

Spatial Clustering in Slotted ALOHA Two-Hop Random Access for Machine Type Communication

Ziwen Zhao, Sebastian S. Szyszkowicz, Tamer Beitelmal, Halim Yanikomeroglu Carleton University Ottawa, Canada

Contents

- Introduction to MTC
- Applications
- LTE Access
- Contribution
- System Model
- Simulation Results
- Conclusion

Introduction to MTC

MTC is a fully automatic communication system between machine devices without necessary human intervention.

- A large number of terminals
- Small data transmissions.
- Low mobility
- Delay tolerance
- Spatially clustered

LTE Access

Reference Scheme

Random Access Channel (RACH) Model

PRACH Configuration

Contribution

Two-Hop Slotted ALOHA-based Clustering Scheme

• Resource allocation between slotted ALOHA (1st hop) and PRACH (2nd hop)

In each cluster, it fully reuse the resources for slotted ALOHA communication.
 Interference inside and outside the cluster.

Details of the Access Procedures

The situation when Msg 1 and Msg 3 only have one collision.

(Reference Scheme)

(b) Slotted Aloha procedure. The situation when only one collision occurs.

(Proposed Scheme)

Novelty

	Previous Research	Our Research	
Intra-Cluster Communication Method	Scheduled Scheme (e.g. TDMA)	Slotted ALOHA	
Resources for Intra-Cluster Communication	Unlicensed Resource (WiFi, ZigBee)	Resources are migrated from PRACH, All-licensed spectrum	
Spatial Traffic Pattern	Homogeneous (PPP)	Clustered	

System Model

Location Generator

Internal Parameters: number of devices (N), number of clusters (M), radius of cluster (R), prob. of isolated nodes (P_{isolated}).

CoV-based Clustering Metrics

- Probabilistic Measure: Voronoi Tessellation areas
- Statistics i Stessel Cation: Given a set of points (seed), the plane is partitioned

Different Spatial Traffic and their C_v

 $C_v=1$: Poisson Point Process. $C_v>1$: super-Poisson/cluster. $0 < C_v < 1$: sub-Poisson. As traffic becomes more heterogeneous/clustered, C_v becomes higher.

Results of Hierarchical Clustering Algorithm on Different Amounts of Clustering

Simulation Results

Simulation Parameters

Symbol	Parameter	Value
В	Cell bandwidth	5 MHz
-	PRACH configuration index	6
$N_{preamble}$	Total number of preambles	54
$Max_{preamble}$	Maximum number of preamble transmissions	10
-	Number of CCEs allocated for PDCCH	16
-	Number of CCEs per PDCCH	4
	Ra-Response WindowSize	5 ms
T_{CR}	Mac-contentionResolutionTimer	$48 \mathrm{ms}$
BI	BackoffTimer	$20 \mathrm{ms}$
$P_{MSG3coll}$	Probability of successful delivery for	90%
	both MSG3 & MSG4 (non-adaptive HARQ)	
$N_{MSG3max}$	Maximum number of MSG3 transmissions	5
-	Number of MTC devices	5k, 10k, 30k
-	Number of available subframes	10k, 60k
	over the distribution period	
-	Period of PRACH opportunities	5 ms
T_{MSG1}	MSG1 transmission time	$1 \mathrm{ms}$
T_{MSG2}	Preamble detection at eNodeB	$3 \mathrm{ms}$
	& MSG2 trans. time	
T_{MSG3}	Device processing time before sending MSG3	$5 \mathrm{ms}$
$T_{TransMSG3}$	MSG3 transmission time	$1 \mathrm{ms}$
T_{MSG4}	Time of processing MSG3 & sending MSG4 $$	$5 \mathrm{ms}$
T_{Tx}	Time of packet transmission in slotted ALOHA	$1 \mathrm{ms}$
T_{RESP}	Response window size in slotted ALOHA	5 ms
T_{Rx}	Time of packet processing &	$3 \mathrm{ms}$
	acknowledgement transmission time	
P_{idle}	Power consumption in idle state	0.025 mW [28]
P_{Rx1}	Power consumption of	50 mW [28]
	processing and Rx in RACH	
P_{Tx1}	Power consumption of	50 mW [28]
	Tx in RACH	
P_{Rx2}	Power consumption of processing	25 mW [29]
	and Rx in slotted ALOHA	
P_{Tx2}	Power consumption of	25 mW [29]
	Tx in slotted ALOHA	

3GPP LTE Network

F. Alsewaidi, D. Kaleshi, A. Doufexi, "Analysis of Radio Access Network Performance for M2M Communications in LTE-A at 800 MHz," in *IEEE WCNC 2014 IoT Commun. & Techn. Workshop*.

Reference Random Access Procedure

3GPP-Compliant LTE Random Access Simulator

Performances Measures	Number of MTC devices				
	5k	10k	30k	Result Origin	
Collision Prob. (%)	0.01	0.03	0.22	3GPP	
	0.01	0.03	0.23	Simulation	
Success Prob. (%)	1.09	2.18	6.49	Simulation	
Idle Prob. (%)	98.90	97.79	0.93	Simulation	
Access Success Prob. (%)	100	100	100	3GPP	
	100	100	100	Simulation	
Avg. Access Delay (ms)	25.60	26.05	27.35	3GPP	
	28.23	28.58	29.63	Simulation	
Avg. Preamble Trans (%)	1.43	1.45	1.50	3GPP	
	1.43	1.45	1.50	Simulation	

"RAN improvements for machine-type communications," 3rd Generation Partnership Project (3GPP), TR 37.868, Sept. 2012.

