Selective DF Relaying in Multi-Relay Networks With Different Modulation Levels

Hamza Umit Sokun
Akram Bin Sediq
Halim Yanikomeroglu

Carleton University
Canada
{husokun, akram, halim}@sce.carleton.ca

Salama Ikki

Lakehead University
Canada
sikki@lakeheadu.ca
Outline

• Motivation, Background, and Context
• Contributions
• Error Rate Performance Analysis
• Asymptotic Performance Analysis
• Simulation Results
• Summary and Future Work
Motivation

• Common assumption in cooperative relaying literature:
 Same modulation levels by the source and relays
 – Poor spectrally efficiency

• Allow different modulation levels at the relays opportunistically
 – Better spectrally efficiency

• Performance analysis → Protocol design

• Interest in terminal relaying in 3GPP
BER-based selection is better than SNR-based selection, when the signals at branches have different modulation levels.

Context

Multiple relays

- Select node S, if $\text{BER}_{SD} \leq \text{BER}_{R_iD}, \forall i \in DS$
- Select node R_i, if $\text{BER}_{SD} > \text{BER}_{R_iD}$ and $\text{BER}_{R_iD} > \text{BER}_{R_jD}, j \neq i, \forall i, j \in DS$
Contribution 1/4

- Find biased SNRs

\[
\begin{align*}
\text{Select node } S, & \quad \text{if } \text{BER}_{SD} \leq \text{BER}_{R_i,D}, \forall i \in D_S \\
\text{select node } R_i, & \quad \text{if } \text{BER}_{SD} > \text{BER}_{R_i,D} \text{ and } \\
& \quad \text{BER}_{R_j,D} > \text{BER}_{R_i,D}, \quad j \neq i, \forall i, j \in D_S.
\end{align*}
\]

\[
\text{Select node } S, \quad \text{if } \gamma_{SD} = \max \left(\gamma_{SD}, \rho_1 \gamma_{R_1,D}, \ldots, \rho_K \gamma_{R_K,D} \right), \quad \text{where } \rho_i = \frac{d_{MR_i}^2}{d_{MS}^2}.
\]

\[
d_{MR_i} = \sqrt{\frac{3}{2(M_{R_i} - 1)}}, \quad M_{R_i} \geq 4
\]

IEEE ICC, June 2014, Sydney, Australia
Contribution 2/4

- Find BER for selection combining
- Not straightforward
- Relevance to CoMP, HARQ, Relay
Contribution 3/4

• Find E2E BER in a network with selection combining
Contribution 4/4

- Find asymptotic E2E BER in a network with selection combining
Preliminaries

Point-to-Point AWGN BER

\[
BER_{M_i}(\gamma_{ij}) \approx c_{M_i}Q\left(\sqrt{2d^2_{M_i}\gamma_{ij}}\right),
\]

where \(c_{M_i}, d_{M_i}\) = \[
\begin{cases}
(1,1), & M_i = 2, \\
\left(\frac{2 - 2/\sqrt{M_i}}{\log_2 \sqrt{M_i}}, \sqrt{\frac{3}{2(M_i-1)}}\right), & M_i \geq 4,
\end{cases}
\]

Point-to-Point Rayleigh BER

\[
BER_{ij} \approx \frac{1}{2} c_{M_i} \left(1 - \sqrt{\frac{d^2_{M_i}\gamma_{ij}}{1 + d^2_{M_i}\gamma_{ij}}}\right)
\]

Average Packet Error Rate

\[
PER_{SR_i} = 1 - (1 - SER_{SR_i})^{\frac{N}{\log_2 M_s}}
\]

\[
\approx 1 - \left(1 - \frac{1}{2} c_{M_s} \log_2 (M_s) \left(1 - \sqrt{\frac{d^2_{M_s}\gamma_{SR_i}}{1 + d^2_{M_s}\gamma_{SR_i}}}\right)\right)^{\frac{N}{\log_2 M_s}}
\]

where \(SER \approx BER \log_2 M_s\) for Gray-coded constellations
Error Rate Performance (1/3)

End-to-End Average BER

\[
BER = \left(\prod_{k=1}^{K} \text{PER}_{SR_k} \right) \text{BER}_{SD} + \sum_{r=1}^{K} \sum_{m=1}^{|P_r(S_{all})|} \left(\prod_{e_l \in P_{r,m}(S_{all})} \left(1 - \text{PER}_{SR_{e_l}} \right) \right) \left(\prod_{e_o \notin P_{r,m}(S_{all})} \text{PER}_{SR_{e_o}} \right) \text{BER}_{\text{comp}_{P_{r,m}(S_{all})}}
\]

