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Abstract—Future generation (5G and beyond) cellular net-
works have to deal not only with an extreme traffic demand
increase, but also an extreme level of heterogeneity in the distri-
bution of that demand in both space and time. Traffic modeling
in the time domain has been investigated well in the literature.
In the space domain, however, there is a lack of statistical models
for the heterogeneous User Equipment (UE) distribution beyond
the classical Poisson Point Process (PPP) model. In this paper, we
introduce a methodology for the generation and analysis of spatial
traffic which allows statistical adjustments. Only two parameters,
namely, Coefficient of Variation (CoV) and Correlation Coeffi-
cient, are adjusted to control the UE distribution heterogeneity
and correlation with Base Stations (BSs). The methodology is
applied to cellular networks to show the impact of heterogeneous
network geometry on network performance.

Index Terms—Statistical Modeling, Spatial Traffic Distribu-
tion, Stochastic Geometry, Point Process, Cellular Network.

I. INTRODUCTION

Due to the rapid proliferation of a broad range of wireless
devices such as smart phones and tablets with powerful pro-
cessing capabilities and ambitious data rate expectations, the
number of users relying on the wireless cellular infrastructure
for Internet connectivity, as well as the traffic demand per
user, are increasing dramatically while wireless resources
remain limited. Getting the maximum performance gain out of
these limited resources is the main focus of wireless cellular
research. Adjustable and realistic network traffic models in
the space domain (i.e., UE distribution in the network) and
the time domain (i.e., data rate demand for each UE over
time) play a significant role in characterizing and analyzing
the performance of a network as they provide traffic patterns
to test network behavior under various conditions.

Traffic modeling in the time domain has been investigated
well in the literature [1–6]. In the traditional voice-only
networks, the homogeneous Poisson models were sufficiently
accurate to model traffic in time. After the emergence of
different applications such as video and data with variable
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data rate demands, Poisson modeling has become insufficient
to capture traffic statistics [1], as such various heterogeneous
(Super-Poisson) traffic models based on Hidden Markov Mod-
els (HMM) and Markov Modulated Poisson Process (MMPP)
[2], as well as other methods, have been proposed in the
literature and used for performance analysis. The basic idea
behind these models is to generate traffic with variable rate
over time which is controlled by a Markovian process.

Traffic Generators (TGs) like MMPP and HMM receive a
number of Input Parameters (TGIPs) to generate traffic with
various statistical properties. For instance, MMPP receives the
number of Markov chain states, state transition matrix and
traffic rate at each state as its TGIPs. Therefore, a main track
of research in time domain is to fit TGIPs to generate traffic
patterns with similar statistical properties to a given real traffic
trace [6–8]. This problem is called parameter fitting.

In the space domain, on the other hand, the unrealistic
homogeneous Poisson modeling (e.g., in IMT-Advanced eval-
uation guidelines [9]) is still commonly used by researchers for
UE distribution and performance analysis of wireless cellular
networks. There are only few works in the literature which
consider adjustable heterogeneous or BS-correlated traffic
modeling in the space domain [10–13]. None of the existing
papers, however, considers the statistical properties of traffic
and parameter fitting. The modeling methodology used in
the existing papers blindly changes the TGIPs to generate
traffic patterns with unknown statistics and measures network
performance metrics at the output. We are not aware of any
research in the literature that considers the statistical modeling
of spatial traffic.

As a first step to fill this void, the main contributions of this
paper are as follows: 1) A spatial traffic modeling approach
with adjustable statistical properties, i.e., heterogeneity and
correlation with BSs, is introduced which regulates spatial
traffic with only two parameters. 2) The main statistical prop-
erties of the spatial traffic distribution are characterized and
formulated. It is shown that besides first-moment statistic (i.e.,
mean density), the normalized second-moment statistic (CoV)
and joint moment statistics with BSs (specifically correlation
coefficient), can be used to describe UE distribution with
sufficient accuracy. 3) Stochastic geometry is used to generate



Fig. 1. The desired statistical properties of traffic as the modeling inputs are translated to the appropriate TGIPs and traffic with known
characteristics is generated to be used for network performance analysis (lower box). The look-up table for translation is generated in advance
via off-line calculations (upper box).

realistic and adjustable traffic models with desired properties,
and the effects of realistic traffic modeling on the performance
of wireless cellular networks is illustrated.

The remainder of this paper is organized as follows: Sec-
tion II introduces the proposed traffic modeling methodology.
Spatial traffic statistics are investigated in Section III. Section
IV describes the traffic generation method used in this paper.
Experimental results are presented in Section V, and the paper
is concluded in Section VI.

