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1Abstract—This paper considers a multicarrier communication system
assisted by multiple relays, one for each subcarrier. The total power
emitted by the source and the total power emitted by the relays are
constrained to be less than the respective power budgets. The relays are
assumed to operate in the full-duplex decode-and-forward mode, and
the objective is to design the codebooks of the source and therelays
jointly with the power allocations that maximize the total data rate that
can be reliably decoded at the destination. To approach thisgoal, the
design problem is cast as an optimization problem, which is unfortunately
nonconvex and difficult to solve. The Karush-Kuhn-Tucker (KKT) system
corresponding to this problem is analyzed, and despite the nonconvexity
of the problem, we were able to use the KKT system to develop an
efficient technique for solving it optimally.

Index Terms—decode-and-forward full-duplex relaying, optimization,
KKT system, codebook correlation

I. I NTRODUCTION

Communication-assisting nodes, known as relays, can effect a
fundamental impact on the maximum data rate that can be reliably
communicated between a transmitter-receiver pair. Relay operating
modes are generally classified into either full-duplex or half-duplex
ones. In the full-duplex mode, the relay transmits and receives
information on the same physical channel, i.e., the same time slot and
the same frequency. In contrast, in the half-duplex mode, transmission
and reception takes places on orthogonal physical channels [1]. Half-
duplex relays are more amenable to practical implementation, but
the rates that they achieve are generally less than those achieved
by their full-duplex counterparts. Advances in combining signal
processing and beamforming techniques have been recently shown to
successfully alleviate the difficulties that arise in the implementation
of full-duplex relaying, and it is expected that with these advances,
future wireless communication networks will rely more heavily on
full-duplex rather than half-duplex relays [2].

The data rate that can be reliably communicated in the presence
of a relaying node depends not only on the channel conditions,
but also on the way in which the cooperation between the source,
destination and relaying nodes is established. Various schemes are
available in the literature including the amplify-and-forward (AF) [3],
the compress-and-forward (CF), and the decode-and-forward (DF)
relaying schemes [4]. The DF relaying scheme is known to achieve
the capacity of a particular class of channels, that are referred to
as being degraded [4], and generally outperforms the AF and CF
relaying schemes when the source-relay link is substantially stronger
than the source-destination link [1]. An extreme case is the one in
which the source-destination link is severed, a situation in which the
three-node cooperative channel reduces to a multihop one. In the
latter case DF achieves capacity.

In DF, the relay decodes the codeword transmitted by the source
and uses Wyner-Ziv binning [1] to determine the, so called, bin index
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Fig. 1. Gaussian relay channel.

of that codeword. To establish cooperation, the relay transmits the
codeword corresponding to the bin index to the destination, which
combines this information with the information it obtained from
the direct link to recover the source message. For scalar Gaussian
relay channels, the DF optimal source and relay codebooks are
Gaussian distributed with a particular correlation coefficient [5], [6],
which must be optimized to maximize the rate that can be reliably
communicated with the DF scheme.

In this paper we consider a multicarrier communication system
assisted by multiple relays, one for each subcarrier. The total power
emitted by the source and the total power emitted by the relays
are constrained to be less than the respective power budgets. The
relays are assumed to operate in the full-duplex DF mode, and the
objective is to determine the optimal power allocation across the
subcarriers at the source and the relays together with the optimal
correlation coefficient between the source and relay codebooks on
each subcarrier. To approach our goal, we begin in this paper by
drawing insight from the DF relaying strategy in the single carrier
case. Using this insight, we formulate the multicarrier design as an
optimization problem, which is unfortunately nonconvex and difficult
to solve. The Karush-Kuhn-Tucker (KKT) system corresponding
to this problem is analyzed, and despite the nonconvexity of the
problem, we were able to use the KKT system to develop an efficient
technique for solving it optimally. Numerical results that illustrate the
utility of the proposed technique are provided.

