

Interference Alignment for Heterogeneous Full-Duplex Cellular Networks

Amr El-Keyi and Halim Yanikomeroglu

Outline

- - Introduction
 - System Model
 - Main Results
 - Outer bounds on the DoF
 - Optimum Antenna Allocation
 - Achievable scheme
 - Conclusion

Introduction

Cellular Full-duplex Transmission

Advantages:

- Reduces the delay in the feedback of control information, channel state information and acknowledgment messages.
- Allows more flexible usage of the spectrum.
- Increases throughput and system capacity.

Challenges

- Self-interference; over 100 dB suppression is required.
- Inter-user interference; careful design of efficient interference management techniques is required.

Introduction

Implementation

Shared antenna

Separate antenna

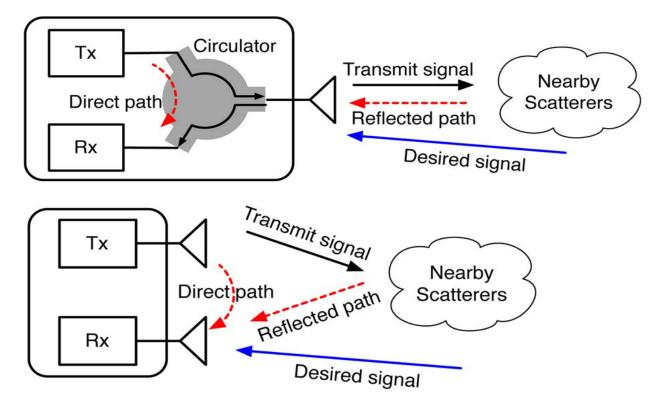


Fig. 1: Shared- and separate -antenna full-duplex transceivers*

* A. Sabharwal, P. Schniter, Dongning Guo, D.W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE JSAC, vol. 32, pp. 1637–1652, September 2014.

System Model

- Macro cell
 - Full duplex
 - BS employs *L* full-duplex separate antennas
 - Perfect self-interference cancellation
- Femto cell
 - Half-duplex (only downlink is operational)
 - Mantennas at BS
 - BS transmits with low power
- Each UEs is half-duplex with N antennas.
- We assume that $L \ge M \ge N$

What is the optimum antenna allocation at the Macro BS?

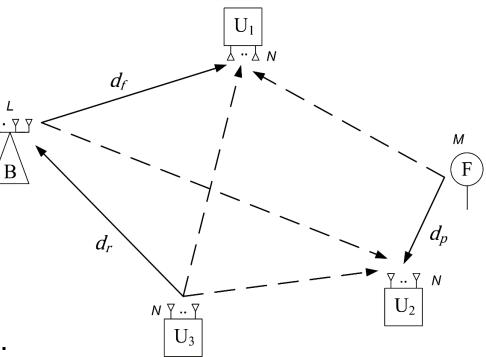


Fig. 2: System Model

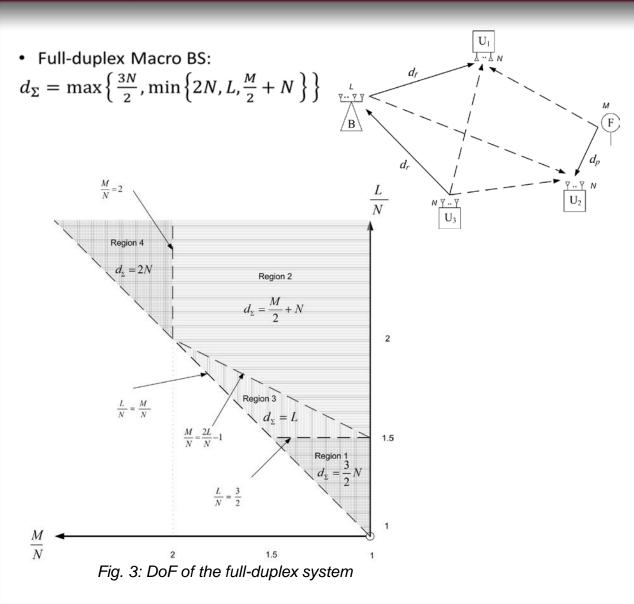
System Model

- Degrees of Freedom
- The total DoF of a network is defined as

$$d_{\Sigma} = \lim_{\text{SNR}\to\infty} \frac{C(\text{SNR})}{\log(1+\text{SNR})}$$