For example, for a two-relay scenario, it is given as

\[
BER = \text{PER}_{SR_1} \text{PER}_{SR_2} \text{BER}_{SD} + (1 - \text{PER}_{SR_1}) \text{PER}_{SR_2} \text{BER}_{\text{comp}_{\{1\}}} + (1 - \text{PER}_{SR_2}) \text{PER}_{SR_1} \text{BER}_{\text{comp}_{\{2\}}} \\
+ (1 - \text{PER}_{SR_2})(1 - \text{PER}_{SR_1}) \text{BER}_{\text{comp}_{\{1,2\}}}
\]

- \(|P_r(S_{all})|\) represents the cardinality of \(S_{all}\),
- \(P_r(S_{all})\) is \(r\)-th element power set of \(S_{all}\), i.e., \(S_{all}\),
- \(P_{r,m}(S_{all})\) is \(m\)-th element of \(P_r(S_{all})\),
- \(S_{all}\) is the set of all relays’ indexes, i.e., \(S_{all} = \{1, \ldots, K\}\),
- \(\text{PER}_{SR_i}\) is the average packet error ratio in link \(S - R_i\),
- \(\text{BER}_{SD}\) is average BER in link \(S - D\),
- \(\text{BER}_{\text{comp}_{DS}}\) is average BER conditioned on the decoding set at destination terminal after selection combining.
Error Rate Performance (2/3)

End-to-End Average BER Conditioned on the Decoding Set

\[
BER_{\text{comp,inst}} \approx \begin{cases}
 c_M Q(\sqrt{2d_{M_i}^2 \gamma_{SD}}) & \text{if } \gamma_{SD} \geq \rho_i \gamma_{R,D}, \quad i = 1, 2, \ldots, K \\
 c_M Q(\sqrt{2d_{M_i}^2 \gamma_{RD}}) & \text{if } \gamma_{SD} < \rho_i \gamma_{R,D} \quad \text{and } \gamma_{R,D} < \beta_j \gamma_{R,D} \quad j \neq i, \quad j = 1, 2, \ldots, K, \quad \text{for } i = 1, 2, \ldots, K
\end{cases}
\]

where \(\rho_i = \frac{d_{M_i}^2}{d_{M}^2} \) and \(\beta_j = \frac{d_{M_i}^2}{d_{M_j}^2} \) are biasing factors.

An approximate and simpler implementation of the instantaneous BER.

\[
BER_{\text{comp,decoding set}} = BER_{\gamma_{SD} \geq \rho_i \gamma_{R,D}, \ldots, \rho_K \gamma_{R,K,D}} + \sum_{i=1}^{K} BER_{\gamma_{SD} < \rho_i \gamma_{R,D} \quad \text{and } \gamma_{R,D} < \beta_j \gamma_{R,D} \quad j \neq i, \quad j = 1, 2, \ldots, K}
\]

1. \[
BER_{\gamma_{SD} \geq \rho_i \gamma_{R,D}} = \int \int \cdots \int c_M Q(\sqrt{2d_{M_i}^2 \gamma_{SD}}) \left[\frac{1}{\gamma_{SD}} \frac{\gamma_{SD}}{\bar{\gamma}_{SD}} \prod_{i=1}^{K} \frac{1}{\gamma_{R,D}} \frac{\gamma_{R,D}}{\bar{\gamma}_{R,D}} \right] d_{\gamma_{SD}} d_{\gamma_{R,D}} \cdots d_{\gamma_{R,K,D}}
\]

2. \[
BER_{\gamma_{SD} < \rho_i \gamma_{R,D} \quad \text{and } \gamma_{R,D} < \beta_j \gamma_{R,D} \quad j \neq i, \quad j = 1, 2, \ldots, K}
\]

\[
= \int \int \cdots \int c_M Q(\sqrt{2d_{M_i}^2 \gamma_{R,D}}) \left[\frac{1}{\gamma_{R,D}} \frac{\gamma_{R,D}}{\bar{\gamma}_{R,D}} \prod_{j=1}^{K-1} \frac{1}{\gamma_{R,D}} \frac{\gamma_{R,D}}{\bar{\gamma}_{R,D}} \right] d_{\gamma_{R,D}} d_{\gamma_{SD}} d_{\gamma_{R,D}} \cdots d_{\gamma_{R,K,D}}
\]
Error Rate Performance (3/3)

