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Introduction

* Under multiple-input multiple output (MIMO) fast fading scenarios, channel
estimation may not be easily/efficiently obtained.

* Grassmannian constellations, specifically designed for such scenarios, approach
the ergodic channel capacity at high signal-to-noise ratio (SNR).

* Polar codes are known to achieve capacity for a wide range of communication
channels with low encoding and decoding complexity.

* A novel methodology for designing multilevel polar codes that work effectively
with a multidimensional Grassmannian signalling and a novel set partitioning
algorithm that works for arbitrary, not necessarily structured, multidimensional
signalling schemes are proposed.

* Simulation results confirm that substantial gains in performance over existing
techniques are realized.
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Grassmannian Signalling

* For noncoherent communication over block fading MIMO channels.

* Transmitted symbols, X, are T X N, complex matrices, isotropically distributed
on a compact Grassmann manifold. XX = I..

T = number of time slots
N; = number of transmit antennas
* The number of symbols in the constellation is ideally large.
®* The systemmodelisY = XH + W
* No channel state information is required at the receiver or transmitter.
* In the uncoded case, the receiver maximizes the likelihood function

_ [xty|’
PriY|X} = k X exp

2 2
oy (1+oyy,)
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Polar Codes

* Polar codes are the first provably capacity-achieving codes for binary-input
symmetric memoryless channels.

* They require relatively low decoding complexity compared to other state-of-the-
art coding techniques.

* Number and position of information bits in encoder define code rate and code
design.
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Polar Codes

* In a polar code with codeword length N and rate R, RN bit channels carry data
while the rest are frozen (set to zero).

* The polar code performance Is affected by which bit channels are chosen to send
data over. Only the best RN bit channels should be used.

* Every change in the code length and channel characteristics affects the choice of
bit channels.

* The encoder and decoder are defined by the choice of bit channels.
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Spectrally Efficient Coded Modulation

* Involves combining error correcting codes with non-binary signalling.

* Techniques include trellis coded modulation (TCM), bit-interleaved coded
modulation (BICM) and multi-level coding (MLC).

* TCM combines a high-rate convolutional code with non-binary constellations
such as 8-PSK or 16-QAM:

* BICM uses an interleaver between encoder and mapper:

Rate k/(k+1)

» Convolutional

Encoder

Symbol
Mapper

—»

Encoder

» Interleaver

Symbol
Mapper

—

= Can use any code, of any rate, with any constellation.
= Interleaver must be carefully designed for compatibility with encoder and mapper.
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Multilevel Coding

* Whereas convolutional codes work well with TCM and BICM, and LDPC and
turbo codes work well with BICM, polar codes work better with multilevel
coding.

* Uses a bank of encoders, each with a different rate.

* Number of encoders same as number of bits per channel symbol (m = log, M)

* Each code bit from encoder 1 is transmitted in the first bit position of each
symbol, each code bit from encoder 2 is transmitted in the second position, and

SO On.
"+ Encoder 1
S >
2+ Encoder2 (——__, Sym bol Set partitioning is used for bit-
— / SN
| Mapper to-symbol mapping
P ;
 Encoder m m bits per symbol
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Multilevel Coding

* Detect first bit in all the received symbols, and use them to decode first code.
Use decoded code word to detect second bit in the symbols, and decode second
code, and so on.

* Exploits differences in reliabilities between the different bits in the constellation.

= Code rates selected to match reliabilities of the bit positions.
= The overall code rate, R, of the encoder Is determined by selecting the individual rates of the

- 1
subcodes, R; in such away that R = — 2, R;

Bit 1 LLR »  Decoder 1

] P

Bit 2 LLR > Decoder 2 1/

: : S
B"it m LLR » Decoder m
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Polar Codes for Irregular Multidimensional Constellations

* Multilevel polar codes have been proposed for regular 2-D constellations such as
QAM or PSK.

* These regular constellations are easily set-partitioned in order to enable this
method to work. However, this Is not trivially extended to multidimensional
constellations.

* We propose two novel technigues that enable the effective use of multilevel polar
codes with multidimensional signal constellations.

* Irregular multidimensional constellations are used In:
= Grassmannian signalling for noncoherent communication
= Unitary space-time constellations for noncoherent communication
= Golden codes for space-time block coding
= Sparse code multiple access (SCMA)
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Polar Codes for Irregular Multidimensional Constellations

Encoder 1
S P
- » Encoder 2 > Symbol
/ - / Mapper
P - S n
Encoder m >
Set

Code Design [«-----mmmmmmmmmeeeeooey Partitioning

\ _—

Two new techniques for irregular multidimensional constellations:
1. Generalized algebraic set partitioning algorithm, and
2. Multilevel polar code desigh methodology
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Set Partitioning

* Ungerboeck proposed a simple set partitioning algorithm that works well for
simple, two-dimensional signal constellations.

