constellations. Hence, it can be seen that,
despite the performance advantage of Grassmannian constel-
lations generated with numerical techniques, the practicality
of these constellations is rather questionable.

In the second category, the constellations are gener-
ated using algebraic constructions [5] or paramterized map-
pings [6], [7]. In contrast with the constellations generated
using the numerical approach, these constructions offer signifi-
cant advantages in design simplicity and detection complexity.
Unfortunately, however, the stringent construction of these
constellations limits their flexibility and often results in heavy
performance losses.

Having discussed the two main philosophies for design-
ing Grassmannian constellations, in this paper we seek to
combine the design and detection simplicity of algebraically-
designed constellations with the performance advantages of
numerically-designed ones. In order to do so, we introduce
a structured approach that facilitates the design of the con-
stellations while maintaining distance profiles similar to those
reported in [3] and [4]. In particular, in this approach we begin
by designing an initial low-cardinality “parent” constellation.
Each point of this constellation is then augmented with a
number of “children” points. The children points are distanced
from their respective parent points along geodesics emanating
from the parent points in specific directions, which are deter-
mined algebraically. Finally, the scalar distance that each point
travels away from its parent point is optimized numerically.
Hence, it can be seen that this approach indeed combines the
design efficiency of algebraically-design constellations with
the flexibility offered by numerical optimization. Numerical
simulations show that the constellations generated with the



proposed approach exhibit a performance superior to that of
the constellations generated with the pure algebraic approach
in [7] and comparable to the performance of the of the con-
stellations generated with the pure numerical approach in [3].
In addition, the structure that underlies the new constellation
renders them amenable to a sequential detection scheme.
However, this scheme is not presented due to space limitations.

II. PRELIMINARIES AND SYSTEM MODEL

A. The Grassmann Manifold

Consider two unitary matrices P,Q ∈ CT×M , where T >
M . The set containing all such matrices is known as the Stiefel
manifold and for this manifold an equivalence relation can
be defined whereby P ∼ Q if and only if a unitary matrix
Ξ ∈ UM exists such that

P = QΞ, Ξ ∈ UM , (1)

where UM is the unitary group comprising all M×M unitary
matrices with entries satisfying ΞΞ† = Ξ†Ξ = IM , where IM
is the M ×M identity matrix.

Using the equivalence relation, the Grassmann manifold
GT,M (C) can be readily expressed as the quotient space of the
set of T ×M unitary matrices with respect to this equivalence
relation. In other words, it is the set of all M dimensional
subspaces in CT .

Using differential-geometric methods, the equation of mo-
tion on the Grassmann manifold was obtained in [8]. This
equation describes the motion of a point, which at time t = 0,
is located at X(0) = X ∈ GT,M (C). When this point moves
along a geodesic in the direction Ẋ(0) = H = X⊥B for some
(T −M)×M complex arbitrary matrix B, its location at an
arbitrary time instant t can be expressed as

X(t) = [X X⊥] exp

(

t

[

0 −B
†

B 0

])

IT,M , (2)

where X⊥ is the T × (T −M) orthogonal complement of X
in the T ×T complex Euclidean space and IT,M = [IM 0]†;
i.e., IT,M is obtained from IT by keeping its first M columns
and truncating the remaining T − M columns. The notation
B† denotes the Hermitian transpose of the matrix B.

In order to gain insight into the effect of the matrix B on
the equation of motion, we consider its compact singular value
decomposition, B = UΣV†. Substituting this decomposition
in (2) and simplifying yield the following equivalent represen-
tation thereof [8]:

X(t) = g(X,V,U,Σ, t), (3)

where

g(X,V,U,Σ, t) := [X X⊥]

[

V cosΣt
U sinΣt

]

. (4)

We will find the expression in (3) more convenient than the
one in (2) in revealing the roles of t, U, Σ and V.

B. System Model

We consider the frequency flat Rayleigh fading model in [2].
In this model the channel coefficients are assumed to remain
essentially fixed during each channel coherence interval of T
symbol durations, but to take on a statistically-independent
realization in each of the subsequent coherence intervals. In
our system, the numbers of transmit and receive antennas are
denoted by M and N , respectively. Using this notation, the
T ×N received signal Y at a given coherence interval can be
expressed as

Y = XH+
√

M/γT W, (5)

where X is the complex T ×M unitary transmitted matrix, H
is the M×N fading matrix whose coefficients are independent,
identically distributed (i.i.d) drawn from the standard complex
Gaussian distribution CN (0, 1), W is the T ×N noise matrix
which is also modeled as i.i.d complex Gaussian whose
elements are CN (0, 1) and γ is the SNR. We consider the
case of N ≥ M and T ≥ 2M throughout this paper.

