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ABSTRACT In this paper, we develop a highly efficient two-tier technique for jointly optimizing the routes,
the subcarrier schedules, the time-shares, and the power allocations in device-to-device communication
networks with thousands of randomly dropped wireless nodes. The network is first divided into a set of
non-overlapping sub-networks, each with its own regional controller. The role of such a controller is to
optimize the sub-network within its region and to act as an interface between nodes communicating across
regions. The first tier of the proposed technique uses a novel approach for splitting a set of highly non-convex
constraints into effectively two sets of convex ones and optimization proceeds by using two loops: an outer
loop for iterating between the power allocations and the subcarrier schedules, and an inner loop for iterating
between the two sides of the split constraints. In the second tier, a technique analogous to the one used
in the first tier is applied to the network composed of the regional controllers. Optimization in this tier is
performed by a global controller. The proposed technique is capable of efficiently optimizing networks with
tens of thousands of nodes and with significantly better performance than existing joint design techniques,
which can only optimize networks with a few tens of nodes.

INDEX TERMS Routing, scheduling, power allocation, radio resource management, cluster networks.

I. INTRODUCTION
The soon-to-be-standardized fifth-generation (5G) wireless
networks will support device-to-device (D2D) communi-
cations in order to provide ubiquitous and reliable high-
rate connectivity between a massive number of wireless
communication devices [1], [2]. A key ingredient that will
enable D2D communication systems to make better use of
the available spectral resources, to increase system capacity,
and to expand coverage is to use either fixed or device relay-
ing techniques. Fixed relaying, which involves the deploy-
ment of low-power base stations (BSs) to assist cellular
communications, has been extensively studied in the lit-
erature, e.g., [3], [4] and it has already been included in
the fourth-generation (4G) Long Term Evolution (LTE)-
Advanced standard. As the number of devices with higher
demands increases in cellular networks, more relays must be
deployed. This makes the network denser and hence increases
the negative effects of interference. Several techniques such
as inter-cell interference coordination [5] and coordinated
beamforming [6] have been proposed to mitigate interference

in 4G networks. In contrast, in future 5G networks it is
desirable to exploit the network density to route data through
a massive mesh network [7]. Such a potential is offered
by D2D communications, wherein two devices are allowed
to communicate in the licensed cellular bandwidth possibly
without the involvement of the BS [8], see Figure 1. This is
in contrast with conventional cellular architecture in which
nodes communicate only with their BSs.

Emerging D2D networks are envisioned to use orthogonal
frequency-division multiple access (OFDMA) as their air
interface. This is mainly due to its simplicity and immunity
to inter-symbol interference [9], in addition to its design
flexibility and ability to achieve high spectral efficiency by
scheduling the subcarriers based on the channel conditions
of the users [10].

A main feature of D2D communications is the large num-
ber of inexpensive low-power devices competing for a scarce
pool of radio resources. The number and versatility of ser-
vices offered by these devices renders efficient utilization
of the radio resources rather imperative, leaving little room

18868 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ VOLUME 6, 2018

https://orcid.org/0000-0002-0343-7799
https://orcid.org/0000-0003-4776-9354


R. Rashtchi et al.: Conjoint Routing and Resource Allocation in OFDMA-Based D2D Wireless Networks

FIGURE 1. A D2D communication scenario. Sources, destinations and
relays are identified by S, D and R, respectively.

for wasteful designs that do not benefit from the topological
and propagation conditions of the network. In particular,
efficient utilization of resources must take into consideration
the network conditions when making decisions pertaining to
routing, scheduling and power allocations. Although optimiz-
ing these aspects in isolation simplifies the design, it may
result in wasting valuable resources that could otherwise be
used to increase the network utility [11].

Joint optimization of routing, scheduling and power allo-
cations in networks with a large number of D2D devices
invokes several difficulties. For instance, the basic prob-
lem of optimizing power allocations in OFDMA networks
is NP-hard [12] and even with fixed power allocations,
the inherent combinatorial nature of the scheduling problem
often renders the problem intractable. As such, joint opti-
mization of scheduling and power allocation along with rout-
ing is usually computationally prohibitive. Several attempts
for performing joint optimization of various network aspects
were made for relatively small networks, e.g., in [13]–[15] for
joint scheduling and power allocation and in [16] and [17] for
joint scheduling, power allocation and routing. The common
assumption in these attempts is that each subcarrier is used
only once across the network. This assumption results in
interference-free communication and facilitates implementa-
tion. However, it deprives the network from proper exploita-
tion of its available resources. A better approach is to consider
the possibility of reusing each subcarrier by multiple links
over different time intervals. In this case, managing the inter-
ference resulting from subcarrier reuse can pose significant
difficulty in designing the wireless network. An instance
of managing this interference in single carrier systems was
considered in [18]. Another instance in which interference
is managed in relatively small multicarrier systems appears
in [19]. In that work, routes, powers and subcarrier sched-
ules were jointly optimized by using an iterative Geomet-
ric Programming (GP) approximation of the original non-
convex optimization problem. Simulation results reported
in [19] suggest that subcarrier reuse enables better exploita-
tion of resources and superior performance gains. However,
these gains come at the expense of complexity. In particular,
allowing each subcarrier to be used by all links results in
a design complexity that grows exponentially with the size

of the network. This renders the design approach devel-
oped in [19] overly complicated for usage in D2D networks.
Hence for such networks, it is desirable to develop joint
design approaches that provide close to optimal performance
with a reasonable computational cost. This is the main focus
of the first part of this paper.

In the second part, we focus mainly on resource allo-
cation in large networks, i.e., networks with 100+ nodes.
In such cases, joint optimization of routing, scheduling and
power allocation across the whole network is computation-
ally prohibitive. One approach to mitigate this difficulty is
to cluster nodes into smaller groups such that the resource
allocation problem is decomposed into smaller subproblems.
This approach is widely used in wireless sensor networks,
see e.g. [20], [21]. However in such networks, elaborate
computations cannot be performedwithout heavily infringing
on the typical small battery-life of the sensors. Hence, in that
work the resource allocation in each cluster is fairly simple
and does not involve joint optimization. Another example for
clustering is the study done for femto-cells in [22]. In that
paper, a semi-definite programmingwas used to cluster nodes
and then an exhaustive search was used to find the best
subcarrier scheduling and power allocation combination in
each cluster. While the overall network setup resembles the
one under consideration herein, the work in [22] did not
consider routing and subcarrier sharing among users, which
is the focus of the second part of this paper.

We consider an OFDMA-based D2D communication net-
work in which the nodes are capable of sending, receiving and
relaying data to other nodes [3]. Nodes acting as multihop
relays operate in the half-duplex mode, i.e., a node cannot
send and receive on the same subcarrier simultaneously.
Nodes in the system are assumed to be connected to the
BS through a control channel and the BS has access to the
channel state information (CSI) of the nodes. Each subcarrier
can be reused over multiple links. However, to simplify the
design, at most one interferer is allowed within a geographic
proximity at any time instant. This assumption is based on
the fact that, in dense areas, reusing one subcarrier on more
than two links results in severe interference and, subse-
quently, deteriorated performance. In addition to determining
the power allocated for each transmission, resource-efficient
communication between source-destination pairs in D2D net-
works requires judicious choice of the relaying nodes, the
data routes, the subcarrier schedules and the fraction of time
during which a subcarrier is assigned to a particular link.
The problem of determining such decisions is NP-hard [12],
and hence finding the optimal decisions is computationally
infeasible for even small-to-moderate size networks.

