
Unified and Non-parameterized Statistical Modeling
of Temporal and Spatial Traffic Heterogeneity

in Wireless Cellular Networks
Meisam Mirahsan, Ziyang Wang, Rainer Schoenen, Halim Yanikomeroglu, Marc St-Hilaire

Abstract—Understanding and solving performance-related is-
sues of current and future (5G+) networks requires the avail-
ability of realistic, yet simple and manageable, traffic models
which capture and regenerate various properties of real traffic
with sufficient accuracy and minimum number of parameters.
Traffic in wireless cellular networks must be modeled in the
space domain as well as the time domain. Modeling traffic in the
time domain has been investigated well. However, for modeling
the User Equipment (UE) distribution in the space domain, either
the unrealistic uniform Poisson model, or some non-adjustable
model, or specifc data from operators, is commonly used. In this
paper, stochastic geometry is used to explain the similarities of
traffic modeling in the time domain and the space domain. It
is shown that traffic modeling in the time domain is a special
one-dimensional case of traffic modeling in the space domain.
Unified and non-parameterized metrics for characterizing the
heterogeneity of traffic in the time domain and the space domain
are proposed and their equivalence to the inter-arrival time,
a well accepted metric in the time domain, is demonstrated.
Coefficient of Variation (CoV), the normalized second-order
statistic, is suggested as an appropriate statistical property of
traffic to be measured. Simulation results show that the proposed
metrics capture the properties of traffic more accurately than the
existing metrics. Finally, the performance of LTE networks under
modeled traffic using the new metrics is illustrated.

Index Terms—Traffic Modeling, Stochastic Geometry, Point
Process, Voronoi Tessellation, Wireless Cellular Network.

I. INTRODUCTION

The statistics of Signal-to-Interference-plus-Noise Ratio
(SINR) are the key to the performance of wireless cellu-
lar networks. The signal strengths and interference depend
strongly on the network geometry, i.e., the relative positions
of the transmitters and the receivers. So, in wireless cellular
networks, spatial properties of traffic as well as temporal prop-
erties of traffic have direct effects on network performance.
Modeling traffic in the time domain has been investigated
well in the literature [1–3]. In the space domain, on the other
hand, the unrealistic uniform Poisson modeling based on IMT-
Advanced evaluation guidelines [4], non-adjustable models, or
traced data from specific service providers are commonly used.
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Real UE distributions appear due to various reasons, but
they are never pure Poisson point processes. Studying UE
distributions of more extreme characteristics and their impact
on performance is thus an important issue. Heterogeneous
scenarios in space have been studied recently [5], but mainly
focusing on the Base Station (BS) or small cell deployment,
not on the UE statistics. The requirement is a continuously
scalable model from zero heterogeneity (lattice) to extreme
cases (e.g., clustering).

Unlike existing models which require many parameters to
specify and thus lead to scientific work being incompara-
ble, in this paper we come up with just two parameters
to sufficiently describe a heterogeneous scenario. First, the
user density (homogeneous component). Second, the CoV of
inter-point distance metrics for specifying the deviations from
homogeneity. This turns out to be the equivalent of the CoV
in temporal traffic, known from traffic and queueing theory.

With these first and second order statistics, we are able
to specify scenarios which are then analyzed in a wireless
context. In order to get there, we propose a mapping and
normalization procedure, which allows existing methods for
point process generation to be used, but hide their complexity
so that only the CoV is required as parameter.