C. Projection Frobenius Norm

The distance between two points on GT,M (C) can be
measured in several senses, and choosing an appropriate sense
is crucial for designing ‘good’ Grassmannian constellations.
In [2] and [3], it was argued that the design of capacity-
approaching Grassmannian constellation ought to be guided by
the sense in which noise perturbs the subspace that is spanned
by the transmitted constellation point.

Other distance metrics for designing Grassmannian constel-
lations have been proposed, cf. [4], [9]. The most common
metric, and the one that we adopt herein, is the projection
Frobenius distance (or simply the Frobenius distance). For any
two points on the manifold Xi,Xj ∈ GT,M (C) the Frobenius
distance is given by

d(Xi,Xj) =
1√
2
∥XiX

†
i −XjXj

†∥F =
√

M − ∥X†
iXj∥2F . (6)

Although there are other metrics that one would consider for
designing non-coherent constellations, the Frobenius distance
avoids singularity issues that complicate the design [10]. In ad-
dition, this metric facilitates drawing insight into the structure
of the Grassmann manifold. In particular, this metric corre-
sponds to embedding GT,M (C) in the space of T×T matrices
of rank M . In this space, points on GT,M (C) are uniquely
mapped to points on a sphere of T 2 − 1 real dimensions, and
these points are represented by their projection matrices [9],
[10]. This fact will be exploited in the next section to develop
a simple method for selecting good directions for generating
the “children” constellation from the “parent” one.

III. DESIGN STRATEGY

We now describe our approach in detail. Given an ini-
tial constellation ξ1, we define a sequence of L − 1 sub-
constellations (layers) ξ2, . . . , ξL, where each layer is obtained
from previous layers via geodesic transitions on the manifold.
In particular, consider the ith “parent” layer Ci =

⋃i−1
j=1 ξj .

Members of ξi are placed along K geodesics emanating from



each member in that parent layer. Formally speaking, for
i = 2, . . . , L and k = 1, . . . ,K, ξi is obtained as

ξi = {Xk(ti) : Xk(ti) = g(Z,Vk,Uk,Σk, ti),Z ∈ Ci}. (7)

Observe that the step parameter ti controls the distances at
which the children points (i.e. members of ξi) lie from their
respective parent points. The assumption here is that ti is the
same for all members of a given layer, but can be different
from one layer to the next.

Finally, the union set comprising these L layer forms our
constellation, C = {X : X ∈

⋃

i=1,...,L ξi}. The size of the

constellation is given by |C| = N ′(K + 1)L−1, where N ′ is
the initial constellation size. The criteria for constructing the
initial constellation and the geodesic directions are given next.

A. Starting constellation

The initial constellation is constructed using the technique
developed in [9] for packing spheres on GT,M (C). We briefly
review this algorithm: first, for a chosen arrangement of N ′

points on the Grassmannian {Qi}N
′

i=1, define the Gram matrix
G = Q†Q, where Q = [Q1, . . . ,QN ′ ]. When the packing
distance, dpack, is greater than or equal to some number ρ, the
matrix Q possesses certain structural and spectral properties.
To exploit this observation, the algorithm in [9] initially selects
a random arrangement of points and updates its Gram matrix
by alternate enforcement of these properties for a distance
ρ = dopt − ϵ, where dopt is the optimal packing distance
and ϵ is some positive small number. It follows that finding
a Gram matrix that satisfies these properties yields a near-
optimal arrangement of N ′ points on GT,M (C).

This scheme extends for a number of metrics while the
underlying algorithm remains the same. In this paper, this algo-
rithm is used to build initial constellations with the Frobenius
distance being the design metric. The above method is suitable
for packing on the Grassmann manifold when the constellation
size is small. Specifically, under such circumstances, it leads
to packing arrangements whose packing diameter is close to
known bounds. For our purposes, this is convenient since our
choice of the initial constellation is typically small.

