
The Impact of User Spatial Heterogeneity in
Heterogeneous Cellular Networks

Ziyang Wang, Rainer Schoenen, Halim Yanikomeroglu, and Marc St-Hilaire
Department of Systems and Computer Engineering

Carleton University, Ottawa, Ontario, Canada

Email: {wangzi, rs, halim}@sce.carleton.ca, marc st hilaire@carleton.ca

Abstract—The spatial distribution of users in cellular networks
plays an important role on network performance. It is becoming
increasingly common in the recent literature to model the user
locations according to a homogeneous Poisson point process, yet
users are often spatially clustered in reality. In this paper, we
investigate the impact of user spatial heterogeneity in downlink
cellular networks, including macro-only networks and small-cell
enhanced heterogeneous cellular networks (HCNs). In the generic
point process introduced in this paper, the degree of user spatial
heterogeneity is scalable, smoothly controlled, and is measured
by a non-negative real number. Numerical results show that the
network performance deteriorates significantly when user distri-
bution becomes more heterogeneous while remaining uncorrelated
with the base station locations. However, by deploying small-cells
in the centers of the user hot-spots found by cluster analysis on
non-uniform user points, we show that HCNs can benefit from a
certain degree of user spatial heterogeneity.

Index Terms—Performance Evaluation, Stochastic Geometry,
Heterogeneous Cellular Networks, small-cells, Cluster Analysis.

I. INTRODUCTION

The performance of wireless networks depends highly on
their spatial configuration, not only because the signal-to-
interference-plus-noise ratio (SINR) is related to transmitter-
receiver distance, but also because the traffic load in spatial
domain influences the overall resource utilization, and hence,
network performance. In the context of heterogeneous cellular
networks (HCNs), the traffic load plays a more significant
role in user throughput compared to the commonly used
SINR metric [1]. Recently, stochastic geometry has become
increasingly popular in modeling the spatial distribution of
the network entities. The locations of the network entities are
abstracted to a point process (PP) based on their properties. The
PPs that are commonly used in wireless networks are i) Poisson
point process (PPP), ii) hard core point process (HCPP), and iii)
Poisson cluster process (PCP). The PPP is the most popular PP
due to its simplicity and tractability [2]. However, the research
community mainly focuses on modeling the locations of base
stations (BSs) rather than the users (mobile devices) [2], [3].

In the majority of the papers in wireless networks, the
user spatial distribution is assumed to be random and uni-
form (homogeneous PPP) [3], and often with a fixed number
of users, which becomes a conditional PPP, or equivalently,
binomial PP (BPP) [4]. When the PPP model is used, the
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downlink analysis is performed at a typical user at origin
according to Slivnyak’s theorem [5], which states that the
statistics seen from a PPP is independent from the test location.
In recent years, some papers have introduced heterogeneity
to user spatial distribution. For example, in the model used
in [6], the user density decreases linearly with respect to
the distance from the BS up to a certain distance beyond
which users are uniformly distributed to the rest of the cell
area. In [7], user locations are modeled by a PCP. A parent
PP Φ uniformly spreads Nc cluster heads over the coverage
region of a macrocell, and then users are dropped randomly
and uniformly within a certain radius of each cluster head.
Given a fixed total number of users, the degree of user spatial
heterogeneity is controlled by changing the number of cluster
heads. This method brings spatial heterogeneity to the user
distribution, but due to the integer nature of the number of
cluster heads, the spatial heterogeneity cannot be controlled in
a continuous manner. In [8], both user and BS locations are
modeled by homogeneous PPPs with different intensities in
the first step, and heterogeneous user distribution is obtained
by conditional thinning of BSs and the corresponding users in
the Voronoi cells of BSs. This method facilitates the deduction
of analytical expressions, yet the generated user distributions
may not be entirely realistic because of the absence of users
in the thinned areas and the identical intensity of users in the
remaining areas.

The impact of non-uniform and BS-uncorrelated user dis-
tribution in a cellular CDMA network has been investigated
in [9], indicating that uniform distribution can lead to an
overestimation of the system capacity. In [6], the authors
have shown that the performance enhances when users are
concentrating around the BSs in WCDMA networks.