Figure 1 shows the traffic modeling procedure used in
this paper. Modeling traffic comprises of two main steps: 1)
Generating a traffic pattern, and 2) Capturing and inference
of the statistical properties of a given pattern. Different traffic
generators receive different input parameters. So, a translation
of the Traffic Generator Input Parameters (TGIP) to the desired
traffic properties is essential. For statistical inference of traffic,
two questions should be answered: a) what is the right metric
to analyze? In the time domain, inter-arrival time is a well
accepted and commonly used metric. In the space domain, on
the other hand, the equivalent of this metric doesn’t exist in
the literature. In this paper, equivalents of inter-arrival time in
the space domain are introduced. b) Which statistics of the
chosen metric are to be characterized? First-order statistics
like the mean, and infinite-order statistics like probability
density function can be considered. We suggest CoV (C),
the normalized second-order statistic, defined as the ratio of
standard deviation to mean, which is easy to calculate and
at the same time appears to be sufficient to capture the main
characteristics (heterogeneity) of the traffic.

The main contributions of this paper are as follows: 1)
Stochastic geometry as a common tool is used to explain
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Fig. 1. Traffic modeling comprises of two main steps: 1) generating a traffic pattern, and 2) capturing the statistical properties of a given pattern. Different
traffic generators receive different input parameters. So, a translation of the TGIP to the desired traffic properties is essential.

the similarities of traffic modeling in the time domain and
the space domain. 2) Unified, non-parameterized and accurate
metrics and models for capturing statistical properties of traffic
in the space and time are proposed. 3) A continuously scalable
traffic model from zero heterogeneity to extreme clustering is
proposed.

In Section II, existing models for modeling traffic in the
time domain and the space domain are investigated. In Section
III, the proposed metrics and modeling for capturing statistical
properties of traffic in time and space are introduced. Section
IV presents the simulation results and Section V concludes the
paper.

II. RELATED WORK

Packet arrivals in time domain can be modeled by a one-
dimensional (1D) point process. A fixed inter-arrival time (iat)
between packets generates maximum homogeneity (lattice).
Exponentially distributed iat generates complete randomness
(Poisson). For generating sub-Poisson patterns (patterns with
more homogeneity than Poisson) one way is to generate a per-
fect lattice and apply a random displacement (perturbation) on
its points [6, 7]. Various models for generating super-Poisson
patterns (patterns with more heterogeneity than Poisson) have
been proposed in the literature which are mostly based on
hierarchical randomness and Markov models [1–3].

A 1D point process in time domain can be measured math-
ematically in many different ways. One may use the interval
counts N(a, b] = Nb − Na which is a density-based metric
and divide the whole domain into smaller windows and count
the number of process points in each window. A disadvantage
of density-based metrics is that they are parameterized by the
window size. Finding an appropriate window size is itself a
challenging question and cannot be answered generally for all
applications. Inter-arrival time Ii = Ti+1 − Ti is the most
popular and best-accepted metric because it is distance-based
rather than density-based and considers the distance between
every two neighboring points in domain. Considering CoV,
for 1D-lattice, the constant iat has CI = 0. For a 1D-Poisson
pattern, CI = 1 since for an exponential distribution with

parameter λ the standard deviation and the mean are both
µI = σI = λ. Sub-Poisson processes have 0 < CI < 1 and
super-Poisson processes have CI > 1.

UE locations in a wireless cellular network in space do-
main can be modeled by a two-dimensional (2D) or three-
dimensional (3D) point process. A very inclusive review of
Point processes in space domain is conducted in [8]. Fixed
distance between points generates perfect homogeneity (lat-
tice). Poissonian distribution generates complete randomness.
For generating sub-Poisson patterns, one way is to generate a
perfect lattice and apply a random perturbation on its points
[6, 7]. For generating super-Poisson patterns, hierarchical
randomness based on doubly stochastic clustering perturbation
can be used. Clustering perturbation of a given (parent) process
Φ consists of independent replication and displacement of
points of Φ, with the number of replications of a given point
x ∈ Φ having distribution Γ(x) and the replicas’ locations
having distribution χ(x). All replicas of x form a cluster. A
survey of super-Poisson processes in space domain can be
found in [8].