B. Choice of geodesic directions

To determine the geodesic directions, we will use the same
metric as the one that was used in designing the initial
constellation. For simplicity, we assume a constellation in
which only two layers are incorporated (we will consider the
general case later in this section).

Assuming that the design of the initial constellation is close
to optimal in the sense of the Frobenius distance, we make
the following observation: for small step sizes, the probabil-
ity of detection error is dominated by the distances among
children points associated with the same parent as well as
their distances from that parent. The distance between a child
and its parent is solely determined by the product Σt and is
therefore independent of the orientation of the geodesics along
which children points are obtained (i.e., children geodesics).
Thus, the orientations of the children geodesics, which are

controlled by the triplets {Vk,Uk,Σk}Kk=1, only influence
the inter-children distances. But, to exhibit good performance,
our constellations need to maximize these distances.

Based on the above discussion, we propose that the di-
rections of the children geodesics are to be chosen so as to
maximize the inter-children distances for any step parameter
t. Therefore, the determination of these directions can be
obtained by solving the following optimization problem.

max
{Vk,Uk,Σk}K

k=1

min
i,j,i ̸=j

d2(Xi(t),Xj(t))

subject to Xk(t) =
[

Z Z⊥
]

[

Vk cosΣkt
Uk sinΣkt

]

d2(Xm(t),Z) = d2(Xn(t),Z), m ̸= n, t ∈ R.
(8)

One may identify this problem as a packing problem on the
Grassmannian in which we additionally require the children
points be at the same distance from an initial point Z ∈ ξ1
and for any choice of t. To the best of our knowledge, this
problem is generally intractable. We are unaware of a method
of applying this criterion as it stands.

It is helpful at this point to visualize how the children
geodesics that achieve maximum distance criterion look like
in lower dimensions. This will be our starting point towards
obtaining a simple structure that agrees, to a great extent, with
the inherently optimal arrangement satisfying the previous
problem. Consider the sphere shown in Fig. 1. It was shown
in [10] that the Grassmann manifold with the projection
Frobenius distance can be isometrically embedded on a sphere
of dimension D = T 2−1 in which every point X ∈ GT,M (C)
is represented by its projection matrix XX†. In that case,
geodesics on GT,M (C) are mapped into geodesics on that
sphere. The chordal distance between Gramssmannian points
is 1/

√
2 times the straight line distance between the corre-

sponding projection matrices.
In Fig. 1, the point ZZ† represents some parent point.

Naturally, children geodesics defined by optimal directions
will also remain optimal when viewed on the sphere. The
solid bold curves mark such geodesics. The “slices” A and
B represent spheres of lower dimension whose points lie at
distances d1 and d2, respectively, from Z. Children points at
the given distances are simply defined by intersection points
of the optimal children geodesics and the spheres A, B. From
the geometry of the figure, one can readily conclude that the
optimal directions for the chosen geodesics remain optimal
regardless of how far we step away from Z. That is to say
that the components associated with the directions of the
geodesics in (3) and the distance at which the children lie
can be treated independently. This observation suggests that
Σ1 = Σ2 = · · · = ΣK = cIM for some constant c. Indeed,
if, for some k, Σk ̸= cIM , then the incremental displacement
of Xk(t) to a new point Xk(t′), where t′ = t+∆t yields

Xk(t
′) = [Z Z⊥]

[

V 0
0 U

] [

cosΣ∆t − sinΣ∆t
sinΣ∆t cosΣ∆t

] [

cosΣt
sinΣt

]

,

which clearly leads to a change in orientation as well.
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Fig. 1. Viewing the optimal directions in lower dimension as induced by
geometric embedding of GT,M (C) on a sphere.

Further, we also note that rotations in the geodesic directions
do not disturb their optimality. Referring back to Fig. 1, the
dotted curves are readily obtained by rotating the solid ones.
One can quickly notice that such rotation does not modify
the parent-child distance, nor does it affect the inter-children
distances and therefore the new geodesics are also optimal.

Now that we have identified several features for the max-
imum distance criterion geodesics, we are in a position to
explore our proposed arrangement. But before we introduce
this structure, we review the following theorem that will help
assess our proposed choice of the children geodesics. This
theorem provides an upper bound on the packing distance.
This bound was initially developed in [10] for real Grassmann
manifolds, and was later generalized for GT,M (C) in [9].