II. DF RELAYING IN SINGLE-CARRIER COMMUNICATION

SYSTEMS

Consider the single carrier three-node Gaussian relay channel
model in Figure 1. In this model the relay and destination received
signals can be respectively expressed as

Y1 = X1h1 + V1, and Y = X1h0 + X2h2 + V2,

wherehi are the complex gains of the links depicted in Figure 1,
i = 0, 1, 2, X1 and X2 are the source and the relay transmitted
signals respectively, andV1 andV2 are the zero-mean unit variance
additive Gaussian noise components at the relay and the destination,
respectively. The signal,X2, depends on the signal,Y1, received
by the relay in previous blocks, but not in the current one. It was



shown in [5], [6] that the maximum data rate that can be reliably
communicated by the DF scheme is achieved whenX1 andX2 are
Gaussian distributed with correlation coefficientθ ∈ [0, 1], where

θ =
E2{X1X2}

E{X2
1}E{X2

2}
.

In other words,X1 is related toX2 via X1 =
q

θP1
P2

X2 + X10,
whereP1 andP2 are the transmit powers of the source and the relay,
respectively, andX10 is a Gaussian independent component with zero
mean and variance(1 − θ)P1.

For ease of exposition, let the absolute square channel gains of
the source-destination, source-relay and relay-destination links be
denoted byg0 = |h0|2, g1 = |h1|2 and g2 = |h2|2, respectively.
Using this notation, the maximum rate that can be achieved by the
DF relaying scheme is given by [1], [7]:

max
0≤θ≤1

min
˘1

2
log

`

1 + g0P1 + g2P2 + 2
p

θg0g2P1P2

´

,

1

2
log(1 + (1 − θ)g1P1)

¯

. (1)

Our goal in this section is to establish relationships between the
optimal correlation coefficient,θ, and the transmit powers,P1 and
P2. To begin with, we note that the first term in the minimization
in (1) is monotonically increasing inθ, and its minimum value is
log(1+g0P1+g2P2). In contrast, the second term in the minimization
in (1) is monotonically decreasing inθ, and its minimum value is0.
Hence, it can be readily seen that asθ decreases from 1, the curve
representing the second term is lower than that representing the first
term. The two curves approach each other and the optimal value ofθ

is either the one at which the curves representing the two arguments
intersect, orθ = 0, if these two curves do not intersect. To develop
insight into the implications of each case, let us assume that these
curves intersect atθ∗. In this case, we have

log
`

1 + g0P1 + g2P2 + 2
p

θ∗g0g2P1P2

´

= log(1 + (1− θ
∗)g1P1).

(2)
To simplify notation, we will make the following definitions:a ,
g1
g0

− 1 andb = g2P2
g0P1

. Using this notation, the solution of (2) can be
readily verified to be

√
θ∗ =

p

a(a + 1 − b) −
√

b

a + 1
. (3)

Solving (3) forb yields
√

b =
p

a(1 − θ∗) −
√

θ∗. (4)

We now make a few observations regarding the equalities in (3)
and (4), which will later prove useful in studying the multicarrier
case. First, we note that, with the source power,P1, fixed, the relay
transmit power,P2, is monotonically decreasing withθ∗. Second, we
note from (3) that, forθ∗ to be nonnegative, we must haveb ≤ a,
which further implies that when the relay power is such that this
inequality is violated, the curves representing the arguments of the
minimization in (1) do not intersect andθ∗ = 0. Third, we note
from (4) that, for

√
b to be nonnegative, we must haveθ∗ ≤ a

a+1
.

Fourth, we note that whenθ∗ ∈ [0, a
a+1

], the rate achieved by the DF
scheme can be expressed asR = 1

2
log(1+(1−θ∗)g1P1). Finally, we

note that ifa is less than 0, i.e., ifg1 < g0, the curves representing
the two arguments of the minimization in (1) do not intersect. In fact,
this situation corresponds to the case in which the received signal of
the relay is weaker than that of the destination. In that case, the rate
yielded by DF relaying is strictly less than that yielded by direct

transmission, and it is more beneficial for the relay to be switched
off. The achievable rate in that case is1

2
log(1 + g0P1).

