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Trade-offs in Sum-Rate Maximization and Fairness
in Relay-Enhanced OFDMA-based Cellular

Networks
Davut Incebacak, Halim Yanikomeroglu, and Bulent Tavli

Abstract—Routing, subchannel scheduling, and power alloca-
tion are generally treated as separate problems in relay-enhanced
OFDMA-based cellular networks. They are mostly modeled using
non-linear constraints to maximize either sum rate or minimum
rate. Although separation of problems simplifies modeling, it
can lead to suboptimal solutions which can degrades network
efficiency (i.e., low sum rate or low minimum rate). Also, models
that include non-linear constraints generally belong to the NP-
hard class. In this study, we jointly optimize routing, subchannel
scheduling, and power allocation in relay-enhanced OFDMA-
based cellular networks through a novel Linear Programming
(LP) framework employing discrete power levels. Our framework
is comprised of LP models for the following problems: Sum Rate
Maximization (SRM ), Max-Min Fairness (MMF ), and Joint
Sum Rate Maximization and Max-Min Fairness (JSRM3F ). We
investigate the trade-offs in sum rate maximization and max-
min fairness in terms of achievable maximum data rates and
subchannel sharing by numerical evaluations of the LP models.
We show that maximum data rates obtained with discrete power
allocation are near-optimal even with a few discrete power levels.
We provide upper bounds for joint maximization of sum rate and
minimum rate. Furthermore, the results of this study reveal that
fairness has a significant impact on subchannel sharing.

Index Terms—cellular networks, linear programming, power
level, fairness.

I. INTRODUCTION

As the demand for high data rates increases in cellular

networks, optimum resource allocation gains more importance.

Current systems such as LTE [1] use orthogonal frequency di-

vision multiple access (OFDMA) as a multiple access scheme

to provide fast and reliable data services. OFDMA enables

efficient usage of resources by dividing the broadband channel

into multiple narrowband subchannels. Multiple users are able

to transmit simultaneously on different subcarriers that are

orthogonal to each other.

Using relays is expected to enhance the performance of

cellular networks [2]. However, the presence of relays compli-

cates the resource allocation process. Relaying requires routing

and scheduling on top of OFDMA which also needs optimum

power allocation on each subcarrier to achieve the desired rate

for each user. Channel gains of subcarriers for each user are,

generally, non-identical and a subcarrier with a poor channel
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gain for one user may be in a good state for another user

in the network. Hence, multiuser diversity can be exploited

in conjunction with resource allocation. The sum rate can be

maximized by scheduling each subcarrier to the user with the

best channel gain and routing data accordingly. This solution

is known to result in unfairness for users with prolonged bad

channel conditions.

The literature on subcarrier allocation, transmission policy

optimization, rate maximization, routing, and fairness for

OFDMA systems is extensive and, thus, is beyond the scope of

our work. However, we provide a brief literature overview by

succinctly summarizing the papers most relevant to our study.

In [3], the optimum transmission policy is investigated to

maximize throughput with a finite number of power levels

and code rates for discrete adaptive transmission systems.

Optimum transmission policy includes channel state space

partition, power and rate allocation. In [4], maximization of

uplink communication sum rate of a single cell is investigated

under the assumption of binary power levels. It was shown

that the optimum power allocation is either "on" or "off".

In [5], OFDMA subcarrier allocation in chunks are studied

over downlink channels. Binary integer optimization models

are developed to investigate maximizing sum rate of downlink

channels by allocating subcarriers in chunks. Discrete rates

and discrete power levels are used in their binary optimization

models. In [6], the problem of maximizing weighted sum rate

is studied for downlink channel in a multi-cell data network.

The base station adjusts the transmit power by considering

mitigation of inter-cell interference and using coordinated

scheduling and discrete power control. In [7] and [8], joint

subchannel and power allocation are studied in relay-enhanced

cellular networks. In [7], a heuristic algorithm is developed

to maximize sum rate. The problem is solved in two steps:

1) Subchannel allocation and 2) Power allocation. In [8], a

stochastic optimization problem is formulated to maximize

average sum rate and provide minimum rates to mobile users.