II. STATISTICAL TRAFFIC MODELING METHODOLOGY

Figure 1 demonstrates the proposed traffic modeling
methodology in the space domain. A similar methodology
has been used in the literature for traffic modeling in the
time domain [6]. The desired statistical properties of traffic
as the modeling inputs are translated to the appropriate TGIPs
(parameter fitting) and traffic with known characteristics is
generated to be used for network performance analysis. The
translation look-up table is developed in advance by inversion
of the map from TGIPs to measured statistical properties.

For the measurement of traffic patterns, first, an appropriate
measure must be selected. In the time domain, Inter-Arrival
Time (IAT) is the most popular and well accepted measure. In
[14], equivalent measures for statistical measurement of spatial
traffic are introduced by the same authors. It is shown that
when modeling UE distribution as a two-dimensional (2D)
point pattern in the space domain, Voronoi cell areas (V ) and
Delaunay cell edge lengths (E) associated with the points can
be measured as equivalents of IAT in the time domain.

Perfect modeling requires all statistics including the proba-
bility distribution functions (PDFs) and auto-correlation func-
tions of traffic measure to match between the generated traffic
patterns and the real traffic traces. However, a perfect match
is not practical and requires extremely complicated models
with a very large number of parameters. Therefore, simplified
models are commonly used which only consider the first few

moments of traffic. In the time domain, usually the mean,
CoV, and the third moment as well as auto-correlation are
considered to match with the real traffic trace. Spatial traffic
statistics are described in Section III.

III. SPATIAL TRAFFIC STATISTICS

Spatial traffic in wireless cellular network can be modeled as
a 2D point pattern U ∈ R2 which is generated by a generator
point process Φ

U
with density function Λ(x, y) at any point

(x, y) ∈ R2. In this paper, the mean, µ
E

, and the CoV,

C
E

=
σ

E

µ
E

, (1)

are the desired statistics of traffic where E is the Delaunay cell
edge lengths associated with each point and σ

E
is the standard

deviation of E (the third-moment and auto-correlation are
stated as future extensions in Section VI). It is shown in
[14] that for a Poissonian distribution, the normalized CoV
is C = 1, for a sub-Poisson distribution (more homogeneous
than Poisson) 0 ≤ C ≤ 1, and for a super-Poisson distribution
(more heterogeneous than Poisson) C ≥ 1.

Along with the mean and the CoV, a very important
statistical property of traffic in space which affects the network
performance and does not exist in the time domain is the bias
or dependence of the UE distribution to the BS distribution.
BS locations in wireless cellular network can be modeled by
a 2D point pattern B ∈ R2, generated by a point process Φ

B
,

whose Voronoi tessellation divides the entire field into Voronoi
cells associated with each BS consisting of all area closer to
that BS than to any other. A sample realization is shown in
Fig. 2(a).

To measure the joint distribution of UEs and BSs, every
point (x, y) in the field is associated with a Potential value
P (x, y) ∈ [−1,+1]. The P function must have the following
properties:
• P (x, y) = +1 for cell-center points,



(a) BS Voronoi tessellation (b) Potential distribution

Fig. 2. Voronoi tessellation of BSs divides the whole field into cells
associated with each BS consisting of all points closer to that BS
than to any other. Every point in the field is then associated with a
Potential value between −1 and +1.

• P (x, y) = −1 for Voronoi cell-edge points,
•
∫∫

A
P (x, y)dxdy = 0,

where A is the Voronoi cell area. A simple polynomial
function which has the above mentioned properties is used
in this paper:

P (x, y) =
−2d(x, y)2

D(x, y)2
+ 1. (2)

In the above, d(x, y) is the distance of the point (x, y) to
the closest cell-center, and D(x, y) is the length of the line
connecting the closest cell-center to the cell-edge through
point (x, y). Figure 2(b) illustrates the Potential distribution
associated to the Voronoi tessellation in Fig. 2(a).

Using the Potential function, the joint moments

E
[
P iΛj

]
, i, j ≥ 0, (3)

and joint central moments

E
[
(P − µ

P
)i(Λ− µΛ)j

]
, i, j ≥ 0, (4)

can be calculated, where µ
P

is the mean value of P , µΛ is the
mean value of UE density Λ, and E [x] is the expected value
of x [15]. To have a normalized measure, we use correlation
coefficient which is defined as

ρ =
σ

PΛ

σ
P
σΛ

, (5)

where
σ

PΛ
= E [(P − µ

P
)(Λ− µ

Λ
)] (6)

is the covariance of P and Λ, σ
P

is the standard deviation of
P , and σ

Λ
is the standard deviation of Λ. So the ρ value can

be calculated as

ρ =

∫∫
(Λ(x, y)− µΛ)(P (x, y)− µP )dxdy√

(
∫∫

(Λ(x, y)− µΛ)2dxdy)(
∫∫

(P (x, y)− µP )2dxdy)
.

