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Abstract—In this paper, a decoding procedure is developed
for both the compress-and-forward (CF) and the short message
quantize-and-forward (QF-SM) relaying schemes. This proce-
dure is based on exploiting a common feature of the mapping
used by both schemes to determine the relay output from
the estimate of its input. Using this decoding procedure, it is
shown that the CF scheme achieves higher rates than both the
conventional CF and the QF-SM schemes. The advantage of
the proposed procedure is demonstrated in a Gaussian multicast
one-message two-destination relay network and a multicast two-
message three-destination network.

I. INTRODUCTION

Compress-and-Forward (CF) is a classical scheme for

communicating over relay channels [1]. In its conventional

version, the source transmits a new codeword in each time

block and the relay uses a pre-designed codebook to generate

an estimate of its received signal. The estimation codebook

is randomly partitioned into non-overlapping bins. The relay

facilitates the decoding at the destination by sending the

index of the bin of its received signal in the previous block.

The CF scheme was originally proposed for three node

channels, but was later extended to channels with multiple

relays [2], [3]. Further investigation into its performance with

various decoding procedures was provided in [4].

A new relaying scheme, known as noisy network cod-

ing (NNC), was proposed in [5]. The philosophy of this

scheme resembles, to some extent, that of the CF one.

However, there are three differences between the CF scheme

and NNC as proposed in [5]. First, in contrast with random

binning used in CF, in NNC the relay transmits a codeword

that bears a one-to-one correspondence with the estimated

codeword. Second, in NNC the source uses repetitive trans-

mission, wherein one long message is encoded over a large

number of blocks. This is in contrast with CF, wherein a

new short message is transmitted by the source in each time

block. Finally, in NNC the signals received at the destination

in all time blocks are concatenated and decoded jointly [5];

in CF the decoding is performed on block-by-block basis.

Repetitive encoding of long messages over large blocks

incurs significant delay, which renders encoding short mes-

sages over smaller blocks more desirable. Variations of the

original NNC [5] that use short message encoding were

proposed in [6] and [7]. In [6] the rate achieved by short

message Quantize-and-forward (QF-SM) is evaluated when

This work has been funded in part by Research In Motion (RIM), and
in part by Natural Sciences and Engineering Research Council Canada
(NSERC).

either forward or backward block-by-block decoding is used.

In contrast, the decoding in [7] is performed using a joint

forward block-by-block procedure. It was shown in [6]

and [7] that for three node networks (i.e., networks with

one relay), the schemes proposed therein achieve the same

rate as the original NNC [5]; for larger networks, NNC can

achieve higher rates.

The decoding procedures proposed in [6] and [7] for the

QF-SM scheme exploit the inherent bijective map between

the estimation codewords and the codewords transmitted by

the relay. Drawing insight from QF-SM in [6], we develop a

novel decoding procedure for the CF and QF-SM schemes.

For the QF-SM scheme, our decoding procedure yields the

same data rates but is somewhat simpler than the procedure

proposed in [6]. For the CF scheme, our decoding procedure

uses random binning instead of the mapping used in NNC

or QF-SM. It is shown that, for three node channels, this

decoding procedure enables the CF scheme to achieve the

same rate as the QF-SM scheme in [6]. In addition, it

is shown that the constraint imposed by the CF scheme

on the cardinality of the relay transmission codebook is

less restrictive than its counterpart in the QF-SM scheme.

(Similar results pertaining to QF-SM [7] are provided in a

more comprehnsive version [8] and are not reported herein

for space considerations.)

The advantage of the new decoding procedure over the

standard one used in CF decoding is first illustrated by a

numerical example of a Gaussian channel with one relay

and two destinations. This example shows that the rate

achieved by the CF scheme with the modified decoding

procedure (CF-M) is the same as that achieved by the QF-

SM scheme with the forward decoding procedure proposed

in [6] and is higher than the rate achieved by the CF scheme

with conventional decoding. Next, we consider a three-

destination network in which the relay wishes to transmit

an independent message to one of the destinations. We show

that, for the Gaussian instance of this network, the CF-M

scheme yields a strictly larger rate region than that yielded

by the conventional CF and the QF-SM schemes. Detailed

proofs of the results reported herein are provided in [8].

Notation: Standard notation will be used throughout. Reg-

ular face upper and lower case letters will be used to refer

to random variables, and their corresponding realizations.

Boldface letters will used to represent length-n sequences.



II. ACHIEVABLE RATES OF CF AND QF-SM

We review the achievable rates of the CF scheme with

random binning and conventional decoding [9] and the short

message QF scheme with mapping and forward decoding [6].

For both CF and QF-SM, the source sends X1 and the

relay and the destination receive Y1 and Y , respectively. The
relay generates an estimate of its received signal, Ŷ1, and

sends X2 to facilitate the decoding at the destination; cf.

Figure 1. The difference between CF and QF-SM lies in the

relationship between Ŷ1 and X2. In CF, potentially multiple

codewords {ŷ1} are assigned to one bin x2, whereas in QF-

SM, each ŷ1 is bijectively mapped to a unique x2.

Source

Relay

Destination

Y

Y1
Ŷ1

X1

X2

Fig. 1. A three node relay channel.

For the CF scheme, the following result is proved in [9].

Theorem 1 ([9]): The conventional CF scheme achieves

RCF =supmin{I(X1; Ŷ1, Y |X2), I(X1, X2;Y )

− I(Ŷ1;Y1|X1, X2, Y ) +R0 − I(X2;Y )},

subject to R0 ≤ I(X2;Y ),

where R0 is the rate of the relay message, and the supremum

is taken over the following probability mass functions (pmfs)

p(x1, x2, y, y1, ŷ1) = p(x1)p(x2)p(y, y1|x1, x2)p(ŷ1|x2, y1).

�

Remark 1 ([4], [9], [10]): Setting R0 = I(X2;Y ) max-
imizes RCF. Hence, for three node relay channels, CF

achieves

RCF = supmin{I(X1; Ŷ1, Y |X2),

I(X1, X2;Y )−I(Ŷ1;Y1|X1, X2, Y )}. �

We now consider the QF-SM scheme in [6].