In [9], optimal design and efficiently computable bounds are

investigated to maximize a weighted-sum rate of the data

communicated over a generic OFDMA wireless network by

determining optimal data routes, subchannel schedules, and

power allocations. First, the problem is modeled as a mixed

integer nonlinear program then relaxed to a convex optimiza-

tion problem by allowing sharing the subchannels in time.

In [10], max-min fairness problem is studied to maximize

the capacity of the worst node using flat transmit power.

In [11], a two-level Lagrangian dual decomposition method is
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developed for efficient solution of max-min fairness problem.

Generally, routing, subchannel scheduling, and power al-

location have been considered separately for the solution of

sum rate maximization or max-min fairness. Better network

performance can be obtained by jointly optimizing multiple

functionalities [12]. In this paper, we study the trade-offs in

sum rate maximization and max-min fairness by developing

novel problem formulations using Linear Programming (LP).

In this paper, our contributions are as follows:

• We jointly optimize routing, scheduling and power alloca-

tion in relay-enhanced OFDMA-based cellular networks

using LP with discrete power levels.

• We develop LP models for the following problems: Sum

Rate Maximization (SRM ), Max-Min Fairness (MMF ),

and Joint Sum Rate Maximization and Max-Min Fairness

(JSRM3F ).

• JSRM3F model gives the upper bound for joint maxi-

mization of sum rate and minimum rate in the network.

• We show that maximum data rates obtained with discrete

power allocation are near-optimal even with a few num-

ber of discrete power levels especially when fairness is

considered.

• We investigate subchannel sharing characteristics of

SRM , MMF , and JSRM3F . We show that subchannel

sharing characteristics of relay-enhanced cellular net-

works are directly related to fairness.

II. MODEL

We consider an OFDMA-based cellular network with N
nodes and a single base station. The network topology is

represented by a directed graph, G = (V,A), where V is

the set of all nodes and the base station which is defined as

node-0. We also define set M which includes all nodes except

node-0 (i.e., M = V\{0}). A = {(i, j) : i ∈ M, j ∈ V − i, } is

the ordered set of arcs. Note that the definition of A implies

that no node sends data to itself. Each node-i has a data rate of

si to be routed through the base station using K subchannels

(k ∈ K ⇒ {1, ...,K}). While transmitting, each node can use

different power levels between 0 and Pi where Pi is the power

budget of node-i (0 < p1 < p2 < ... < pt < ... < pT = Pi).

The number of power levels is defined as T and the set of

power levels is defined as P (pt ∈ P). Achievable data rate

between node-i and node-j on subchannel-k with power level

pt is represented as fk,pt

i,j . The indicator variable ck,p
t

i,j shows

whether node-i sends data to node-j using subchannel-k with

power level pt or not. hk
i,j denotes the channel gain between

node-i and node-j over the subchannel-k. In the considered

network, each node-i can be in the role of source, or relay

(decode and forward). A zero-mean additive white gaussian

noise with variance N0 is added in each received signal. The

total bandwidth of the network is W0 and each subchannel has

the same bandwidth of W = W0/K.

First, we develop an LP model with the objective of

maximizing the sum rate of the network (RT =
∑

i∈M si). The

network flow is modeled in the form of a series of constraints

presented in Fig. 1. All system variables with their acronyms

and descriptions are presented in Table I.

Maximize RT =
∑

i∈M si
Subject to:

fk,pt

i,j = Wlog2

(
1 +

pt|hk
i,j |2

WN0

)
,

i ∈ M, j ∈ V, k ∈ K, pt ∈ P, (1)∑
j∈V

∑
k∈K

∑
pt∈P

ck,p
t

i,j ≤ 1, i ∈ M, (2)

∑
k∈K

∑
pt∈P

⎛
⎝∑

j∈V

ck,p
t

i,j fk,pt

i,j −
∑
j∈W

ck,p
t

j,i fk,pt

j,i

⎞
⎠− si = 0,

i ∈ M, (3)

∑
j∈V

∑
k∈K

∑
pt∈P

ck,p
t

i,j pt − Pi ≤ 0, i ∈ M, (4)

pt ∈ {0, p1, p2, ..., pt, ..., pT = Pi}, (5)

si ≥ 0, i ∈ M, (6)

ck,p
t

i,j ∈ {0, 1}, i ∈ M, j ∈ V, k ∈ K, pt ∈ P. (7)

Fig. 1. The MBIP model (SRMb).

