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Abstract—Polar codes, ever since their introduction, have been
shown to be very effective for various wireless communication
channels. This together with their relatively low implementation
complexity has made polar codes an attractive coding scheme for
wireless communications. On the other hand, within the realm
of non-coherent wireless MIMO communication, Grassmannian
signalling has been shown to approach the ergodic capacity
of frequency-flat block fading channels. In this paper, a novel
methodology for designing polar codes that works effectively with
Grassmannian signalling and a novel set partitioning algorithm
for Grassmannian constellations are proposed. We compare the
error rate performance of our design with that of existing
schemes and show that a gain of over 1 dB over the previously
known best technique, which is based on turbo codes, is possible,
at much lower decoding complexity.

I. INTRODUCTION

Coherent communication, in which perfect channel state
information (CSI) is required at the receiver, dominates current
cellular technologies. In order to obtain this CSI, training
based estimation methods using pilot or reference signals
are used. Future technologies requiring signal detection in
multiple-input multiple-output (MIMO) and/or fast fading sce-
narios would significantly increase the receiver complexity and
signalling overhead of such coherent systems. As a result, the
noncoherent systems which do not require any channel estima-
tion are therefore attractive as alternatives in such scenarios.
The challenge then becomes finding a low-complexity, rate-
efficient method of enabling noncoherent communication over
MIMO channels.

A possible candidate for noncoherent MIMO communica-
tion specifically designed for block-fading channels, are code-
books of unitary matrices that are isotropically distributed on
the (compact) Grassmann manifold. These codebooks exploit
the MIMO channel characteristics and consider orthogonal
subspaces to differentiate the transmitted symbols at the re-
ceiver [1].

On the other hand, polar codes are a recent invention
by Erdal Arikan that are a class of error-correcting codes
with the proven ability to achieve the capacity of binary
input, memoryless output symmetric channels. In addition,
they provide relatively low complexity encoding and decoding
compared with other coding techniques such as turbo codes
or LDPC codes.
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In the literature, Grassmannian constellations have been
combined in a BICM fashion with turbo codes [2]. It was
shown that at a high data rate, the scheme was able to out-
perform training based methods. Further work in this area [3]
showed that by improving the labelling for the Grassmannian
constellations, the system was able to outperform even training
based golden codes.

In this paper, we propose a novel methodology for de-
signing multilevel polar codes that work effectively with
Grassmannian signalling and is also applicable to arbitrary, not
necessarily structured, multidimensional signalling schemes.

II. SYSTEM MODEL

A. Transmitter

As stated previously, polar codes have the ability to achieve
the capacity of binary input memoryless output symmetric
channels. These codes are able to achieve this by using an
effect known as channel polarization where channels are trans-
formed into good and bad ones (see Fig. 1). By recursively
applying such polarization transformation over the resulting
channels, the reliabilities of the synthesized channels will show
significant difference: the “good ones bet better and the bad
get worse” [4]. The channels get more distinctly polarized as
the code length is increased and the good channels can be
chosen to transmit information bits over while the others are
frozen (set to a zero).

Fig. 1. Sample 4 bit channel polar encoder for a binary erasure channel with
capacities shown. Erasure probability = 0.5.

The MLC approach developed by Imai et al in [5] and
shown in Fig. 2, involves protecting each address bit Bi,l of



Fig. 2. System set-up.

the signal point by a single binary code at level l [6]. That
is, for a signal constellation with M points and m = log2M
bits per signal point, there are m encoders – one for each
bit level. Each component code is designed to complement
the reliability of the bit levels which it encodes, therefore a
suitable mapping to the constellation is required to ensure the
variance in bit level reliabilities. It was further shown in [6]
that the set-partitioning (SP) label for a constellation used in
conjunction with multilevel codes is the best technique because
SP labelling leads to large bit level variances compared to
other types of labelling schemes such as Gray labelling. Each
of the m bit levels can therefore be encoded such that the code
bits of the first encoder will be mapped to the least reliable bit
level while the mth encoder’s code bits will be mapped to the
most reliable bit level. Each component code has a length N ′

and therefore the encoders output a total of mN ′ bits to the
mapper. Because each bit level can be thought of as its own
channel with a certain capacity, the component code rates are
chosen such that the high capacity channels (channels with
few error rates) use a higher rate code than those with low
capacity. Each component code has a code rate Ri that is
chosen such that the overall rate is R = 1

m

∑m
i=1Ri [7].