III. DF RELAYING IN MULTICARRIER COMMUNICATION SYSTEMS

We now use the observations developed in Section II for the case
of single carrier systems to analyze their multicarrier counterpart.

Consider a communication system operating overN orthogonal
carriers. The source and the relay are assumed to have total power
budgets ofPT andPR, respectively. The relay uses the DF scheme
on individual subcarriers, that is, on each subcarrier uses a particular
correlation coefficient between the source and relay transmitted
signal. However, the powers allocated to individual subcarriers are
coupled by the overall power constraint at both the source and the
relay. To characterize the maximum rate that can be achieved by
this scheme, we denote the powers allocated by the source and the
relay to subcarrieri by P1i and P2i, i = 1, . . . , N , respectively.
The correlation coefficient for each subcarrieri and the values
corresponding to those defined in the single carrier case will be
denoted byθ∗

i , ai, bi, g0i, g1i andg2i, i = 1, . . . , N .
Our goal now is to determine the power allocations,{P1i}N

i=1 and
{P2i}N

i=1, and the correlation coefficients{θ∗
i }N

i=1 that maximize the
sum of the rates that can be reliably communicated by the DF relaying
scheme. Towards that end, we will find it convenient to defineαi =
1− θi, i = 1, . . . , N to analyze the following optimization problem.

max
{P1i}N

i=1,{P2i}N
i=1,{αi}N

i=1

1

2

N
X

i=1

log(1 + αig1iP1i), (5a)

subject to
N

X

i=1

P1i ≤ PT , (5b)

N
X

i=1

P2i ≤ PR, (5c)

αi ≤ 1, i = 1, . . . , N, (5d)

√
P2i ≥

r

g0iP1i

g2i

`√
aiαi −

√
1 − αi

´

,

i = 1, . . . , N. (5e)

Before analyzing this problem, we make the following observations.
First, the objective in (5a) is not concave and the constraints in (5e)
are non-convex and subsequently the problem in (5) is non-convex
and generally difficult to solve. Second, the objective in (5a) is
monotonically increasing inαi, i = 1, . . . , N . Hence, including a
nonnegativity constraint on{αi}N

i=1 is not necessary. Finally, we
have used the observation pointed out in Section II thatP2 is
monotonically increasing inα to replace the equality in (4) with
the respective inequality in (5e). Hence, for subcarriers for which
this constraint is satisfied with equality the two arguments of the
minimization in (1) are equal, and the optimal correlation coefficient
is given by (3). For subcarriers for which (5e) is satisfied with strict
inequality, the optimal correlation coefficient is0. Hence, it can seen
that the formulation in (5) automatically captures the two possible
types of subcarriers, those for which the curves representing the
arguments of the minimization in (1) intersect and those for which
the curve representing the second argument is strictly less than that
representing the first one.

To analyze the problem in (5), we begin by writing the Lagrangian
function

L = −1

2

N
X

i=1

log
`

1 + αig1iP1i

´

+ λ1

`

N
X

i=1

P1i − PT

´



+ λ2

`

N
X

i=1

P2i − PR

´

+
N

X

i=1

λ3i(αi − 1)

+
N

X

i=1

λ4i

“

r

g0i

g2i

√
P1i

`√
aiαi −

√
1 − αi

´

−
√

P2i

”

, (6)

whereλ1 andλ2 are the Lagrange multipliers corresponding to the
constraints in (5b) and (5c), respectively, andλ3i and λ4i are the
Lagrange multipliers corresponding to thei-th constraints in (5d)
and (5e), respectively. Now, the KKT system that corresponds to the
formulation in (5) can be expressed as follows:

N
X

i=1

P
∗
1i ≤ PT ,

N
X

i=1

P
∗
2i ≤ PR, αi ≤ 1, i = 1, . . . , N, (7)

p

P ∗
2i ≥

r

g0i

g2i

p

P ∗
1i

`p

aiα∗
i −

p

1 − α∗
i

´

, i = 1, . . . , N, (8)