TABLE I
TERMINOLOGY FOR MBIP AND LP MODELS

Variable Description
N Number of nodes

fk,pt

i,j Achievable data rate with power level pt on
subchannel-k between node-i and node-j

si Data rate of node-i
Pi Power budget of node-i

ck,p
t

i,j Indicator variable determines if subchannel-k on
flow from node-i to node-j is used or not with
power level pt

hk
i,j Channel gain between node-i and node-j over

subchannel-k
pt Power level between 0 and Pi

K Number of subchannels

Rmin Minimum data rate in the network

max(Rmin) Achievable maximum value of Rmin

RT Sum-rate of the network

max(RT ) Achievable maximum value of RT

V Set of nodes, including the base station as node-0

M Set of nodes, except the base station (node-0)

A Set of edges

T Number of power levels

p(�) Path loss component

S� Shadowing component

W Bandwidth of each subchannel

W0 Total bandwidth of the network

P Set of power levels

The data rate between node-i and node-j over subchannel-
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k is determined by the allocated power to subchannel-k.

According to the channel gain of node-i, different data rates

can be achieved for each power level pt. In constraint (1),

each achievable data rate with power level pt on subchannel-

k between node-i and node-j is defined in the parameter fk,pt

i,j .

Note that as the number of power levels goes to infinity, power

allocation with discrete power levels converges to the contin-

uous power allocation. Although continuous power allocation

can be used to obtain the optimum data rates, it makes the

problem non-linear and hence much more difficult to solve.

Furthermore, adjusting the power level in a continuum is

an unrealistic assumption (i.e., modern cellular systems are

equipped with transceivers that can operate at a finite number

of discrete power levels). As we show later, we can get near-

optimum data rates using few discrete power levels. In the

OFDMA-based network scenario, interference is prevented by

using each subchannel once in the network as enforced in

constraint (2). Constraint (3) determines routing operations in

the network and known as the flow conservation constraint

which is satisfied for all nodes. If node-i is not a relay then

the sum of outgoing flows is the total amount of data rate

injected into the network by node-i. If node-i is a relay node,

then the sum of outgoing flows from node-i equals to the sum

of incoming flows to node-i plus the generated data at node-

i. Constraint (4) limits the total transmit power used by each

node by the total power budget Pi. Constraint (5) determines

the set of power levels. Constraint (6) is the nonnegativity

constraint for the variable si. ck,p
t

i,j determines the usage of

subchannel-k with power level pt between node-i and node-

j. Hence, constraint (7) is a binary scheduling constraint and

ck,p
t

i,j can be considered as a binary scheduling variable. Setting

ck,p
t

i,j equal to 1 determines that subchannel-k is assigned to

node-i to send data to node-j during the entire communication

interval using power level pt. Setting ck,p
t

i,j equal to zero

indicates that node-i doesn’t use subchannel-k to transmit data

to node-j with power level pt.
We called the model in Fig. 1 as Sum-Rate Maximiza-

tion with binary scheduling variables (SRMb). Since ck,p
t

i,j

is binary, SRMb is a Mixed Binary Integer Programming

(MBIP) problem. In general, MBIP problems are in the NP-

hard class due to their computational complexity [13]. If ck,p
t

i,j

is used as a binary variable, each subchannel can only be

used by one node. Allowing ck,p
t

i,j to lie in the interval [0, 1]

and satisfying constraint (2), ck,p
t

i,j can be interpreted as a

continuous scheduling variable. In this case, ck,p
t

i,j works as

a time sharing parameter and enables node-i to send data to

node-j using subchannel-k with power level pt for a fraction

ck,p
t

i,j of communication interval which can be expressed as

ck,p
t

i,j ∈ [0, 1], i ∈ M, j ∈ V, k ∈ K, pt ∈ P. (8)

By replacing constraint (7) with constraint (8) in SRMb

model, we developed Sum-Rate Maximization with continuous

scheduling variables (SRMc). Note that since ck,p
t

i,j is not

binary, SRMc is an LP model. LP models whose variables

take continuous values are relatively easier to solve.