Theorem 2 ([6]): The following rate is achievable by the

short message QF scheme in [6].

RQF-SM =supmin{I(X1; Ŷ1, Y |X2),

I(X1, X2;Y )− I(Ŷ1;Y1|X1, X2, Y )},
(1a)

subject to I(Ŷ1;Y1|X1, X2, Y ) ≤ I(X2;Y ), (1b)

where the supremum is taken over the pmfs of the form in

Theorem 1. Achieving RQF-SM requires R0 to be equal to R̂,
where R̂ and R0 are the rates of the relay estimation and

transmission codebooks, respectively. �

For three node relay channels, it was shown in [6] that

the constraint in (1b) is redundant. See [5]–[7] for results

pertaining to NNC and other QF schemes.

III. INSIGHT INTO THE ACHIEVABILITY OF THEOREM 2

In this section we will provide a decoding procedure for

achieving the QF-SM rate in Theorem 2. The proposed

decoding procedure is slightly different from the one given

in [6] and enables us to identify the ostensible advantage

of using mapping (in QF-SM) instead of binning (in CF).

In fact, adapting the proposed procedure to CF, we will

show in the next section that the CF scheme is capable of

achieving the same rate in Theorem 2, but with the rate of

the relay message, R0, satisfying a less stringent constraint.

An example that exploits this feature to yield a rate gain is

given in Section VI.

In the decoding procedure proposed in [6], the source

and relay messages are decoded jointly. In contrast, in

the proposed procedure the destination uses a successive

decoding approach. To describe it, we will use the notation

in [6] and the codebook structures used therein. The source

and relay messages at time block j are denoted by wj and vj
and the corresponding codewords are denoted by x1(wj) and
x2(vj), respectively. Knowing vj , the estimation codeword

of the relay at the end of block j is denoted by ŷ1(uj |vj),
where uj is the index of the estimation codeword.

A successive decoding procedure

Let A
(n)
ǫ be the set of length-n jointly ǫ-typical sequences.

• The procedure at the relay is identical to the one in [5]–

[7]. At the end of block j the relay selects ŷ1(uj|vj)
that is jointly ǫ-typical with y1,j . The relay uses a

deterministic map, φQF, from ŷ1(uj |vj) to determine the
codeword to be transmitted in the next block, x2(vj+1).

• The procedure at the destination is successive, rather

than joint, and is hence, simpler than the one in [6].

Assume that, at block j+1, wj−1, vj−1 and uj−2 have

been successfully recovered by the destination.

1) Decoding vj : The decoder constructs a set S
(j−1)
u =

{u|
(

x1(wj−1),x2(vj−1), ŷ1(u|vj−1),yj−1

)

∈A
(n)
ǫ }.

The decoder determines the set S
(j)
v = {v|v =

φQF(u), u ∈ S
(j−1)
u }. The decoder determines the

unique vj ∈ S
(j)
v for which (x2(vj),yj) ∈ A

(n)
ǫ .

Existence and uniqueness of vj are guaranteed almost
surely, if n is large and if (1b) is satisfied.

2) Recovering wj : Using vj obtained in Step 1, the

decoder constructs a set S
′(j)
u = {u|

(

x2(vj),

ŷ1(u|vj),yj

)

∈ A
(n)
ǫ ,

(

x2(v),yj+1

)

∈ A
(n)
ǫ , v =

φQF(u)}. The decoder declares that wj was

sent in block j if, for some u ∈ S
′(j)
u ,

(

x1(wj), ŷ1(u|vj),x2,j(vj),yj

)

∈ A
(n)
ǫ . This step

incurs an arbitrarily low error probability if n is

sufficiently large and the source transmission rate is

no greater than the right hand side of (1a). Note

that if S
′(j+1)
v is used to denote the set {v|v =

φQF(uj), uj ∈ S
′(j)
u }, then the bijectivity of φQF

implies that |S
′(j+1)
v | = |S

′(j)
u |.

• The fact that the above procedure achieves the rate in

Theorem 2 can be deduced in an analogus manner to



Appendix I; cf. Remarks 4 and 5 therein.

Remark 2:

i. The decoding procedure exploits that ŷ1(uj−1|vj−1), the
estimation codeword at block j−1, is bijectively mapped
to x2(vj), the relay transmitted codeword in block j.

ii. Step 1 of the decoding procedure effectively determines

the intersection of two sets: the set S
(j)
v and the set of

{v|
(

x2(v),yj

)

∈ A
(n)
ǫ }. This partially resembles the

technique used in Theorem 6 in [1].

iii. As oppose to Theorem 6 in [1], Step 2 of the procedure

does not require the correct decoding of ŷ1(uj |vj). �

In the next section, the proposed procedure will be adapted

to CF, but therein the map is not bijective and the procedure

is applied in one direction only.

IV. A NEW DECODING PROCEDURE FOR THE CF SCHEME

For distinction from the QF-SM case, let zj and sj be

respectively the indices of the estimation codeword and the

bin sent by the relay at block j.
Unlike the bijective map φQF in QF-SM, random binning

in CF does not admit a one-to-one correspondence between

zj−1 and sj ; each bin contains potentially many estimation

codewords. In fact, the binning process corresponds to a

surjective map between the estimation codewords and the

non-empty bins; i.e., a many-to-one map φCF : zj−1 7→ sj ,
unless sj is empty. We will show that this map suffices for

CF to achieve the rate of the short message QF scheme in

Theorem 2. Furthermore, the constraint on the rate of the

relay message, R0, in the CF scheme is less restrictive than

the corresponding constraint in the QF-SM scheme. We have

the following result.

Theorem 3: Let RCF-M be the rate achieved by the modi-

fied CF scheme that uses successive decoding. Then,

RCF-M ≥ RQF-SM,

where RQF-SM is given in Theorem 2. �

To arrive at this result, we will show that using successive

decoding with CF yields the rate expression in Theorem 2.