As mentioned above, in time domain, distance-based met-
ric inter-arrival time captures heterogeneity by one non-
parameterized real value CI . In multi dimensions, however,
there is no natural ordering of the points, so finding the
analogue of the inter-arrival time is not easy. There are
many density-based heterogeneity metrics in the literature
like Ripley’s K-function and pair correlation function [8]
but they are all parameterized. For introducing distance-based
metrics, the problem is about defining the ’next point’ or the
’neighboring points’ in multi-dimensional domains. The first
and simplest candidate for characterizing neighboring point
in multi-dimensional domain is the nearest-neighbor. This
leads to nearest-neighbor distance metric [9]. However, the
nearest-neighbor distance metric in 1D time domain is not the
analogue of the inter-arrival time because it is considering the
min(Ii, Ii+1) for every point Ti. It is shown in our simulation
results that nearest neighbor fails to capture process statistics
in multi-dimensional domains because it only considers the
nearest neighbor and ignores the other neighbors. The next
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candidate is the distance to kth neighbor. However, determin-
ing k globally is not possible because every point may have
different number of neighbors.

III. UNIFIED AND SIMPLIFIED TRAFFIC METRICS

Given a point pattern P = {p1, p2, ..., pn} in d-dimensional
space Rd, the Voronoi tessellation T = {cp1

, cp2
, ..., cpn

} is
the set of cells such that every location, y ∈ cpi

, is closer to
pi than any other point in P . This can be expressed formally
as

cpi
=

{
y ∈ Rd : |y − pi| ≤ |y − pj | for i, j ∈ 1, ..., n

}
. (1)

The Voronoi tessellation in Rd has the property that each of
its vertices is given by the intersection of exactly d+1 Voronoi
cells. The corresponding d+1 points define a Delaunay cell. So
the two tessellations are said to be dual. Figure 2 demonstrates
a pattern of points with its Voronoi tessellation (dashed lines)
and Delaunay tessellations (solid lines).

Fig. 2. Voronoi (dashed lines) and Delaunay (solid lines) tessellations.

Every two points sharing a common edge in Voronoi
tessellation or equivalently every two connected points in
Delaunay tessellation of a point process are called ’natural
neighbors’. This gives an inspiration of neighboring relation
in multi-dimensional domains and leads us to analogues of the
well accepted inter-arrival time metric in multi dimensions.
Various statistical inferences based on different properties of
cells generated by these tessellations can be considered for
measurement of a point pattern.

’Voronoi Cell Area’ or ’Voronoi Cell Volume’ V is the first
natural choice. For a lattice process, all the cell areas in 2D
or cell volumes in 3D are equal and CV = 0. The statistics of
the Voronoi cells for a Poisson point process (Poisson-Voronoi
Tessellation) are well investigated in the literature [10–14].
Square rooted Voronoi cell area in 2D or cube rooted Voronoi
cell volume in 3D also can be considered.

The next proposed metric is the Delaunay edge length E.
The statistics of Delaunay tessellations is investigated in [15–
17]. The mean value of the lengths of Delaunay edges of every
point M can also be considered.

A Delaunay tessellation divides the space to triangles or
tetrahedrons in 2D and 3D, respectively. The area distribution
of the triangles or the volume distribution of tetrahedrons T
can determine the properties of the underlying pattern.

Voronoi and Delaunay tessellations can be applied on a 1D
process which models traffic in time domain. In this case,

the introduced distance-based metrics are converted to time
domain metrics. Basic statistics of these metrics for a Poisson
point process in one, two and three dimensions and their
analogues in time domain are summarized in Table I.

In order to use the above mentioned metrics as an analogue
of inter-arrival time, one needs to normalize their CoV to
the CoV values of inter-arrival time in the time domain.
For complete homogeneity case, the CoV values are already
zero like inter-arrival time. To normalize the CoV values of
complete random case to 1, it is required to divide the metrics
by the values presented in Table I. Figure 3 demonstrates
realizations of processes with sub-Poisson, Poisson and super-
Poisson characteristics.