The goal of this paper is to develop a joint optimiza-
tion framework and a computationally efficient technique
for designing wireless D2D communication networks with
potentially tens of thousands of nodes. The optimiza-
tion problem considered herein resembles the joint rout-
ing, scheduling and power allocation (JRSPA) considered
in [19], but with a significantly larger number of nodes;
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the networks considered in [19] have tens of nodes, whereas
the networks considered herein have thousands of nodes. This
large number of nodes required a fundamentally different
approach in solving the JRSPA optimization problem. In par-
ticular, whereas the solution of the JRSPA problem in [19]
relied on GP and monomial approximations, which resulted
in high complexity and slow convergence, the solution pro-
posed herein relies on decomposing the JRSPA problem into
two efficiently-solvable sub-problems, one for scheduling
and routing and the other for power allocation. These sub-
problems are solved in a two-stage iterative fashion, whereby
the output of one sub-problem is used to obtain an initial point
for the other sub-problem in the subsequent iteration. In the
first stage, the power allocations are set to some fixed values
and this causes the joint optimization of subcarrier schedules
and routes to assume the form of an efficiently solvable
linear program (LP). In the second stage, the output subcar-
rier schedules from the first stage are fixed and the power
allocations and routes are optimized jointly. Unfortunately,
the power allocation problem is non-convex. To overcome
this difficulty we develop a novel iterative technique that
we refer to as ‘constraint-splitting’. This technique exhibits
fast convergence and, in many cases, yields close to optimal
power allocations within a small number of iterations. The
philosophy of this technique is to split a particular con-
straint into two parts, each of which can be cast in a convex
form. In particular, we observe that by fixing the right-hand-
side (RHS) of that constraint and defining an appropriate
lower bound, the problem can be cast as a GP, which can
be readily converted into a convex optimization problem.
We also observe that fixing the left-hand-side (LHS) of that
constraint makes the problem convex and hence, efficiently
solvable. We perform inner iterations over the fixed values
on both sides of the constraint until convergence and we
use the output in a steepest-descent outer iteration to update
the subcarrier schedules in the first stage. Outer iterations
continue until convergence. The two-stage algorithm exhibits
amuch less computational cost, and numerical results suggest
that its performance is significantly better than existing joint
routing, scheduling and power allocation techniques.

Despite the efficacy of the aforementioned two-stage algo-
rithm, it is only capable of designing networks with hundreds
of nodes. This is a substantial improvement over existing
algorithms [19] which can only be used to design networks
with at most ten nodes. However, with emerging smart appli-
cations, future wireless networks are envisioned to have
thousands of nodes, and even more powerful joint design
techniques are required. One such technique is proposed
herein. In this technique, we consider a two-tier framework
wherein the network is partitioned into several sub-networks.
Each sub-network is assumed to have only a few hundred
nodes and a gateway node, which can be one of the BSs
in the cellular network. This gateway acts as a controller
and a data aggregator. In the lower tier of the proposed
framework, the gateway uses the two-stage algorithm to per-
form the joint optimization for nodes communicating within

its own sub-network. For nodes communicating across sub-
networks, the gateway aggregates the data that flows into
and out of its sub-network and also relays data between
source and destination gateways. The joint optimization of
the network composed of gateways constitute the upper tier
of the proposed framework. This optimization is performed
by a global controller which uses the two-stage algorithm but
with the gateways that control the sub-networks. Numerical
examples confirm the superiority of this framework over the
currently available techniques for designing large networks.
In comparison with relevant work in the literature including
our previous work in [17] and [19], the main contributions of
this work can be summarized as follows.

• We provide an iterative two-stage optimization approach
for performing conjoint routing and resource allocation
problems. This approach yields superior performance
over currently available methods and with much less
computational cost.

• We introduce a novel ‘constraint-splitting’ approach
for the resource allocation problem in which a set of
non-convex constraints is split into two sets of convex
ones. We develop an efficient technique for iterating
between formulations corresponding to the two sets of
constraints.

• We develop a two-tier architecture, whereby the network
is considered as a set of distinct clusters, each of which
with a data aggregator that acts as a virtual source and/or
destination for nodes in other clusters.

• Using the new two-stage algorithm with the constraint-
splitting approach in the two-tier architecture enables
efficient and effective design of networks with 1000+
nodes.

The paper is organized as follows. The system model
and problem formulation are described in Section II.
In Section III, two sub-problems are discussed, one for sub-
carrier scheduling when power allocations are fixed and one
for power allocation when subcarrier schedules are fixed. In
Section IV, the technique developed in Section III-B is used
to develop a novel approach, which generates an approxi-
mate solution to the original design problem. The computa-
tional complexity of the proposed techniques is analyzed in
Section V. The two-tier framework for designing large net-
works is presented in Section VI. In Section VII, simulation
results are provided, and Section VIII concludes the paper.

II. SYSTEM MODEL AND PROBLEM STATEMENT
Performance of wireless communication networks depends
on the interplay between network functionalities including
end-to-end rate selection, data routing, time and frequency
scheduling and power allocation. A model representing these
interrelations is presented next.

A. SYSTEM MODEL
We consider a communication network of N nodes, labelled
n = 1, . . . ,N and L directed links, labelled ` = 1, . . . ,L.
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The sets of nodes and links are represented by N and L,
respectively. Each node has one transmit and one receive
antenna and is capable of sending, receiving and relaying data
to other nodes in the network. Data is communicated across
the network through potentially multi-hop routes.We identify
the data flows by their destinations. Let D , {1, . . . ,D} be
the set of destination nodes, D ⊆ N . For destination d ∈ D,
we use s(d)n to denote the nonnegative end-to-end rate from
node n ∈ N to destination d ∈ D. Nodes are assumed to have
finite power budget, Pn, n = 1, . . . ,N , and infinite buffering
capacity.Wemodel the topology of this network by a directed
graph in which nodes and links are represented by vertices
and directed edges, respectively. We define L+(n) and L−(n)
to be the set of links that are outgoing from and incoming
to node n ∈ N , respectively. The connection between nodes
and links can be accounted for by the incidence matrix, A ∈
RN×L , the entries of which are an` = 1 if ` ∈ L+(n),
an` = −1 if ` ∈ L−(n) and zero otherwise. We consider
the widely-used multicommodity flow model for the routing
of data packets across the network, see, e.g., [11]. We assume
that the data flows are lossless across links, and that the traffic
flow can be split arbitrarily at nodes as long as the flow
conservation law is satisfied at each node.

Using an OFDMA-based air-interface, the available fre-
quency bandwidth, W , is divided into K narrowband sub-
carriers, each with a bandwidth of W0 =

W
K . The set of

the K subcarriers is denoted by K. Let h(k)
``′

represent the
channel coefficient, which includes the path loss, shadowing
and Rayleigh fading, on subcarrier k between the transmitter
of link `′ and the receiver of link `, `, `′ ∈ L, k ∈ K.
The network considered in this paper is quasi-static, which
implies that {h(k)

``′
} remain constant over the signalling inter-

val. This network can be represented by a graph in which
each link has K distinct sublinks. We use x(d)`k to denote the
rate of data carried over subcarrier k of link ` and intended
for destination node d , ` ∈ L, k ∈ K, d ∈ D. We also use
p`k to denote the power used by the transmitter of link ` on
subcarrier k .

