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Abstract—Long term user rate in cellular networks is
the product of spectral efficiency achieved and the resources
(time/frequency slots) allocated. The former is related to the
received SINR, while the latter is limited by the load of the
associated cell. The max-SINR cell association strategy has been
used in cellular networks from GSM to LTE. This strategy
maximizes the possible achieved spectral efficiency but fails to
account for the load imbalance. Recently, there have been several
investigations on load-aware cell association as an approach to
match the traffic demand with the traffic supply, in which a
user may associate to a less loaded cell, even though it does not
necessarily provide the maximum SINR. In other words, a user
is associated with a cell to get more share of resources at the cost
of lower spectral efficiency.

This paper goes beyond that by proposing a new load balanc-
ing approach that can simultaneously increase the user received
SINR and the share of allocated resources. This is achieved by
the user-in-the-loop (UIL) paradigm, which encourages the user
to move to a new location that maximizes the utility function
considering the received SINR, cell load and the probability of
moving. Numerical results show that the UIL can increase the
mean user rate substantially in comparison to the max-SINR or
the load-aware cell association strategy, and also results in a more
balanced load across the network.

Index Terms—User-in-the-loop, load balancing, cell association,
load-aware, heterogeneous cellular networks.

I. INTRODUCTION

Cellular networks are becoming increasingly heteroge-
neous in two different dimensions. First in the traffic supply
dimension, the architecture of the network is becoming increas-
ingly heterogeneous, with small cells (such as picocells and
femtocells) layered upon traditional macrocells. Second, from
the traffic demand side, new applications with diversified traffic
patterns are emerging everyday with the proliferation of smart
mobile devices (e.g., smart phones, tablets and smart watches).
Due to the disparities between macrocell base stations (BSs)
and small-cell BSs in terms of transmit power, antenna gain,
and antenna height, the coverage sizes of these two types of
BSs are massively different. As such, the conventional max-
SINR (associate the user to the cell whose SINR is maximum)
cell association strategy results in significant traffic imbalance
in heterogeneous networks (HetNets); this is a major source
of performance degradation [1].

Recently, load-aware cell association has been considered
extensively in the literature as an approach to load balancing.
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In [2], the handoff and cell association are formulated into an
iterative optimization problem and solved with a distributed
load-awareness scheme. In [3] and [4], user-cell associations
are obtained from an optimization problem with sum log-utility
as the objective function. The duality theory is used to tackle
the optimization problem, in which the loads are interpreted
as the prices of the BSs. In [5], a heuristic solution to the joint
problem of cell association and linear beamformer design in a
MIMO HetNets is given.

This paper adopts a different approach to achieve load
balancing. Under the paradigm of user-in-the-loop (UIL) [6],
users are suggested opportunistically to move to a new location
according to operator recommendation and incentive displayed
on the user terminal (UT). Users can choose to or not to
comply with the suggestion for better service and better
rewards (depending on the content of the incentive). In this
paper, the new location is the place where the user will receive
higher SINR and/or more resource share, and the user is likely
to move to. The suggestion is given by the UIL controller (see
Figure 1) based on the utility function, which considers SINR
maps of all cells (the potential spectral efficiencies of the new
locations in different cells), the load factor of each cell and the
probability of each user to move to different locations (related
to application class, user behavior, and so on). Load balancing
is achieved by the spatial movement of users which comply
with the suggestions. By shaping the traffic spatial distribution,
the traffic demand is controlled to meet the traffic supply better,
the distribution of which usually stays unchanged once the
placement of BSs has been completed.

A. User-in-the-loop

The recently developed UIL concept [6]–[9] aims at con-
trolling the user (“layer-8”) behavior in a wireless system to
achieve a better performance of both the user and the network
by convincing the users to move from one location to a better
one or to avoid traffic congestion by postponing session traffic
out of the busy hours. Based on the impact dimension, the
approach is called spatial or temporal UIL control (this paper
only involves spatial UIL). In both cases, the user is within,
as part of, a closed-loop control system.

