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Introduction 

Cellular Full-duplex Transmission 
 

 Advantages:  
• Reduces the delay in the feedback of control information, channel state information 

and acknowledgment messages.  
• Allows more flexible usage of the spectrum. 
• Increases throughput and system capacity. 
 

 Challenges 
• Self-interference; over 100 dB suppression is required.  
• Inter-user interference; careful design of efficient interference  management 

techniques is required.  
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 Implementation 

Introduction 

 
 

 Shared antenna 
 
 
 
 

 Separate antenna  
 

* A. Sabharwal, P. Schniter, Dongning Guo, D.W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE 
JSAC, vol. 32, pp. 1637–1652, September 2014. 

Fig. 1: Shared- and separate -antenna full-duplex transceivers* 
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System Model 

Fig. 2: System Model 

What is the optimum antenna allocation at the Macro BS ? 

•  Macro cell 
 

• Full duplex 
• BS employs L full-duplex separate antennas 
• Perfect self-interference cancellation 

 
• Femto cell 

 

•  Half-duplex (only downlink is operational) 
•  M antennas at BS 
•  BS transmits with low power 

 
• Each UEs is half-duplex with N antennas. 

 
• We assume that     
 

NML ≥≥
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System Model 

 Degrees of Freedom 

SNR)log(1
)SNR(lim

SNR +
=
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Cd

• The total DoF of a network is defined as 
 
 
 
 
 

• The DoF represents the rate of growth of network capacity with log the 
SNR. 
 
 
 

• In most networks, the DoF represents the number of interference-free 
streams that can be transmitted in the network. 
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• Earlier work on the DoF of Full duplex cellular systems considered only 1 cell. 
• [1], [2] considered a shared-antenna BS communicating with K single-antenna full-duplex 

MSs. The total DoF of the system can be doubled if the number of users is large enough. 
• [3], [4] considered a separate-antenna full duplex BS with MU receive antennas and MD 

transmit antennas. DoF Gain over a half-duplex system employing max{MU;MD} antennas. 
Comparison was not not fair. 
 

• Two-cell case considered in [5] with separate-antenna full-duplex BSs and MSs. The maximum 
DoF gain cannot exceed 33% compared to a half-duplex system employing the same total 
number of antennas. 
 

 [1] S.H. Chae and S.H. Lim, “Degrees of freedom of cellular networks: Gain from full-duplex operation at a base station,” in Globecom, December 2014, pp. 
4048–4053. 

 [2] A. Sahai, S. Diggavi, and A. Sabharwal, “On degrees-of-freedom of  full-duplex uplink/downlink channel,” in ITW, September 2013, pp. 1–5. 
 [3] K. Kim, S.-W. Jeon, and D.K. Kim, “The feasibility of interference alignment for full-duplex MIMO cellular networks,” IEEE Comm. Lett., vol. 19, pp. 1500–

1503, September 2015. 
 [4] S.-W. Jeon, S.H. Chae, and S.H. Lim, “Degrees of freedom of full duplex multiantenna cellular networks,” in ISIT, June 2015, pp. 869–873. 
 [5] A. El-Keyi and H. Yanikomeroglu, “Cooperative versus full-duplex communication in cellular networks: A comparison of the total degrees of freedom,”  in 

VTC, September 2016. 
 

System Model 

 Earlier Work 
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Main Results 

Fig. 3: DoF of the full-duplex system 
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Main Results 

Fig. 3: System DoF with full-duplex macro-BS Fig. 4: System DoF gain over half-duplex macro-BS 
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Main Results 

 Outer bounds on the DoF of the system 

Fig. 5: Equivalent system model 

3-user interference channel 
 

• Partly connected 
 

• Message feedback at macro-BS 
receiver 

 
• Output feedback at macro-BS 
transmitter 
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Main Results 

Fig. 6: Resulting system after removing 
interference links due to U3 
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• Point-to-Point channel 

 
 
 
 
 
 
 

• 2-user interference channel 

 



Main results 
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• Eliminating the message from F 
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• Allowing full cooperation 
between:  

 
F & BT 
 
U2 & BR 
 
 
 
 
 
 
 

 



Main results 

Fig. 7: Resulting system after eliminating the message from F 
to U2 and cooperation between terminals 

Similarly, we can get 
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• Resulting system is a Z channel 

 
 
 
 
 
 
 

 

Jafar & Shamai  
TIT, Jan 2008 



Main results 

 Optimal Antenna Allocation 
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Main Results 

 Achievable scheme 
• Achievable scheme depends on the  

relationship between L, M, and N. 
 

•  Four achievability schemes are 
proposed for Regions 1-4.  
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Main Results 

 Achievable scheme 
• Achievable scheme depends on the  

relationship between L, M, and N. 
 

•  Four achievability schemes are 
proposed for Regions 1-4.  

 
• Precoder design: 

• U3 causes interference at U1 and U2. 
 

• F can transmit in nullspace of channel to U1 
or align its interference with that caused by U3 
at U1. 

 

• BT  can transmit in nullspace of channel to 
U2 (if LT > N) or align its interference with that 
caused by U3 at U1. 
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Main Results 

 Achievable scheme 
Region 1:  
 
• Antenna allocation:  

 
• DoF allocation: 

 
• Precoder design: 
 
 
 
 
 

Interference is aligned in        dimensional 
subspace 

2
3NL ≤

2
NLL RT ==

2
Nddd pRf ===

2
N

Fig. 8: Achievability through Interference alignment  at U1 and U2 
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Main Results 

 Achievable scheme 
Region 2:  
 
• Antenna allocation:  
 

• DoF allocation: 
 

• Precoder design: Divide the precoders of the BSs into two subprecoders 
 
 
 

• First subprecoder sends              streams via interference alignment with the precoder of U3  . 

• Second subprecoder directs  M-N  streams in the null-space of the non-intended UE, i.e., 
 

NMNML 2,
2

≤+≥

MLLML RT −== ,

2
,

2
MNdMdd rpf −===

2
MN −
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Main Results 

 Achievable scheme 
Region 3:  
 
• Antenna allocation:  

 
• DoF allocation: 

 
• Precoder design: Divide the precoders of the BSs into three subprecoders 

 
 
 

• First subprecoder sends              streams via interference alignment with the precoder of U3.  
 

• Second subprecoders directs M-N streams in the null-space of the non-intended UE. 
 

• Third part of the precoders is selected randomly where         streams are allowed to 
interfere on the UEs. 

 

NMNML 2,
2

≤+≤

MLLML RT −== ,

MLdMdd rpf −=== ,
2

ML −

],,[],,,[ )3()2()1()3()2()1(
FFFFBBBB VVVVVVVV
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==

2
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Region 4:  
 
• Antenna allocation:  

 
• DoF allocation: 

 
• Precoder design 

 
• Half duplex operation of the macro-BS is optimal. 

 
• Each Bs transmits N streams and directs its transmission to the null-space of its non-
intended UE 

NM 2≥

0,2 == RT LNL

0, === rpf dNdd

 Achievable scheme 
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Main Results 



• We have characterized the DoF of a heterogeneous network composed of a full-
duplex macro-BS and half-duplex femto-cell. 
 

• The optimum antenna allocation for the uplink and downlink of the macro-cell was 
provided. 
 

• Precoders designed using interference alignment and avoidance techniques. 
 

• Full-duplex inband transmission at the macro-BS can increase the DoF when the 
number of antennas at the femto-BS is limited. 
 

• DoF gain over half-duplex system reaches 50% when the femtocell has the same 
number of antennas as the UEs. 
 

Conclusion 
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