To facilitate practical implementation, relaying nodes are
assumed to operate in the half-duplex mode, whereby a node
cannot simultaneously transmit and receive on the same sub-
carrier at the same time. Furthermore, it is assumed that a
node cannot use the same subcarrier to broadcast different
information to multiple nodes. However, it can do so either
on different subcarriers or at different time instances. As
such, only one of the links in L+(n), n ∈ N , k ∈ K,
is potentially non-zero. Finally, a node can receive data from
multiple nodes on the same subcarrier. In this case, it is pos-
sible for the node to use maximum likelihood or successive
interference cancellation for joint detection, this approach
is overly complicated and will not be considered in this
paper. As such, we assume that receiving nodes use sequential
detection while treating signals coming from other nodes as
additive Gaussian noise. With this assumption, each link can
be regarded as a single-user Gaussian channel with Shannon
capacityW0 log(1+ ρ`k ) where ρ`k is the received signal-to-

interference-plus noise ratio (SINR) at the receiver of link `
on subcarrier k . This SINR is given by

ρ`k =
p`k |h

(k)
`` |

2

σ 2 +
∑
`′∈L\{`} p`′k |h

(k)
``′
|2
, ` ∈ L, k ∈ K, (1)

where \ represents the setminus operation and σ 2 rep-
resents the variance of the additive Gaussian noise at
each receiving node. For simplicity, we will use g(k)

``′

to denote
|h(k)
``′
|
2

σ 2
. A distinguishing feature of the inter-

ference expression in (1) is that it contains two parts:
1) the interference from other nodes communicating with
the same receiver on subcarrier k; and 2) the interference
from other nodes communicating with other receivers on
subcarrier k .

B. PROBLEM FORMULATION
We begin our analysis by considering the mathematical
formulation for the joint routing, scheduling and power
allocation problem developed in [19]. In this formulation,
s(d)n , the data rate injected into the network at source node
n ∈ N and intended for destination d ∈ D, is assigned
a prescribed nonnegative priority weight w(d)

n , which can
be changed over time to satisfy quality of service require-
ments. The collection of such weights are normalized so
that 1

ND

∑
n,d w

(d)
n = 1.

The scheduling variables are characterized by the entries of
the set0 = {γ (k)

`1,`2,...,`m
|m = 1, . . . ,L, k = 1, . . . ,K }. These

entries represent the fraction of time over which a particular
subset of links utilizes the same subcarrier. For instance,
γ
(k)
`1,...,`m

denotes the fraction of the signalling interval during
which links `1, · · · , `m ∈ L are simultaneously ‘active’ on
subcarrier k ∈ K and the remaining L − m links in L are
‘silent’on this subcarrier.

Using these notations, the JRSPA design problem can be
cast in the following form:

max
{s(d)n },{x

(d)
`k },{p`k },{γ

(k)
``′
}

∑
d∈D

∑
n∈N \{d}

w(d)
n s(d)n , (2a)

subject to 0 ≥ 0, elementwise, (2b)

s(d)n ≥ 0, n ∈ N \ d, d ∈ D, (2c)

x(d)`k ≥ 0, ` ∈ L, k ∈ K, d ∈ D, (2d)

p`k ≥ 0, ` ∈ L, k ∈ K, (2e)∑
`∈L

∑
k∈K

an`x
(d)
`k = s(d)n , n ∈ N \ d, d ∈ D,

(2f)
L∑

m=1

∑
`1···`m∈L

γ
(k)
`1...`m

≤ 1, k ∈ K, (2g)

a+n`1a
−

n`2

(
γ
(k)
`1`2
+

L∑
m=3

∑
`3···`m∈L

γ
(k)
`1...`m

)
= 0,

`1 ∈ L, `2 ∈ L \ {`1}, k ∈ K, (2h)
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a+n`1a
+

n`2

(
γ
(k)
`1`2
+

L∑
m=3

∑
`3···`m∈L

γ
(k)
`1...`m

)
= 0,

`1 ∈ L, `2 ∈ L \ {`1}, k ∈ K, (2i)∑
k∈K

∑
`1∈L+(n)

p`1 k
(
γ
(k)
`1
+

L∑
m=2

∑
`2···`m∈L

γ
(k)
`1...`m

)
≤Pn,

n ∈ N , (2j)∑
d∈D

x(d)`1 k
≤ γ

(k)
`1

log2(1+ p`1 kg
(k)
`1`1

)

+

L∑
m=2

∑
`2...`m∈L

γ
(k)
`1...`m

× log2

(
1+

p`1 kg
(k)
`1`1

1+
∑m

i=2 p`ikg
(k)
`1`i

)
,

`1 ∈ L, k ∈ K. (2k)

The significance of the constraints in (2) was described
in detail in [19]; however, for completeness we now pro-
vide a brief explanation of each of these constraints. The
non-negativity constraints in (2b) and (2e) are obvious. The
constraint in (2f) ensures the flow conservation law at each
node, i.e., incoming and outgoing flows of each node must be
equal. The constraint in (2g) guarantees that the total usage of
subcarrier k does not exceed the normalized signalling inter-
val. The constraint in (2h) enforces the half-duplex operation
of the system, whereby an incoming and outgoing links of
node n ∈ N cannot be active at the same time on subcarrier
k ∈ K. In this equation a+n`1 and a−n`1 represent incoming
and outgoing links of node n, respectively. In other words,
a+n`1 = 1 when an`1 = 1 and a−n`1 = 1 when an`1 =
−1. In this constraint all the schedules that correspond to
simultaneous transmissions on consecutive links are set to
zero. Similar argument holds for the broadcasting constraint
in (2i), whereby of all the outgoing links of node n ∈ N
only one can be active at any time instant on subcarrier
k ∈ K. The constraint in (2j) enforces the energy budget
of a node and finally the constraint in (2k) guarantees that
the communication rate of each link does not exceed its
capacity. An observation that will prove pivotal in subsequent
developments relies on the fact that each term of the capacity
expression consists of two parts, the first part is related to
the time during which only one transmission is scheduled on
subcarrier k and the second part is related to the time during
which more than one transmission are scheduled on that
subcarrier.

The optimization problem in (2) is highly non-convex
because of the constraints in (2j) and (2k) and hence, gen-
erally difficult to solve. An attempt to solve this problem
was made in [19] which was based on GP. The iterative
algorithm proposed therein, although finds an approximate
solution with theoretically-proven polynomial complexity, its
practical complexity is high and its convergence is generally
slow especially for medium-to-large networks. To circumvent
these difficulties, in this paper we propose a low complexity

algorithm that exhibits fast convergence even for large net-
works.

Our approach is to decompose the optimization in (2)
into two smaller sub-problems, one for scheduling and one
for power allocation, with a partial coupling between them.
Beforewe describe these sub-problems, in the next sectionwe
will introduce preliminary simplifications on the formulation
in (2). In particular, we will show how the constraints in (2h)
and (2i) can be eliminated from the problem. We also show
that imposing constraints on the maximum number of simul-
taneous transmissions on a subcarrier can reduce the number
of variables from being exponential in the number of nodes
to being polynomial in it.

C. PRELIMINARY SIMPLIFICATIONS
One of the key constituents that contribute to the high com-
plexity of solving (2) follows from the high cardinality of 0.
To see that, we note that the number of entries in 0 that are
needed to characterize all possible transmission scheduling
combinations on each subcarrier is given by

L∑
i=1

(
L
i

)
= (2L − 1). (3)

The i-th term in the summation corresponds to the number
of ways a subcarrier can be allocated to i out of L possi-
ble links. Despite being comprehensive of all possibilities,
this number results in overwhelming complexity for large
networks.