However, unlike the short message QF scheme, in which

R0 = R̂, in the modified CF scheme, the rate of the relay

message, R0, satisfies the more relaxed constraint:

R0 ≥ min{R̂− I(Ŷ1;Y |X2), I(X2;Y )}. (2)

Proof: To prove Theorem 3 we use the codebooks and

the encoding procedure in [1]. Assume that at the end of

block j + 1, the destination has obtained wj−1 and sj−1.

1) Decoding sj: This proceeds in three steps. First, the de-

coder constructs a set S
(j−1)
z ={z|(x1(wj−1),x2(sj−1),

ŷ1(z|sj−1),yj−1) ∈ A
(n)
ǫ }. Second, the decoder de-

termines the set S
(j)
s = {s|s = φCF(z), z ∈ S

(j−1)
z }.

Since φCF is surjective, |S
(j)
s | ≤ |S

(j−1)
z |. Third, the

decoder finds the bin index sj ∈ S
(j)
s for which

(

x2(sj),yj

)

∈ A
(n)
ǫ . Existence and uniqueness of sj

is guaranteed almost surely, if n is sufficiently large

and I(Ŷ1;Y1|X1, X2, Y ) ≤ I(X2;Y ), which is the

constraint in Theorem 2; cf. Appendix I-A for details.

2) Recoveringwj : Using sj obtained in Step 1, the decoder

constructs a set S
′(j)
z = {z|

(

x2(sj), ŷ1(z|sj),yj

)

∈

A
(n)
ǫ ,

(

x2(s),yj+1

)

∈ A
(n)
ǫ , s = φCF(z)}. Using

S
′(j+1)
s to denote the set {s|s = φCF(z), z ∈ S

′(j)
z )},

the decoder declares that wj was sent in block j if, for

some z ∈ S
′(j)
z ,

(

x1(wj), ŷ1(z|sj),x2(sj),yj

)

∈ A
(n)
ǫ .

The surjectivity of φCF implies that |S
′(j+1)
s | ≤ |S

′(j)
z |.

In Appendix I-B, we show that the correct wj is deter-

mined with an arbitrarily high probability if n is suffi-

ciently large, R0 ≥ min{R̂− I(Ŷ1;Y |X2), I(X2;Y )},
and RCF-M is less than the right hand side of (1a), i.e.,

RCF-M ≤ supmin{I(X1; Ŷ1, Y |X2),

I(X1, X2;Y )− I(Ŷ1;Y1|X1, X2, Y )}, (3)

where the supremum is over the pmfs in Theorem 2.

Theorem 3 shows that binning suffices for CF to achieve

the rate of QF-SM. We make the following remarks.

Remark 3:

i. Step 1 of the decoding procedure uses the many-to-one

map φCF : zj−1 7→ sj to recover sj , without imposing a
constraint on R0. This is in contrast with the procedures

in [4], [9], [10], wherein decoding x2,j does not exploit

the map and depends only on finding (x2,j ,yj) ∈ A
(n)
ǫ .

ii. The constraint on R0 in (2) is less restrictive than

the corresponding one in QF-SM, wherein R0 = R̂;
restricting R0 to be equal to R̂ makes CF yield the same

rate as QF.

iii. When R0 > R̂, the random binning in CF will result

in some empty bins. In Appendix I, it is shown that

using the successive decoding procedure, these bins do

not contribute to the error probability. �

In [8], we modify the CF scheme to yield the same rate

of the short message QF with backward decoding in [6].

V. A ONE-MESSAGE TWO-DESTINATION EXAMPLE

In this section, we apply Theorem 3 to the Gaussian

multicast relay network in Figure 2. In this network, a source

S is assisted by a relay R and wishes to send a common

message to two destinations D1 and D2. The noise and

received signal at destination Di are denoted by ZDi
and

YDi
, i = 1, 2, respectively, where Z1, ZD1

and ZD2 are

Gaussian and statistically independent with unit variance.

The source and relay use Gaussian codebooks with average

power constraints. The signal-to-noise ratio (SNR) of the S-

R, S-Di and R-Di are denoted by γSR, γSDi
and γRDi

, i =
1, 2, respectively. The relay estimation noise variance [11] is
denoted by γ′.

Source Relay

D1

D2

+

+

+ Y1

YD1

YD2

Ŷ1
X1 X2

Z1 ∼ N (0, 1)

ZD1 ∼ N (0, 1)

ZD2
∼ N (0, 1)

Fig. 2. Gaussian multicast relay channel with 2 destinations.



Using the CF decoding procedure in [9], the rate of the re-

lay message, R0, must satisfy R0 ≤ mini=1,2{I(X2;YDi
)}.

The following rate is achievable with Gaussian codebooks.

RCF =max
γ′,R0

min
i=1,2

min
{

C(γSDi
+ γRDi

)− C(1/γ′) +R0

− C
(

γRDi
/(1 + γSDi

)
)

, C
(

γSDi
+ γSR/(1 + γ′)

)}

,

subject to R0 ≤ min
i=1,2

{

C
(

γRDi
/(1 + γSDi

)
)}

, (4)

where C(x) = 1
2 log(1 + x).

The CF decoding procedure in Section IV requires

I(Ŷ1;Y1|X1, X2, YDi
) ≤ I(X2;YDi

), i = 1, 2, which yields

RCF-M =max
γ′

min
i=1,2

min
{

C
(

γSDi
+ γSR/(1 + γ′)

)

,

C(γSDi
+ γRDi

)− C(1/γ′)
}

,

subject to γ′ ≥ max
i=1,2

{

(1 + γSDi
)/(γRDi

)
}

. (5)

Figure 3 shows the rate of the short message QF scheme

and the rates resulting from performing the optimization

in (4) and (5) for various γSD2 when γSR =10dB, γSD1 =0dB,
γSD2

= γRD1
=5dB. It can be seen that using the proposed
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Fig. 3. Achievable rate of the Gaussian multicast relay channel in Figure 2.

decoding procedure with CF yields the same rate as QF-SM

with forward decoding [6] and can yield a significant gain

over CF with standard decoding at low-to-moderate SNRs.