∂L
∂P1i

= 0,
∂L

∂P2i

= 0,
∂L
∂αi

= 0, , i = 1, . . . , N, (9)

λ1, λ2, λ3i, λ4i ≥ 0, i = 1, . . . , N, (10)

λ1

`

N
X

i=1

P
∗
1i − PT

´

= 0, λ2

`

N
X

i=1

P
∗
2i − PR

´

= 0, (11)

N
X

i=1

λ3i(α
∗
i − 1) = 0, (12)

N
X

i=1

λ4i

“

r

g0i

g2i

p

P ∗
1i

`p

aiα∗
i −

p

1 − α∗
i

´

−
p

P ∗
2i

”

= 0. (13)

The conditions in (9) yield

0 =
−α∗

i g1i

2(1 + α∗
i g1iP ∗

1i)
+ λ1

+
λ4i

2

r

g0i

g2i

„

p

aiα∗
i −

p

1 − α∗
i

p

P ∗
1i

«

, i = 1, . . . , N, (14)

0 = λ2 −
λ4i

2
p

P ∗
2i

, i = 1, . . . , N, (15)

0 =
−P ∗

1ig1i

2(1 + α∗
i g1iP ∗

1i)
+ λ3i +

λ4i

2

r

g0i

g2i

p

P ∗
1i

„
r

ai

α∗
i

+
1

p

1 − α∗
i

«

, i = 1, . . . , N. (16)

Notice that, since the optimization problem in (5) is non-convex, the
KKT conditions are not sufficient, but only necessary for optimality.
However, by examining these conditions we will be able to develop
an efficient method for solving (5).

Before examining the KKT conditions, we will distinguish between
two classes of subcarriers: 1) subcarriers for whichai ≤ 0; and 2)
subcarriers for whichai > 0. We will consider these cases separately.

A. Subcarriers for which ai ≤ 0

Let I0 be the set of subcarriers for whichai ≤ 0, i.e., those
subcarriers for whichg0i > g1i. In this case, the signal-to-noise
ratio (SNR) of the signal observed by the relay is less than that
observed by the destination, and the DF strategy cannot assist
communication. In this case, it can be readily verified that it is better
for the relay to be switched off, that is, it is better to setP ∗

2i = 0 for
i ∈ I0. Hence, for subcarriers inI0, the optimal power allocation is
the water-filling one [8]. Usingλ0 to denote the optimal water level,
we have

P
∗
1i = max

n

λ0 −
1

g0i

, 0
o

, ∀i ∈ I0, (17)

In the forthcoming discussion, we will focus on the case ofai > 0.

B. Subcarriers for which ai > 0

Referring to the case of a single carrier in Section II, it can be
readily verified that for subcarriers withai > 0, DF relaying is
always beneficial and for each of those subcarriers the corresponding
correlation coefficientθi ∈

h

0, ai

1+ai

i

. The class of subcarriers for
whichai > 0 can be further divided into two subclasses, one in which
the optimal correlation coefficientθ∗

i = 0 and one in which this
coefficient isθ∗

i > 0. These subclasses will be addressed separately.
1) Subcarriers for which ai > 0 and θ∗

i = 0: Let I1 be the set of
subcarriers for whichai > 0 and the optimal correlation coefficients
are θ∗

i = 0. For those subcarriers,α∗
i = 1 and the condition in (8)

implies thatP ∗
2i ≥ g1i−g0i

g2i
P ∗

1i. SinceP ∗
1i is finite, it follows from

the condition in (16) thatλ4i = 0. Invoking these observations in the
conditions in (15) and (14), respectively, yieldsλ2 = 0 and

P
∗
1i = max

n 1

2λ1
− 1

g1i

, 0
o

, ∀i ∈ I1. (18)

Comparing (18) with (17), it can be seen that, in bothI0 and I1,
the optimal power allocation is a water-filling one. However, for the
carriers inI0 the relay is off and water-filling is performed on the
source-destination links, whereas for the carriers inI1, the relay is on
and water-filling is performed on the source-relay links. The sum rate
achieved on the carriers inI1 is given by

P

i∈I1
max

n

log g1i

2λ1
, 0

o

.
It is worth noting that although this case has been addressed

separately, the continuity of the constraints implies that it can be
regarded as a limiting case for the one in which the optimalθ∗

i is
strictly greater than 0, which will be addressed next.

