

A Set Cover Based Algorithm for Cell Switch-Off with Different Cell Sorting Criteria

Tamer Beitelmal and Halim Yanikomeroglu

Department of Systems and Computer Engineering

June 10, 2014.

Outline

- Introduction
 - Cell Switch-Off Approach
 - Set Cover Problem
- Methodology
 - Problem Formulation
 - The Proposed Algorithm
- Evaluation Model and Simulation Results
 - Evaluation Model
 - Simulation Results
 - Conclusion

Preface

What is the problem?

- \bullet Cellular networks have become the preferred mean to access the Internet \Rightarrow more Base Stations (cells) are deployed.
- \bullet Significant energy is consumed by cells \Rightarrow more cells result in more energy consumption
- lacktriangle Outside the peak traffic \Rightarrow some cells are underutilized or even redundant.

Preface

What is the problem?

- Cellular networks have become the preferred mean to access the Internet ⇒ more Base Stations (cells) are deployed.
- \bullet Significant energy is consumed by cells \Rightarrow more cells result in more energy consumption
- lacktriangle Outside the peak traffic \Rightarrow some cells are underutilized or even redundant.

What is the solution?

Switch off some cells to save energy ⇒ Cell Switch-Off (CSO).

The common practice is to switch off cells based on their loads.

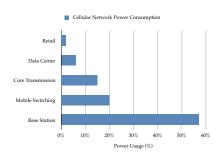
Preface

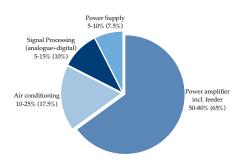
What is the problem?

- Cellular networks have become the preferred mean to access the Internet ⇒ more Base Stations (cells) are deployed.
- \bullet Significant energy is consumed by cells \Rightarrow more cells result in more energy consumption
- lacktriangle Outside the peak traffic \Rightarrow some cells are underutilized or even redundant.

What is the solution?

Switch off some cells to save energy ⇒ Cell Switch-Off (CSO).

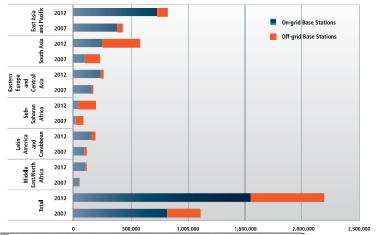

The common practice is to switch off cells based on their loads.


What is the novelty?

- Investigate different cell sorting criteria (the order in which cells are switched on) and compare their impact on the overall energy saving.
- Formulate the CSO approach as a set-cover problem and Provide a solution.
- The proposed algorithm outperformed a benchmark algorithm for large number of users per cell.

Energy Consumption in Cellular Networks

Cellular network power consumption.


Energy consumption at the base station.

[Hasan et al.] @ IEEE Communications Surveys & Tutorials, 2011. Green Cellular Networks: A Survey, Some Research Issues and Challenges.

Energy Consumption in Cellular Networks

Growth in the number of base stations (cells), 2007-2012.

[Hasan et al.] @ IEEE Communications Surveys & Tutorials, 2011. Green Cellular Networks: A Survey, Some Research Issues and Challenges.

Related Work

- A simple greedy-drop algorithm: Cell-Zooming¹.
 - Cells are sequentially switched off based on their loads starting with the least loaded one.
 - Terminates when encountering the first cell that can not be switched off.
- An improved algorithm: **Improved Cell-Zooming**².
 - An improved termination criterion such that this algorithm attempts to switch off each single cell in the network.
 - Resulted in better power saving, by switching off more cells.
 - We will use this algorithm as a benchmark to compare with the proposed algorithm.
- A genetic algorithm².

1 [Niu et al.] @ IEEE Communications Magazine, 2010. Cell zooming for cost-efficient green cellular networks.

2 [Alaca et al.] @ IEEE Globecom Workshops, 2012.

A genetic algorithm based cell switch-off scheme for energy saving in dense cell deployments.

▶ 6/22

Set Cover Problem

Set Cover Problem

The set cover problem is usually denoted as $(\mathcal{U}, \mathcal{S}, \mathcal{C})$, where:

 $\mathcal{U} = \{e_1, e_2, ..., e_n\}$ a universe of n elements,

 $S = \{S_1, S_2, ..., S_m\}$ is a set of m subsets from U, and

 $\mathcal{C} = \{c_1, c_2, ..., c_m\}$ is the set of the cost associated to each subset.

A set cover is a collection of subsets from $\mathcal S$ such that all elements in $\mathcal U$ are included in at least one subset. The objective of the set cover problem is to find the set cover $\mathcal S^*\subseteq \mathcal S$ that minimizes the cost.

Set Cover Problem

Set Cover Problem


The set cover problem is usually denoted as $(\mathcal{U}, \mathcal{S}, \mathcal{C})$, where:

 $\mathcal{U} = \{e_1, e_2, ..., e_n\}$ a universe of n elements,

 $S = \{S_1, S_2, ..., S_m\}$ is a set of m subsets from U, and

 $\mathcal{C} = \{c_1, c_2, ..., c_m\}$ is the set of the cost associated to each subset.