Note that, for QF, R0= R̂, whereas for CF

R0 ≥ max
i=1,2

{

min
{

R̂−C
( 1

γ′
+

γSRγ
′−1

1 + γSDi

)

, C
( γRDi

1 + γSDi

)}}

.

VI. A TWO-MESSAGE THREE-DESTINATION EXAMPLE

In this section, we will provide an example that exposes

the advantage of the proposed CF-M over QF-SM and con-

ventional CF. The key philosophy that underlies the structure

of this example is to construct a setup in which the rate that

can be reliably communicated to one of the nodes is reduced

by increasing the rate at which the relay sends the bin index

to other nodes in the network, i.e., R0. Since R0 in CF-M

is lower than the corresponding rate in QF-SM, it can be

shown that, in this scenario, CF-M can achieve higher rates.

We consider a communication network wherein a source

S wishes to send a common message to two destinations D1

and D2. Node R acts as a relay to assist S, and in addition, R

acts as a source that wishes to send an independent message

to a third destination D3. There is no direct link between S

and D3 and they do not wish to communicate with each other.

An abstract version of this network is depicted in Figure 4.

S R

D1

D2

D3
X1 Y1 X2

YD1

YD3

YD2

Ŷ1

Fig. 4. A two-message three-user network.

A. Application of CF-M Relaying

For the network depicted in Figure 4, the CF-M scheme

can be combined with standard superposition coding [12] to

yield the rate region given in the following theorem. In this

theorem, RCF-M
1 denotes the rate of the common message

sent from S to D1 and D2, and RCF-M
2 denotes the rate of the

independent message sent from R to D3.

Theorem 4: Consider the two-message three-user channel

in Figure 4 (X1×X2, p(y1, yD1 , yD2 , yD3 |x1, x2),Y1×YD1 ×
YD2

× YD3
). For any fixed pmf satisfying

p(u, x1, x2, ŷ1, y1, yD1
, yD2

, yD3
) = p(u)p(x1)p(x2|u)

× p(ŷ1|u, y1)p(y1, yD1
, yD2

|x1, x2, yD3
)p(yD3

|x2), and (6)

I(Ŷ1;Y1|X1, X2, YDi
) ≤ I(U ;YDi

), i = 1, 2, (7)

the rate vector (RCF-M
1 , RCF-M

2 ) is achievable, where

RCF-M
1 ≤ min

i=1,2
min{I(X1; Ŷ1, YDi

|U),

I(X1, U ;YDi
)− I(Ŷ1;Y1|X1, U, YDi

)} (8a)

RCF-M
2 ≤ min{I(X2;YD3 |U), I(X2;YD3)−RCF-M

0 }, (8b)

RCF-M
0 ≥ max

i=1,2
min{I(Ŷ1;Y1|U)− I(Ŷ1;YDi

|U), I(U ;YDi
)}.

(8c)

�

In this theorem, U is the auxiliary random variable repre-

senting the bin index of Ŷ1 and used to assist D1 and D2.

The relay transmits the codeword X2, which is constructed

by superimposing the incremental information intended for

D3 on U ; in the absence of D3, X2 = U .
Proof: For brevity, we provide a sketch of the proof.
Codebook:: Let m1 be the common message intended

for D1 and D2, andm2 be the independent message intended

for D3. Let u, x1, x2 and ŷ1 be length-n vectors with

independent and identically distributed (i.i.d) random entries

generated with the fixed distributions p(u) =
∏n

i=1 p(ui),
p(x1) =

∏n
i=1 p(x1i), p(x2|u) =

∏n
i=1 p(x2i|ui) and

p(ŷ1|u) =
∏n

i=1 p(ŷ1i|ui), respectively. The distributions

p(u) and p(x1) are used to generate 2nR
CF-M
1 random se-

quences {x1(m1)}2
nRCF-M

1

m1=1 and 2nR
CF-M
0 random sequences

{u(s)}2
nRCF-M

0

s=1 independently. For each s ∈ {1, . . . , 2nR
CF-M
0 },

the distributions p(ŷ1|u) and p(x2|u) are respectively used

to generate 2nR̂ random sequences {ŷ1(z|s)}2
nR̂

z=1 and 2
nRCF-M

2

random sequences {x2(m2|s)}2
nRCF-M

2

m2=1 independently, where

R̂ ≥ I(Ŷ1;Y1|U) [1]. This resembles superposition cod-

ing [12] in that m2, the message for D3, is superimposed

on s, the bin index of the message for D1 and D2.



Random Binning: The set {1, 2, · · · , 2nR̂} is randomly

partitioned into 2nR
CF-M
0 cells {Ss}

2nRCF-M
0

s=1 .

Encoding: In block j, node S wishes to send mes-

sage m1,j to D1 and D2, and node R wishes to send

message m2,j to D3. Upon receiving y1,j−1 at the end

of block j − 1, node R finds an index zj−1 such that

(ŷ1(zj−1|sj−2),u(sj−2),y1,j−1) ∈ A
(n)
ǫ . Subsequently,

node R finds the index, sj−1, of the bin containing zj−1.

Node R selects the codeword x2(m2,j |sj−1). The codeword
pair (x1(m1,j),x2(m2,j |sj−1)) will be sent in block j. In
comparison, in the absence of node D3 and message m2,j ,

as in the previous example, node R transmits x2(sj−1).

Decoding and Achievability: The broadcast nature of

the network implies that the destinations Di, i = 1, 2, 3,
decode their received signals independently.

The decoding procedure for D1 and D2 is analogous

to that in Section IV, and can be summarized as fol-

lows. The probability that either D1 or D2 decodes sj
erroneously can be made arbitrarily small if n is chosen

to be sufficiently large and if I(Ŷ1;Y1|X1, X2, YDi
) ≤

I(U ;YDi
), for i = 1, 2. Subject to these constraints,

the probability that either D1 or D2 decodes m1,j er-

roneously can be made arbitrarily small if RCF-M
0 ≥

maxi=1,2 min{I(Ŷ1;Y1|U) − I(Ŷ1;YDi
|U), I(U ;YDi

)} and

RCF-M
1 ≤ mini=1,2 min{I(X1; Ŷ1, YD1

|U), I(X1, U ;YDi
) −

I(Ŷ1;Y1|X1, U, YDi
)}.