C. Subcarriers for which ai > 0 and θ∗
i > 0

Let I2 be the set of subcarriers for whichai > 0 and the optimal
correlation coefficients satisfy0 < θ∗

i ≤ ai

ai+1
, i.e., α∗

i ∈
ˆ

1
ai+1

, 1
´

.
Since for the subcarriers inI2, α∗

i < 1, it follows from the
condition in (12) that, for those subcarriers,λ3i = 0. Using this
and assuming thatP ∗

1i > 0 in the condition in (16), yields

λ4i = g1i

r

g2i

g0i

p

P ∗
1i

(1 + g1iα∗
i P ∗

1i)
`

q

ai

α∗
i

+ 1√
1−α∗

i

´

, ∀i ∈ I2.

(19)
Substituting forλ4i from (19) into the conditions in (14) and (15)
yields, respectively

λ1 =
g1i

p

α∗
i

2(1 + g1iα∗
i P ∗

1i)
`p

α∗
i +

p

ai(1 − α∗
i )

´ , ∀i ∈ I2. (20)

λ2 =

r

g2i

g0i

s

P ∗
1i

P ∗
2i

g1i

2(1 + g1iα∗
i P ∗

1i)
`

q

ai

α∗
i

+ 1√
1−α∗

i

´

∀i ∈ I2.

(21)

From (20) and (21) we have

λ2

λ1
=

r

g2iP1i

g0iP2i

(1 − α∗
i ), ∀i ∈ I2. (22)

Now, since from (19),λ4i > 0, it follows from (13) that (8) is
satisfied with equality. Using this observation in (22) yields

s

α∗
i

1 − α∗
i

=
1√
ai

“

1 +
g2i

g0i

µ
”

, ∀i ∈ I2, (23)

whereµ = λ1
λ2

is a subcarrier-independent constant.
Remark 1: If α∗

i = 1 for some subcarrieri ∈ {1, . . . , N}, it
follows from (19) thatλ4i = 0 and from (15) thatλ2 = 0 for all
subcarriers. Hence, for any other subcarrieri′ ∈ {1, . . . , N}, λ4i′ =



0 and (19) implies that eitherα∗
i′ = 1 or P1i′ = 0, i.e., the source

and relay codebooks on any used subcarrier are not correlated.✷

IV. A N EFFICIENT ALGORITHM FOR OBTAINING OPTIMAL

CORRELATION AND POWER ALLOCATION

To develop an algorithm for obtaining the optimal{θ∗
i }, {P ∗

1i}
and{P ∗

2i}, we begin by assuming that the optimalµ = λ1
λ2

is given.
Such aµ exists only ifθ∗

i > 0 (i.e., α∗
i < 1) for all i ∈ {1, . . . , N},

cf. Remark 1. The optimalµ can be determined either by exhaustive
search or by the method developed below. For now, we assume that
the optimalµ and the set of subcarriers for which the optimal source
transmit power is greater than zero are given. We will denote the
latter set byI+ ⊆ I2, and proceed as follows:

• For a givenµ, (23) yields

αi =

“

1 + g2i

g0i
µ

”2

ai +
“

1 + g2i

g0i
µ

”2 , (24)

which for ai ≥ 0, implies thatαi ∈
h

1
1+ai

, 1
i

is monotonically
increasing inµ.

• Using (20), the power allocated by the source to thei-th
subcarrier can be expressed as

P1i =

»

1

2λ1

“

αi +
p

aiαi(1 − αi)
” − 1

g1iαi

–+

. (25)

This equation implies that for the source power on thei-th
subcarrier to be greater than zero, we must have2λ1

`

αi +
p

aiαi(1 − αi)
´

≤ g1iαi for every i ∈ I+.
• Sinceλ1 > 0, the KKT conditions imply that

PN

i=1 P1i = PT .