To reduce the complexity of solving (2) for larger net-
works, we note that the half-duplex and broadcasting con-
straints depend only on the network graph, i.e., {an`}. Hence,
ensuring that these constraints are satisfied can be effected
prior to solving (2). In fact, the constraints in (2h) and (2i)
enforce some entries of 0 to be zero and hence, can be
removed from the variable set. For instance, if `1 and `2 are
incoming and outgoing links of node n, respectively, then the
half-duplex constraint enforces all the entries of 0 involving
`1 and `2, e.g., γ

(k)
`1`2

and γ (k)
`1`2`3

for all `3 ∈ L\{`1, `2}, to be
zero. Hence, these two constraints can be enforced by pruning
the set 0 prior to solving (2). The pruning rule is as follows:
for each `1 and `2 ∈ L, if either a+n`1a

+

n`2
= 0 or a+n`1a

−

n`2
= 0,

the corresponding time-shares are removed from the set 0.
To further reduce the number of effective entries in 0,

we note that in D2D communications, which lies at the focus
of this paper, a subcarrier is less likely to be reused over a
large number of links. This is due to the severe interference
that such a reuse would result in. Hence, in D2D commu-
nications, it is expected that most of the gain of frequency-
reuse can be mustered by considering only few simultaneous
transmission over a subcarrier; increasing the reuse factor is
likely to yield a marginal gain but with significantly higher
complexity. For simplicity, we will consider the case in which
a subcarrier can be used simultaneously by at most I = 2
links in some detail. However, the forthcoming analysis can
be readily generalized to I = 2, · · · ,L.
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FIGURE 2. The scheduling matrix for a 3-node network with L = 6 links.

Using these simplifications, we now evaluate the number
of entries in 0. To do that, we note that when the reuse
factor I=2, the entries of 0 can be arranged in the form of
K , L × L matrices, {0(k)

}
K
k=1. The ``

′-th entry of 0(k) is
given by γ (k)

``′
, that is, this entry represents the fraction of the

signalling interval over which subcarrier k is used on both
links ` and `′. Since, by definition, γ (k)

``′
= γ

(k)
`′`

, 0(k) is
symmetric. The diagonal entries of this matrix represent the
fraction of time duringwhich transmissions do not experience
interference and its off-diagonal entries represent the fraction
of time during which simultaneous transmissions interfere
with each other.

For a fully connected graph, L = N (N − 1) and the
cardinality of 0 can be reduced to

|0| = K
(
N (N − 1)+

(
N (N − 1)

2

)
− N

(
N − 1

2

)
−N

(
N − 1

1

)2

+
N (N − 1)

2

)
(4)

= KN (N − 1)
(
1+

(N − 2)2

2

)
, (5)

where the first and second terms in (4) represent the number
of diagonal and (distinct) off-diagonal entries of 0. The third
term accounts for the variables that violate the half-duplex
constraint, and the last two terms represent the number of
variables that violate the broadcasting constraint. (The last
term compensates for the variables that are counted twice in
the preceding term.) Comparing (3) with (5), it can be seen
that the preliminary simplifications proposed in this section
reduces the cardinality of 0 from being exponential to being
polynomial in N . An exemplary network of 3 nodes and its
corresponding 0(k) matrix is illustrated in Figure 2.

III. JOINT DESIGN SUB-PROBLEMS: SCHEDULING AND
POWER ALLOCATION
In this section, we decouple the optimization problem in (2)
into two parts, one for the scheduling when the power allo-
cations are fixed and one for the power allocations when
the schedules are fixed. After solving the two sub-problems,
we will develop in Section IV an iterative technique to
obtain a sub-optimal solution of the entire problem. For ease
of exposition, the sub-problems will be described without
invoking the simplifications in the previous section. However,
in the numerical examples, these simplifications will be used
to reduce the complexity of the design problem.

A. SCHEDULING WITH FIXED POWER ALLOCATIONS
In this section, we consider the problem of optimizing the
subcarrier schedules that maximize a weighted-sum rate of
the network when the power allocations are fixed. Let q̃(k)`k
denote the power allocations which are assumed to be fixed
in this phase. Careful examination of the optimization prob-
lem in (2) reveals that with the power allocations fixed, this
problem becomes an LP and hence, its global maximum can
be found in polynomial time, cf. e.g., [16].

B. POWER ALLOCATION WITH FIXED SCHEDULES
In this section, we consider a problem complementary to the
one presented in the previous section, i.e., the problem of
optimizing the power allocations that maximize a weighted-
sum rate of the network when the subcarrier schedules are
fixed. Let 0̃ denote the schedules which are assumed to be
fixed in this phase. The problem in (2) with fixed schedules
reduces to a GP at high SINR regimes. In those regimes,
the solution can be found optimally [23]. However, the prob-
lem with this approach is that the SINR are not known prior
to performing power allocation, and, in general, this problem
is non-convex and difficult to solve. In [23], an iterative
technique based on monomial approximation was used to
find a suboptimal solution. However, in [19] it was shown
that the convergence of this technique is relatively slow, for
all but the smallest of networks, which renders the approach
in [23] impractical for medium-to-large networks. To tackle
this problem, we develop a novel approach, which we refer
to as ‘constraint-splitting’. This approach will be shown in
Section V-C to exhibit significantly faster convergence.

We begin the development of the proposed approach by
expressing the capacity constraint in (2k) in a format that is
more amenable to prospective optimization. We will focuse
on the case of having at most two interferers, i.e., I = 2. How-
ever, the forthcoming formulations can be readily extended
to cover cases with I > 2, but unfortunately, not without
compromising clarity of exposition.∑

d∈D
x(d)`k ≤ γ

(k)
`` log(1+p`kg

(k)
`` )

+

∑
`′∈L\{`}

γ
(k)
``′

log

(
1+

p`kg
(k)
``

p`′kg
(k)
``′

)
. (6)
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The next step is to rewrite the capacity constraint in (6) in a
form that facilitates the optimization of the power allocations.
This constraint can be written as:∑

d∈D
x(d)`k +

∑
`′∈L\{`}

γ
(k)
``′

log
(
1+ p`′kg

(k)
``′

)
︸ ︷︷ ︸

Interference part

≤ γ
(k)
`` log(1+ p`kg

(k)
`` )+

∑
`′∈L

γ
(k)
``′

log
(
1+ p`′kg

(k)
``′

)
︸ ︷︷ ︸

Noisy-signal part

.

(7)

We will refer to the second summation on the RHS of (7)
as the interference part because it contains the interference
terms only and the summation on the LHS of (7) as the noisy-
signal part because it contains both signal and interference
terms.

Looking back into the optimization in (2) with fixed sched-
ules and (2k) being replaced with (7), we make the following
observation, which will later help us in proposing a fast-
converging technique to solve the power allocation problem.
The first observation is that, if we fix the noisy-signal part,
the optimization problem in (2) can be cast in a GP form
that can be easily converted into a convex problem [24].
The second observation is that, if we fix the interference
part, the optimization problem in (2) reduces to a convex
problem that can be efficiently solved using interior point
methods [25]. Taking advantage of these observations, in the
next two sections we will explain each of the aforementioned
problems and then we will develop an iterative technique that
exhibits fast convergence to a power allocation solution.

1) INTERFERENCE SUB-PROBLEM
In this section, we consider the problem in (2) when (2k) is
replaced with (7) and the schedules are fixed. We will denote
these schedules by {γ̃ (k)

``′
} which are, in fact, the entries of 0̃.