End-to-End Average BER

\[
BER = \prod_{k=1}^{K} \left[1 - \left(1 - \frac{1}{2} c_{M_s} \log_2 (M_s) \right) \left(1 - \frac{d_{M_s}^2 \rho_{SR_k}}{\sqrt{1 + d_{M_s}^2 \rho_{SR_k}^2}} \right)^{-\frac{N}{\log_2 M_s}} \right] \left(1 - \frac{d_{M_s}^2 \rho_{SD}}{\sqrt{1 + d_{M_s}^2 \rho_{SD}^2}} \right)
\]

\[
+ \sum_{r=1}^{K} \sum_{m=1}^{N \log_2 M_s} \prod_{e_i \in P_{r,m}(S_{all})} \left[1 - \frac{1}{2} c_{M_s} \log_2 (M_s) \left(1 - \frac{d_{M_s}^2 \rho_{SR_i}}{\sqrt{1 + d_{M_s}^2 \rho_{SR_i}^2}} \right)^{-\frac{N}{\log_2 M_s}} \right] \times \prod_{e_o \neq P_{r,m}(S_{all})} \left[1 - \frac{1}{2} c_{M_s} \log_2 (M_s) \left(1 - \frac{d_{M_s}^2 \rho_{SR_o}}{\sqrt{1 + d_{M_s}^2 \rho_{SR_o}^2}} \right)^{-\frac{N}{\log_2 M_s}} \right]
\]

\[
\times I \left(\infty, c_{M_s}, d_{M_s}^2, \rho_{SD}^2 \right) + \sum_{k=1}^{k} \sum_{y=1}^{k} (-1)^k I \left(\infty, \frac{c_{M_s}}{\rho_{SD}}, d_{M_s}^2, \frac{k+1}{HM \{ \rho_{SD}, P_{k,y} \{ S \} \}} \right) \left(\frac{k+1}{HM \{ \rho_{SD}, P_{k,y} \{ S \} \}} \right)
\]

\[
+ \sum_{i=1}^{k} \left[I \left(\infty, c_{M_{R_i}}, d_{M_{R_i}}^2, \rho_{RD}^2 \right) + \sum_{k=1}^{k} \sum_{y=1}^{k} (-1)^k I \left(\infty, \frac{c_{M_{R_i}}}{\rho_{RD}}, d_{M_{R_i}}^2, \frac{k+1}{HM \{ \rho_{RD}, P_{k,y} \{ S \} \}} \right) \left(\frac{k+1}{HM \{ \rho_{RD}, P_{k,y} \{ S \} \}} \right) \right]
\]
Asymptotic Performance (1/2)

\[
BER = \left(\prod_{k=1}^{K} \text{PER}_{SR_k} \right) \text{BER}_{SD} + \sum_{r=1}^{K} \sum_{m=1}^{\left| P_r(S_{all}) \right|} \left(\prod_{e \in P_r(m) \cap (S_{all})} (1 - \text{PER}_{SR_{e_i}}) \right) \prod_{e_o \notin P_r(m) \cap (S_{all})} \text{PER}_{SR_{e_o}} \right) \text{BER}_{comp_{P,m}(S_{all})}
\]

1. \(\text{PER}_{SR_i} \xrightarrow{\text{SNR} \to \infty} \frac{N c_{M_S}}{4d^2 \sigma^2_{SR_i} \text{SNR}} \)
2. \(1 - \text{PER}_{SR_i} \xrightarrow{\text{SNR} \to \infty} 1 - \frac{N c_{M_S}}{4d^2 \sigma^2_{SR_i} \text{SNR}} \approx 1 \)
3. \(\text{BER}_{SD} \xrightarrow{\text{SNR} \to \infty} \frac{c_{M_S}}{4d^2 \sigma^2_{SD} \text{SNR}} \)