The distinguish feature of this paper is the introduction
of a user spatial model that covers user distribution from
homogeneous to highly heterogeneous. Moreover, based on the
performance impact of user spatial heterogeneity on downlink
network, a strategy for deploying small-cells in HCNs is
developed. By using the statistical measure introduced in our
previous work [10], the degree of user spatial heterogeneity is
evaluated with a non-negative real number C (to be defined
in Section III). The measure introduced in [10] makes our
evaluation based on dynamic user spatial heterogeneity possible
to compare with other scientific works. Our contributions are
summarized as follows:

• A doubly stochastic Poisson process (DSPP), also
known as the Cox process, is used to model the
user locations. With a single parameter, the spatial



heterogeneity is controlled smoothly in a broad range
from uniform (PPP) to extremely heterogeneous.

• The effect of user spatial heterogeneity (captured by
C) on the performance of downlink cellular networks
is obtained. We find that the network performance
metrics deteriorate significantly with increasing C if
the user locations are uncorrelated with the locations
of the macro and small-cell BSs.

• Cluster analysis on the non-uniform user points is
utilized to find the cluster centroids as the potential
locations for small-cells. Simulation results show that
the network performance can improve substantially
with increasing C if we take advantage of user spatial
heterogeneity to deploy small-cells in the appropriate
locations.

The rest of this paper is organized as follows: Section II
introduces the network model and the generation of hetero-
geneous user distribution. A scalar measure of spatial hetero-
geneity is provided in Section III. Then, locations of small-
cells with an application of clustering algorithm is discussed
in Section IV. Numerical analysis is presented next in Section
V, and this paper is concluded with the remarks in Section VI.

II. SYSTEM SETUP

A. Network Model

The locations of macrocell sites are fixed and form a
hexagonal grid layout as shown in Fig. 1. 19 sites, each
with 3 cells, with inter-site distance (ISD) of 500 meters, are
configured in the system. The wrap-around technique is applied
in the simulations to eliminate the boundary effect. The HCNs
consist of two tiers with small-cells (not shown in Fig. 1)
overlaid on the same area of macrocells. The macrocells adopt
directional antennas while small-cells use omni antennas. The
distribution of small-cells is either according to a BPP or user-
distribution related, which will be discussed in Section IV.

B. User Distribution

To obtain the spatial heterogeneity of user distribution, this
paper adopts the Cox process, a generalization of the PPP.
Instead of being constant as in PPP, the intensity in Cox is
itself a stochastic process [5]. For example, in a homogeneous
PPP with intensity λ, the number of points in a bounded Borel
set B ⊂ R

2 is Poisson distributed with mean λAB , where
AB is the area of B. While in the Cox process, the number
of points in B is Poisson distributed with a mean intensity
Λ̄ =

∫
B
Λ(s) ds, s ∈ B, where Λ(·) is an intensity function.

From the definition, and also as the name DSPP implies, Cox
process brings a second layer of randomness to the Poisson
process by generalizing the constant intensity λ into a intensity
function Λ(·). By varying Λ(·), we get different kinds of Cox
processes. A Cox process is called a log Gaussian Cox process
(LGCP) if Λ(s) = exp{Y (s)}, where Y = {Y (s) : s ∈ R

2} is
a real-valued Gaussian process (i.e., the joint distribution of any
finite vector (Y (s1), ..., Y (sn)) is Gaussian) [11]. The distribu-
tion of Y is specified by the mean μ = E(Y (s)), the variance
σ2 = V ar(Y (s)), and the covariance COV (Y (si), Y (sj))

†.
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Fig. 1. Macrocell geometry with 19 sites and 57 cells. Macrocell sites are
shown by triangles with each angle indicating the antenna boresight of the 3
cells in the same site.

In this paper, we assume COV (Y (si), Y (sj)) = 0 for i �= j,
indicating no correlation within Λ(·). The distribution of Λ(·)
is specified by the mean m = exp(μ+σ2/2) and the variance
v = exp(2μ + σ2)(exp(σ2) − 1). Due to the exponential
nature of the intensity function Λ(·), the LGCP provides a wide
range of intensity values with a small variation in σ. When
σ is equal to zero, Λ becomes constant, and the LGCP falls
back to a homogeneous PPP. By increasing σ (and changing μ
accordingly to keep the overall user intensity m constant), the
intensity Λ becomes more fluctuating (higher v), resulting in
higher spatial heterogeneity over the whole area. A realization
of LGCP with different σ values is shown in Fig. 2. Note that
σ can take any nonnegative real value continuously from 0 to
infinity, which facilities the smooth control of the user spatial
heterogeneity.

