

Article by Irem Bor-Yaliniz, Amr El-Keyi, and Halim Yanikomeroglu

Presenter Irem Bor-Yaliniz

Department of Systems and Computer Engineering, Carleton University, Canada

Huawei Technologies, Ottawa, Canada

ICC 2016

Irem Bor-Yaliniz

May 24, 2016

Outline

- Description
- Channel Model
 - Air-to-ground channel
 - Path loss model
- 3-D Placement
 - A use case: Congested cell offloading
 - Problem formulation
- Solution Method
- Results
- Conclusions and future work

Concept of Drone-cells as Aerial Base Stations

- Drone-BS
 - Low-altitude unmanned aerial vehicle equipped with a base station (BS)
- Drone-cell
 - Coverage area of a drone-BS
- Type
 - Unmanned aerial vehicles come in various size, payload, operating altitudes...
- Altitude
 - Lower than stratosphere, not high altitude platform (HAP)
- Differences
 - Placement: Cannot depend on long-term observations as in the case of terrestrial BSs
 - Air-to-ground channel model: Requires consideration of both horizontal and vertical locations (3-D placement)

New Frontier in RAN Heterogeneity: Multi-tier Drone-cells - Paper under review in IEEE Communications Magazine

ICC 2016

Carleton

Channel Model I - Air-to-ground Channel

- Lack of studies compared to terrestrial channel modelling
- Probability of having line of sight

•
$$P(h, r_i) = \frac{1}{1 + a \exp\left(-b\left(\arctan\left(\frac{h}{r_i}\right) - a\right)\right)}$$
Constant values
depending on
environment
$$r_i = \left(\sqrt{(x_i - x_D)^2 + (y_i - y_D)^2}\right)$$

[1]: Al-Hourani, A., S. Kandeepan, and S. Lardner. "Optimal LAP Altitude for Maximum Coverage." IEEE Wireless Communications Letters 3, no. 6 (Dec. 2014).

[2]: "Propagation data and prediction methods required for the design of terrestrial broadband radio access systems operating in a frequency range from 3 to 60 GHz," ITU-R, Tech. Rep., 2012.

ICC 2016 Irem Bor-Yaliniz	May 24, 2016	5
---------------------------	--------------	---

Channel Model II - Path Loss Model

• A combination of free-space path loss model (Friis Equation) with the excessive loss due to environment

[1]: Al-Hourani, A., S. Kandeepan, and S. Lardner. "Optimal LAP Altitude for Maximum Coverage." IEEE Wireless Communications Letters 3, no. 6 (December 2014).

ICC 2016 Irem Bor-Yaliniz May 24, 2016	ICC 2016	Irem Bor-Yaliniz	May 24, 2016	6
--	----------	------------------	--------------	---

Channel Model III - Path Loss Model

• Equivalently,

•
$$L(h, r_i) = 20 \log \left(\sqrt{h^2 + r_i^2}\right) + AP(h, r_i) + B$$

• where $A = \eta_{\text{LoS}} - \eta_{\text{NLoS}}$ and $B = 20 \log(\frac{4\pi f_c}{c}) + \eta_{\text{NLoS}}$

 Note that path loss depends on both the horizontal and vertical dimensions —> 3-D placement

Placement Problem

- Previous studies:
 - 1-D Placement
 - Location in the horizontal plane (x and y axis) is fixed, altitude for optimum coverage is found [1]
 - 2-D Placement
 - Altitude is fixed, location in the horizontal plane is found [3]
- This work:
 - 3-D Placement
 - Introduced for the first time
 - Determining altitude in the vertical dimension, and location in the horizontal dimension jointly (based on the benefit of the network)
 - A recent study from our group [4]

[1]: Al-Hourani, A., S. Kandeepan, and S. Lardner. "Optimal LAP Altitude for Maximum Coverage." IEEE Wireless Communications Letters 3, no. 6 (Dec. 2014).

[3]: Merwaday, A., and I. Guvenc. "UAV Assisted Heterogeneous Networks for Public Safety Communications." In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).

[4]: E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, "On the number and 3D placement of drone base stations in wireless cellular networks", *IEEE Vehicular Technology Conference*, 18-21 September 2016, Montreal, QC, Canada.

Case Study: Congested Cell Offloading

- Maximum revenue varies
 - Investigated in more detail in "New Frontier in RAN Heterogeneity: Multi-tier Drone-cells"
 - Covering as many users as possible with drone-cell
- Only the users that cannot be served by the eNB are shown
- 3 possible placements: The coverage area, altitude and horizontal location changes

Drone's location in the horizontal space (x_D, y_D) , and its altitude, h

1.