B. Receiver

It was shown in [1], [8] that at high SNRs, the ergodic
capacity of the channel can be achieved by codebooks of uni-
tary matrices that are isotropically distributed on the (compact)
Grassmann manifold. It was also shown that a system with Nt
transmit and Nr receive antennas and a coherence time of T
will be optimised for high SNR capacity when

T ≥ min{Nt, Nr}+Nr, (1)

Nt = min

{⌊
T

2

⌋
, Nr

}
. (2)

The received signal is given as

Y = XH +

√
Nt
ρT

V, (3)

where H is an Nt ×Nr channel matrix which has a complex
Gaussian distribution, CN (0, 1), and changes independently
every block of T channel uses. V is a T × Nr matrix
which also has a complex Gaussian distribution, CN (0, 1).
The average signal to noise ratio, ρ, is calculated per channel
use for Nt transmit antennas. X is a unitary T × Nt matrix
which corresponds to the transmitted signal and has an energy
EX = Nt.

The receiver used in this system uses maximum likelihood
detection and functions as follows [8]: When X is multiplied
with H, its basis vectors that span an Nt-dimensional subspace
are rotated and scaled within the same sub-space. Adding
noise to this introduces perturbations within the subspace. The
receiver then has to decide which sub-space was transmitted
on, irrespective of its basis. This is done by searching the entire
constellation to find which one maximizes p(Y |X) where

p(Y |X) =
exp

(
−1
α2 Tr

(
Yᵀ
(

IT − 1
1+α2 XXᵀ

)
Y
))

(πα2)
TNr (1 + 1

α2 )
NtNr

∝ exp

{
||XᵀY||2

α2(1 + α2)

}
,

(4)

where α is
√

Nt

ρT , IT is the T × T identity matrix, the
superscript ᵀ denotes conjugate transpose and || · ||2 is the
Frobenius norm.

Having to search through the entire constellation to find the
best candidate introduces a high computational cost to this
ML detector. Techniques such as the list based decoder exist



which significantly reduce this technique with little cost to the
performance [2], but, these are not considered in this paper.

The demapper used in this system is a soft demapper that
calculates the log likelihood ratio (LLR) of each bit given the
received signal matrix according to [2]:

λl = ln
Pr{cl = 0|Y, c1, ..., cl−1}
Pr{cl = 1|Y, c1, ..., cl−1}

= ln

∑
X∈χl,0

Pr{Y |X}∑
X∈χl,1

Pr{Y |X}
,

(5)

where Y is the received signal matrix, the set χl,k contains
all the matrices in the constellation with Bi,l = k, and the
expression P{Y |X} is given in (4). As (5) shows, the de-
mapping of each bit level relies on knowledge of the originally
transmitted bits of the bit levels before it. When the LLRs
for a particular level are calculated and the bits are decoded,
the receiver passes those bits back into a polar encoder to
obtain an approximation of the bits that were transmitted.
These approximate codeword bits are then used in the de-
mapping of the next bit level and so on (Fig. 2).

III. SET PARTITIONING FOR GRASSMANNIAN
CONSTELLATIONS

Ungerboeck proposed a set partitioning method [9] for
regular constellations, such as PSK or QAM, that involves
dividing the signal points into two subsets in such a way that
the minimum Euclidean distance between any two points in
a subset is greater than the minimum distance in the whole
constellation. All the points in one subset are assigned a bit
value of 0 in the first bit position, while all the points in the
other subset are assigned a 1. Each subset is in turn divided
into two subsets, again with increasing minimum distance
between points within a subset, and all points within one of the
new subsets are assigned a bit value of 0 in the second position,
while the points within the other new subset are assigned a
1. This process is repeated until each subset contains only
one point, and all points have been assigned a unique value
of m = log2M bits, where M is the number of points in
the constellation. Forney later provided a formalized algorithm
for partitioning constellations when the signal points fall on a
regular multidimensional lattice [10], but there are no general-
purpose algorithms that work with irregular constellations.

Ungerboeck’s method works well for regular constellations
using the Euclidean distance, and could also be used with
small irregular ones, but implementation becomes problematic
for large irregular multidimensional constellations. This is
because the method is a visual one that will only work with the
Euclidean distance as the metric. We therefore propose a novel,
formal algorithm that works with any arbitrary constellation,
any distance metric, and has low implementation complexity.
This algorithm works in the opposite order from Ungerboeck’s,
starting with M subsets containing just one point each that are
paired together to form M/2 subsets of two points, which are
in turn combined, and so on, until there is one subset of M
points.