Theorem 1: The upper bound on the unconstrained problem
in (8) is given by

min
i,j,i ̸=j

d2(Xi(t),Xj(t)) ≤
M(T −M)

T

K

K − 1
. (9)

This bound is achieved only when K ≤ T (T+1)
2 for real

Grassmannian, and K ≤ T 2 for complex Grassmannian.

This bound was actually obtained by applying the principles
due to Rankin for sphere packing in Euclidean spaces [11],
[12] after embedding GT,M (C) on a sphere. We will refer to
this bound as the Rankin bound of Grassmannian packing.

We are now ready to present the following theorem.

Theorem 2: Let T = 2M , then setting Σ1 = Σ2 = · · · =
ΣK = cIM , ct = π

4 , U1 = U2 = · · · = UK = U, and

(V1, . . . ,VK) = arg max
{(Ṽ1,...,ṼK)|Ṽk∈UM}

min
i,j,i ̸=j

∥Ṽi − Ṽj∥2F ,

(10)

achieves Rankin bound of packing on the Grassmannian, when
K ≤ 2M2+1. Further, if 2M2+1 ≤ K ≤ 4M2 the gap from
that bound is not any greater than M

2 ( K
K−1 −1). Additionally,

the orthogonal components {Vk}Kk=1 and the product ct can
be chosen independently. In other words, {Vk}Kk=1 that satisfy
the previous expressions are optimal for any ct.

Proof: See the Appendix.

Having taken a look at Theorem 2, we can draw a number
of consequences. First, not only is the Rankin bound achieved
for number of directions smaller than 2M2 + 1 but it also
ensures that the gap from optimality bound decreases with the
number of directions when 2M2 + 1 ≤ K ≤ 4M2.

Second, as the theorem points out, the choice of ct is
completely transparent to {Vk}Kk=1. As long as {Vk}Kk=1
satisfy (10), the product ct can be chosen with absolute free-
dom. This is exactly what our geometric analysis suggested.
This also implies that a multi-layer criterion in which only
the step parameter is changed from one layer to another
is possible. This ensures that our design adheres to several
practical considerations regarding memory limitations, even
when a large number of layers is incorporated. Finally, observe
that Theorem 2 sets no restrictions whatsoever upon the unitary
component U. A question that arises is: in what manner
should we select U? For small constellations, U can indeed be
chosen in an arbitrary manner; the natural choice is therefore
IT−M,M . However, high rate scenarios are often characterized
by overcrowded constellations, which are limited not only by
the distances among children of common parents but also
among those of different parents. Under such scenarios, it
becomes essential to provide additional flexibility on the latter
distances by changing U from one layer to the next.

The extension of Theorem 2 for T > 2M is straightfor-
ward and is omitted for space limitations. The {Vk}Kk=1 that
solve (10) can be obtained by first expressing the optimization
problem in the following form

min
{(Ṽ1,...,ṼK)|Ṽk∈UM}

max
i,j,i ̸=j

Tr Ṽ†
i Ṽj +Tr Ṽ†

jṼi (11)

where Tr(.) is the trace operator. Using the Jacobian approxi-
mation, max(a, b) ≈ log(ea + eb) for sufficiently large values
of |a−b|, we obtain a smooth representation of (11) as follows.

min
{(Ṽ1,...,ṼK)|Ṽk∈UM}

log
∑

i,j,i ̸=j

eTr Ṽ
†
i Ṽj+Tr Ṽ†

j Ṽi . (12)

In [8], generalized versions of conjugate gradient and Net-
won’s methods for orthogonal manifolds were developed. To
solve (12), we have used the conjugate gradient method.

IV. RESULTS

In this section, we will assess the performance of our pro-
posed scheme. To this end, we will compare our constellations
to the direct ones in [3] and the exponential ones in [7].
In all simulations, we use T = 4, N = M = 2. For our
method, two constellations are considered, which are denoted
by C1 and C2. The starting constellation is of size N ′ = 16,
which is the same for both constellations. In addition, we
choose K = 15. Note that 2M2 + 1 ≤ K ≤ 4M2 and
the gap from optimality is at most 0.0714. The constellation
C1 is bi-layered of size N ′(K + 1) = 256, while C2 is tri-
layered of size N ′(K + 1)2 = 4096. This corresponds to
rates 2 and 3 bits per channel use (bpcu). For C1, we have
chosen U = I2 and r2 = 0.5, where rj is the ratio of the
distance between a child in layer j and its respective parent
to the starting constellation packing diameter. For C2, we have
selected U1 = I2 and r2 = 0.6 for the first children layer and

U2 =

[

0 1
1 0

]

and r3 = 0.35 for the second children layer.