A set cover is a collection of subsets from $\mathcal S$ such that all elements in $\mathcal U$ are included in at least one subset. The objective of the set cover problem is to find the set cover $\mathcal S^*\subseteq \mathcal S$ that minimizes the cost.

In this example, there are two set covers: $\{S_1, S_2, S_3\}$ and $\{S_4, S_5\}$.

Set Cover Problem in Wireless Networks

- Applications of set cover problem in wireless networks.
 - Initial gateways placement in wireless mesh networks.
 - Energy saving in Ad-hoc networks.
 - Interference minimizing in cellular networks.
 - Coverage optimizing in wireless sensor networks (WSNs).

▶ 8/22

Set Cover Problem in Wireless Networks

- Applications of set cover problem in wireless networks.
 - Initial gateways placement in wireless mesh networks.
 - Energy saving in Ad-hoc networks.
 - Interference minimizing in cellular networks.
 - Coverage optimizing in wireless sensor networks (WSNs).

- The differences between applying the set cover in WSNs and cellular networks.
 - Capacity constraint.
 - Coverage pattern.
 - Power scarcity vs power saving.

Problem Formulation

- We formulate the CSO approach as a $(\mathcal{U}, \mathcal{S}, 1)$ set cover problem, where:
 - ullet *U* is the set of User Equipments (UEs) in the network.
 - $S = \{S_1, S_2, ..., S_m\}$ is the set of m base stations, where S_j includes the UEs that can be served by cell j.
 - ullet 1 corresponds to the unweighted set cover.

▶ 9/22

Problem Formulation

- \bullet We formulate the CSO approach as a $(\mathcal{U},\mathcal{S},1)$ set cover problem, where:
 - $m{\cdot}$ $\mathcal U$ is the set of User Equipments (UEs) in the network.
 - $S = \{S_1, S_2, ..., S_m\}$ is the set of m base stations, where S_j includes the UEs that can be served by cell j.
 - 1 corresponds to the unweighted set cover.
- First we formulate the CSO as an un-capacitated set cover:

subject to
$$\sum_{j \in S} x_{ij} y_j = 1, \quad \forall i \in \mathcal{U},$$
 (1b)

$$x_{ij}, y_j \in \{0,1\}, \forall i \in \mathcal{U}, \forall j \in \mathcal{S}.$$
 (1c)

 $y_j = 1$ if Cell j is active, $x_{ij} = 1$ if UE i is connected to cell j.

Differences between CSO and Original Set Cover

- The greedy-add algorithm for solving the set cover problem should be modified to address the following differences:
- Capacity constraint:

$$\sum_{\forall i \in \mathcal{S}_j} x_{ij} b_{ij} \le W_j, \quad \forall j \in \mathcal{S}.$$
 (2)

- Each cell has limited resources (bandwidth) denoted as W_i .
- Each UE i demands b_{ij} resources from cell j to satisfy its minimum rate requirements calculated as: $b_{ij} = \frac{r_i}{\omega_{ij}}$, where ω_{ij} is the spectral efficiency between UE i and cell j.

Differences between CSO and Original Set Cover

- The possibility of splitting the demand:
 - Set cover: splittable demand,
 The original set cover problem allow users to be served with more than one set.

$$\sum_{j \in \mathcal{S}} x_{ij} y_j \ge 1, \quad \forall i \in \mathcal{U}.$$
 (3)

CSO: un-splittable demand,
 In traditional cellulare network, users are served by a single cell.

$$\sum_{j \in \mathcal{S}} x_{ij} y_j = 1, \quad \forall i \in \mathcal{U}.$$
 (4)

Differences between CSO and Original Set Cover

- \odot The demand type for UE i.
 - Set cover: the same demand from any set, b_i . A user requires the same demand no matter which set is serving it.
 - CSO: dissimilar demand, b_{ij} . A user's demand varies based on the channel quality between the user and the serving cell. The better the channel quality the less the required demand.

The Proposed 2-Stage Algorithm

- The first stage enforces the capacity constraint.
- In this stage we find the service set of each cell.
- The service set is the set of UEs that a cell can serve without exceeding it bandwidth (resources).
- The obtained service sets are used as an input to the main algorithm.
- Procedure for obtaining the service set of cell j:
 - 1 the cell's already connected UEs are added to the service set.
 - ② the cell bandwidth W_j is arbitrary filled up by adding new UEs within the cell's coverage region starting with UE i^* that requires the least b_{i^*j} .
 - orepeat these steps until obtaining the service sets for all the cells in the network.