(7)
For a UE pattern U (a realization of Φ

U
), the correlation

coefficient is defined as

ρ =

∑
u∈U Pu

|U |
, (8)

where Pu is the Potential value at point u and |U | is the
number of points in U . A pattern with ρ = +1 means that all
UEs have gathered at the cell-centers, a pattern with ρ = 0
means that UE distribution is independent from BSs, and a
pattern with ρ = −1 means that all UEs have gathered at the
cell-edges.

IV. SPATIAL TRAFFIC GENERATION

Various point processes can be used as TG to model UE
distribution in space. A thorough study of different point
processes can be found in [16]. To model the clustering
properties of UEs, cluster point processes are used in this
paper. A cluster point process is generated by applying a
clustering perturbation, defined below, on a point process.

Clustering Perturbation:
“Clustering perturbation of a given (parent) process
Φ consists of independent replication and displace-
ment of points of Φ, with the number of replications
of a given point having distribution Υ and the
replicas’ locations having distribution Ψ. All replicas
of an original point form a cluster” [16].

With combination of different parent processes, different
replication distributions and different displacement distribu-
tions, various point processes with different properties can be
generated. A list of popular cluster point processes can be
found in [16]. To model the dependence between UE locations
and BS locations, Shot-Noise Cox point processes, defined
below, are used in this paper.

Shot-Noise Cox Point Processes:
“Shot-Noise Cox point processes are clustering per-
turbations of arbitrary parent processes with replica-
tion kernel Υ having Poisson distribution” [16].

The displacement kernel can be any distribution. Rayleigh
distribution with uniform direction around original point is
used in this paper. To generate parent processes with various
correlation coefficient values with BSs, starting with a homo-
geneous PPP with mean density µ

Λ
, we define a heterogeneous

UE distribution with density function defined as

Λi(x, y, b) = µ
Λ
wi(x, y, b), (9)

where i is the index for BSs, b is the bias parameter of UEs
to the BSs ranging from b = −1 (all UEs gathered at cell-
edge) through b = 0 (Poissonian distribution) to b = +1
(all UEs gathered at cell-center), and wi(x, y, b) is the weight
of the point (x, y). The function w must have the following
characteristics:

1) If b = 0, then

wi(x, y, 0) = 1, ∀x∀y; (10)

this results in a Poissonian distribution for Φ
U

.
2) If b = 1, then

wi(x, y, 1) = Aiδ(x− xci)δ(y − yci), ∀x∀y; (11)

this results in all UEs gathering at cell-centers.



(a) K = 1, b = −0.9 (b) K = 1, b = −0.5 (c) K = 1, b = 0 (Poisson) (d) K = 1, b = 0.5 (e) K = 1, b = 0.9

(f) K = 50, b = −0.9 (g) K = 50, b = −0.5 (h) K = 50, b = 0 (i) K = 50, b = 0.5 (j) K = 50, b = 0.9

Fig. 3. Sample UE distributions with various statistical characteristics: Increasing b from −1 to +1, UEs’ bias is changed from cell-edge to
cell-center and increasing K from 1 to 50, UEs’ clustering changes from Poissonian homogeneous to heterogeneous clustered scenarios.

3) If b = −1, then

wi(x, y,−1) =

{
Ai

|ei| , (x, y) ∈ ei,
0, otherwise;

(12)

this results in all UEs gathering at cell-edges.
In the above, Ai is the Voronoi cell area of BS Bi, (xci , yci)

is the cell-center, δ(.) is the Dirac delta function, ei is the set
of Voronoi cell-edge points, and |ei| is the perimeter of the
Voronoi cell area.

Many different functions can be defined for w which have
the above mentioned characteristics. In this paper, we choose
wi(x, y, b) as

(1 + b)N(d(x, y), 0, 1
|b| − 1)

+(1− b)N(d(x, y), D(x, y), 1
|b| − 1), b 6= 0,

1, b = 0,

(13)

where N(d, µ, σ) is the PDF value at d using the normal
distribution with mean µ and standard deviation σ.

Finally, the parent pattern is normalized to have N
C

points
which represent the UE clusters.

After generating the parent process, each point in the parent
process is replicated k times, where k ∼ Poisson(K). K is
the mean number of UEs per cluster which determines the
clustering property of the process, and is defined as

K = N
U
/N

C
, (14)

where N
U

is the desired number of UEs. Figure 3 shows
sample patterns with various b and K values.