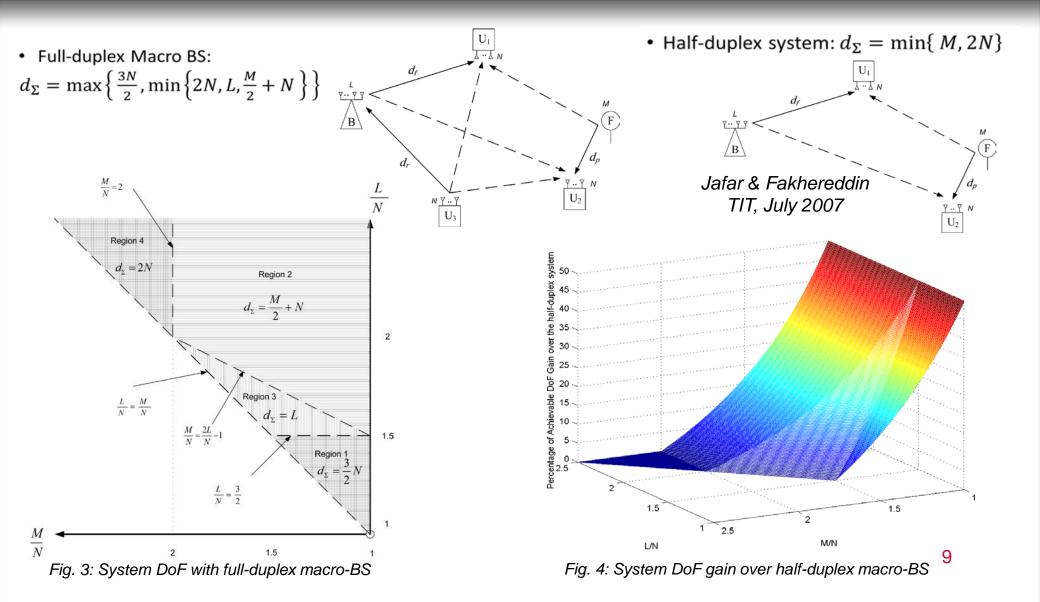
 The DoF represents the rate of growth of network capacity with log the SNR.

• In most networks, the DoF represents the number of interference-free streams that can be transmitted in the network.