In [7], the authors show that substantial cell spectral
efficiency gain is obtained with the use of UIL. In [8], the
questions about what type of incentives will lead to what type
of user reactions are answered based on survey results. Thus
we are able to quantitatively describe the user behavior in a
system theoretic framework. In [9], the economic aspect of the
UIL concept is investigated in order to find relevant business
cases for the operators and the wireless subscribers. This paper



goes further with a utility function that incorporates cell-level
load factor, potential SINR and the user moving probability,
which leads to a novel spatial traffic shaping approach to load
balancing.

B. Contributions and Organization

In this paper, a novel load balancing approach with spatial
traffic shaping by UIL is proposed. We show that the spectral
efficiency for the users and the load balancing for the system
can be improved at the same time with this approach, resulting
in significant network performance enhancement.

The rest of this paper is organized as follows. First, in
Section II, the system model for spatial traffic shaping is
introduced. The diagram inside explains how the user is
incorporated as part of a closed-loop control system. In Section
III, a user model is introduced, which includes user traffic
class, resource allocation scheme and user spatial distribution.
The load balancing approach with spatial traffic shaping is
proposed in Section IV, and a load-aware cell association
approach for load balancing without users’ movement is intro-
duced in Section V. Numeric results are presented in Section
VI. Finally, the paper is concluded in Section VII.

II. SYSTEM MODEL FOR SPATIAL TRAFFIC (DEMAND)
SHAPING

The UIL system theoretic model for traffic shaping is
shown in Figure 1. Instead of assuming users being a traffic
generator only, the UIL framework allows a control input into
the user block, through which the user receives suggestions
and incentives (i.e., progressive tariffs, reward points, higher
access rates, or even environmental indicators) in order to
convince him to move to a new location; this is what we refer
to as spatial traffic (demand) shaping. The control information
(CI) is sent from the UIL controller in form of suggestions
on the UT graphical interface (e.g., a map with directions).
The suggestion is opportunistic (not mandatory), and users can
choose to comply or not. The action of the users (cooperate or
not) is then returned to the cellular network. The suggestions
are the main output of the UIL controller based on the utility
function discussed in Section IV, and the incentive is set by
the operator considering factors such as the current tariffs, the
marketing policy, the network congestion degree, and so on.

According to the construct in this paper, the input of
the UIL controller includes three components: (1) The map
information from the database, (2) the user probability of
moving, P , from the user behavior learning center, and (3)
the cell load information, L, from the cellular network. The
map information that facilitates the movement of users, and the
spectral efficiency map is used to calculate the utility function.
The spectral efficiency map is generated from the network
with the measurement from all the UTs being accumulated
and statistically averaged. It is relatively constant and only
needs to be updated when the network configuration or the
city landscape changes.

P is the output of the user behavior learning center, which
learns the user behavior under different circumstances. For
example, the probability of user u with quality of service
(QoS) q to move distance d with incentive i within the user’s
context c can be formulated as Pu(d, q, i, c). A QoS level may

Fig. 1. The UIL system theoretic model is a closed loop with the user included
in the system to control. The user’s output is the action of complying or not
with the suggestions. As we have multiple users in a cell, the arcs between
controller, user, and the system are vectorized for m users.

be real-time, non-real-time, or differentiated based on contract
(e.g., gold, silver, or bronze). The incentive may take different
forms: Financial bonus, penalty surcharge, extra capacity, or
even environmental indicators. The user’s context c can be in
various forms. The user may be known to be immobile, for
example in a stadium. The user may be known to pay all
penalties and discard all incentives. The user options may be
set to suppress all UIL suggestions. The connectivity of the
user to other peers nearby may be part of the context as well.
Other human, social, or technical aspects may also be part
of the context. With the evolution of machine learning, more
specific output could be possible, e.g., the probability of one
specific user at a specific location to move to another specific
spot at a specific time.

While the map information and the value of P are being
provided from offline databases, the cell load L is included
in the closed-loop and is updated simultaneously when a new
user session arrives to or departs from the system.

III. USER MODEL

A. User Traffic Class

Unlike most papers in the literature, which assume one type
of users only (best effort in most cases), we model users with
two different traffic classes: guaranteed bit rate (GBR) and
best effort (BE). An example of these two traffic types could
be real-time video application and FTP/HTTP download. The
GBR users have a guaranteed rate and a higher priority, while
BE users share all of the resources in the cell that are not used
by GBR users. In this paper, we assume that all the GBR users
are guaranteed a fixed rate r when the service is available or
receive no service at all (i.e., outage) if the resources are not
sufficient for the user to reach the guaranteed rate r.