To recover m2,j , D3 uses yD3
to find the unique index

m̂2,j such that (x2(m̂2,j |ŝj−1),u(ŝj−1),yD3,j−1
) ∈ A

(n)
ǫ ,

for some ŝj−1 ∈ {1, . . . , 2nR
CF-M
0 }. Note that, in this process,

D3 uses the structure of U , but does not attempt to decode

u(sj−1). In other words, ŝj−1 obtained by D3 may not be

unique. Hence, we consider two case: ŝj−1 = sj−1, and

ŝj−1 6= sj−1.

When ŝj−1 = sj−1 and RCF-M
2 ≤ I(X2;YD3 |U), the

probability that m̂2,j 6= m2,j can be made arbitrarily small

by choosing n to be sufficiently large.

When ŝ2,j−1 6= s2,j−1, the probability that m̂2,j 6=

m2,j such that (x2(m̂2,j |ŝj−1),u(ŝj−1),yD3,j
) ∈ A

(n)
ǫ ,

for a particular ŝ2,j−1 6= s2,j−1 and m̂2,j 6= m2,j , is

asymptotically bounded by 2−nI(X2,U ;YD3
) = 2−nI(X2;YD3

).

Adding over all possible ŝ2,j−1 and m̂2,j yields that the

probability of decoding error is asymptotically bounded by

2n(R
CF-M
2 +RCF-M

0 −I(X2,U ;YD3
)). Hence, the probability of error

can be made arbitrarily small if n is large and RCF-M
2 ≤

I(X2;YD3
)−RCF-M

0 .

Combining the cases of ŝ2,j−1 = s2,j−1 and ŝ2,j−1 6=
s2,j−1, it can be seen that the probability of error at D3 can be

made arbitrarily small if n is large and RCF-M
2 satisfies (8b).

The proof of this theorem relies essentially on combining

the principles of superposition coding with the modified CF

relaying. For comparison, we consider combining superposi-

tion coding with QF-SM with forward decoding [6] for the

same network scenario in Figure 4.

B. Application of QF-SM Relaying

To apply QF-SM with forward decoding [6], the code-

books are generated in essentially the same way as in the

case of CF-M relaying, but with the additional restriction

RQF-SM
0 = R̂.
Corollary 1: For any pmf of the form in (6) satisfying

the condition in (7), all the rate vectors (RQF-SM
1 , RQF-SM

2 )
satisfying the following constraints are achievable.

RQF-SM
1 ≤ min

i=1,2
min{I(X1; Ŷ1, YDi

|U),

I(X1, U ;YD1
)− I(Ŷ1;Y1|X1, U, YDi

)} (9a)

RQF-SM
2 ≤ min{I(X2;YD3

|U),

I(X2;YD3)− I(Ŷ1;Y1|X2, YD3)}. (9b)

Proof: The decoding procedure of m1,j at D1 and D2

is analogous to that in Section V.

The decoding procedure of m2,j at D3 is analo-

gous to that provided in Section II. D3 chooses ẑj−1

if (ŷ1(ẑj−1),x2(m2,j−1|sj−2),u(sj−2),yD3,j−1 ) ∈ A
(n)
ǫ .

There are two possibilities: ẑj−1 = zj−1 or ẑj−1 6= zj−1.

If ẑj−1 = zj−1, the bijectivity of φQF yields ŝj−1 = sj − 1,
which implies that if RQF-SM

2 ≤ I(X2;YD3
|U), the proba-

bility that m̂2,j 6= m2,j can be made arbitrarily small by

choosing n to be large. We now consider the second pos-

sibility. The probability that ẑj−1 6= zj−1 is asymptotically

bounded by 2−nI(Ŷ1;X2,YD3
|U). In this case, ŝj−1 6= sj−1,

and a decoding error occurs if, for this ŝj−1, D3 finds

m̂2,j 6= m2,j such that (x2(m̂2,j|ŝj−1),u(ŝj−1),yj) ∈

A
(n)
ǫ . The probability of finding such an m̂2,j is asymptot-

ically bounded by 2−nI(X2,U ;YD3
) = 2−nI(X2;YD3

). Hence,

adding over all possible ŝ2,j−1 and ẑj−1 yields that the

probability of decoding error is asymptotically bounded

by 2n(R
QF-SM
2 +R̂−I(X2;YD3

)−I(Ŷ1;X2,YD3
|U)), whereupon it can

be made arbitrarily small if n is large and RQF-SM
2 ≤

I(X2;YD3
) + I(Ŷ1;X2, YD3

|U) − R̂. Using the fact that

R̂ ≥ I(Ŷ1;Y1|U), we have RQF-SM
2 ≤ I(X2;YD3

) −
I(Ŷ1;Y1|X2, YD3

).
A comparison between the rates achieved by CF-M and

QF-SM is provided in the following corollary.

Corollary 2: For the network in Figure 4, the region of

rates achieved by CF-M contains the region of rates achieved

by QF-SM; i.e., for every RCF-M
1 =RQF-SM

1 , RCF-M
2 ≥RQF-SM

2 .

Proof: First, we note that, CF-M and QF-SM achieve

the same rate for the message intended to D1 and D2 as

shown in Section V, i.e., for any given pmf of the form

in (6) satisfying the condition in (7), RCF-M
1 = RQF-SM

1 .

To prove the corollary, we note that, for a given bin

index (represented by U ), X2 represents the incremental

information intended for D3 and is independent of Ŷ1; i.e.,

I(Ŷ1;X2|U) = 0. Next, we note that, conditioned on X2,

YD3
is independent of Ŷ1 and Y1. Using this in (9b) yields

I(Ŷ1;Y1|X2, YD3
) = I(Ŷ1;Y1|X2)

= I(Ŷ1;X2|U) + I(Ŷ1;Y1|X2, U)

= I(Ŷ1;Y1, X2|U)

= I(Ŷ1;Y1|U).