Implementation of LGCP involves two steps. First the
Gaussian field is generated in the minimum square that contains
all the 19 hexagons. We adopt the method in [11] by dis-
cretizing the square into tiles‡ and approximating the Gaussian
process by the values of the corresponding Gaussian distribu-
tion on the tiles. Then the Gaussian field Ỹ = (ỹij)(i,j∈I) is
obtained, where I represents all the tiles after discretization. In
the second step, for the given Gaussian field Ỹ , a homogeneous
PPP with intensity λ̃ = exp(ỹij) is generated in each tile.

III. DEGREE OF USER SPATIAL HETEROGENEITY

Before we evaluate the network performance with respect
to adjustable user spatial heterogeneity, we need a statistical
measure to capture the degree of spatial heterogeneity.

This paper adopts the method introduced in our previ-
ous work [10], in which measures based on the Voronoi
and Delaunay tessellations are proposed, and coefficient of

†The COV used here for covariance should not be confused with CoV used
for coefficient of variation defined in Section III.

‡A coarse discretization results in a small sample size, and hence a decreased
statistical variation, while a refined discretization may result in an unrealistic
situation (e.g., many users squeezed in a small area) and higher computational
complexity. For the numerical analysis in this paper, we found that it is
sufficient to use 40× 40 tiles (i.e., a total number of 1600 tiles for the square
enclosing area).



Fig. 2. An example of user distribution with different deviation in LGCP. The
PPP is the special case of LGCP (when σ equals to zero). Each dot represents
an active user in the system. With the measure discussed in Section III, the
degree of spatial heterogeneity C equals to 1.00, 1.44, 2.70, 4.72, respectively.

variation (CoV), the normalized second-order statistic (the
standard deviation divided by the mean), is suggested to be
used to capture the main statistical properties of the measures.
The statistics of PPP are used as the normalization factors
to normalize those of the sub-Poisson processes and super-
Poisson processes. Then, the user spatial heterogeneity can be
represented by a non-negative real number C, the normalized
CoV of different measures (e.g., the Voronoi cell area used
in this paper). Based on the formulation, C is greater than 1
in super-Poisson processes, equal to 1 in PPP, and between 0
and 1 in sub-Poisson processes. The LGCP introduces more
heterogeneity in PPP, so it is a super-Poisson point process
in which PPP constitutes a special case (when σ = 0). For
example, for the user distributions in Fig. 2, we first draw the
Voronoi tessellations for the user points, and measure the area
of each Voronoi cell, Ai. Then the CoV of A is calculated
from the ratio of the standard deviation and the mean of A.
Finally, the spatial heterogeneity level C is obtained from the
normalized CoV [10].

IV. LOCATIONS OF SMALL-CELLS

With a spatially non-uniform user distribution, some areas
of the network may have no user or only few users, and
hence the resource of the BSs in those areas are either totally
wasted or underused, while the so-called hot-spot areas may
be congested with users inside suffering from low rates. One
solution to this problem is deploying small-cells in the user hot-
spots to offload traffic from macrocells. HCNs with small-cells
overlaid on macrocells have intensely been researched in recent
years, yet the distribution of small-cells is assumed to be a BPP
in most of the papers. However, given an inhomogeneously
distributed set of users as the case in this paper, how to find
the hot-spots from the user distribution to deploy small-cells

is a natural, yet non-trivial, question. This is especially true
for the operator-planned picocells, which are deployed by the
network operators based on the traffic distribution.

The cluster analysis technique groups data into clusters such
that the objects in the same cluster are more similar to each
other than to those in a different cluster. This is a main task
in data mining and has played an important role in a wide
variety of fields, including machine learning, image analysis,
and information retrieval [12]. This paper uses the cluster
analysis technique to find the user clusters as the potential
locations for small-cells.