The Proposed 2-Stage Algorithm

- The second stage (main algorithm) is a modified version of the simple greedy-add algorithm for the un-capacitated set cover.
- The algorithm starts with the assumptions that all cells are switched off and all UEs are not connected:
 - $\mathbf{L} \leftarrow \phi$, the set of active cells,
 - $\mathbf{V} \leftarrow \phi$, the set of connected UEs.
- Procedure for selecting the cells that will stay on:
 - Update the service sets by running stage 1.
 - ② Select a cell j^* based on the sorting criterion.
 - **3** Cell j^* is added to the set **L**.
 - **4** All UEs on the service set of cell j^* are added to the set **V**.
 - Update UE-to-cell assignments accordingly.
 - 6 Repeat these steps untill all UEs are connected.
 - the cells in set L remain active while all other cells are switched-off.

- The total number of switched off cells highly depends on the order in which they are selected (cell sorting).
- We investigated three different cell sorting criteria.

- The total number of switched off cells highly depends on the order in which they are selected (cell sorting).
- We investigated three different cell sorting criteria.
 - MaxLoad: the next cell to switch on is the cell that has the highest load.
 - Selecting cells based on their loads is the common practice in literature.

- The total number of switched off cells highly depends on the order in which they are selected (cell sorting).
- We investigated three different cell sorting criteria.
 - MaxLoad: the next cell to switch on is the cell that has the highest load.
 - Selecting cells based on their loads is the common practice in literature.
 - MaxUsers: the next cell to switch on is the cell that can serve the maximum number of UEs which are not yet served.

- The total number of switched off cells highly depends on the order in which they are selected (cell sorting).
- We investigated three different cell sorting criteria.
 - MaxLoad: the next cell to switch on is the cell that has the highest load.
 - Selecting cells based on their loads is the common practice in literature.
 - MaxUsers: the next cell to switch on is the cell that can serve the maximum number of UEs which are not yet served.
 - MaxCentres: the next cell to switch on is the cell that has the maximum number of centre UEs (UEs with good channel quality).
 - A UE i is a centre UE for cell j if $\omega_{ij} \geq \omega_{th}$, where ω_{th} is the spectral efficiency threshold of a centre UE and is assumed to be = 10 bps/Hz.

Evaluation Model

• The proposed algorithm was evaluated using the Urban-Micro scenario, UMi.

Table: Simulation Parameters

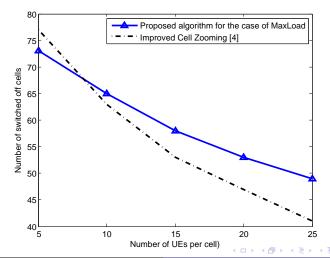
Cellular layout	square
Inter-site distance	200 m
Antenna pattern	omni directional
Cell transmitted power	41 dBm
Bandwidth	10 MHz
Carrier frequency (f_c)	2.5 GHz
UE distribution	random and uniform
Probability of indoor UEs	50%
Number of users per cell	5, 10, 15, 20, 25
Required rate r_i	500 kpbs
UE noise figure	5 dB
Thermal noise	-174 dBm/Hz
Shadowing standard deviation LOS	4 dB
Shadowing standard deviation NLOS	6 dB
Traffic type	full queue

Evaluation Model

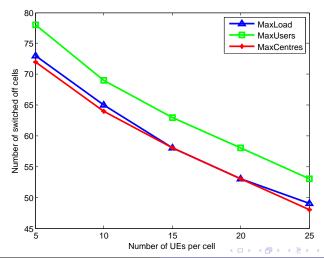
 The Inter-Cell Interference (ICI) is assumed to be managed by some interference management techniques.

$$\omega_{ij} = \log_2(1 + \mathsf{SNR}_{ij}).$$

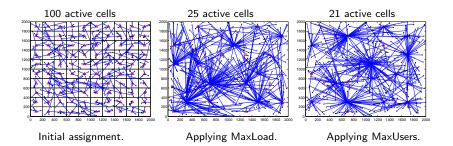
• The power saving was averaged over 100 different realizations.


 In this layout of 100 cells, the percentage of power saving is equal to the number of switched off cells.

▶ 17/22


Results: Comparing with the Benchmark Algorithm

Power saving after applying the CSO.


Results: Comparing Cell Sorting Criteria

• Power saving for different cell sorting criteria.

Results: UE-to-Cell Assignment

 The impact of cell sorting on the UE-to-cell assignment for a network with 5 UEs per cell.

Conclusion

- CSO is a promising approach towards green cellular networks.
- The Common practice in CSO literature is to switch off cells based on their current load.
- In this paper we investigate the effect of cell sorting on the overall power saving.
- Three different cell sorting criteria were compared and it was shown by simulations that MaxUsers maximizes the power saving.
- The CSO approach was formulated as a modified set cover problem.
- A centralized greedy-add algorithm for the CSO approach was proposed.
- The proposed algorithm was shown to outperform the benchmark algorithm, Improved Cell Zooming, when the number of UEs per cell is large.

▶ 21/22

Thanks for your attention...