Using this in (9b) yields

RQF-SM
2 ≤min{I(X2;YD3|U),I(X2;YD3)−I(Ŷ1;Y1|U)}. (10)

Comparing this with (8b) and (8c), it can be seen that

RCF-M
2 ≥ RQF-SM

2 , which completes the proof of the corollary.

C. Application of Conventional CF Relaying

For comparison, we now provide the expressions for the

rates achievable by the conventional CF scheme. For this

scheme, the codebooks are generated in an analogous manner

to the CF-M scheme, but with the decoding procedure in [9]

used at D1 and D2 and the decoding procedure in Theorem 4

used at D3. Using these codebooks and decoding procedures,

it is straightforward to prove the following result.

Corollary 3: For any pmf of the form in (6), the rate

vectors (RCF
1 , RCF

2 ) satisfying the following constraints are

achievable.

RCF
1 ≤ min{I(X1; Ŷ1, YDi

|U), I(X1, U ;YDi
)

− I(Ŷ1;Y1|X1, U, YDi
) +RCF

0 − I(U ;YDi
)},

RCF
2 ≤ min{I(X2;YD3

|U), I(X2;YD3
)−RCF

0 },

RCF
0 ≤ min

i=1,2
min{I(U ;YDi

)}. �

D. Applying CF, QF-SM and CF-M in A Gaussian Network

It is instructive to compare the performance of the CF,

QF-SM and CF-M schemes in the case when each link

in Figure 4 is an additive white Gaussian channel with

identically distributed statistically independent zero mean

unit variance Gaussian noises Z1 at R, and ZDi
and at Di,

i = 1, 2, 3, respectively. This case is shown in Figure 5.

As before, S and R use Gaussian codebooks with average

power constraints. For constructing these codebooks, we use

α0 ∈ [0, 1] to represent the fraction of power that node

R allocates to transmit the bin index s and α1 = 1 − α0

to represent the fraction of power that node R allocates

to transmit its own message index m2. The SNR of the

S-R, S-Di and R-Di links are denoted by γSR, γSDi
and

γRDi
, i = 1, 2, 3, respectively. The relay estimation noise

variance [11] is denoted by γ′.

S R

D1

D2

D3

+

+

+

+ Y1

YD1

YD2

YD3

Ŷ1
X1 X2

Z1 ∼ N (0, 1) ZD1
∼ N (0, 1)

ZD2
∼ N (0, 1)

ZD3
∼ N (0, 1)

Fig. 5. A Gaussian network with two messages and three destinations.

Using the codebook structure and Corollary 3, we have

for any α0 ∈ [0, 1] and

RCF
0 ≤ min

i=1,2

{

C
(

α0γRDi
/(1 + γSDi

+ (1− α0)γRDi
)
)}

,

conventional CF [9] achieves the following rate pair

RCF
1 = min

i=1,2

{

C
( γSDi

+ α0γRDi

1 + (1− α0)γRDi

)

− C(1/γ′) +RCF
0

− C
( α0γRDi

(1 + γSDi
+ (1− α0)γRDi

)

)

,

C
( γSDi

1 + (1− α0)γRDi

+
(1 − α0)γSRγRDi

+ γSR
(1 + γ′)(1 + (1− α0)γRDi

)

)}

,

RCF
2 =min

{

C
(

(1− α0)γRD3

)

, C
(

γRD3

)

−RCF
0

}

.

For the same codebook structure and

γ′ ≥ max
i=1,2

{

(1 + γSDi
+ (1− α0)γRDi

)/(α0γRDi
)
}

, (11)

the following rate pair (RQF-SM
1 , RQF-SM

2 ) is achievable by the
QF-SM scheme in [6].

RQF-SM
1 =min

i=1,2

{

C
( γSDi

+ α0γRDi

1 + (1− α0)γRDi

)

− C(1/γ′),

C
( γSDi

1 + (1−α0)γRDi

+
(1 − α0)γSRγRDi

+ γSR
(1 + γ′)(1 + (1− α0)γRDi

)

)}

,

RQF-SM
2 =min

i=1,2

{

C
(

(1−α0)γRD3

)

, C
(

γRD3

)

−C
(

(1+γSR)/γ
′
)}

.

Similarly, for CF-M, for any γ′ satisfying (11) and

RCF-M
0 ≥ max

i=1,2
min

{

C
( α0γRDi

1 + γSDi
+ (1− α0)γRDi

)

,

C
(1 + γSDi

+ γSR + (1− α0)γRDi
(1 + γSR)

γ′(1 + γSDi
+ (1− α0)γRDi

)

)}

,

Theorem 4 yields

RCF-M
1 = RQF-SM

1 ,

RCF-M
2 = min

{

C
(

(1− α0)γRD3

)

, C
(

γRD3

)

−RCF-M
0

}

.

Similar to Corollary 2, the codebook construction for the

Gaussian case implies that I(Ŷ1;X2|U) = 0, which further

implies that the region of rates achieved by the CF-M scheme

in this case contains the corresponding region of the QF-SM

scheme. In Figure 6, the rate regions of the conventional

CF and the CF-M and QF-SM schemes are plotted for an

instance in which γSR = γRD2
= 15 dB, γSD1

= γSD2
=

γRD3
= 5 dB and γRD1

= 0 dB. For this instance, it can be

seen from the figure that both the conventional CF and the

QF-SM rate regions are properly contained in the CF-M rate

region. For instance, comparing the sum rates achieved by the

considered schemes, it can be seen that the maximum sum

rates of the conventional CF and the QF-SM schemes are

1.1641 and 1.1991 bits per channel use (bpcu), respectively,

whereas the corresponding sum rate of the CF-M scheme is

1.2886 bpcu. For the conventional CF, QF-SM and the CF-M

scheme, the maximum sum rate is achieved with α0 = 1 and
γ′ = 35.7851, α0 = 0.95 and γ′ = 12.5926, and α0 = 0.86
and γ′ = 11.3829, respectively.