Given a constellation C = {Xi|i ∈ {1, ...,M}}, the
ultimate objective of set partitioning is to create a mapping
between sequences of log2M bits and points in C. Let Bi,l
be the lth bit of the mapping for Xi. Furthermore, let Sl,i
be the set containing the indices of the constellation points
in the ith subset at depth l. Note that |Sl,i| = 2l−i for
i ∈ {1, ...,M/2l−1} and l ∈ {1, ..., log2M}. Starting with
Sl,i = i, the algorithm combines subsets at depth l − 1 to
produce subsets at depth l, based on the inter-subset distance
table, Dl(i, j) = min

a∈Sl,i,b∈Sl,j

d(Xa, Xb), where d(Xa, Xb) is

the distance between constellation points Xa and Xb. That is,
Dl(i, j) contains the distance between the two closest points
in subsets i and j at depth l. Whereas for coherent detection
the Euclidean distance is normally used, it was shown in [8]
that for noncoherent detection of Grassmannian constellation
the chordal Frobenius norm is more appropriate. The distance
betweenXa and Xb is given by

d(Xa, Xb) =
√

2Nt − 2 Tr
(
ΣXᵀ

aXb

)
, (6)

where Nt is the number of transmit antennas and ΣXᵀ
aXb

is a
matrix containing the singular value decomposition of Xᵀ

aXb.
When combining subsets it is desirable to pair subsets that

are as far apart as possible. That is, a greedy algorithm could
pair subset i with subset arg max

j
Dl(i, j). We note, however,

that at depth l there will always be a pairing with distance
∆l = min

i
max
j
Dl(i, j). Since the system performance de-

pends mostly on this minimum distance, ∆l, and making the
most greedy choices for each i tends to make ∆l+1 smaller,
we have found it better to pair subset i with the subset
that is closest to i but with distance no less than ∆l. This
will ensure that the minimum distance is still ∆l, without
being needlessly greedy. Furthermore, because of numerical
rounding errors in calculating the chordal Frobenius norm, a
more robust approach is to include a slight error tolerance
and accept pairs with distances greater than ∆l − ε for some
small ε (e.g. ε = 10−3). The set partitioning algorithm is then
formally given by the following pseudo-code.

Algorithm

• Initialize S1,i ← {i},M1 ←M,D1(i, j)← d(Xi, Xj)
• for l = 1, 2, ..., log2M

– ∆l ← min
i∈{1,...,Ml}

max
j∈{1,...,Ml}

Dl(i, j)

– for i = 1, 3, ...,Ml − 1

∗ j ← arg min
j∈{i+1,...,Ml},Dl(i,j)>∆l−ε

Dl(i, j)

∗ Ba,l ← 0 ∀a ∈ Sl,i
∗ Bb,l ← 1 ∀b ∈ Sl,j
∗ Sl+1,(i+1)/2 ← 0 Sl,i ∪ Sl,j
∗ swap row j of Dl with row i+ 1
∗ swap column j of Dl with column i+ 1

– Ml+1 ←Ml/2

– Dl+1(i, j) ← min{Dl(2i − 1, 2j − 1),Dl(2i −
1, 2j),Dl(2i, 2j − 1),Dl(2i, 2j)} ∀i, j ∈
1, 2, ...,Ml+1



IV. SYSTEM DESIGN METHODOLOGY

Due to the polarization effect that occurs in the polar codes,
data should be transmitted over the bit channels that have
the best channel capacity while the others are not used. With
a simple binary erasure channel, it is easy to calculate the
capacities of each bit channel, however with our system this
computation is not trivial. Therefore, code design was carried
out using MATLAB simulations. The code design component
of the system is very similar to the set-up described above
where an M point Grassmannian constellation is combined
with m = log2M component polar encoders each with length
N ′ (where mN ′ = N ). Because the positions of the frozen
bit channels are not yet known however, the component codes
all operates at a rate Ri = 1. The design methodology
involves simulating the transmission of a large number of
message words through the system at a specified design SNR,
and recording the bit positions where the first error occurs.
Eventually, with enough simulated bits, the bit error rate for
each bit channel will be recorded. However, because our
system uses a multilevel design where the de-mapping of
each successive level depends on the correct detection of all
the previous levels, this method would require simulating an
extremely large number of bits in order to record first errors
in most reliable bit channels. To avoid this, the decoder in
the system was changed to provide correct decision feedback
every time a decoding error occurred while still keeping track
of the positions in which those errors occurred. Once this was
done, the system could then accurately estimate the first-error
probability for each bit channel. Depending on what coding
rate was required, the channels with the smallest first error
probabilities would be chosen to transfer our data bits over.
The performance of the system can then be evaluated using
normal Monte Carlo simulation. However, as show in Fig. 3,
the system performance is heavily dependent on the design
SNR. Although the designed code tends to work well at the
design SNR, its performance can be quite poor at other SNRs.
It is often preferable to design a code with a given rate that
achieves a given target FER at the lowest possible SNR. For
example, from Fig. 3, to achieve a target FER of 10−2, the
design SNR of about 10 dB should be used. Since the optimal
design SNR is not known in advance, we use a bisection search
to find the optimal design SNR.