To summarize, N
U

, K, and b are the TGIPs which internally
regulate the desired spatial traffic statistical properties µ, C,
and ρ, respectively.

V. SIMULATION RESULTS

Section V-A presents the simulation results for traffic
measurement and modeling, and Section V-B presents the
simulation results for network performance analysis.

A. Traffic Modeling Results

The first step towards statistical modeling of spatial traffic
is to measure the statistical properties of traffic patterns
generated by the TG for various values of the TGIPs. In a
1000 m × 1000 m square field, 19 BSs are assumed to be
distributed Poissonian with a minimum distance limit of 200
m between any two BSs. The mean UE density µΛ is fixed to
be 4.75 × 10−4 UEs/m2. So, 475 UEs (25 UEs per cell) are
distributed in the field on average. UEs are distributed using a
shot-noise Cox point process whose input parameters are b (the
bias of UEs to the BSs) and K (the mean number of UEs per
cluster) as defined in Section IV. The traffic statistics which
are measured are C

E
(the CoV of the Delaunay cell edge

lengths of the UEs) and ρ (the correlation coefficient between
UEs and BSs). Figures 4 and 5 illustrate the measured traffic
statistics (ρ and C) for different values of the TGIPs (b and
K).

The next step for modeling traffic is to use the inverted map
as look-up tables and generate traffic with desired statistics.
Figures 6 and 7 show the measured traffic statistics versus the
desired traffic statistics.

As shown in the results, the measured traffic reflects the
desired statistics accurately enough, despite the fact that only
the first two moments and the correlation coefficient are fitted.



Fig. 4. Correlation coefficient is measured for various values of
TGIPs. The results suggest that correlation coefficient is not affected
by the parameter K. As a result, the map is invertible.

Fig. 5. CoV is measured for various values of TGIPs. Both K and b
affect traffic CoV. For K = 1 and b = 0 the distribution is Poisson
and C = 1 as expected.

Fig. 6. The horizontal axis shows the desired correlation coefficient
and the vertical axis shows the range of measured correlation coef-
ficients from traffic patterns generated by TGIPs derived from the
look-up tables (ρ is averaged for K = 1 to K = 50).

Fig. 7. The horizontal axis shows the desired CoV and the vertical
axis shows the range of measured CoVs from traffic patterns gener-
ated by TGIPs derived from the look-up tables (C is averaged for
b = −1 to b = +1).

B. Performance Analysis Results

A static snapshot-based system-level simulation is used in
this paper. The channel follows the model in IMT-Advanced
guidline [9, 17] in which a Line-Of-Sight (LOS) and Non-
Line-Of-Sight (NLOS) power-law path-loss model is applied.
The downlink signal experiences log-normal shadowing but
fast-fading is averaged out. Simulation parameters are listed
in Table I.

TABLE I. Simulation parameters based on IMT-advanced [9].

The mean UE rates for different values of traffic CoV is
shown in Fig. 8 and the mean UE rates for different values of
traffic correlation coefficient with BSs is shown in Fig. 9. As
expected, with increase in traffic heterogeneity, mean user rate
in the network is decreased because in an heterogeneous traffic
situation some BSs are overloaded and have to share resources



Fig. 8. With increase in traffic heterogeneity, the mean UE rate is
decreased. The results are shown for ρ = 0.

Fig. 9. With increase in traffic bias towards cell-edges, the mean UE
rate is decreased and with increase in traffic bias towards BSs, the
mean UE rate is increased. The results are shown for C = 1.

among a large number of user while other BSs don’t use their
full capacity and remain underloaded. Traffic with positive
correlation coefficient with BSs results in higher user rates
because users have higher Signal-to-Noise-plus-Interference-
Ratio (SINR) and traffic with negative correlation coefficient
with BSs results in lower user rates.

VI. CONCLUSION

In this paper, traffic modeling in the space domain was
investigated and a statistical approach was introduced. Only
two parameters were used to regulate heterogeneity and cor-
relation of traffic to the BSs. A clustering point process was
used to generate realistic and adjustable spatial traffic. As a
sample application, the effects of realistic traffic modeling on
the performance of wireless cellular networks was illustrated.
This work has numerous extensions. It is important to measure
auto-correlation as a fundamental statistic which affects perfor-
mance. It is also essential to consider other point processes and
other functions for traffic generation. Various techniques such
as the User-In-the-Loop (UIL) [18] can be used to improve
network performance for heterogeneous and BS-correlated
traffic. Finally, the joint time and space modeling is required
to obtain an even more realistic traffic model.
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