A. Basic k-means Algorithm

The k-means algorithm is one of the most popular cluster-
ing algorithms used in the cluster analysis. It is a prototype-
based, partitional clustering technique that attempts to find
a user-specified number of clusters (k) represented by their
centroids. The centroids are the mean of the points that belong
to the cluster. The basic algorithm [12] is described below.

Algorithm Basic k-means Algorithm

1: Select k points as initial centroids.
2: repeat
3: Form k clusters by assigning each point to its closest

centroid.
4: Recompute the centroid of each cluster.
5: until Centroids do not change.

B. Preprocessing and Postprocessing

As we intend to use the centroids of the clusters to deploy
small-cells, outlier users (isolated points) that are supposed to
be served by macrocells are not taken into account. We apply
preprocessing to eliminate the isolated points from affecting the
locations of the centroids. A classification method of points in
another density-based clustering algorithm, DBSCAN [12], is
used. All points are defined as being a core point, a border
point, or a noise point. Precisely, a point is a core point if the
number of points within a certain radius of its neighborhood
exceeds a threshold. A border point is a point that falls within
the neighborhood of a core point. A noise point is any point
that is neither a core point nor a border point. After the
classification, the noise points (outlier users) are eliminated
before applying the k-means algorithm.

The planned number of small-cells can be used as the value
of k in the k-means algorithm. However, since the users may
not naturally be clustered into k groups, the clusters that are
obtained from the k-means algorithm may turn out to be too
big for the coverage of a typical small-cell. In other words, a
centroid may turn out to be in the middle of two or more natural
user clusters when k is small. A simple yet effective way to
avoid this situation is to enlarge k by splitting the clusters
(by running clustering algorithm iteratively inside the cluster),
a technique that is commonly used in the postprocessing for
cluster analysis [12]. In our case, all clusters that have a larger
radius than the typical coverage distance of the planned small-
cells are split after the k-means clustering algorithm. After the
postprocessing, k′ (greater than k) clusters are obtained.



C. Selection Criteria

After postprocessing, the algorithm provides more than k
clusters, potentially k′ hot-spots. As only k small-cells are
planned, a selection criterion is needed to choose k clusters
from the k′ clusters generated by the clustering algorithm.

A simple way is to determine the number of points ni in
each cluster i, and then to choose the top k out of k′ clusters
with respect to the number of points in them. However, when a
cluster is close to a macrocell, a small-cell deployed in such a
hot-spot will suffer substantial interference from the macrocell
in a co-channel scenario. Even in a non-co-channel scenario,
deploying small-cells close to the center of a macrocell is not
as efficient as deploying them at the edge of a macrocell, as the
latter improves the user spectral efficiency and provides more
capacity at the same time.

In this paper, we use the ratio of the distance between a
user and a macrocell, and that between a user and a potential
small-cell, as a component in the objective function to select k
hot-spots from k′ clusters. We will also use the number of users
criterion as the baseline method for comparison in Section V.
Suppose that there are ni users in a cluster i; for these ni

users, d
(m)
j and d

(s)
j represent the distances of user j to its

closest macrocell, and to its cluster centroid (the location of
the planned small-cell), respectively. The proposed selection
criterion for cluster i is formulated as

Ui =
1

ni

ni∑

j=1

log
d
(m)
j

d
(s)
j

. (1)

This objective function is basically derived from the Shan-
non formula and the path loss expression. The goal is to select
k clusters that have maximum sum user rate,

∑
Rj , which

is proportional to the mean of the sum spectral efficiency
1
ni

∑
j log(1+SINRj) when equal resource allocation is used.

In our situation, it is reasonable to ignore the background noise
and assume a high signal-to-interference-ratio (SIR) as users
are close to the proposed small-cells. So the objective function
becomes 1

ni

∑
j log(SIRj). Let us assume that the dominant

interferer, which is from the closest macrocell, is the only
interferer, and that both signal power and interference power
are calculated from the power-law based path-loss model with
the same exponent. Then

∑
j log(SIRj) becomes proportional

to
∑

j log(d
(m)
j /d

(s)
j ), the sum-logarithm of the ratio of the

user to closest-macro distance to the user to planned-small-
cell distance. Since this objective function is formed under
several assumptions, it is rather approximate. However, this
is not a concern, because this objective function is not used
for evaluation; it is rather used for ranking the candidates
(clusters). If interference coordination between the macrocells
and the small-cells within its coverage is used, the function can
be adapted to have the second nearest neighbor macrocell as
the main interference source.