VII. CONCLUSION

Short message QF (QF-SM) and CF are more practical

than Noisy Netwrok Coding (NNC) as they incur a signifi-

cantly less delay and decoding complexity. In this paper we

provided a new forward decoding procedure that can be used

in both QF-SM and CF and that enables CF to yield higher

achievable rates than QF-SM. To illustrate the advantage of
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Fig. 6. Rate region for the network in Figure 5. (γSR = 15 dB, γSD1
=

5 dB, γRD1 = 0 dB, γSD2
= 5 dB, γRD2 = 15 dB, γRD3 = 5 dB.)

this procedure, we applied the conventional CF, the QF-SM

and the CF schemes with modified decoding (CF-M) in two

network scenarios, each with one source and one relay. In

the first scenario there are two destinations, whereas in the

second scenario, there are three destinations, and the relay

has its own message to send to one of them. In the Gaussian

case of the first scenario, QF-SM and CF-M achieve the same

rate, which is higher than that achieved by the conventional

CF. In the second scenario, CF-M is shown to achieve strictly

higher rates than both conventional CF and QF-SM.

APPENDIX I

PROBABILITY OF ERROR ANALYSIS OF THEOREM 3

Let the source, relay estimation and transmission code-

words be indexed by mℓ = 1, zℓ = 1 and sℓ = 1 for blocks

ℓ = j − 1, j, j + 1, respectively. The codewords at different
time blocks will be distinguished by the block index; e.g.,

x1,j will be used to denote x1(wj). Assume that, at the end
of block j+1, the destination has correctly decoded sj−1 and

wj−1, but zj−1 is not decoded. We will bound the probability

of erroneous decoding of sj and wj . For ǫ > 0, we will use
δi = δi(ǫ) to be such that δi(ǫ) ց 0 as ǫ → 0, i = 1, . . . , 9.

A. Probability of Erroneous Decoding of sj

The probability of error P (Es) = P (
⋃3

i=1 Ei), where

E1 = {(x2,j(1),Yj) /∈ A(n)
ǫ ∪ (x1,j−1(1), ŷ1,j−1(1|1),

x2,j−1(1),Yj−1) /∈ A(n)
ǫ },

E2 = {(Ŷ1,j−1(z|1),x2,j−1(1),Y1,j−1) /∈ A(n)
ǫ , for all z},

E3 = {(x1,j−1(1), Ŷ1,j−1(ẑ|1),x2,j−1(1),Yj−1) ∈ A(n)
ǫ ,

∩ (X2,j(ŝ),Yj) ∈ A(n)
ǫ , for some ŝ = φCF(ẑ) 6= 1}.

Note that in the last event ŝ 6= 1 and hence, ẑ 6= 1.
We have P (Es) ≤

∑3
i=1 P (Ei) by the union bound. Using

the conditional joint typicality and covering lemmas in [9,

Part I], the probabilities P (E1), P (E2) → 0, if n → ∞, and

R̂ ≥ I(Ŷ1;Y1|X2) + δ1, (12)

P (E3) ≤
∑

ẑ=φ−1
CF

(ŝ),ŝ6=1

P
(

(X2,j(ŝ),Yj) ∈ A(n)
ǫ ∩

(x1,j−1(1), Ŷ1,j−1(ẑ|1),x2,j−1(1),Yj−1) ∈ A(n)
ǫ

)

=
∑

ẑ=φ
−1
CF

(ŝ),ŝ6=1

P
(

(X2,j(ŝ),Yj) ∈ A(n)
ǫ

)

P
(

x1,j−1(1),

Ŷ1,j−1(ẑ|1),x2,j−1(1),Yj−1) ∈ A(n)
ǫ

)

(13)

≤
∑

ẑ=φ
−1
CF

(ŝ),ŝ6=1

∑

y

p(y)P
(

(X2(ŝ),y)∈A(n)
ǫ

∣

∣y
)

∑

(x1,x2,y)∈A
(n)
ǫ

p(x1,x2,y)P
(

(x1,x2, Ŷ1,y) ∈ A(n)
ǫ

∣

∣x1,x2,y
)

,

where the equality follows from the memorylessness of the

channel. Using the surjectivity of φCF,

P
(

(X2,y) ∈ A(n)
ǫ

∣

∣y
)

=
∑

x2∈A
(n)
ǫ (X2|y)

p(x2),

P
(

(x1,x2, Ŷ1,y) ∈ A(n)
ǫ

∣

∣x1,x2,y
)

=
∑

ŷ1∈A
(n)
ǫ (Ŷ1|x1,x2,y)

p(ŷ1|x2).

and the properties of jointly typical sequences [12], we have

P (E3) ≤ 2n(R̂−I(X2;Y )−I(Ŷ1;X1,Y |X2)+δ2).

Hence, if R̂ ≤ I(X2;Y ) + I(Ŷ1;X1, Y |X2) − δ2, the

probability of error in decoding sj tends to 0 as n → ∞.

Remark 4: Analogous error events can be defined for

Step 1 of the QF decoding scheme in Section III. Since

therein φQF is bijective, the probability of events correspond-
ing to E3 can be bounded similarly resulting in the same

constraint on R̂. �

B. Probability of Erroneous Decoding of wj

Since the probability of decoding sj incorrectly can be

made arbitrarily small, we can assume that sj is correctly

decoded. To bound the probability of decoding wj incor-

rectly, we have P (Ew) ≤
∑4

i=1 P (Ei), where

E1 = {(x1,j(1),x2,j(1), ŷ1,j(1|1),Yj) /∈ A(n)
ǫ

∪ (x2,j+1(1),Yj+1) /∈ A(n)
ǫ },

E2 = {(X1,j(ŵ),x2,j(1), ŷ1,j(1|1),Yj) ∈ A(n)
ǫ , ŵ 6= 1},

E3 = {(X1,j(ŵ),x2,j(1), Ŷ1,j(ẑ|1),Yj) ∈ A(n)
ǫ

∩ (X2,j+1(ŝ),Yj+1) ∈ A(n)
ǫ , for some

ŵ 6= 1, ẑ 6= 1, ŝ = φCF(ẑ) 6= 1, z ∈ S ′(j)
z },

E4 = {(X1,j(ŵ),x2,j(1), Ŷ1,j(ẑ|1),Yj) ∈ A(n)
ǫ ,

for some ŵ 6= 1, ẑ 6= 1, ŝ = φCF(ẑ) = 1, z ∈ S ′(j)
z },

where S
′(j)
z is defined in Section IV. Using the conditional

typicality lemma [9], P (E1) → 0 as n → ∞. Furthermore,

P (E2) ≤
∑

ŵ 6=1

∑

(x2,ŷ1,y)∈A
(n)
ǫ

p(x2, ŷ1,y)