IV. SIMULATION RESULTS

In a two dimensional 1000m × 1000m square field 1000
points are distributed. For every configuration, the simulations
are repeated for 1000 ensemble drops. Simulation results for
sub-Poisson and super-Poisson processes are presented in the
following sub-sections and the final sub-section illustrates
the performance of wireless cellular networks under modeled
traffic using the new proposed metrics.

Fig. 3. Realizations of processes with sub-Poisson (0 < C < 1), Poisson
(C = 1) and super-Poisson (C > 1) characteristics respectively from left to
right in time domain (top) and space domain (bottom).

A. Sub-Poisson Processes

To generate a sub-Poisson process, a hexagonal lattice is
generated and then a symmetric Gaussian perturbation is
applied on its points with direction uniformly distributed in
[0, 2π]. The perturbation distance is l ∼ Norm(0, αL) where
L is the original distance between every two neighboring
points in the lattice. Figure 4 shows the CoV of the discussed
distance-based metrics. To cancel the field edge effects, the
edge Voronoi and Delaunay cells are cut at the border. With
increase in the perturbation distance, the resulting process
converges to the Poisson process [6, 7]. Various methods could
be used to generate the primary lattice like square or hexagonal
lattice. Also various methods could be used for perturbation
like uniform or Gaussian distance from original location. It
is shown in [7] that the difference is only in the convergence
behavior. The CoV of all the metrics is normalized to be 1
at the Poisson end (right edge) by dividing them by their
convergence value. Figure 5 shows the normalized results. The
standard deviation of any random variable is a good indicator
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TABLE I
Basic statistics of distance-based metrics for a Poisson point process in one, two and three dimensions and their analogues in time domain: i is the process

point index, λ is the exponential distribution parameter for inter-arrival time and Λ is the mean intensity of point processes.

Distance-based metrics Time domain analogue Statistics 1D 2D 3D

Nearest-neighbor distance (G) min{Ii, Ii+1}
Mean (µ) 0.5λ−1 0.5Λ−0.5 0.5539Λ−0.33

Variance (σ2) 0.25λ−2 0.0683Λ−1 0.04Λ−0.66

CoV (C) 1 0.653 0.364

Voronoi cell area/volume (V) Ii+Ii+1

2

Mean (µ) λ−1 Λ−1 Λ−1

Variance (σ2) λ−2 0.28Λ−2 0.18Λ−2

CoV (C) 1 0.529 0.424

Dealunay cell area/volume (T) Ii

Mean (µ) λ−1 0.5Λ−1 0.147Λ−0.5

Variance (σ2) λ−2 0.443Λ−2 0.015Λ−1

CoV (C) 1 0.879 0.833

Dealunay cell edge length (E) Ii

Mean (µ) λ−1 1.131Λ−0.5 1.237Λ−0.33

Variance (σ2) λ−2 0.31Λ−1 0.185Λ−0.66

CoV (C) 1 0.492 0.347

of its inaccuracy and can be divided by its mean value to
be normalized. To compare the inaccuracy of the CoV of the
metrics, the ensemble CoV (for 1000 drops) of the CoV of all
metrics is depicted in Fig. 6.

Fig. 4. Sub-Poisson: Ensemble mean of the CoV of the metrics.

Fig. 5. Sub-Poisson: Normalized mean of the CoV of the metrics.

All the proposed unified metrics are generally more accu-
rate than the existing ’nearest-neighbor’ metric. Among the

Fig. 6. Sub-Poisson: Ensemble CoV of the CoV of the metrics which
measures the accuracy.

proposed metrics, ’Delaunay cell edge’ shows the highest
accuracy. ’Voronoi cell area’ has the lowest slope in the
normalized curves and converges last. This means that this
metric can be used to generate a wide range of heterogeneity.