B. Resource Allocation

We denote by C the set of all cells (including macrocells
and small-cells). The total resources of a cell j ∈ C, denoted
by Wj , is shared among all the users associated with it. The
resources can be time or frequency slots, or both. In our model,
GBR users have higher priority and are allocated the exact
amount of resources they need. For a GBR user i with spectral
efficiency sij (when associating with cell j), the amount of
resources needed from cell j for user i to reach the guaranteed
rate r is

wij =
r

sij
. (1)



The spectral efficiency sij is derived from the Shannon for-
mula,

sij = log

(

1 +
Pjgij

∑

h∈C,h 6=j Phgih + σ2

)

, (2)

where Pj is the transmit power of cell j, and gij denotes
the channel gain between user i and cell j. The channel gain
includes antenna gain and path loss (including shadowing).
Fast fading is not considered here as an averaged SINR is
assumed over the session length. In (2), σ2 represents the noise
power.

When a new GBR user i arrives to cell j, the user will be
allocated the exact amount of resources wij (see (1)) that is
needed if

Wj −
∑

i′∈Ug(i)

ai′jwi′j > wij , (3)

where Ug(i) is the set of the existing GBR users at the time
when user i arrives to the system, and ai′j , i

′ ∈ Ug(i), is
the association indicator (i.e., ai′j = 1, if user i′ is associated
with cell j, ai′j = 0 otherwise). The left side of the inequality
represents the remaining resources after all the existing GBR
users in cell j are satisfied. If the inequality (3) does not hold,
this GBR user will be blocked, i.e., a service outage occurs.

The BE users equally share the remaining resources that
are not used by the GBR users. For example, when a new
BE user k arrives to cell j, the resources will be reallocated
to these nb

j(k) + 1 users, where nb
j(k) is the number of the

existing BE users associated with cell j at the time when user
k arrives. The amount of resources allocated to user k is

wkj =
Wj −

∑

i∈Ug(k) aijwij

nb
j(k) + 1

. (4)

Because of the outage mechanism of the GBR users, wkj

is always positive, which means each BE user will be served
no matter how little resources are allocated. Minimum rate
demand for BE users can be added to the model, which will
result in possible outage for BE users as well. Note that the
arrival/departure of a GBR user i to/from cell j also triggers
the reallocation of resources for all the existing nb

j(i) BE users.

C. Probability of Moving: The P Function

This paper adopts the P function from [8], in which
the probability of user moving is modeled as a function of
moving distance, QoS, and incentive (i.e., Pu(d, q, i)) without
considering c, the user’s context as introduced in Section
II. The functions are obtained from regression analysis on
survey results. Three types of services (QoS) were included
in the questionnaire: Data, video, and voice. We take the
results of data and video as the behavior model for the BE
and GBR users, respectively. The fitting exponential functions
for video traffic (GBR users) and data traffic (BE users)
are p = e(−0.0285−0.0265·δ)·d and p = e(−0.0327−0.0310·δ)·d,
respectively, where δ is the discount incentive [8].

D. User Spatial Distribution

Besides the traffic class, the user spatial distribution is
also non-uniform (i.e., heterogeneous). This paper adopts the
method in [10], in which users are randomly and heteroge-
neously distributed modeled with a log-Gaussian Cox process
(LGCP). Cox process is a generalization of the Poison point
process (PPP), with the intensity itself being a Stochastic
process [11]. LGCP is a Cox process with a log-Gaussian
parent process. By changing the standard deviation σ of
the Gaussian process, the distribution of users are controlled
smoothly from homogeneous to extremely heterogeneous [10].
When σ = 0, the LGCP falls back to a homogeneous PPP.

To better captures the level of the user spatial heterogeneity,
this paper adopts the metric introduced in [12], in which the
measures based on Voronoi and Delaunay tessellations are
proposed. The user spatial heterogeneity can be represented
by a non-negative real number C (normalized coefficient of
variation). This formulation results in a C value that is greater
than 1 in super-Poisson processes, equal to 1 in PPP, and
between 0 and 1 in sub-Poisson processes. The LGCP brings
more heterogeneity to the PPP, so it is a super-Poisson process
with C ≥ 1.