- Must be determined jointly
- 2. The coverage area of dronecell is unknown

 \circ Depends on h

- 3. Drone-cell moves to wherever the demand is
 - The coverage region providing the maximum revenue to the network should be found

Efficient 3-D Placement - Analytical Steps

- The user is served if $L(h, r_i) \leq \gamma$ QoS requirement in dB • $u_i(h^2 + r_i^2) \leq 10^{\frac{\gamma - (AP(h, r_i) + B)}{10}}$ 1 if served, 0 otherwise $L(h, r_i) = 20 \log \left(\sqrt{h^2 + r_i^2}\right) + AP(h, r_i) + B$
- Further manipulations

$$h^2 + r_i^2 \leq 10^{\frac{\gamma - (AP(h,r_i) + B)}{10}} + M_1(1 - u_i)$$
 Larger than maximum possible value of left-hand-side

Efficient 3-D Placement Problem - I

• Accordingly the problem formulation

Efficient 3-D Placement Problem - II

• Let R be the radius of the coverage region of the drone-BS and introduce

Efficient 3-D Placement Problem - III

Fig. 2: $\Gamma(\alpha)$ versus α for various environments.

• TABLE I: RF Propagation Parameters of different environments

Environment	Parameters (a, b, η_{LoS} , η_{NLoS})
Suburban	(4.88, 0.43, 0.1, 21)
Urban	(9.61, 0.16, 1, 20)
Dense Urban	(12.08, 0.11, 1.6, 23)
High-rise Urban	(27.23, 0.08, 2.3, 34)

Algorithm 1 Bisection Search Algorithm		
1: $N \leftarrow 0, \alpha_1 = 0, \alpha_2 = \tan(89.9^\circ)$		
2: while $N \leq N_u$ do		
3: $\alpha_3 \leftarrow \frac{\alpha_1 + \alpha_2}{2}$		
4: if $\left(\frac{d\Gamma(\alpha)}{d\alpha}\Big _{\alpha=\alpha_3}\right) = 0$ or $(\alpha_2 - \alpha_1) \le \epsilon$ then		
5: $\alpha^* = \alpha_3$		
6: break		
7: end if		
8: $N \leftarrow N + 1$		
9: if sign $\left(\frac{d\Gamma(\alpha)}{d\alpha}\Big _{\alpha=\alpha_3}\right) = \text{sign}\left(\frac{d\Gamma(\alpha)}{d\alpha}\Big _{\alpha=\alpha_1}\right)$ then		
10: $\alpha_1 = \alpha_3$		
11: else		
12: $\alpha_2 = \alpha_3$		
13: end if		
14: end while		

- The problem becomes a MINLP
- Efficiently solved via interior-point optimizer of MOSEK solver

Results - I

- 25 users are distributed randomly
- 3-D placement in 4 different environments
- QoS is 100 dB for all users
- Results show that based on the environment
 - Size of the drone-cell (i.e., altitude of drone-BS) changes
 - Horizontal location of the drone-BS changes
 - Users at the edge, optimum coverage for the required area

TABLE I: RF Propagation Parameters of different environments

Environment	Parameters (a, b, η_{LoS} , η_{NLoS})
Suburban	(4.88, 0.43, 0.1, 21)
Urban	(9.61, 0.16, 1, 20)
Dense Urban	(12.08, 0.11, 1.6, 23)
High-rise Urban	(27.23, 0.08, 2.3, 34)

Results - II

TABLE I: RF Propagation Parameters of different environments

Environment	Parameters (a, b, η_{LoS} , η_{NLoS})
Suburban	(4.88, 0.43, 0.1, 21)
Urban	(9.61, 0.16, 1, 20)
Dense Urban	(12.08, 0.11, 1.6, 23)
High-rise Urban	(27.23, 0.08, 2.3, 34)

- 100 Monte Carlo simulations in each environment, and for each γ
- 40 users are randomly distributed
- 95% confidence interval
- Results show
 - The effect of the environment and γ , e.g., suburban with 90 dB vs. high-rise urban with 125 dB maximum tolerable path loss

TABLE II: Simulation Parameters

Parameter	Value
(x_l, x_u)	(-1450, 1450) (m)
(y_l, y_u)	(-1258, 1258) (m)
$(\gamma_1, \gamma_2, \gamma_3)$	(90, 100, 125) (dB)
f_c	2.5 GHz
N_u	100
e	10^{-5}
Monte Carlo Runs	100

Conclusions and Future Work

Conclusions

🚔 Carleton

- Description of drone-cells and drone-BSs for future cellular networks
- 3-D placement of a drone-BS by jointly determining horizontal and vertical locations
- Problem formulation as a MINLP
- Efficient solution via interior-point optimizer of MOSEK
- Future Work
 - Joint power allocation and 3-D placement of a drone-cell for users with various QoS requirements
 - Performance analysis

References

🚔 Carleton

- Al-Hourani, A., S. Kandeepan, and S. Lardner. "Optimal LAP Altitude for Maximum Coverage." IEEE Wireless Communications Letters 3, no. 6 (Dec. 2014).
- "Propagation data and prediction methods required for the design of terrestrial broadband radio access systems operating in a frequency range from 3 to 60 GHz," ITU-R, Tech. Rep., 2012.
- 3. Merwaday, A., and I. Guvenc. "UAV Assisted Heterogeneous Networks for Public Safety Communications." In 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW).
- E. Kalantari, H. Yanikomeroglu, and A. Yongacoglu, "On the number and 3D placement of drone base stations in wireless cellular networks", *IEEE Vehicular Technology Conference*, 18–21 September 2016, Montreal, QC, Canada.

Thank you!

Questions?