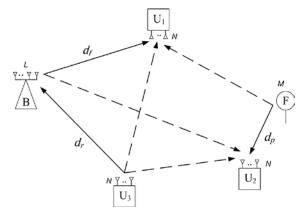

System Model

Earlier Work

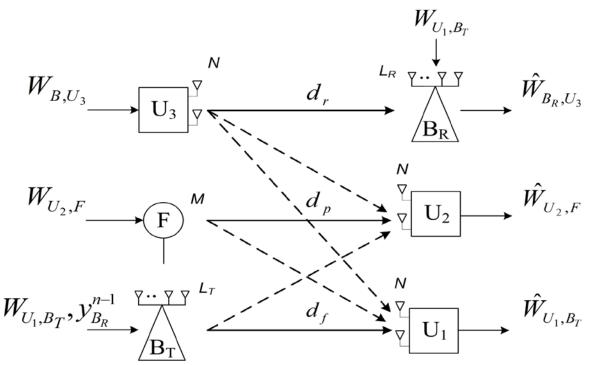
- Earlier work on the DoF of Full duplex cellular systems considered only 1 cell.
 - [1], [2] considered a shared-antenna BS communicating with *K* single-antenna full-duplex MSs. The total DoF of the system can be doubled if the number of users is large enough.
 - [3], [4] considered a separate-antenna full duplex BS with M_U receive antennas and M_D transmit antennas. DoF Gain over a half-duplex system employing max{M_U;M_D} antennas. Comparison was not not fair.
- Two-cell case considered in [5] with separate-antenna full-duplex BSs and MSs. The maximum DoF gain cannot exceed 33% compared to a half-duplex system employing the same total number of antennas.
- [1] S.H. Chae and S.H. Lim, "Degrees of freedom of cellular networks: Gain from full-duplex operation at a base station," in Globecom, December 2014, pp. 4048–4053.
- [2] A. Sahai, S. Diggavi, and A. Sabharwal, "On degrees-of-freedom of full-duplex uplink/downlink channel," in *ITW*, September 2013, pp. 1–5.
- [3] K. Kim, S.-W. Jeon, and D.K. Kim, "The feasibility of interference alignment for full-duplex MIMO cellular networks," IEEE Comm. Lett., vol. 19, pp. 1500– 1503, September 2015.
- [4] S.-W. Jeon, S.H. Chae, and S.H. Lim, "Degrees of freedom of full duplex multiantenna cellular networks," in *ISIT*, June 2015, pp. 869–873.
- [5] A. El-Keyi and H. Yanikomeroglu, "Cooperative versus full-duplex communication in cellular networks: A comparison of the total degrees of freedom," in VTC, September 2016.

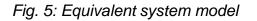


Canada's Capital University



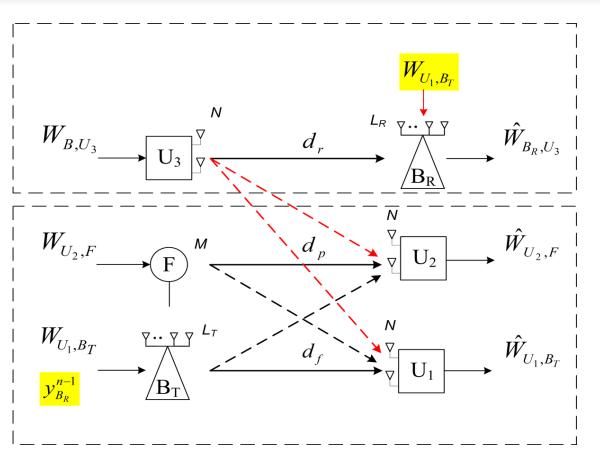
Canada's Capital University

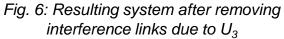



Outer bounds on the DoF of the system

3-user interference channel

- Partly connected
- Message feedback at macro-BS receiver
- Output feedback at macro-BS transmitter


Main Results


• Point-to-Point channel

 $d_r \leq L_R$

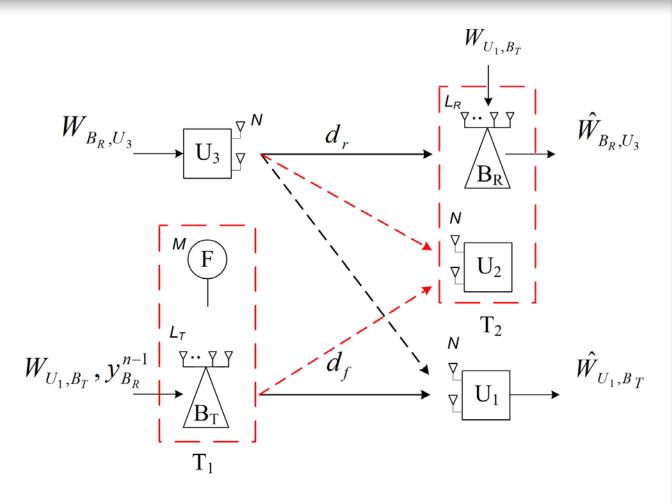
• 2-user interference channel

 $d_f + d_p \le \min\{2N, M, \max\{L_T, N\}\}$



Main results

• Eliminating the message from F



Main results

• Allowing full cooperation between:

 $F \& B_T$

U2 & B_R

Main results

 $d_f + d_r \le N$

Jafar & Shamai TIT, Jan 2008

 \hat{W}_{B_R,U_3} W_{B_R,U_3} ∇N d_r U_3 ∇ B_{R} Ν М U2 ∇ T_2 Lτ Ν \hat{W}_{U_1,B_T} d_{f} $W_{U_1,B_T}, y_{B_R}^{n-1}$ ∇ U_1 ∇ B_T T_1

> Fig. 7: Resulting system after eliminating the message from F to U_2 and cooperation between terminals

Similarly, we can get

 $d_p + d_r \le N$

 W_{U_1,B_T}

 ∇ ∇

 L_R

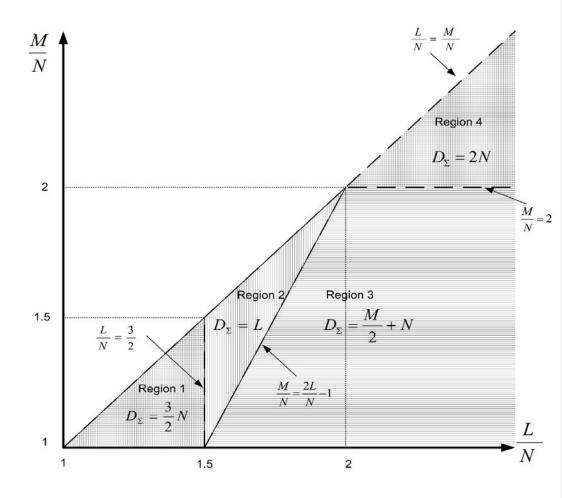
Optimal Antenna Allocation

• The optimum antenna allocation for the Macro cell is formulated as

$$\max_{L_T, d_f, d_r, d_p} d_f + d_r + d_p$$

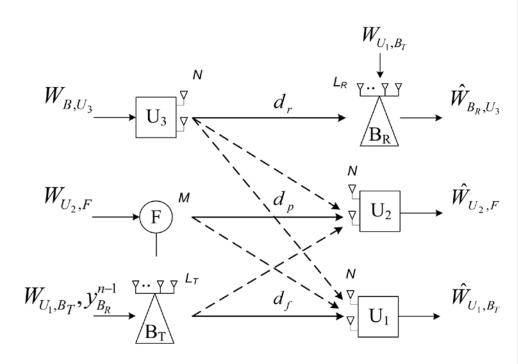
subject to
$$d_f + d_p \le \min\{2N, M, \max\{L_T, N\}\}$$
$$d_r \le L - L_T$$
$$d_f + d_r \le N$$
$$d_p + d_r \le N$$
$$0 \le L_T \le L$$

- The problem is non-convex yet a closed-form optimum solution can be obtained by decomposing the problem into two convex subproblems.
- It can be shown that


$$d_f + d_r + d_p \le \max\left\{\frac{3N}{2}, \min\left\{2N, L, \frac{M}{2} + N\right\}\right\}$$

Canada's Capital University

Achievable scheme


- Achievable scheme depends on the relationship between *L*, *M*, and *N*.
- Four achievability schemes are proposed for Regions 1-4.

Achievable scheme

- Achievable scheme depends on the relationship between *L*, *M*, and *N*.
- Four achievability schemes are proposed for Regions 1-4.
- Precoder design:
 - U_3 causes interference at U_1 and U_2 .
 - F can transmit in nullspace of channel to U_1 or align its interference with that caused by U_3 at $U_1.$
 - B_T can transmit in nullspace of channel to U_2 (if $L_T > N$) or align its interference with that caused by U_3 at U_1 .