V. NUMERICAL ANALYSIS

A. Simulation Setup

A static snapshot-based system-level simulator is used in
this paper. The parameters used in the simulation are based

TABLE I. SIMULATION PARAMETERS

Parameter Assumption
Macrocell layout Hexagonal grid of 19 x 3 = 57 macrocells

with wrap-around. ISD = 500 m

Picocell layout 1 or 2 picocells per macrocell, BPP or
related to user distribution

Average user density 25 users / macrocell

System bandwidth 10 MHz (FDD) at 2 GHz

Shadowing Log-normal, s.d. 4 for LOS, 6 for NLOS

Macrocell Tx power 46 dBm

Picocell Tx power 37 dBm

Antenna gain Macrocell: 17 dBi, picocell: 5 dBi

CRE biasing value 2 dB

Traffic model Full buffer

Resource allocation Proportional fair
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Fig. 3. Mean user rate versus user spatial heterogeneity under different
network configurations. The user distribution is a PPP when C equals to 1.

on 3GPP LTE, but the conclusions reached in this paper are
valid for any cellular network with a heterogeneous user spatial
distribution and a small-cell enhanced network architecture. In
this simulation, the case 6.2 in 3GPP release 9 [13] is the
scenario used for HCNs, in which outdoor picocells are the
small-cells that are layered on macrocells to cover hot-spots.
Users associate with only one cell, macro or picocell, based
on the strength of the received power. Biasing, also known as
cell range expansion (CRE), is applied to picocells.

The channel follows the model 2 in [13] for both macrocells
and outdoor picocells, in which a line-of-sight (LOS) and non-
line-of-sight (NLOS) power-law path loss model is used. The
downlink signal experiences log-normal shadowing, while the
fast fading is assumed to be averaged out.

A user suffers interference from all the macrocells and
picocells outside its own serving cell (which may be a macro-
cell or a picocell). As long as a cell (macro or pico) is
serving one or more users, it is assumed that this cell is
contributing to interference at the full transmit power level.
However, if there are no users served by a particular cell,
that cell is powered off to prevent unnecessary interference.
Both macrocells and picocells share the same bandwidth, and
no interference coordination or cancellation technique is used.
Table I shows the key parameters used in the simulations.
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Fig. 4. Median user rate versus user spatial heterogeneity under different
network configurations.

B. Impact of User Spatial Heterogeneity

We change the value of σ in LGCP to get user distributions
with different heterogeneities, which are measured by C, the
normalized CoV of Voronoi cell area in the Voronoi tessella-
tions of the user points. When C is equal to 1, the user distri-
bution forms a PPP. Performance metrics are evaluated in three
scenarios: macro-only network, pico-enhanced networks with
the number of picocells equal to 57 and 114 (on average, 1 and
2 picocells per macrocell). Picocells are deployed according to
a BPP in the macrocell covered area (as mentioned before,
since the total number of picocells are fixed, the distribution
of them is a conditional PPP, or equivalently, BPP [4]).

The metrics recommended in 3GPP [13] are used in the
simulation, which are the mean rate, median rate, and the
5% worst user rate. Because the overall density of users in
LGCP is kept constant, the mean user rate is proportional to
the sum throughout of the network, while the median user rate
separates users into two halves. The 5th percentile user rate
is a metric commonly used to indicate the rates of low-SINR
users, however, under non-uniform distribution of both traffic
demand and traffic supply, the users that belong to this tail-rate
user group may not necessarily be the low-SINR receivers, but
the low share-of-resource receivers.

As we can see from Fig. 3, Fig. 4 and Fig. 5, the above
mentioned three metrics all deteriorate significantly with the
increase in user spatial heterogeneity. This is due to the fact
that when users are more spatially heterogeneous, there is a
high chance that parts of the network will be highly congested,
resulting in very low user rates; while the other parts of the
network will be underused or even totally empty. This is true
for both macro-only networks and pico-enhanced HCNs where
picocells are randomly deployed. In terms of sensitivity, the 5th

percentile user rate is the most sensitive metric (curve goes
down most rapidly), as the higher user spatial heterogeneity
makes the share of resource for each user more divergent,
resulting in a lower 5th percentile rate.