V. SIMULATION RESULTS

To investigate the performance of the proposed system, we
use an M = 4096 point Grassmannian constellation, designed
as described in [8], for a 2×2 MIMO channel with a coherence
time of T = 4. The performance of the rate 1

2 multi-level
polar code, designed as described in Section IV for a target
FER of 10−2 with N = 3072 (12 component codes each
with N ′ = 256 bits), for the Grassmannian constellation with
labelling as determined according to the new set partitioning
algorithm described in Section III, is shown in Fig. 4. The BER
performance of the uncoded Grassmannian constellation, with
quasi-gray labelling [3] is also shown, and as expected the
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Fig. 3. Effect of design SNR on the FER performance of our system. N ′ =
512, rate R = 4/5, M = 4096.

coded system shows a significant improvement. For compar-
ison, the performance of a BICM system with a single polar
code of length N = 4096, designed for the Grassmannian
constellation with quasi-Gray labelling is shown. As the figure
shows, the new multi-level scheme improves over a single
level scheme with a similar value for N by about 4 dB and it
improves over the uncoded scheme by about 13 dB at a BER
of 10−4.
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Fig. 4. Comparison of the coded vs uncoded schemes for a 4096 point
Grassmannian Constellation. Coded schemes have rate R = 1/2. N = 4096
for single level code and N = 3072 for multilevel code.

As with every coding based system, increasing the frame
size improves the bit error rate, but not above the SNR



threshold set by the channel capacity. In Fig. 5 we show the
effect of increasing the frame size when the code rate is 4/5.
The figure shows a 4096 point Grassmannian constellation
combined with polar codes of varying sub-code lengths rang-
ing from N ′ = 8 to N ′ = 8192 which corresponds to total
code lengths of N = 96 to N = 98304 bits, respectively.
As expected, the longer the length of the polar codes, the
better the BER performance, however, this improvement is
limited by the channel capacity. The SNR limit at capacity was
calculated using the expression computed for Grassmannian
constellations with equal number of transmit and receive
antennas found in [11].

The SNR threshold for the constellation at rate 4/5 (2.4
bits per channel use) is calculated to be 11.6 dB and this
corresponds to an Eb/No value of about 7.8 dB. As Fig. 5
shows, with a sub-code length of N ′ = 8192, this design is
able to operate within 1.6 dB of the approximate non-coherent
ergodic capacity at a BER of 10−4. This is the closest to
the channel capacity for a noncoherent system that has been
reached as far as we are aware.
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Fig. 5. 4096 point Grassmannian constellation with multilevel polar codes
of different sub-code lengths. The overall code rate R = 4/5. The SNR
threshold is shown at an Eb/No of about 7.8 dB.

Thus far, the results seem to indicate that our new system
performs quite well. However, it is useful to compare it with
other noncoherent techniques that also aim to approach the
capacity. Fig. 6 shows the comparison between our polar code
design and both turbo and LDPC codes with a 4096 point
Grassmannian constellation at a rate of 4/5. The first two
curves give the BER performance of our design using 12
component codes each with N ′ = 2048 and N ′ = 4096,
respectively. The next curve shows the performance of a turbo
coded system as designed in [3] using a bit interleaved coded
modulation with iterative detection and decoding (BICM-
IDD), and quasi-gray labelling for the constellation. The last
curve gives the performance of a CM system using the stan-

dard single level DVB-S2 LDPC code with a Grassmannian
constellation. As the figure shows, the polar coding technique
performs better than both LDPC and turbo codes for similar
code lengths. It is also of note that the polar encoder/decoder
has significantly less complexity compared with the other two
codes. Therefore, the polar scheme not only provides better
error rate performance, but it does so with a much lower
complexity.
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Fig. 6. Comparison of polar codes, turbo codes and LDPC codes with a 4096
point Grassmannian constellation at rate R = 4/5.

VI. CONCLUSION

We have presented a novel combination of polar codes
and Grassmannian constellations which to the best of our
knowledge has never been attempted before. We were able to
adapt multilevel polar coding for Grassmannian constellations
and show that this adaptation significantly improves over a
basic coded modulation method. As a necessary component
to realise these significant gains, a generalised algebraic set
partitioning algorithm was developed to create labels for
any Grassmannian constellation. This algorithm can also be
applied to a wide variety of constellations, even golden codes.
The results of the system show that using our code design
methodology, we are able to outperform other coding methods
such as turbo codes and LDPC codes.
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