Main Results

Canada's Capital University

Achievable scheme

Region 1: $L \leq \frac{3N}{2}$

- Antenna allocation: $L_T = L_R = \frac{N}{\frac{2}{N}}$ DoF allocation: $d_f = d_R = d_p = \frac{N}{\frac{2}{N}}$
- Precoder design:

 $H_{U_2,U_3}^{-1} V_{U_3} = H_{U_2,B_T}^{-1} V_{B_T}$ $H_{U_1,U_3}^{-1} V_{U_3} = H_{U_1,F}^{-1} V_F$

Interference is aligned in $\frac{N}{2}$ dimensional subspace

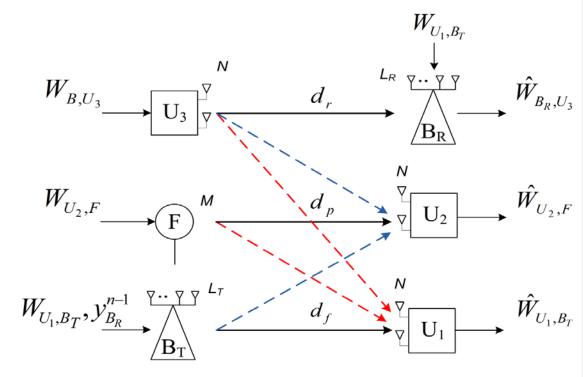


Fig. 8: Achievability through Interference alignment at U_1 and U_2

Canada's Capital University

Achievable scheme

Region 2: $L \ge \frac{M}{2} + N, M \le 2N$

- Antenna allocation: $L_T = M$, $L_R = L M$
- DoF allocation: $d_f = d_p = \frac{M}{2}, d_r = N \frac{M}{2}$
- Precoder design: Divide the precoders of the BSs into two subprecoders

$$V_{B_T} = \left[V_{B_T}^{(1)}, V_{B_T}^{(2)} \right], \ V_F = \left[V_F^{(1)}, V_F^{(2)} \right]$$

- First subprecoder sends $N \frac{M}{2}$ streams via interference alignment with the precoder of U_3
- Second subprecoder directs *M-N* streams in the null-space of the non-intended UE, i.e.,

$$V_{B_T}^{(2)} = N \{ H_{U_2, B_T} \}, \ V_F^{(2)} = N \{ H_{U_1, F} \}$$

Canada's Capital University

Achievable scheme

Region 3: $L \leq \frac{M}{2} + N, M \leq 2N$

• Antenna allocation: $L_T = M$, $L_R = L - M$

• DoF allocation:
$$d_f = d_p = \frac{M}{2}, d_r = L - M$$

• Precoder design: Divide the precoders of the BSs into three subprecoders

$$V_{B_T} = [V_{B_T}^{(1)}, V_{B_T}^{(2)}, V_{B_T}^{(3)}], V_F = [V_F^{(1)}, V_F^{(2)}, V_F^{(3)}]$$

- First subprecoder sends L-M streams via interference alignment with the precoder of U_3 .
- Second subprecoders directs *M-N* streams in the null-space of the non-intended UE.
- Third part of the precoders is selected randomly where $N L + \frac{M}{2}$ streams are allowed to interfere on the UEs.

Main Results

Achievable scheme

Region 4: $M \ge 2N$

- Antenna allocation: $L_T = 2N, L_R = 0$
- DoF allocation: $d_f = d_p = N, d_r = 0$
- Precoder design
 - Half duplex operation of the macro-BS is optimal.
 - Each Bs transmits *N* streams and directs its transmission to the null-space of its non-intended UE

- We have characterized the DoF of a heterogeneous network composed of a fullduplex macro-BS and half-duplex femto-cell.
- The optimum antenna allocation for the uplink and downlink of the macro-cell was provided.
- Precoders designed using interference alignment and avoidance techniques.
- Full-duplex inband transmission at the macro-BS can increase the DoF when the number of antennas at the femto-BS is limited.
- DoF gain over half-duplex system reaches 50% when the femtocell has the same number of antennas as the UEs.