IV. PROPOSED UIL LOAD BALANCING APPROACH

For each user, the UIL controller outputs the control
information as the suggestion of a potential location based
on the maximization of the utility function. The objective
utility function combines three factors: The SINR value of
different locations from each cell, the load of each cell, and
the probability of moving for this user from the current location
to the potential locations.

A. Utility Function of GBR Users

The utility function of a GBR user i with cell j is
formulated as

Uij(x, y) = pi(x, y) · sj(x, y) · (1− ρbj(i)), (5)

where pi(x, y) is the probability of user i moving from his
current location to the new location with coordinates (x, y),
sj(x, y) is the spectral efficiency map of cell j, and ρbj(i) is

the load factor (∈ [0, 1]) of cell j for the existing GBR users
at the time when user i arrives to the system. ρbj(i) is defined
as

ρbj(i) =

∑

i′∈Ug(i) ai′jwi′j

Wj

, (6)

where Ug(i), ai′j , and wi′j have the same definitions as in
Section III-B. So for each new user arriving to the system, we
get a three dimensional matrix. The first dimension is the cell
index, and the other two dimensions are the coordinates of the
map.

B. Utility Function of BE Users

The utility function of a BE user k with cell j is formulated
as

Ukj(x, y) = pk(x, y) · sj(x, y) ·
(1− ρbj(k))

nb
j(k) + 1

, (7)

where ρbj(k), as defined in (6), is the load factor of cell j of
the existing GBR users when BE user k arrives to the system.



C. Sequential Optimization

Due to the fact that each user (or session) arrives to
the system sequentially and takes action (move or not after
receiving UIL suggestion) independently, it is unrealistic to
formulate the movement suggestions of all users in a one-shot
optimization problem and find the global optimum suggestions
for all users. In this paper, we use sequential optimization
to find the optimal location for each new user based on
the network situation at the time the user arrives. Different
from dynamic programming, the sequential optimization never
reconsiders its choices, i.e., a user will not receive a second
suggestion during one data session even though the network
load changes (and it may be better for him to move to another
location) after he receives the first suggestion.

For a new GBR user i, we conduct an exhaustive search on
the utility function Uij(x, y) of all the cells and locations based
on the current load information. The optimization problem is
formulated as

max
j,x,y

Uij(x, y)

s.t. Wj −
∑

i′∈Ug(i)

ai′jwi′j >
r

sj(x, y)

x ∈ [0, X]

y ∈ [0, Y ]

j ∈ C,

(8)

where x and y take discrete values from the geographic range
X and Y based on the resolutions of the map. r

sj(x,y)
gives the

resources needed to reach the rate r at different locations of
cell j with spectral efficiency sj(x, y). The exhaustive search
over the three dimensional matrix provides the optimal utility
U⋆
i for user i, and the corresponding values of the variables,

i.e., the optimal associated cell j⋆ and the optimal location
(x⋆, y⋆). The probability of user i to move to the optimal
location (x⋆, y⋆) is obtained from the P function of this user,
pi(x

⋆, y⋆), which we denote as p⋆i .

The first constraint in (8) guarantees that there are sufficient
resources in the potential cell for the GBR user i to reach
the rate r. If no cell is feasible because of the constrains, it
means either there is no location in any cell that can provide
the spectral efficiency and the required resources to make user
i reach the guaranteed bit rate, or while such a location does
exist, this user has zero probability to move there based on the
P function (e.g., too far from the current location). This results
in an outage for this GBR user and no movement suggestion
will be given.

The optimization problem for the BE users is similar to
the GBR users except that it comes without the first constraint
that guarantees the amount of resources available as in (8).

In the simulation, the action of the user can be modeled as a
Bernoulli trial. A random number between 0 and 1 is generated
and is compared to p⋆i . This user moves if the random number
is smaller than p⋆i , and stays otherwise. If user i moves, the
location of this user will be changed to (x⋆, y⋆), and cell
j⋆ will be assigned as the associated cell for this user, i.e.,
aij⋆ = 1. If the user stays according to the Bernoulli trial, he
will be associated with the cell that provides the highest SINR.