Since our objective is to maximize RT in SRMb and SRMc

Fig. 2. Illustration of Rmin and RT values with conflicting objectives and
expected values of α and β with joint optimization of Rmin and RT .

models, nodes with low channel gains may not get as much

resources as nodes with high channel gains. This unequal

resource distribution results in unfairness among nodes. To

distribute resources fairly among nodes, we, in constraint (9),

introduce fairness parameter Rmin which determines mini-

mum required data rate for each node as

si ≥ Rmin, i ∈ M. (9)

Using constraints (1) - (6), (8), and (9), we develop MMF
model with the objective of maximization of Rmin.

As depicted in Fig. 2, objectives of SRMc and MMF
are conflicting. If our objective is only maximizing RT , some

of the nodes in the network can get less data rate. In some

cases they cannot get any data rate (Rmin = 0). Hence, Rmin

value can be lower than the achievable maximum value of

Rmin (max(Rmin)). On the other hand, if our objective is

only maximizing Rmin, RT can be lower than the achievable

maximum value of RT (max(RT )). In order to investigate

the trade-offs in maximizing RT and Rmin, two additional

constraints are introduced as

si ≥ αmax(Rmin), ∀i ∈ M, (10)∑
i∈M

si ≥ βmax(RT ) (11)

by getting the values of max(Rmin) and max(RT ) from the

SRMc and MMF models. α and β in (10) and (11) are con-

trol variables for setting the minimum per node data rate and

minimum aggregate data rate, respectively. Using constraints

(1) - (6), (8), (10), and (11), we construct JSRM3F model

that jointly maximizes RT and Rmin.

III. ANALYSIS

We use GAMS (General Algebraic Modeling System) for

the numerical analysis of the MBIP and LP models. GAMS

consists of high-performance solvers for solving the MBIP and

LP models efficiently. Hence, when we solve our MBIP and

LP models using GAMS, one of these solvers is used to obtain

the best solution.

We investigate scenarios in which N nodes are randomly

deployed in a 100 m x 100 m square area. Power budget for

all nodes is the same (Pi = 10 dBm or Pi = 20 dBm) for a

given scenario. The total number of power levels is 32 and the

number of subchannels is equal to 60. The parameters used in

the analysis are presented in Table II.
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TABLE II
PARAMETERS USED IN THE ANALYSIS

Parameter Value
Network area 100 m X 100 m

N 20, 30

Pi 10 dBm, 20 dBm

K 60

W0 20 MHz

fc 3.4 GHz

T 1 to 32

1 2 4 8 16 32
100

150

200

250

300

350

400

450

500

550

Number of Power Levels

D
at

a 
R

at
e 

(M
bp

s)

SRMc:N=20,Pi=10dBm
SRMc:N=20,Pi=20dBm
SRMc:N=30,Pi=10dBm
SRMc:N=30,Pi=20dBm
SRMb:N=20,Pi=10dBm
SRMb:N=20,Pi=20dBm
SRMb:N=30,Pi=10dBm
SRMb:N=30,Pi=20dBm

Fig. 3. Sum rates as a function of the number of power levels in the SRMc

and SRMb models.

We consider an IMT-Advanced scenario [14] in which the

total bandwidth and the thermal noise power density are set to

20 MHz and -174 dBm/Hz, respectively. The channel gains of

subchannels are obtained by assuming that the subchannels

experience the standard quasi-static frequency-flat Rayleigh

fading with log-normal shadowing and pathloss components.