4. \(\text{BER}_{SD}^{\text{comp}_{\text{decoding set}}} = \text{BER}_{SD}^{\gamma_{SD} \geq \rho_i \gamma_{R_D}, \ldots \rho_K \gamma_{R_D}} + \sum_{i=1}^{K} \text{BER}_{SD}^{\gamma_{SD} < \rho_i \gamma_{R_D} \text{ and } \gamma_{R_D} < \beta_{ij} \gamma_{R_D}}, j \neq i, j=1,2,\ldots,K} \)

\[
\text{BER}_{SD}^{\gamma_{SD} \geq \rho_i \gamma_{R_D}, i=1,2,\ldots,K} = \int_{\gamma_{SD}=0}^{\infty} \int_{\gamma_{R_D}=0}^{\rho_i^{-1} \gamma_{SD}} \ldots \int_{\gamma_{R_D}=0}^{\rho_K^{-1} \gamma_{SD}} c_{M_S} Q\left(\sqrt{2d^2_{M_S} \gamma_{SD}}\right) \frac{1}{\gamma_{SD}} \left[\prod_{i=1}^{K} \frac{1}{\gamma_{R_D}} \right] d_{\gamma_{SD}} d_{\gamma_{R_D}} \ldots d_{\gamma_{R_D}}
\]

\[
= \left[\prod_{i=1}^{K} \frac{\rho_i^{-1}}{\gamma_{R_D}} \right] \frac{c_{M_S} \Gamma(K+1.5)}{2\sqrt{\pi} \gamma_{SD} (1+K) \left(d^2_{M_S}\right)^{K+1}}
\]

\[
\text{BER}_{SD}^{\gamma_{SD} < \rho_i \gamma_{R_D} \text{ and } \gamma_{R_D} < \beta_{ij} \gamma_{R_D}}, j \neq i, j=1,2,\ldots,K} = \sum_{i=1}^{K} \left[\prod_{j=1, j \neq i}^{K} \frac{\beta_{ij}}{\gamma_{R_D}} \right] \frac{\rho_i c_{M_S} \Gamma(K+1.5)}{2\sqrt{\pi} \gamma_{SD} \gamma_{R_D} (1+K) \left(d^2_{M_S}\right)^{K+1}}
\]
Asymptotic BER

\[
BER^{\text{SNR} \to \infty} = \left(\prod_{k=1}^{K} \frac{Nc_{M_S}}{4d_{M_S}^2 \sigma_{SR_k}^2} \right) \frac{c_{M_S}}{4d_{M_S}^2 \sigma_{SD}^2} \frac{1}{SNR^{K+1}} + \sum_{r=1}^{K} \sum_{m=1}^{\infty} \left(\prod_{e_o \not\in \mathcal{P}_{r,m}(S_{all})} \frac{Nc_{M_S}}{4d_{M_S}^2 \sigma_{SR_{e_o}}^2 SNR} \right) + \sum_{i=1}^{\infty} \left[\prod_{j=1}^{\infty} \frac{|P_{r,m}(S_{all})|}{\sigma_{R_{i,j}}^2} \right] \frac{c_{M_i}}{2\sqrt{\pi} \sigma_{SD}^2 (1 + |P_{r,m}(S_{all})|)} \left(d_{M_i}^2 \right) + 1 \right] \frac{1}{SNR^{\mathcal{P}_{r,m}(S_{all})+1}}
\]
Simulation Results

Fig. 1. BER performance of BER-based selection scheme for two-relay scenario,
\[\gamma_{SR_1} = \gamma + 10, \gamma_{SR_2} = \gamma + 10, \gamma_{SD} = \gamma - 10, \gamma_{R,D} = \gamma, \gamma_{R2,D} = \gamma, \]
assuming \(N = 264 \) bits. It is clear from the figures that the derived BER expressions and the simulation results are in excellent agreement.

Fig. 2. Asymptotic BER performance of BER-based selection scheme for two-relay and three-relay scenarios,
\[\gamma_{SR_1} = \gamma + 10, \gamma_{SR_2} = \gamma + 10, \gamma_{SR_3} = \gamma + 10, \gamma_{SD} = \gamma - 10, \gamma_{R,D} = \gamma, \gamma_{R2,D} = \gamma, \gamma_{R3,D} = \gamma, \]
assuming \(N = 264 \) bits. Although both BER-based selection scheme and SNR-based selection scheme achieve the same diversity order, BER-based selection scheme achieves higher SNR gain for all cases.
Summary

Selection combining of signals with different modulation levels in a relay network

- Biased SNRs for selection decision
- BER for selection combining
- E2E BER in a network
- Asymptotic E2E BER in a network
Future Work 1

• ICC 2014 + channel estimation errors + power control.

Future Work 2

- Modulation level and transmission mode joint selection.

Future Work 3

- Modulation level and transmission mode (route) joint selection with maximum-likelihood receiver.

Future Work 4

• Joint space-time coding and routing decisions
Thank you!

This work is supported in part by Huawei Canada Co., Ltd., and in part by the Ontario Ministry of Economic Development and Innovation’s ORF-RE (Ontario Research Fund - Research Excellence) program.