» Ungerboeck’s algorithm does not work with irregular multidimensional
signal constellations.

» Ungerboeck’s algorithm only works with Euclidean distances as the distance
metric.

* Forney proposed an algorithm that works with regular, lattice-based,
multidimensional constellations.

* We propose the first generalized algebraic set partitioning algorithm

= This algorithm works with any signal constellation, and with any distance
metric.
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Set Partitioning

* Recursively divide constellation into subsets.

* Points In each divided subset have a larger minimum distance between points
than the parent subset.

* Value of each bit determines which subset.

bfi)/ OA?\I; 2

A,
b,=0 /O\I 0 /O\l

AT I O R AV L

b;=0, N1 O N1 O, 1 O N1

OQ@O 202016

001 010 011 100 101 110 111

Example: Set partitioning of an 8-PSK constellation
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Set Partitioning

* Each bit position has a different probability of error.
= Use high-rate codes for reliable bit positions, low rate for unreliable ones.

100 : T T T T T 100 E
: Bit 1| | _
'1 = Blt 2 = '1 E
107 Bit 3 107
102 102
Y : e i
5 5
103 ¢ \ 103 ¢
107 ¢ 107 ¢
107 ! ' ' | ' 107 ! ' ' ' '
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Eb/No (dB) Eb/No (dB)
8-PSK with Gray labelling 8-PSK with set partitioning
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Generalized Algebraic Set Partitioning

* Ungerboeck’s set partitioning algorithm is not easily extended beyond 2-D
constellations with the Euclidean distance metric.

* We propose a novel, efficient (polynomial time), generalized set partitioning
algorithm that works with any regular or irregular constellation.

= Supports multidimensional signal spaces.

= Any distance metric can be used, such as the _
chordal Frobenius norm which is best for 0 7 B I ol
noncoherent Grassmannian signalling. 0a . ® :~°

Example of an irregular 3D constellation
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Generalized Algebraic Set Partitioning

* Instead of dividing the constellation into subsets, the proposed algorithm starts
with subsets consisting of only one point, and merges subsets until only one
(containing the whole subset) remains.

* The algorithm is initialized with the distances between each pair of symbols, X;
and X;, using whatever metric Is most suitable for the communication system.

= For coherent detection, the Euclidean distance Is usually preferred:
D1 j) = |[X; = X
= For noncoherent detection of Grassmannian signals, the chordal Frobenius
norm should be used:

D, (i, ) = \/ 2Ny — 2Tr {lexj}

where X1, - IS a diagonal matrix containing the singular values of X{Xj.
L1“*]
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Generalized Algebraic Set Partitioning

* For each symbol, the distance to the farthest other symbol is found, and then the minimum of

these distances i1s found:
A, = argminmax D (i, )
i j

= The algorithm the pairs every symbol with the closest other symbol that has a distance of

at least A;. That is, it pairs symbol i with symbol

j=arg min D;(,j)
j, Dy (6)zA,

= Symbol i is labelled with a bit value of O in the first bit position, and symbol j is labelled

with a bit value of 1.
* Once every symbol has been paired into subsets containing two points, the process is

repeated, merging subsets together to create large subsets of size 4. The distance between

table Is updated as
D2 (l']) — min{@l (i1; iZ): Dl (ilijZ): D1 (jl: iZ): D1(f1»j2)}
* This process Is repeated until only one subset, of size M, remains.

WCS IS6
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Multilevel Polar Code Design Methodology

* Positions of frozen bit must be determined for each subcode based on the overall
code rate. This choice 1s made for a given design SNR.

* The transmission of a large number of message frames Is simulated at a specific
design SNR and the first error probability for each bit channel is determined. In
this stage, no bit channels are frozen and correct decision feedback iIs assumed

within the decoders.

* The bit channels with the highest first error probabilities are frozen. The number
of bit channels to freeze is (1 — R)mN, where R is the overall code rate, N is the
subcode codeword length, and m = log, M Is the number of subcodes.

* The rates of the individual subcodes iIs not determined In advanced, but IS
calculated from the number of non-frozen bit channels in each subcode.