C. small-cell Deployment Strategy

This part evaluates the network performance with respect
to user spatial heterogeneity under two different small-cell
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Fig. 5. 5th percentile of user rate versus user spatial heterogeneity under
different network configurations.

deployment strategies: 1) Random and uniform (BPP), and 2)
centroids of clusters obtained by cluster analysis. The number
of picocells is kept to 57 in this section. For cluster selection,
two criteria are compared: the number of users in the cluster
and the proposed objective function defined in (1).

As we can see from Fig. 6, in comparison to the BPP
strategy shown in the bottom curve (identical to the middle
curve in Fig. 3), the cluster center strategy with the proposed
objective function discussed in Section IV improves the mean
user rate by more than 50%. Besides, instead of decreasing
monotonically with the increasing user spatial heterogeneity,
the mean user rate increases first and then decreases when
cluster analysis is applied for choosing picocell locations. The
cluster center strategy performs better than the BPP strategy
because of two reasons: 1) By bringing small-cells to the
centers of the traffic demand, the load among cells becomes
more balanced; 2) the spectral efficiency is improved with
the distance between the transmitters and receivers shortened.
However, a higher user spatial heterogeneity (more or larger
user clusters) is beneficial to spectral efficiency improvement
with appropriately deployed small-cells, but may also make
the traffic load more imbalanced. When the traffic imbalance
caused by user spatial heterogeneity outweighs the capacities
of all the small-cells, the performance goes down. This obser-
vation gives us the insight that a certain degree of user spatial
heterogeneity can be explored by correlating the locations of
users and small-cells in HCNs.

D. Fairness Index

The widely used Jain’s index is evaluated to quantify
the rate fairness among all the users. Note that the fairness
evaluated here is different from the commonly used measure
that indicates whether users or applications are receiving a fair
share of the system resources. In this paper, we use Jain’s index
to measure the fairness of all users in the system in terms of
the rate. It is defined as

J (x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n ·∑n
i=1 x

2
i

, (2)

where n denotes the number of users and xi denotes the user
rate for user i. Figure 7 shows the fairness index versus user
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spatial heterogeneity under different network configurations.

The fairness index goes down monotonically when users are
more heterogeneously distributed in the marco-only networks,
and in HCNs where small-cells are randomly and uniformly
deployed (BPP); the Jain’s index is even worse in the latter.
The downwards trend is because of the fact that the increasing
spatial heterogeneity causes more resource imbalance. The
performance gap between the macro-only networks and HCNs
is as a result of the randomly located picocells which serve
only a small portion of the users, letting them reach high rates
(which in turn worsens the fairness index). Similar to Fig. 6,
when picocells are deployed based on the clustering algorithm
introduced in Section IV, the fairness index rises first and then
goes down with the increasing user spatial heterogeneity.

VI. CONCLUSION AND OUTLOOK

This paper investigates the impact of user spatial hetero-
geneity on network performance and develops a small-cell
deployment strategy based on the observed impact. The spatial
heterogeneity generated in this paper is scalable from homo-
geneous to extremely heterogeneous controlled by a single
parameter, and the level of the heterogeneity is measured
by a single non-negative real number. The numerical results

show that if the locations of the users and small-cells are
not correlated, network performance deteriorates significantly
when the users are more heterogeneously distributed. Using the
cluster analysis technique, the user cluster centers are obtained
from the non-uniform user points as the potential small-cell
locations. It is observed that if small-cells are deployed based
on the user spatial distributions, the performance of HCNs can
benefit from the increase in user spatial heterogeneity.

Due to the space limitations, results for finite user rate
demands and those taking the limited back-haul capabilities
of small-cells into account are not included in this paper.
The correlation among users and the cross-correlation between
the users and BSs can also be included in the user spatial
model [14]. Alternatively, in order to pushing the traffic de-
mand (user cluster) towards the traffic supply (small-cells), the
user-in-the-loop technique [15] can be used as a solution to
combat traffic imbalance problem in future wireless networks.
This is achieved by encouraging users to move to spots with
higher spectral efficiency or lower traffic load.
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