× P
(

(X1,x2, ŷ1,y) ∈ A(n)
ǫ

∣

∣x2, ŷ1,y
)

=
∑

ŵ 6=1

∑

(x2,ŷ1,y)∈A
(n)
ǫ

p(x2, ŷ1,y)
∑

x1∈A
(n)
ǫ (X1|x2,ŷ1,y)

p(x1)

≤ 2n(RCF-M−I(X1;Ŷ1,Y |X2)+δ3).

Hence, P (E2) tends to 0 if n is sufficiently large and

RCF-M ≤ I(X1; Ŷ1, Y |X2)− δ3. (14)



We now consider P (E3).

P (E3) ≤
∑

ŵ 6=1

∑

ẑ=φ
−1
CF

(ŝ),ŝ6=1

P
(

(

X2,j+1(ŝ),Yj+1

)

∈ A(n)
ǫ

∩
(

X1,j(ŵ),x2,j(1), Ŷ1,j(ẑ|1),Yj

)

∈ A(n)
ǫ

)

=
∑

ŵ 6=1

∑

ẑ=φ
−1
CF

(ŝ),ŝ6=1

P
(

(

X2,j+1(ŝ),Yj+1

)

∈ A(n)
ǫ

)

×

P
(

(

X1,j(ŵ),x2,j(1), Ŷ1,j(ẑ|1),Yj

)

∈ A(n)
ǫ

)

(15)

=
∑

ŵ 6=1

∑

ẑ=φ
−1
CF

(ŝ),ŝ6=1

∑

(x2,y)∈A
(n)
ǫ

p(x2,y)

× P
(

x2, Ŷ1,y) ∈ A(n)
ǫ |x2,y

)

× P
(

(X1,x2, ŷ1,y) ∈ A(n)
ǫ |x2, ŷ1,y

)

×
∑

y

p(y)
∑

x2∈A
(n)
ǫ (X2|y)

P
(

(X2,y) ∈ A(n)
ǫ |y

)

≤ 2n
(

RCF-M+R̂−I(Ŷ1;Y |X2)−I(X1;Ŷ1,Y |X2)−I(X2;Y )+δ3

)

,

where in writing in (15) we have used the memorylessness of

the channel. The last inequality follows from the construction

of the codebooks, the surjectivity of φCF, and the properties
of jointly typical sequences. Thus, P (E3) → 0 if n → ∞
and

RCF-M ≤ I(Ŷ1;Y |X2)+I(X1; Ŷ1, Y |X2)−R̂+I(X2;Y )−δ3.
(16)

Invoking (12), yields the following constraint.

RCF-M ≤ I(X1, X2;Y )− I(Ŷ1;Y1|X1, X2, Y )− δ4. (17)

Next, we bound P (E4). Let S ′′
s=1 = {z|φCF(z) = 1}.

Then,

P (E4) ≤
∑

ŵ 6=1

∑

ẑ 6=1,φCF(ẑ)=1

∑

(x2,y)∈A
(n)
ǫ

p(x2,y)

× P
(

(Ŷ1,x2,y) ∈ A(n)
ǫ |x2,y

)

× P
(

(X1,x2, ŷ1,y) ∈ A(n)
ǫ |x2, ŷ1,y

)

≤ 2nRCF-M |S ′′
s=1|2

−n(I(Ŷ1;Y |X2)+I(X1;Ŷ1,Y |X2)−δ5).

For R0 < R̂, |S ′′
s=1| ≤ 2n

(

R̂−R0+δ6

)

. Hence,

P (E4) ≤ 2n
(

RCF-M+R̂−I(Ŷ1;Y |X2)−I(X1;Ŷ1,Y |X2)−R0+δ7

)

,

which implies that P (E4) → 0 if n → ∞ and

RCF-M ≤ I(Ŷ1;Y |X2) + I(X1; Ŷ1, Y |X2)− R̂+R0 − δ7,
(18)

For R0 ≥ R̂, |S ′′
s=1| ≤ 2nδ6 , and hence, P (E4) ≤

2n
(

RCF-M−I(X1;Y |X2)−I(Ŷ1;X1,Y |X2)+δ7

)

, which implies that

P (E4) → 0 if n → ∞ and

RCF-M ≤ I(Ŷ1;Y |X2) + I(X1; Ŷ1, Y |X2)− δ7. (19)

Now, we observe that the right hand side of (19) is greater

than or equal to that of (14). This implies that, when R0 ≥ R̂,
P (E4) ≤ P (E2) and the constraint in (19) is redundant.

For the case of R0 < R̂, we compare (18) with (14). This
comparison shows that if

R0 ≥ R̂− I(Ŷ1;Y |X2) + δ8, (20)

P (E4) ≤ P (E2) and the constraint in (18) is redundant.

Now, comparing the constraint in (16) pertaining to P (E3)
with the one in (18), it can be seen that when

R0 ≥ I(X2;Y ) + δ9, (21)

P (E4) ≤ P (E3), and the constraint in (18) is redundant.

Since (20) and (21) imply that P (E4) ≤
max{P (E2), P (E3)} → 0, it follows that choosing R0

to satisfy (2) guarantees that P (E4) → 0. Combining this

with (14) and (17) yields the statement of Theorem 3.

Remark 5: Analogous error events can be defined for

Step 2 of the QF decoding scheme in Section III. Since

therein φQF is bijective, the error events in the QF decoding

scheme can be bounded similarly. However, in that case

|S ′′
s=1| = 1. Combining (14) and (17) proves the achievability

of the rate in Theorem 2 with successive decoding. �
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