As in [9], the subchannel gains are calculated by

|hk
i,j |2 = 10−0.1S�−0.1p(�)|h′k

i,j |2 i ∈ M, j ∈ V, k ∈ K, (12)

where S� is a Gaussian distributed random variable with 0

dB mean and a standard deviation of σs = 4 dB representing

the shadowing component. p(�) is the path loss component

and modeled as p(�) = 43.3log10(dl) + 11.5 + 20log10(fc)
where dl is the distance between two nodes in meters and

fc is the carrier frequency in GHz which is set to fc = 3.4

GHz. |h′k
i,j |2 is a zero-mean unit-variance complex Gaussian-

distributed random variable and corresponds to the Rayleigh

fading component in the channel model. Each problem is

solved for 50 deployments and the results are averaged. We

analyze data rate and channel sharing characteristics for the

SRM , MMF and JSRM3F models.

We first study the maximization of sum rate with the SRMb

and SRMc models. In Fig. 3, the sum rates (Mbps) as a

function of number of power levels are presented for N = 20
and N = 30 cases with Pi = 10 dBm and Pi = 20 dBm.

We observe that the sum rates obtained by employing the

SRMb and SRMc models are almost the same and that

the sum rate increases as the number of power levels, the

1 2 4 8 16 32
0

2

4

6

8

10

12

Number of Power Levels

D
at

a 
R

at
e 

(M
bp

s)

N=20,Pi=10dBm

N=20,Pi=20dBm

N=30,Pi=10dBm

N=30,Pi=20dBm

Fig. 4. Minimum rates as a function of the number of power levels in the
SRMc model.

number of nodes, and the power budget of nodes increase.

However, once the utilized number of power levels exceeds

8, the increase in the sum rates becomes very low. In other

words, we can approach the maximum sum rates achieved by

continuous power allocation using discrete power levels which

is a typical case of diminishing marginal gains. For example,

when the number of power levels increases from 1 to 2, 2

to 4, 4 to 8, 8 to 16, and 16 to 32, the rates of increase in

the sum rate are 88.67%, 10.18%, 4.12%, 2.93%, and 2.09%,

respectively, for N=30, Pi=20 dBm.

In Fig. 4, the minimum rates in the network are presented

as a function of the number of power levels for the SRMc

model. When N=20 and N=30, in all cases, there is at least

one node that is not able to send data to other nodes or to

the base station (Rmin = 0) after the number of available

power levels exceeds 8 and 4, respectively. Minimum date rate

increases up to 11.78 Mbps for N=20, Pi=20 dBm. The reason

for the lower minimum data rate for higher number power

levels is that, with a larger degree of freedom for power level

assignment, it is more likely to utilize the power budget of

certain nodes with better channels to maximize the aggregate

rate and to deny some nodes to inject data into the network. If

the number of power levels are too few then the opportunity

to fine tune the transmission power assignment is very limited.

In Fig. 5, the achievable maximum of the minimum data

rates is illustrated by using the MMF model. As the number

of power levels increases from one to four, minimum data rates

increase, however, as the number of power levels exceeds four,

the data rates stay constant. For example, when the number

of power levels increases from 1 to 2, 2 to 4, 4 to 8, 8 to 16,

and 16 to 32, the rates of increase in the minimum data rates

are 89.31%, 9.49%, 0.16%, 0.03%, and 0.01%, respectively

for N=30, Pi=20 dBm.

In Fig. 6, the sum rates obtained by using the MMF model

are presented as functions of the number of power levels. As

in Fig. 5, the sum rates increase as the number of power level

increases, however, as the number of power levels exceeds

four, the rate of increase in the minimum data rates goes to
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Fig. 5. Minimum rates as a function of the number of power levels in the
MMF model.
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Fig. 6. Sum rates as a function of the number of power levels in the MMF
model.

zero.

We can conclude from Fig. 3 and Fig. 5 that the maximum

data rates obtained with discrete power allocation are near-

optimal even with a few discrete power levels. Indeed, for the

MMF model more than four power levels are not necessary

at all.

Sum rates obtained with SRMc model are 24.47%, 19.99%,

23.93%, and 19.80% higher than the sum rates obtained with

the MMF model using 16 power levels with parameter sets

{N=20, Pi=10 dBm}, {N=20, Pi=20 dBm}, {N=30, Pi=10

dBm}, and {N=30, Pi=20 dBm{, respectively. On the other

hand, the minimum data rates obtained with the SRMc model

using 8 power levels increase from 0.81 Mbps to 12.22 Mbps,

from 0.98 Mbps to 21.83 Mbps, from 0 to 12.28 Mbps, and

from 0 to 14.64 Mbps when the MMF model is employed

for data sets {N=20, Pi=10 dBm}, {N=20, Pi=20 dBm},

{N=30, Pi=10 dBm}, and {N=30, Pi=20 dBm}, respectively.