Suppose that the RHS of (7) is fixed to some initial power
allocation {p(0)`k } and let us introduce a parameter α ≥ 1
which we will use to control the search region for a proper
power allocation around {p(0)`k }. After fixing the RHS of (7)
and introducing the parameter α, the joint design problem can
be written in the following form:

max
{s(d)n },{x

(d)
`k },{p`k }

∑
d∈D

∑
n∈N \{d}

w(d)
n s(d)n , (8a)

subject to s(d)n ≥ 0, n ∈ N \ d, d ∈ D, (8b)

x(d)`k ≥ 0, ` ∈ L, k ∈ K, d ∈ D, (8c)

p`k ≥ 0, ` ∈ L, k ∈ K, (8d)∑
`∈L

∑
k∈K

an`x
(d)
`k = s(d)n , n ∈ N \ d, d ∈ D,

(8e)∑
k∈K

∑
`∈O(n)

p`k
∑
`′∈L

γ̃
(k)
``′
≤ Pn, n ∈ N , (8f)

∑
d∈D

x(d)`k +
∑

`′∈L\{`}
γ̃
(k)
``′

log
(
1+ p`′kg

(k)
``′

)
≤αS`k ,

` ∈ L, k ∈ K, (8g)

where S`k = γ̃
(k)
` log(1 + p(0)`k g

(k)
`` ) +

∑
`′∈L γ̃

(k)
``′

log
(
1 +

p(0)
`′kg

(k)
``′

)
is the fixed noisy-signal part.

While the optimization problem in (2) is NP-hard, the one
in (8) is in the form of an efficiently solvable GP. There
is caveat though: solving (8) will result in maximizing the
first summation on the LHS of (8g) at the expense of the
link power {p`′k}, thereby pushing them towards zero. This
undesirable situation can be prevented by introducing the
following lower bounds on the powers:

B`k ≤
∑

`′∈L\{`}
γ̃
(k)
``′

log
(
p`′kg

(k)
``′

)
, ` ∈ L, k ∈ K, (9)

where B`k =
∑
`′∈L\{`} γ̃

(k)
``′

log
(
p`′kg

(k)
``′

)
, ` ∈ L, k ∈ K

are constants obtained from the link powers generated in the
preceding iteration. We note that one of the advantages of the
bound in (9) is that it complies with the GP framework and
hence can be readily incorporated in the framework in (8).
The resulting optimization problem in this case can now be
expressed as:

max
{s(d)n },{x

(d)
`k },{p`k }

∑
d∈D

∑
n∈N \{d}

w(d)
n s(d)n , (10a)

subject to Constraints (8b)–(8g) and (9). (10b)

The sub-problem in (10) can be cast in a convex form by
first using a logarithmic change of variables to write (10) in a
form that conforms to the GP framework [25], which, using
a standard exponential transformation, can be converted into
a convex optimization problem [24].

2) NOISY-SIGNAL SUB-PROBLEM
In this section, we consider a case complementary to the
one considered in the previous section, i.e., the case when
interference part on LHS of (7) is fixed and the noisy-signal
part is optimized. Again, we assume that an initial power
allocation, {p(0)`k }, is given. Analogous to the discussion in
the previous section, for the noisy-signal sub-problem we
introduce a parameter β ≤ 1 to control the search region for
the power allocation around the given initial point. Given β,
the noisy-signal sub-problem can be expresses as

max
{s(d)n },{x

(d)
`k },{p`k }

∑
d∈D

∑
n∈N \{d}

w(d)
n s(d)n , (11a)

subject to s(d)n ≥ 0, n ∈ N \ d, d ∈ D, (11b)

x(d)`k ≥ 0, ` ∈ L, k ∈ K, d ∈ D, (11c)

p`k ≥ 0, ` ∈ L, k ∈ K, (11d)∑
`∈L

∑
k∈K

an`x
(d)
`k = s(d)n , n ∈ N \ d, d ∈ D,

(11e)∑
k∈K

∑
`∈O(n)

p`k
∑
`′∈L

γ̃
(k)
``′
≤ Pn, n ∈ N , (11f)
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∑
d∈D

x(d)`k +βI`k≤ γ̃
(k)
` log(1+p`kg

(k)
`` )

+

∑
`′∈L

γ̃
(k)
``′

log
(
1+ p`′kg

(k)
``′

)
, ` ∈ L, k ∈ K,

(11g)

where I`k =
∑
`′∈L\{`} γ̃

(k)
``′

log
(
1+ p(0)

`′kg
(k)
``′

)
is the fixed

interference part. This problem is convex and can hence be
readily solved with highly efficient interior-point method
solvers.

To summarize, we emphasize that the way in which the
constraint in (7) is split resulted in two convex optimization
problems, the GP-compatible one in (10) and the one in (11).
This is the key that will ensure efficient implementation of
the iterative technique described next.

3) ITERATIVE SOLUTION FOR POWER ALLOCATION
SUB-PROBLEM
We now develop an iterative technique that incorpo-
rates the convex problems described in Section III-B
to solve the problem in (2) when the schedules are
fixed.

Starting from a feasible initial power allocation, we first
solve the interference sub-problem in (10) for a value of
α > 1. The solution is then used as an initial point for
the signal sub-problem in (11) with a value of β < 1.
The output of this sub-problem is then used as an initial
point for the subsequent iteration. For this technique to con-
verge, the feasible region must be expanded less at each
iteration in order for the outputs of both the noisy-signal
and the interference sub-problems to converge. This goal can
be achieved by adjusting the parameters α and β at each
iteration. In particular, for convergence, the value of α and
β at the i-th iteration, αi and βi, respectively, must satisfy
αi ≤ αi−1 and βi ≥ βi−1. At convergence, we must have
α∗ = β∗ = 1. It is worth noting that the step size for adjusting
α and β must be not too small, to avoid slow convergence, and
not too large to avoid crossing over of the powers generated
by the two sub-problems. This algorithm is summarized in
Algorithm 1.

IV. APPROXIMATED SOLUTION FOR JOINT
DESIGN PROBLEM
In the previous section, we considered the joint optimization
problem when either the schedules or the powers are fixed.
Using the techniques developed in Sections III-A and III-B,
in this section, we provide an efficient technique for generat-
ing ‘good’ solutions of the joint optimization problem in (2)
in its entirety. Our approach is composed of two stages, one
for solving the joint optimization problem with fixed powers,
and one for solving it with fixed schedules. Iterating between
these two stages yields an approximate solution for the joint
design problem in (2). It is worth noting that, in contrast
to the GP-based approach in [19], this algorithm has much
less computational complexity as it needs fewer iterations for
convergence, cf. Section V below.