D. Outlook: Include Mobility Model

If a user mobility model is included in the system, (6)
should be modified to include network load variation during
the time period that the current user is moving to the potential
location. For example, when a new user i arrives to the system
at time t, the loads of the potential cells used in the utility
function are not the loads at time t, ρj(t), j ∈ C, but the load
at the time when user i arrives to the potential cell, ρj(t+ τj),
j ∈ C, where τj is the time needed for user i to move to cell
j. The users considered in the load ρj(t+ τj) should include
the coming users and exclude the leaving users during the time
interval τj , for each cell j.

V. LOAD-AWARE CELL ASSOCIATION

In this section, we develop a baseline load balancing
approach without involving users’ movement. Users are as-
sociated with cells not purely based on the received SINR, but
also on the load of each cell.

Load-aware cell association has been researched in the
literature intensively as an approach to perform load balancing,
yet only one class of users is assumed (in most cases, best
effort users). To better understand the effect of spatial traffic
shaping by UIL, we formulate the load-aware association
problem with the same user model and the same optimization
method as in the UIL approach, and compare the performance
of them in Section VI.

Without including the movement of users, only two factors
are considered in the utility function, the spectral efficiency and
the load of the potential cell. The utility function of GBR user
i with cell j is defined as

Ûij = sij · (1− ρbj(i)), (9)

where sij denotes the spectral efficiency of cell j at the current

location of user i, and ρbj(i) has the same definition as in the
UIL scheme (the load of GBR users of cell j when user i
arrives to the system). Similarly, the utility function of BE
user k with cell j is defined as

Ûkj = skj ·
(1− ρbj(k))

nb
j(k) + 1

. (10)

For each new GBR user, an exhaustive search is conducted
on all the cells to find the maximum utility defined in (9). The
optimization problem is formulated as

max
j

Ûij

s.t. Wj −
∑

i′∈Ug(i)

ai′jwi′j > wij (11)

j ∈ C.

The GBR user i is associated to j⋆ from this optimization
problem, or associated to the best-SINR cell if there is no cell

feasible. For BE user k, the associated cell j⋆ is argmaxj Ûkj

with no constrains.



TABLE I. SIMULATION PARAMETERS

Parameter Assumption

Macrocell layout Hexagonal grid of 19 × 3 = 57 macro-

cells. Inter-site distance = 500 m

Picocell layout 57 × 2 = 114 picocells, uniformly and

randomly deployed

System bandwidth 10 MHz (FDD) at 2 GHz

Average user number 10 users / cell × 171 cells = 1710 users

Percentage of GBR users 50%

Average session length 300 s

Guaranteed bit rate for GBR users 1 Mbps

Traffic model BE and GBR

Discount incentive (δ) in UIL -80%

VI. NUMERICAL RESULTS

A. Simulation Setup

We use 3GPP case 6.2 [13] in release 9 as the scenario
for the HetNet. 19 macrocells sites (each of 3 cells) with
inter site distance (ISD) of 500 meters, are configured in the
system. The locations of the macrocell sites are fixed and form
a hexagonal grid layout. The HetNet consists of two tiers with
outdoor picocells overlaid on the same area of macrocells. The
distribution of picocells is random and uniform. A wrap-around
technique is applied on both macro and small-cells to eliminate
the boundary effect.

The channel follows the model 2 in [13] for both macro-
cells and outdoor picocells, in which a LOS and NLOS path
loss model is used. The downlink signal experiences path loss
(including shadowing), while the fast fading is assumed to be
averaged out. Both macrocells and picocells share the same
bandwidth, and no interference coordination or cancellation
technique is used. Table I shows the key parameters used.

Users arrive the system according to a Poisson process
and depart the system after the session length. In each drop
of the simulation, the system starts from zero users. All the
performances are evaluated based on the snapshots of the
system when the user number is in steady state, and each
snapshot is taken from an individual drop, i.e., the snapshots
are totally independent.

