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Problem Definition:

= The performance of wireless networks depends highly on their
spatial configurations

= Stochastic geometry is increasingly popular in modeling nodes
spatial distributions

= The research community mainly focus on locations of base
stations; users are assumed to be uniformly ( = homogeneously)
distributed in the literature

= What is the Impact of user spatial heterogeneity on wireless
network performance, especially in the context of heterogeneous
cellular networks (HCNs)?

Contributions:

= Use log Gaussian Cox process to model heterogeneous user
spatial distribution

= (et network performance with respect to user spatial
heterogeneity

= Apply clustering analysis on user points to find locations for
small cell
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Log Gaussian Cox Process (LGCP)

¢ Cox process is a generalization of the PPP, also known as
Doubly Stochastic Poisson Process.

* The mtensity in Cox A 1s itself a stochastic process.

* In a PPP, for any bounded area B, the number of points in B is a
Poisson number with mean A - Ap

* In a Cox process, the number of points in B is a Poisson
number with mean [, A(s)ds.

« A Cox process is a LGCP if A(s) = exp(Y(s)), where
Y = {Y(s):s € R?} is a real valued Gaussian process.

* By changing the o in Y, the LGCP generates a wide range of
heterogeneities.

GC14-HetSNets 3/12



Model for User Spatial Heterogeneity

Realization of LGCP
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Model for User Spatial Heterogeneity
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The Impact of User Spatial Heterogeneity
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e Users are modeled with LGCPs independently with h

* The locations of macrocell sites are .
the locations of BSs.

DR T Ui ERITES @ [T HEE * The user spatial heterogeneity is measured by a
* Picocells are deployed randomly and P 8 y y

uniforml positive real number C, which is equal to 1 for PPP,
\_ v ) \_ sgreater than 1 for super-Poisson processes. y
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Cluster Analysis - K-means Algorithm

K-means algorithm is one of the most popular clustering algorithms

Algorithm Basic k-means Algorithm

1: Select k points as initial centroids.

2: repeat

3: Form k clusters by assigning each point to its closest centroid.
4 Recompute the centroid of each cluster.

until Centroids do not change.

[y |

e Cluster analysis groups data into clusters ’ . . .
such that objects in the same cluster are ‘L. . \
more similar to each other than to those 2 * e
in a different cluster. vt ..

* Itis a main task of data mining and has Y

played an important role in a wide variety
of fields. )
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Pre-processing and Post-processing
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Cluster Selection
. N

* Set K equals the number of planned small cells, after splitting (post-processing), we
got more than K clusters. How to select K clusters out of them?

* The straight forward way is to select K clusters that have the most points inside. Yet

a better way is to take the distance between users and macrocells into

consideration. We propose the objective function as
(m)
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Performance Evaluation
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Conclusion

O Contributions:

» \We generate heterogeneous user spatial heterogeneity by log Gaussian Cox process,
and investigate the impact of user spatial heterogeneity on HCNSs.

» The simulation results show that network performance deteriorates when users are
more heterogeneously distributed.

« By deploying small cells in the center of users hot-zone found by clustering analysis,
we provide insight that HCNs can benefit from a certain degree of user spatial
heterogeneity if the locations of small cells are strongly correlated to the centre of
user clusters.

O Outlook:

« Use user-in-the-loop technique to reduce user spatial heterogeneity so as to improve
network performance.

 Instead of same user rate demand, investigate different rate demand with different
properties, e.g., real-time and non-real-time, and their influences on user-in-the-loop.

GC14-HetSNets 11/12



&= Carleton

Thank you!
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