

Measuring the Spatial Heterogeneity of Outdoor Users in Wireless Cellular Networks Based on Open Urban Maps

Meisam Mirahsan Rainer Schoenen Sebastian Szyszkowicz Halim Yanikomeroglu

Carleton University Ottawa, Canada

Outline

- ☐ HetNets with <u>het</u>erogeneous user distribution → <u>HetHetNets</u>
- Sources of User Spatial Heterogeneity
- Measuring Spatial Heterogeneity
- Open Source Maps A Great Resource for Wireless
 - **Communications Modeling**
- Initial Heterogeneity Results in a Dense Urban Area
- Ongoing Related Research

Sources of User Spatial Heterogeneity: 1) Self-Clustering

Sources of User Spatial Heterogeneity: 2) Urban Layout

Sources of User Spatial Heterogeneity: 3) Fixed Social Attractors

Small Cell Planning around Social Attractors Correlation between user clusters and AP locations

Small Cell Planning around Urban Layout Correlation between user layout and AP locations

Heterogeneity in Applications

0-0	M2M Module	:8	3 X	N	
	Wearable Device		6 X	N	
	Smartphone		37 X	N	
	Tablet	æ	94 X	N	
	Laptop		119 X	<u>N</u>	

* Monthly basic mobile phone data traffic.

Source: Cisco VNI Mobile, 2015

Meisam Mirahsan, Rainer Schoenen, Sebastian Szyszkowicz, Halim Yanikomeroglu

ICC 2015: 11 June 2015/ London/ UK

If Supply and Demand Do Not Match in Space and Time...

Can we store (in time) and/or transfer (in space) the supply? If difficult, then more heterogeneous + more unpredictable \rightarrow more problems

Meisam Mirahsan, Rainer Schoenen, Sebastian Szyszkowicz, Halim Yanikomeroglu

Page 9 of 24

HetNets: Heterogeneity in Supply (Access Points)

Locations of APs somewhere between a regular grid and total randomness:

Meisam Mirahsan, Rainer Schoenen, Sebastian Szyszkowicz, Halim Yanikomeroglu

Page 10 of 24

[U of Texas, Austin]

Measuring Spatial Heterogeneity: Step 1: Voronoi Tesselation

- For a set of Points, Find the Voronoi Partition: areas that are closer to their own point than any other point.
- Two points are "natural neighbours" if their Voronoi cells touch.
- Natural neighbours are connected by straight edges to form the Delaunay triangulation.

Measuring Spatial Heterogeneity: Step 2: Coefficient of Variation

- Statistic: Coefficient of Variation:

 $CoV{x} = std.dev.{x}/(mean{x} * K) - K a constant$

- We study two metrics (two "flavours"):
 - CoV of Voronoi Cell Areas (K=0.529)
 - CoV of Delaunay Cell Edge Lenghts (K= 0.492)
- CoV (either flavour) captures heterogeneity(dispersion/clustering) of any point process in one positive scalar value:

sub-Poissonian (e.g., repulsive): 0<CoV<1

Poisson Point Process: CoV=1 super-Poissonian (e.g. clustered): CoV>1

HetHetNets = HetNets + Heterogeneity in Demand (User Locations) Users (black) self-clustering: clustering increases with beta

Meisam Mirahsan, Rainer Schoenen, Sebastian Szyszkowicz, Halim Yanikomeroglu

ICC 2015: 11 June 2015/ London/ UK

Page 13 of 24

Comparison with Propagation Modeling

- A topic in wave sciences (physics)
- But simple models for mobile radio exists: Path-loss = $A + 10n \log(d) + X(\sigma)$
- Path-loss model: from 2 parameters to very many parameters
 COST, WINNER, 3GPP, ...
- *n* and σ : Describe a scenario (urban microcell, rural macrocell, etc.)

OpenSourceMaps.org: Open Maps of the Entire World

- Free open vector maps made by volunteers from around the world.
- Some cities, notably central Paris, France, have very complete building footprint information.
- Every building is encoded as a closed polygon with known coordinates.
- We use data from central Paris: 10km x 8km, divided into overlapping 1km x 1km tiles.

[www.openstreetmap.org]

Tile Processing

- Cut tiles (1km x 1km) from a large (whole city) master file.
- Find all buildings.
- Convert building coordinates from spherical (lat/lon) to local 2D approximation (error < 4cm).</p>
- Merge building into blocks and remove inner courtyards.
- Final Result: City blocks (light blue) and open areas (white)

Heterogeneity becomes more prominent with increased user density

100 Mobile Outdoor Users

Heterogeneity becomes more prominent with increased user density.

Heterogeneity becomes more prominent with increased user density

Heterogeneity becomes more prominent with increased user density

3000 Mobile Outdoor Users

Heterogeneity becomes more prominent with increased user density

5000 Mobile Outdoor Users

Meisam Mirahsan, Rainer Schoenen, Sebastian Szyszkowicz, Halim Yanikomeroglu

ICC 2015: 11 June 2015/ London/ UK

Page 22 of 24

Meisam Mirahsan, Rainer Schoenen, Sebastian Szyszkowicz, Halim Yanikomeroglu

ICC 2015: 11 June 2015/ London/ UK

Page 23 of 24

Ongoing Related Research

- Comparison between different types of cities (European vs US, urban vs suburban)
- Are there more appropriate <u>metrics</u> for characterizing the outdoor urban users' distribution.
- Combine urban information with <u>social attractors</u> model for even more heterogeneity.
- Finding a <u>simple-enough point process</u> that has similar properties to the urban users location, with tunable parameters that can account for different types of urban areas.
- Use urban data to characterize the spatial distribution of <u>small cell AP</u> locations, their coverage, and their correlation with he users' locations.
- Other interesting uses of <u>OpenStreetMaps</u> data in wireless communications...