Hence, significant gains in the minimum data rate is achieved

by relatively modest sacrifices from the aggregate rate by the

MMF model.

N=20,Pi=10dBm N=20,Pi=20dBm N=30,Pi=10dBm N=30,Pi=20dBm
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Fig. 7. Sum rates as a function of the number of nodes and the power
budgets of nodes in the JSRM3F model with 16 power levels.
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Fig. 8. Minimum rates as a function of the number of nodes and the power
budgets of nodes in the JSRM3F model with 16 power levels.

In the SRMc model, the minimum rate is sacrificed for the

maximization of the aggregate data rate whereas in the MMF
model the aggregate rate is sacrificed for the sake of providing

a minimum level of data rate to all nodes in the network. In

fact, both of these models lie at the opposite directions of the

tradeoff curve. An interesting question at this point is: Can we
find a middle ground between these two extremes? The answer

for this question comes in the form a new model: JSRM3F .

In the JSRM3F model, fairness can be provided both to

the individual nodes and to the network as a whole. We use

the JSRM3F model to maximize both the sum rate and the

minimum rate, jointly. In Fig. 7 and Fig. 8, we present the

minimum rate and the sum rate, respectively, for the SRMc,

MMF , and JSRM3F models. The JSRM3F model is

solved by setting α = β (α = β ∈ [0, 1]). The price paid for

the high sum rate of the SRMc model is the complete denial

of access for certain nodes whereas in the MMF model, a

modest decrease in the aggregate rate provides a significant

data rate for the minimum rate assigned nodes. For example,

with N=20, Pi=20 dBm, the SRMc model gets 482.86 Mbps

sum rate but zero minimum rate, yet, the MMF model gets

415.06 Mbps sum rate and 21.85 Mbps minimum rate. The
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Fig. 9. Interrelation of α and β in the JSRM3F model with N=20, Pi = 20
dBm, 8 power levels.
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Fig. 10. Percentage of channel sharing in the SRMc, MMF and
JSRM3F models with 16 power levels.

JSRM3F model with α = β setting positions itself in

between the SRMc and MMF models in terms of both sum

rate (435.44 Mbps) and minimum rate (19.74 Mbps). What

the JSRM3F model achieves is the flexibility. In fact, the

JSRM3F model brings one more degree of freedom which

is not present neither in SRMc nor in MMF . The operating

curve of JSRM3F in α and β space with N=20, Pi = 20
dBm, and 8 power levels is shown in Fig. 9.

In Fig. 10, sharing of subchannels in time (0 < ck,p
t

i,j < 1) is

investigated using the SRMc, MMF and JSRM3F models.

When fairness is not considered, at most 10.63% of all the

subchannels in the network are shared in time in the SRMc

model. However, when the MMF and JSRM3F models are

used to provide max-min fairness, the percentage of sharing

of all subchannels in time increases up to 67.93%.

IV. CONCLUSION

In this study, we present novel LP models utilizing discrete

power levels, where routing, scheduling, and power allocation

operations are jointly optimized, to investigate the trade-offs

in sum rate maximization and max-min fairness for relay-

enhanced cellular networks. We develop a model that we

refer to as JSRM3F to explore the boundaries of the joint

maximization of Rmin and RT . Our analysis reveals that

the maximum data rates (both as max(Rmin) and max(RT ))
obtained with discrete power allocation are near-optimal even

with a few number of discrete power levels. Furthermore, when

fairness is considered discrete power allocation is shown to

provide the optimal performance. We show that subchannel

sharing characteristics of relay-enhanced cellular networks are

directly related to fairness. A few subchannels are shared in

time, in the sum rate maximization models. However, the

number of subchannels shared in time is high in the max-min

fairness models.
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