Algorithm 1 Inner Iteration: Constraint-Splitting
Approach
Data: Subcarrier schedules, CSI, weights, initial power

allocation
Result: data rates, power allocations
Initialization: set α and β;
while α 6= β do

Solve the interference sub-problem (GP) in (10);
Set the solution as the initial power allocation;
Solve the noisy-signal sub-problem (Convex)
in (11);
Update the parameters α and β;

end

In the algorithm presented herein, we begin from a feasible
initial point, for instance, equal distribution of the power
budget among outgoing links, i.e., p(0)`k =

Pn
K |O(n)| , n =

1, · · · ,N . In the first stage, we fix the power allocation
in (2) to {p(0)`k }. We then solve the resulting LP to find the
optimal schedules, {γ̃ (k)

``′
}, corresponding to the initial power

allocation. In the second stage, we fix the schedules in (2)
to {γ̃ (k)

``′
}. We then use Algorithm 1 to find the corresponding

power allocations p̃`k . These power allocations can be fed
back into the first stage to solve the problem iteratively.
However, our numerical results suggest that, in its current
form, this outer iteration provides negligible performance
gain. The reason is that schedules and powers are tightly
coupled, i.e., if one of the powers is zero, the corresponding
schedules are also zero and vice versa. To circumvent this
difficulty, in the proposed algorithm we modify the power
allocations in the outer iteration in order to enable further
exploration of the feasible region. To do that, we use the
gradient method [25] to find the gradient ascent direction
of the problem in (2). In particular, we use the log-barrier
method [25] to incorporate the inequality constraints in (2)
in the objective. In this method, the problem in (2) is written
in the following form:

max
∑
n,d

w(d)
n s(d)n +

1
t

(∑
n,d

log(s(d)n )+
∑
`,k,d

log(x(d)`k )

+

∑
`,k

log(γ (k)
``′

)+
∑
`,k

log(p`k )
)

+
1
t

∑
`,k

log
(
ψ(`, k)

)
+

1
t

∑
k

log(1−
∑
` `′∈L

γ
(k)
``′

)+
1
t

∑
n

log
(
φ(n)

)
,

subject to
∑
`,k

an`x
(d)
`k = s(d)n , n ∈ N \ d, d ∈ D,

(12)

where φ(n) , Pn −
∑

k,`∈O(n) p`k
∑
`′ γ

(k)
``′

, ψ(`, k) ,

γ
(k)
`` log(1+p`kg

(k)
`` )+

∑
`′ γ

(k)
``′

log
(
1+

p`kg
(k)
``

1+p`′kg
(k)
``′

)
−
∑

d x
(d)
`k
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FIGURE 3. Block diagram of Algorithm 2.

represent the gap between the RHS and LHS of the con-
straints in (2j) and (2k), respectively, and t represents the log-
barrier parameter. The gradient of the objective in (12) with
respect to p`k can be readily shown to be given by

∇p`k =
1
t

(
1
p`k
−

∑
`∈L+(n),k,`′ γ``′

φ(n)

+

γ
(k)
`` g

(k)
``

1+p`kg
(k)
``

+
∑
`′
γ
(k)
``′
g(k)``
(
1+g(k)

``′
(p`′k−p`k )

)
(1+p`′kg

(k)
``′

)2

ψ(`, k)

)
. (13)

We set t = 1 in the first iteration and increase it in
subsequent ones. We use the gradient ascent direction in (13)
to update the output of the second stage and feed it back into
the first stage in the following iteration. In particular, we use
the following update rule:

p̃(j+1)`k = p̃(j)`k + µj∇p̃`k , ` ∈ L, k ∈ K, (14)

where j is the index of outer iterations and µj is a step
size. Iterations continue until a stopping criterion is satis-
fied, e.g., no significant improvement in the objective is
observed. For guaranteed convergence [25], {µj} are chosen
to form a monotonically decreasing sequence that satisfies∑

j γj = ∞. Details are summarized in Algorithm 2 and illus-
trated in Figure 3.

Algorithm 2 Outer Iteration: Approximated Solution for
JRSPA Problem in (2)
Data: CSI, weights
Result: data rates, subcarrier schedules, power

allocations
Initialization: set {p(0)`k } as the equal power assignment;
while ‖∇‖ > ε do

Stage 1: solve (2) with fixed powers to find
subcarrier schedules (LP);
Stage 2: run Algorithm 1 to obtain power allocation,
{̃p`k};
Update: use (14) to update the obtained powers;

end

It will be shown in Section VII that Algorithm 2 yields
solutions that perform significantly better than those yielded
by a fixed power allocation approaches. This algorithm will
also be compared to the GP-based approach in [19]. Further-
more, it will be shown that this algorithm tends to yield a
better performancewith significantly less computational cost.

In the next section, we will provide bounds on the com-
putational complexity of the proposed techniques. In partic-
ular, we will show that each stage of the algorithm has a
polynomial complexity and hence, the proposed algorithm for
obtaining an approximate solution to the joint optimization
problem in (2) also has a polynomial complexity.

V. COMPUTATIONAL COMPLEXITY
The approach proposed in the previous section is based on
iterating between two stages. In the first stage, we seek the
optimal schedules for a given power allocation, whereas in
the second stage, we find a suboptimal power allocation for
a given schedules. The complexity of each stage is discussed
next.

A. COMPUTATIONAL COMPLEXITY OF THE FIRST STAGE
In the first stage of the approach proposed in the previous
section, the power allocations are fixed. In this case, the prob-
lem in (2) reduces to an LP where the optimal solution,
i.e., optimal schedules, could be found efficiently using IPM-
based solvers. The number of Newton iterations required by
such solvers can be shown to be proportional to

√
m, where

m is the number of inequality constraints [25]. For the LP
problem, we have m = LK (D + 1) + D(N − 1) + N +
K + KN (N − 1)

(
1 + (N−2)2

2

)
. In addition, each Newton

step is known to have a cubic complexity [26]. Hence, in the
worst case scenario when the network is fully connected,
i.e., L = N (N − 1) and all the nodes are destination nodes,
i.e., D = N , the computational complexity of solving the LP
problem is O( 12K

3.5N 14).

B. COMPUTATIONAL COMPLEXITY OF THE
SECOND STAGE
In the second stage, sub-optimal power allocations for given
schedules are obtained by solving a sequence of convex prob-
lems. The complexity of each problem is discussed next.

1) COMPUTATIONAL COMPLEXITY OF THE
INTERFERENCE SUB-PROBLEM
The interference sub-problem discussed in Section III-B.1
yields a GP which can be readily converted into a convex
problem using the exponential change of variables [24]. The
computational complexity of solving such problems were
studied in[17] and [19] by bounding each monomial term
in the GP with a new variable that serves as an upper
bound. Using this method, it can be shown that the com-
plexity of solving the GP problem in worst case scenario is
O(4K 3.5N 14).

2) COMPUTATIONAL COMPLEXITY OF THE
NOISY-SIGNAL SUB-PROBLEM
The noisy-signal sub-problem discussed in Section III-B.2
yields a convex optimization problem. Using a dis-
cussion analogous to the one in Section V-A, it can
be shown that the number of inequality constraints is

18876 VOLUME 6, 2018



R. Rashtchi et al.: Conjoint Routing and Resource Allocation in OFDMA-Based D2D Wireless Networks

m = LK (D + 2) + D(N − 1) + N . Hence, the complexity
of solving this problem in the worst case scenario using
IPM-based solvers is O(K 3.5N 10.5).

C. COMPUTATIONAL COMPLEXITY OF THE
TWO-STAGE APPROACH
We begin by recalling that the parameters α and β control
the search region for a power allocation solution. Let ε be
the step size with which the parameter α shrinks at each
inner iteration of the algorithm and let β = 1

α
. Since at

convergence, we must have α = 1, the number of iterations
required for convergence is α

ε
. Using the two-stage approach

presented in Section IV and the complexity discussions in
Sections V-B.1 and V-B.2, it can be seen that the complexity
of each outer iteration of the proposed approach is bounded
by

O
(
K 3.5N 10.5(α

ε
(4N + 1)

)
+

1
2

)
. (15)

We conclude this section by noting that, when the reuse
factor, I , is restricted to be small, both the method proposed
herein and the one proposed in [19] have polynomial com-
plexity. However, the main difference between these methods
is that the typical number of iterations required for themethod
proposed in [19] to converge is much larger than its counter-
part for the method proposed herein. For instance, using the
method proposed in [19] in a network with N = 4 nodes
required 180 iterations to converge. This is in contrast with
the method proposed herein, in which we are able to find a
sub-optimal solution within less than 10 iterations.