Performance vs. C_v

Why such a big difference in energy consumption Fig. (d)?

Performance vs. Cluster No. (C_v fixed)

- The other inputs of location generator are N = 2000 and P_{isolated} = 0.01.
- More clusters —> Smaller cluster radius —> Less interference —> Better performance
- The proposed scheme outperforms the reference scheme when 100 > M > 22,

i.e., the number of machines per cluster < 90.

Conclusion

- Proposed a slotted ALOHA-based two-hop cluster random access method which significantly saves the energy for machines.
- Introduced a clustering geometry model for machine locations.
- Defined a clustering metric C_V.
- Conducted some literature review on different clustering algorithms.
- Examined the impact of different parameters (C_{v_i} device no., Cluster no.) on the system performance.

Thank you

Reference Random Access Procedure

Simulation System Flowchart

System Model of Two-Hop Clustering Scheme

- a. Generate a traffic pattern
- b. Cluster all devices + select CHs
- c. Two-hop Communication:
- 1. Intra cluster

Cluster members upload packets to cluster head through slotted Aloha

- Direct link between CH/ individual node with BS
 Once CH buffer reaches a certain level, it initiates random access to BS.
- d. Resource allocation
- Resources for slotted Aloha are migrated from the original RACH to maintain the same amount of total resources and make a fair comparison.
- Full Resource Reuse for slotted aloha within each cluster.
- e. Interference

Simultaneous packet transmission in slotted aloha will cause interference. Only if SINR is beyond a certain level, transmission is successful.

f. Performance evaluation. Tuning different parameters to see 28 the impact on performance.

Resource Allocation Scheme

1. Resource allocation between PRACH and slotted ALOHA

- 2. Intra-cluster communication (slotted ALOHA) reuse pattern
- Full reuse in each cluster.

Interference

- Any other simultaneous transmission from machines located at the same or different clusters will cause interference.
- If SINR>20dB, packet transmission is successful (slotted ALOHA).
- More clustered \rightarrow less inter-cluster interference.

Channel Model

- ME transmit power 14dBm, Noise figure 9dB
- Pathloss exponent 4 (machine to machine)

Analysis of Energy Consumption wrt. Collision Probability

In slotted ALOHA

Transmission power: P_{Tx2} ; Receiving and processing power: P_{Rx2} ;

Transmission period: T_{Tx} ; Response window: T_{RESP} ; Receiving period: T_{Rx} ;

The probability that a CM needs to transmit N times:

$$P_{collision}^{N-1}(1 - P_{collision}).$$

The Energy consumed:

$$NT_{Tx}P_{Tx2} + [(N-1)T_{RESP} + T_{Rx}]P_{Rx2}$$

The expected number of transmissions:

$$\sum_{N=1}^{\infty} N(P_{collision})^{N-1} (1 - P_{collision}) = \frac{1}{1 - P_{collision}}$$

The expected energy consumption:

$$\frac{1}{1 - P_{collision}} T_{Tx} P_{Tx2} + \left[\left(\frac{1}{1 - P_{collision}} - 1 \right) T_{RESP} + T_{Rx} \right] P_{Rx2}$$

Analysis of Energy Consumption wrt. Collision Probability

In RACH

Similarly, the expected energy consumption:

$$\left(\frac{1}{1 - P_{Msg1coll}} T_{MSG1} + \frac{1}{1 - P_{Msg3coll}} T_{TransMSG3} \right) P_{Tx1} + \left[\left(\frac{1}{1 - P_{Msg1coll}} - 1 \right) T_{RAR} + T_{MSG2} + T_{MSG3} + \left(\frac{1}{1 - P_{Msg3coll}} - 1 \right) T_{CR} + T_{MSG4} \right] P_{Rx1}.$$

Analysis of Energy Consumption wrt. Collision Probability

Definition of Performance Metrics

Total transmission times

- Reference Scheme: the total number of preambles sent by all machines in RACH
- Proposed Scheme: the total transmission times of all cluster members in slotted aloha + the total number of preambles sent by CH and individual node in RACH

Average access delay

- Reference Scheme: from first access subframe to the access complete subframe
- Proposed Scheme
- slotted aloha: from the first packet transmission subframe to its packet successfully uploading subframe
- RACH: from first access subframe to the access complete subframe

Energy Consumption

- Reference Scheme: energy dissipation in RACH
- Proposed Scheme: energy dissipation in slotted aloha+ RACH

Average

Definition of Performance Metrics

Collision rate: Collision Transmission Times Total Transmission Times

- Reference scheme: only in RACH
- Cluster Scheme: both RACH and Slotted Aloha

Some Assumptions in Simulation

For Slotted Aloha

- all packet transmission can be finished in one subframe.
- Use ACK to confirm successful transmission in slotted aloha
- the ACK response will be acknowledged immediately/in the current subframe.
- Packet can be decoded successfully only if Interference is under a certain level.
- For slotted aloha, backoff is done only across slotted aloha access slots
- Once uploading data, device state is complete with assumption his CH will get access successfully in future
- Buffer has no limit

For Other Parts

• distribute access uniformly over RACH period