The metrics are evaluated with respect to the increasing
spatial traffic demand heterogeneities under three scenarios:
(1) No load balancing with best-SINR association strategy, (2)
load balancing approach with load-aware association strategy
as introduced in Section V, and (3) load balancing approach
with the UIL scheme as proposed in Section IV. We change
the value of σ in LGCP to get user distributions with different
spatial heterogeneities, which are measured by C. When σ =
0, the user distribution becomes a PPP, which results in C = 1.

B. Loads among Different Cells

The load of GBR users is defined as ρ in (6) in Section
IV-A. As the GBR users have higher priority, the standard
deviation of ρj (j ∈ C), denoted as σρ, can be used as a
measure to indicate the degree of network-wide load balance.
The lower the σρ is, the more balanced the network is. Figure
2 shows σρ with respect to user spatial heterogeneities under
different load balancing scenarios. First, it is obvious that the
network is becoming more imbalanced when the user spatial

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 o

f 
ρ
 f

o
r 

a
ll 

c
e
lls

User spatial heterogeneity level (C)

best−SINR

load−aware association

UIL

Fig. 2. The standard deviation of GBR user load (ρ) of all the cells with
respect to user spatial heterogeneities under different load balancing scenarios.
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Fig. 3. The outage percentage of GBR users with respect to user spatial
heterogeneities under different load balancing scenarios.

heterogeneity (i.e., traffic demand heterogeneity) increases in
all the three scenarios. Second, σρ is the lowest in the UIL
scheme, highest in the best-SINR scheme, and the load-aware
cell association scheme is in the middle. It shows that the UIL
approach and the load-aware cell association approach are both
effective in load balancing, and the former performs better.

C. GBR Users Outage

As shown in Figure 3, the GBR users’ outage percentage
is the lowest (best) with the UIL scenario and the highest
(worst) with the best-SINR scenario. The load-aware cell
association strategy as an approach to load balancing without
the involvement of user relocations performs in the middle.
The outage percentages rise quickly with the increase of user
spatial heterogeneity (i.e., traffic demand heterogeneity) in all
the three scenarios.

The reason is when the user spatial heterogeneity increases,
the traffic demand may be highly clustered in some areas that
exceed the capacities of the associated cells, which results in
higher GBR user outage. Load-aware cell association approach
takes the load factor into account, and thus performs better
than the best-SINR strategy without load balancing. The UIL
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Fig. 5. Mean rate of all the BE users in the system with respect to user
spatial heterogeneities under different load balancing scenarios.

scheme outperforms the load-aware cell association by com-
bining user relocation and load factor together.

D. Mean User Rate

The mean user rates of GBR users and BE users are
calculated separately as shown in Figure 4 and Figure 5,
respectively. They all have the same downward trends with the
increase of user spatial heterogeneity. For GBR users, the UIL
scheme performs the best, the load-aware association scheme
comes next, and the best-SINR strategy with no load balancing
performs the worst. This can be explained with the same reason
as for the outage percentage. However, for BE users, the UIL
scheme still performs the best (more than twice as the best-
SINR strategy), but the load-aware cell association strategy
does not surpass the best-SINR strategy. This is due to the
fact that the load-aware strategy may associate a GBR user
to a lightly loaded neighbor cell with lower received SINR,
which results in a higher resource consumption. Because of
the priority of GBR users, less resources are left for the BE
users, which brings a worse performance for the load-aware
association strategy in terms of mean user rate of BE users.

VII. CONCLUSION AND OUTLOOK

In this paper, a novel load balancing approach in cellular
networks is proposed. User-in-loop as the spatial traffic shap-

ing method is the enabler of the approach.

A user model consisting of GBR and BE is considered in
this paper with corresponding resource allocation policy. To
better evaluate the performance, a load-aware cell association
strategy is introduced with the same user traffic model and
resource allocation policy as the UIL scheme. Numerical
results show that the proposed load balancing approach with
UIL outperforms the load balancing approach with load-aware
cell association strategy and the non-load-balancing approach
with best-SINR association strategy.

The proposed load balancing approach can be extended
with the temporal UIL. Similar to the policies that are imple-
mented in power supply companies, temporal UIL encourages
users to postpone a heavy data application in busy hours. The
UIL concept can also be used in machine-type of communi-
cations if the machine nodes can be controlled to move.
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