VI. JOINT DESIGN IN LARGE NETWORKS
The algorithm proposed in Section IV enables us to jointly
design the data routes, subcarrier schedules and power allo-
cations in networks of hundreds nodes. Although this is a
significant improvement compared to the algorithm in [19]
where the joint design is applicable to networks of up to ten
nodes, in practice, the size of data networks might be much
larger and it is desirable to solve the joint design problem for
such networks.

In this section we consider large networks with thou-
sands of nodes. From the complexity analysis presented in
Section V-C, it can be seen that, despite the efficacy of the
joint design algorithm presented in Section IV, using this
algorithm to design a network with thousands of nodes in
one shot is computationally prohibitive. To circumvent this
difficulty, we propose a two-tier communication framework.
We begin by assuming that the network is composed of sev-
eral disjoint clusters, which are not necessarily far from each
other in a geographical sense. Each cluster has a local cluster
controller (CC), which can be either an entity outside the
network or one of the nodes within the cluster. Communica-
tions between CCs in the higher tier is controlled by a central
entity which we refer to it as the global controller (GC).
We assume that communication between CCs is performed
over a set of frequencies than are distinct from the set used

FIGURE 4. An exemplary network of 4 clusters.

for communication between nodes in the network. Such a
scenario arises naturally in heterogeneous networks with one
macro and multiple femto BSs. In these networks, the femto
BSs act as CCs that are responsible for accommodating com-
munications within their cells and the macro BS acts as a
GC that is responsible for communication between femto
cells [27].

An exemplary network of four clusters is illustrated
in Figure 4. In this figure, each cluster has multiple BSs but
only one of them is designated as a CC (marked in red).
A fraction of the nodes in this network wish to communicate
with nodes within their cluster (marked in green) and another
fraction of nodes wish to communicate with nodes outside
their cluster (marked in blue). The frequencies used for com-
munications between CCs (marked with dashed lines) are
distinct from those used for communication inside clusters
(marked with solid lines). The communication between CCs
is controlled by the GC through a control channel (dotted
lines).

A. PROPOSED FRAMEWORK
We consider a network of M clusters, which form the set
M , {1, . . . ,M}. The sets of nodes and destinations in
cluster i ∈ M are denoted by Ni and Di, respectively.
At the beginning of each scheduling interval, source nodes
announce their intended destinations to their respective CCs.
Communication between nodes in the network falls in one of
two categories:

Intra-Cluster: This case arises when both the source and
destination nodes are located within the same clus-
ter. The CC of the cluster incorporates the parame-
ters of these nodes in the optimization framework of
Section IV. The schedules, routes and power allocations
output of this optimization are then passed by the CC to
the nodes within its cluster.
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FIGURE 5. Three sets of nodes in Cluster i: 1) destination nodes whose
source is inside the cluster, Din

i in blue, 2) destination nodes whose
source is outside the cluster, Dout

i in red, and 3) source nodes whose
destination is outside the cluster, N out

i in green. Note that these sets are
not necessarily disjoint.

Inter-Cluster: This case arises when the source and desti-
nation nodes are located in different clusters. The CCs
of the source and destination clusters are responsible for
pulling data from the source node and pushing it to the
destination node, respectively. Communication between
the CCs of the source and destination clusters is handled
by the GC. In particular, the GC uses the framework
of Section IV to find the optimized schedules, routes
and power allocations for the communication over the
network of CCs.

We now use these two categories to describe three phases
of the proposed framework.

1) FIRST PHASE (INTRA-CLUSTER DESIGN)
In this phase, the CCs perform three tasks: first, they perform
the joint design for the nodes that lie within their clusters;
second, they act as virtual destination nodes for any source
whose actual intended destination lies outside the cluster; and
third, they act as virtual source nodes for any destination
within the cluster but whose actual source lies outside the
cluster. In the latter two tasks, the CCs act as gateways
for their respective clusters. Each CC uses the algorithm in
Section IV to jointly design the routes, schedules and power
allocations for the network formed by the nodes within its
cluster, including the CC itself.

To characterize the role of CCs as gateways for their clus-
ters, we begin by noting that, similar to other nodes in the
network, a CC can act both as a source and a destination at
the same time. Now, let Din

i be the set of destination nodes
whose source nodes lie inside cluster i, i ∈ M. Also, let
N out
i be the set of source nodes whose destination lies outside

cluster i and Dout
i be the set of nodes whose source nodes

lie outside cluster i. These three sets, i.e., Din
i , N

out
i and

Dout
i , are illustrated in Figure 5. For n ∈ N out

i , CCi acts
as the destination node and for d ∈ Dout

i , it acts as the
source node. Hence, as before, we will use s(CCi)n to denote
the data rate from the source node n ∈ N out

i to its virtual
destination, CCi and s

(d)
CCi to denote the data rate from the

virtual source node, CCi to its corresponding destination,
d ∈ Dout

i . Now, CCi performs the optimization in (2) to
find the routes, schedules and power allocations. In particular,

CCi solves the optimization in (2) with the modified objec-
tive

∑
d∈Din

i

∑
n∈Ni

sdn +
∑

n∈N out
i
sCCin +

∑
d∈Dout

i
s(d)CCi . The

first part of this objective accounts for the communications
whose source and destination are located inside the cluster
i, the second part accounts for the communications whose
source and destination are inside and outside of cluster i,
respectively, and the last part accounts for the communica-
tions whose source and destination are outside and inside
cluster i, respectively. The constraints in (2) can be readily
modified to define the feasible set of the new variables. To
ensure that CCi acts as a virtual source and destination node,
the variables {sdn |n ∈ N , d ∈ D} in (2) are replaced with{
sdn |n ∈ Ni ∪ {CCi}, d ∈ Di ∪ {CCi}

}
.

2) SECOND PHASE (INTER-CLUSTER DESIGN)
Here we consider the situation when the source and desti-
nation nodes lie in distinct clusters. This situation was han-
dled in part in the previous phase. In particular, that phase
is responsible for establishing communication between the
source node and its CC, which acts as a virtual destination,
and for establishing communication between the CC, which
acts as a virtual source, and the destination node. Now,
we consider the communication between CCs that act as
virtual sources and the CCs that act as virtual destinations.
This communication is coordinated by the GC.

To characterize the current phase, let n ∈ Ni be a source
in cluster i and let d ∈ Dj be a destination node in cluster
j, i 6= j, i, j ∈ M. The goal in this phase is to establish
communication between CCi and CCj. Noting that CCi and
CCj serve as a proxy source and destination for the rate s(d)n ,
it can be seen that, with the proposed scheme, the data
rate between the source n ∈ Ni and the destination d ∈
Dj cannot exceed min{s(CCi)n , s(d)CCj}. Hence, we must have

s
(CCj)
CCi ≤ min{s(CCi)n , s(d)CCj}, where s

(CCi)
n and s(d)CCj are obtained

from solving the optimization in phase 1. Hence, to establish
communication between CCi and CCj, the GC solves the
following variation of (2) to obtain {s

(CCj)
CCi } along with the

respective schedules, routes and power allocations:

max
∑
i∈M

∑
j∈M\{i}

s
(CCj)
CCi , (16a)

subject to constraints in (2b)–(2k), (16b)

s
(CCj)
CCi ≤ min{s(CCi)n , s(d)CCj}, i ∈M, j ∈M \ {i}.