Using this in (25) yieldsλ1 =

P

i∈I+
1

αi+
√

aiαi(1−αi)

2

“

PT +
P

i∈I+
1

g1iαi

” .

• Using (22), we can write

λ
2
2P2i = λ

2
1
g2i

g0i

P1i(1 − αi). (26)

Sinceλ2 > 0, the KKT conditions imply that
P

i∈I+
P2i = PR,

whence

λ2 =
λ1

q

P

i∈I+

g2i

g0i
P1i(1 − αi)

√
PR

, ∀i ∈ I+. (27)

Using this equality in (26) yields

P2i =
PRP1i

g2i

g0i
(1 − αi)

PN

j=1

g2j

g0j
P1j(1 − αj)

∀i ∈ I+.

• To determine the optimalµ we note thatµ = λ1
λ2

must be
nonnegative and must satisfy (27) whenP ∗

1i is given by (25) and
α∗

i is given by (24). In other words, combining (27) with (25)
and (24) yields that the optimalµ is a nonnegative root of
the polynomial resulting from simplifying the following not
particularly appealing equation:

PR =
X

i∈I+

aig2i

g0i
µ2

ai + (1 + g2i

g0i
µ)2

×

0

B

B

B

@

PT +
P

j∈I+

aj+(1+
g2j
g0j

µ)2

g1j(1+
g2j
g0j

µ)2

1 +
P

j∈I+
j 6=i

aj+(1+
g2j
g0j

µ)2

(1+
g2j
g0j

µ)2+aj(1+
g2j
g0j

µ)

−
ai + (1 + g2i

g0i
µ)2

g1i(1 + g2i

g0i
µ)2

1

C

C

C

A

.

(28)
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Fig. 2. Optimal rates, correlation, and power allocation

• The optimal{θ∗
i }, {P ∗

1i} and{P ∗
2i} can be readily determined,

by examining the values ofµ that solve (28), and following the
preceding steps starting formI+ = {1, . . . , N}, and discarding
the subcarriers for which (25) yieldsP1i = 0.

V. NUMERICAL EXAMPLE

For ease of exposition, we will restrict attention to the case in
which ai > 0, i = 1, . . . , N . We consider a random instance with
N = 64 subcarriers and we use the algorithm outlined in Section IV
to obtain the optimal values of{αi}64

i=1, {P1i}64
i=1 and {P2i}64

i=1.
The values of{ai} in the considered instance are sorted according
to the values of{ 1

g1iαi
}64

i=1 and plotted in Figure 2(a). The source
powers{P1i}64

i=1 and the sorted values of{ 1
g1iαi

}64
i=1 are depicted

in Figures 2(b) and 2(c) forPT = 10 andPR equals 10 and 20 dB,
respectively. From these figures, it can be seen that, as expected from
the analysis, increasingPR results in making the values of{αi}
approach1, and for the optimal power allocation to be the water-
filling one on {g1i}. (The darker bars in Figure 2(c) represent the
inverse of{g1i}.) In Figure 2(d) we plot the sum rate achieved by
DF relaying over all the subcarriers for various values ofPT andPR

when{ai}64
i=1 and{ 1

g1i
}64

i=1 as in Figures 2(a) and 2(c), respectively.
For comparison, we also show the sum rate achieved by standard
water-filling when the relay is off. This figure shows the substantial
rate gain that can be achieved by increasing the power budget of the
DF relay. For instance, for the scenario considered in this example,
when the source and relay power budgets are 20 dB, the rate gain
introduced by the relay is in excess of 15 bits-per-channel-use (bpcu).

VI. CONCLUSION

In this paper we analyzed the problem of joint optimization of the
codebook design and power allocation for full-duplex multicarrier DF
relaying. Despite the nonconvexity of this problem, we were able to
use the KKT conditions to develop an efficient algorithm to solve it
and generate valuable insight into its structure.
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