Finally, for comparison, we use the coherent constellation [7]

P =

[

s1 + θs2 φ(s3 + θs4)
φ(s3 − θs4) s1 − θs2

]

, (13)
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Const. 1 (2 bpcu)

Direct 256 (2 bpcu)

Exp 4−QAM (2 bpcu)

Const. 2 (3 bpcu)

Direct 4096 (3 bpcu)

Exp 8−QAM (3 bpcu)

Fig. 2. Our constellations against the ones in [3] and [7], which are legened
by “Direct” and “Exp”, respectively.

where φ2 = θ = ei
π
4 and sj , j = 1, . . . , 4 are either 4-QAM

with homothetic factor α = 0.3, or 8-QAM symbols with
homothetic factor α = 0.375.

In Fig. 2, we plot the block error rates for C1 and C2
against the indicated constellations in [3], [7]. In this case, all
constellations are decoded via the GLRT detector [13]. We see
that our design outperforms the family of exponential mapping
under different rate scenarios. Moreover, we also notice that
the loss relative to the direct approach is acceptable.

V. CONCLUSION

In this paper, we propose a systematic approach for de-
signing non-coherent space-time constellations over the Grass-
mann manifold. This approach can be used to generate large
constellations with performance that is comparable to that
of the best available constellations, but with significantly
less design complexity and storage requirements. The new
constellations are amenable to techniques that exploit their
underlying structure to enhance detection efficiency.

APPENDIX

We first introduce the following lemma.

Lemma 1: Let

β = min
i,j,i ̸=j

∥Ṽi − Ṽj∥2F , (14)

for some Ṽk ∈ UM , k = 1, . . . ,K. The following upper
bounds hold on β.

1) If K ≤ 2M2 + 1, then β ≤ 2MK
K−1 .

2) If 2M2 + 1 ≤ K ≤ 4M2, then β ≤ 2M .

Proof: Write

∥Ṽi − Ṽj∥2F = ∥ vec (Ṽi)− vec (Ṽj)∥22, (15)

where vec(.) is an operator that lists out the entries of a matrix
in a vector format. We then deduce that {Ṽk}Kk=1 form a
spherical code Cs of cardinality |Cs| = K and squared radius
ρ = ∥Ṽi∥2F = M which lies in an ambient space of D = 2M2

real dimensions. The proof of the lemma then follows from
applying Rankin principles in [11], [12].

We will now use this lemma to show the desired result.
Consider the problem in (8), the constraints automatically hold
since, for i = 1, 2, . . . ,K, we have

d2(Xi,Z) = M − ∥Z†
Xi∥2F = M − ∥ cosΣt∥2F

= M −M cos2 ct = M sin2 ct.

Define σi,j = d2(Xi(t),Xj(t)) and αt = cos(ct), using the

proposed structure yields σi,j = α2
t (1 − α2

t ) ∥Vi −Vj∥2F .
Consequently, the problem in (8) reduces to
(

max
αt

α2

t (1− α2

t )

)(

max
{Vk∈UM}K

k=1

min
i,j,i ̸=j

∥Vi −Vj∥2F

)

. (16)

One can now easily see that the orthogonal components and
the step parameter can be independently optimized. Addi-
tionally, we observe that the orthogonal components remain
optimal as long as they form a solution to the second problem
in (16), irrespective of the value of αt.

To show optimality, we notice that optimal value for the
first problem in (16) is attained at αt =

1√
2

; in which case the

optimal value is 1
4 . For the second problem, the optimal value

follows from Lemma 1, and is attainable when K ≤ 2M2+1.
We conclude that (16) is upper bounded by MK

2(K−1) , which is

attainable only if K ≤ 2M2 + 1. This is the Grassmannian
Rankin bound for T = 2M .
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