* System performance depends on design SNR.
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Multilevel Polar Code Design Methodology

* Designing the code at an SNR that is too
high or too low may yield a code that
requires a needlessly high SNR to achieve

a target FER.
* We proposed the use of the bisection

10°%

Frame Error Rate

algorithm to find the optimal design SNR 2
for a target FER
= |f the code designed at a given SNR gives a
FER less than the target FER at the design s &5 9 95 10 105 1 115 12
SNR, design a new code at a higher SNR. BNy (48)
Otherwise, deSign a new code at a lower Example: Effect of design SNR on the Frame Error
SNR. Rate performance of our system at various design

SNRs. 4096-point Grassmannian signalling.
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Multilevel Polar Code Design Methodology

Initialize y;, Yy

¥ = low design SNR
Yy = high design SNR
¢ = SNR tolerance

Design Code at
ym = (v +vu)/2
v

Evaluate FER at yy,
!

If FER > Target
YL = YmMm YH = VYMm
v

If lyy — vl <e
Y

Done
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Bit Error Rate
=

[E—
<
(O8]

16

32
—A -64
—— 128
—— 256

—H=— 512

1024 | |
2048 |~
4096 | ]

—4+— 8192 | |

10°

8 9 10 1 12 13
Eb/No (dB)

4096 point Grassmannian constellation with polar codes of different sub-code lengths with code

rate 4/5. SNR threshold = 7.8 dB.
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Pertformance Results

B Optimized ML polar codes, N=24576
——>&— BICM-IDD turbo codes with N=32016
—&— BICM LDPC codes with N=64800
Unoptimized BICM polar codes, N=32768
—— Single-level polar codes with N=32768

@

Bit Error Rate
=
[\)

—
<
W

10
8 9 10 11 12 13 14 15 16 17

E /N, (dB)

p—
o]

Different codes running with 4096 point Grassmannian constellation with rate R=4/5. All BICM
figures use quasi-Gray labelling for the constellation. Multilevel code uses set partitioned labelling.
Un-optimized BICM codes are optimized for a BPSK AWGN channel only.
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Summary

* The generalized set partitioning algorithm is the first that can work with any
signal constellation and any distance metric.

* The multilevel polar code design methodology allows for design of powerful
polar codes. Previous polar code design methodologies minimize the FER at one
design SNR.

* Multilevel polar codes work very well with irregular multidimensional signal
constellations such as Grassmannian signalling.

* Polar codes designed using the proposed methodology with constellations that
are labelled with the proposed set partitioning algorithm given better
performance than BICM schemes with LDPC and turbo codes.

* The designed system provides better performance than other schemes and does
so at a much lower receiver complexity.
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Thank you!
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1) Generate distance table:
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A; = minmax D; (i,))
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6) Find maximum in each row
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7) Find minimum of the maxima

D21 2 3 456 7 8

1 0 416 4 4 8 4 8

2 4 0 416 8 4 8 4

3116 4 0/ 4 4 8 4 8

44164 0 8 4 8 4 13 14 15 16

5 4 8 4 8 0 4 16 4 ° ° o o

6 8 48 4 4 0 16

7 4 8 4816 4 0 4 .9 1.0 1.1 1.2

8 8 4 8 4 4 16 4
5 6 7 8
@) Q@ Q@ @)
1 2 3 4
Q@ 0] 0] Q@

WCS IS6

A, = minmax D, (i)
i
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8) Pair each symbol with its
closest neighbour with a

D;1 2345678 distance of at least A,
1 0 416 4 4 8 4 8
2 4 0 4168 4 8 4
3164 0 4 4 8 4 8
44164 0 8 4 8 4 13 14 15 16
5 48 4 8 0 4 16 4 © ° ° ©
6 8 4 8 4 4 0 4 16
7 4 8 4 816 4 0 4 .9 1.0 1.1 1.2
8 8 4 8 4 4 16 4
5 6 7 8
1 2 3 4
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Generalized Algebraic Set Partitioning

10) Find maximum in each row

D; 1 2 3 4
1 0 4 4 8
2 4 0 8 4
3480 4 1.3 1.4 1.5 1,6
48 4 40

9 10 11 12

5 6 7 3

1 2 3 4
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11) Find minimum of the maxima

Az = minmax D3 (i)
i

1.3 1.4 1.5 1.6
> p|lu B
s 8|7
S

WCS IS6
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12) Pair each symbol with its
closest neighbour with a

distance of at least A,

1.3 1.4 1.5 1.6
> p|lu B
s 8|7
S

WCS IS6
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