B. Super-Poisson Processes

For generating a super-Poisson pattern, various processes
can be used. Thomas process [8] is selected for this paper.
In Thomas process, first, a number of cluster-heads are dis-
tributed Poissonian in the space. Then users are distributed
around cluster-heads. With fixed number of points (fixed Λ),
parameter β, the number of clusters, is changed to generate
patterns with different heterogeneities. The points associated
with every cluster are distributed using symmetric Gaussian
distributed distance N(0, β) from cluster-head and uniformly
distributed direction in [0, 2π] in the spheres centered at the
cluster-heads. With increase in the number of clusters, the
process finally converges to Poisson process because every
point will be a cluster-head and cluster-heads are distributed
by Poissonian distribution.

Figure 7 demonstrates the CoV of the discussed distance-
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Fig. 7. Super-Poisson: Ensemble mean of the CoV of the metrics.

Fig. 8. Super-Poisson: Normalized mean of the CoV of the metrics.

based metrics. The CoV of all the metrics are normalized to be
1 at the Poisson end (left edge). Figure 8 shows the normalized
results. The ensemble CoV (for 1000 drops) of the CoV of all
metrics is demonstrated in Fig. 9.

Fig. 9. Super-Poisson: Ensemble CoV of the CoV of the metrics.

For super-Poisson processes, the nearest-neighbor distance
metric fails to capture the properties of underlying point
process as it remains almost the same with decreasing the
number of clusters. Among all the proposed metrics, ’Voronoi
cell area’ has the lowest slope in the normalized curves

and converges last. This means that this metric can be used
to generate a wide range of heterogeneity. All the metrics
already almost converge to Poisson process value at β = 100
(but for sure at β = 1000). Figure 10 shows the measured
heterogeneity (model output) versus the desired heterogeneity
(model input).

Fig. 10. Measured heterogeneity (output) vs. desired heterogeneity (input):
Upper, middle and lower lines show 95th percentile, mean and 5th percentile
respectively for each metric.

C. Wireless Cellular Network Performance Analysis

The traffic model has a direct effect on the performance of
wireless cellular networks. The first-order statistic of the traffic
is its mean value or intensity Λ. With increase in the number of
users in the network or increase in the number of packets (or
bits) generated by each user, the network resources are shared
for more traffic demand and the rate achieved by each user
(hence the average user rate) is decreased. The second-order
statistic of traffic is the standard deviation. To demonstrate the
effect of traffic standard deviation on the network performance,
the traffic intensity must be fixed. CoV is the perfect statistic
to do this because it normalizes the standard deviation by the
mean. So, it cancels the effect of the mean value. To illustrate
the performance of a wireless cellular network under modeled
heterogeneous traffic, the CoV of the Voronoi cell area is
chosen as the heterogeneity metric and is increased from 0
to 15. Simulation is done based on IMT-Advanced and LTE
[18]. Table II shows the simulation parameters and Fig. 11
demonstrates the network performance metrics under various
traffic heterogeneity levels. Figure 12 shows some statistics of
user rates under modeled traffic.

With increase in the traffic heterogeneity, the mean user
rate, the median user rate and coverage probability for the
entire network are decreased monotonically. This is because in
heterogeneous user distributions, some BSs serve more users
than they are planned for and are under high pressure while
some other BSs serve less users than they are planned for and
their capacity is wasted.

V. CONCLUSION

This paper used stochastic geometry as a common mod-
eling tool to explain the similarities of traffic modeling in
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TABLE II
Simulation parameters based on IMT-advanced.

Fig. 11. Performance metrics (mean user rate [Mbit/s] and coverage) of the
LTE network versus traffic heterogeneity level (CoV).

the time domain and the space domain. Unified and non-
parameterized statistical traffic metrics based on Voronoi and
Delaunay tessellations were proposed and their equivalence to
the inter-arrival time was shown. CoV, the normalized second-
order statistics, was suggested to be used to capture the main
statistical properties of traffic. Results for the LTE network
performance analysis show one important application case of
the proposed traffic modeling.
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