(16c)

We now make two remarks regarding the formulation in (16).
First, we note that, in this formulation, we only considered
the total throughput, rather than the weighted sum of rates.
This is because data flows passing through a CC may have
different weights, and combining these weights for inter-
cluster communications appears to be rather complicated.
Second, we note that because min{s(CCi)n , s(d)CCj} is obtained
from the solution of the first phase, the constraint in (16c)
is convex and hence, incorporating it in the formulation does
not reduce its solvability.

18878 VOLUME 6, 2018



R. Rashtchi et al.: Conjoint Routing and Resource Allocation in OFDMA-Based D2D Wireless Networks

FIGURE 6. Flowchart of the proposed framework for joint design of large
clustered networks.

3) THIRD PHASE (UPDATE INTRA-CLUSTER DESIGN)
After solving (16) in phase 2 for the rates {s

(CCj)
CCi }, these

rates are communicated to the CCs and the network design
process can be considered complete. However, we note that
this design is amenable to further refinement. In particular,
the rates obtained in phase 2, i.e., {s

(CCj)
CCi }, can be regarded as

the end-to-end rates, and hence, there is no benefit in having
either s(CCi)n or s(d)CCj exceed s

(CCj)
CCi . In other words, a refinement

of the design can be obtained by re-solving (2), but with s(CCi)n

and s(d)CCj bounded by s
(CCj)
CCi , i.e., with following constraints

included in the formulation in (2):

s(CCi)n ≤ s
(CCj)
CCi , and, s

(d)
CCj ≤ s

(CCj)
CCi .

Implicit in this phase is that if (16c) is satisfied with equality
in phase 2, only the design pertaining to cluster i or that
pertaining to cluster j will be amenable to refinement.

This framework is summarized in Figure 6. In Section VII
we will provide an instance in which this framework is used
to design a networks with 160 nodes.

VII. SIMULATIONS
In this section, we assess the performance of the iterative
algorithm and the proposed framework presented in Sec-
tions IV and VI. The optimization problems in this section
are solved using the software package CVX [28] with an
underlying MOSEK solver [29].
We consider a standard communication channel model

with quasi-static frequency-flat Rayleigh fading subcarriers,
log-normal shadowing, and path loss components. As such,
the complex subcarrier gains can be expressed as h`k =√
η(`)λ`r`k , where η(·) is the path loss function. Shadowing

is represented by λ`, which is log-normal distributed with
0 dB mean and standard deviation σs dB. Fading is repre-
sented by r`k , which is complex Gaussian distributed with
zero mean and unit variance. To simulate practical commu-
nication scenarios, we selected the distance values and the

FIGURE 7. Network topology.

log-normal shadowing and path loss parameters correspond-
ing to the urbanmacro-cell (UMa) scenario of IMT-Advanced
document [30]. For that scenario, σs = 6 dB and the noise
power, σ 2

= −174 dBm/Hz. Setting the carrier frequency
to 2 GHz and the elevation of each device to 1.5 m, the path
loss of the nonline-of-sight channel in this model is given by
η(`) = 10−18.66−40.32 log10(d`), where d` is the length of link
` in meters.

A. PERFORMANCE EVALUATION OF
THE PROPOSED SCHEME
In this section, we evaluate the performance of the scheme
proposed in Section IV for a network instance with N =
50 nodes that are randomly distributed within a cell with
a radius of 500 m. To maintain manageable computational
cost, we allow two nodes to communicate only if the distance
between them is smaller than 150 m. For the considered
instance, the number of available links is L = 208, which are
illustrated in Figure 7. Among the 50 nodes, 5 are randomly
selected to act both as source and destination nodes, which are
labelled asD1 toD5. The nodes are assumed to have identical
power budgets, i.e, Pn = P, n = 1, · · · , 50, and the available
bandwidth is assumed to be 10 MHz, which is divided into
16 OFDM subcarriers.

The average sum rates yielded by the algorithm in
Section IV for the values of P ranging from 0 to 30 dBm is
depicted in Figure 8. For comparison, two baseline schemes
are considered in this figure. The first is the joint optimization
without power allocation, i.e., the output of the first stage in
Algorithm 2 with fixed powers, and the second is the joint
optimization without frequency-reuse in [17].

As can be seen from Figure 8, the sum rate yielded by the
proposed scheme significantly outperforms the two baseline
designs in which either frequency-reuse or power allocation
is not considered. For instance, at P = 15 dBm, the proposed
scheme yields a sum-rate advantage of 73% over the two
baseline schemes.

B. PERFORMANCE COMPARISON WITH THE
GP-BASED APPROACH
In this section, we compare the performance of the algorithm
proposed in Section IV with the one based on GP monomial
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FIGURE 8. Performance evaluation.

FIGURE 9. Performance comparison.

approximation proposed in [19] for the network depicted
in Figure 2. For this network, there are N = 3 nodes, L = 6
links and K = 4 subcarriers, each with a bandwidth of
W0 = 200 KHz. Two of the nodes wish to communicate with
each other, with the third node potentially acting as a relay.

For the network considered in this example, we used the
algorithm described in Section IV and the GP-based algo-
rithm described in [19] to obtain the routes, schedules and
power allocations and the average sum rates. The latter are
depicted in Figure 9 for P ranging from 0 to 30 dBm.

From this figure, it can be seen that the proposed two-
stage algorithm yields rates that are typically higher than
those yielded by it GP-based counterpart. For instance at
P = 20 dBm, the algorithm proposed herein yields an
average sum rate 60% higher than that yielded by the GP-
based algorithm. This phenomenon can be attributed to the
ability of the algorithm proposed herein to use the gradient
ascent approach to explore the feasible region for a good
initial point, which contrasts the random initialization used
in the scheme proposed in [19].

For convergence, we note that although the algorithm
in [19] converges to a Karush-Kuhn-Tucker solution,
it exhibits relatively slow convergence. In particular, for
this network that algorithm converges within 180 itera-
tions, which renders it impractical for designing larger net-
works. In contrast, the algorithm proposed herein converges
within 10 iterations only.

FIGURE 10. Network topology and available links for communications (a)
within clusters, (b) between CCs.

C. PERFORMANCE EVALUATION OF THE
PROPOSED FRAMEWORK
In this section we evaluate the performance of the two-
tier framework presented in Section VI. We considered an
area of 2 Km2 which is divided into 64 clusters as shown
in Figures 10(a) and 10(b). Each cluster has 20 users whose
locations are randomly chosen from the uniform distribution
and there is a cluster controller at the center of each cluster.
Hence, the total number of nodes in this network is 1344.
In this network we assume that there are K = 8
subcarriers and 100 randomly chosen source-destination
pairs (Si,Di), i = 1, . . . , 100. To facilitate the design,
we ignore intra-cluster and inter-cluster links greater than
100 and 400 meters, respectively. The remaining links avail-
able for communication are depicted in Figure 10(a) for
communication between nodes within the clusters and in Fig-
ure 10(b) for communication between the CCs in the network.
There are, on average, 176 links available for communication
within each cluster.

To investigate the performance of the two-tier framework
of Section VI in this network, we compare the average sum
rate that it yields by optimizing the routes, schedules and
power allocations with the average sum rate yielded when
the nodes are restricted to have equal powers. In both cases
the CCs are assumed to have identical power budgets of
P = 30 dBm. For this case, the average sum rates yielded
by the two-tier algorithm are depicted in Figure 11 for node
budgets ranging from 5 to 30 dBm.
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FIGURE 11. Performance comparison of the proposed framework.

From Figure 11, it can be seen that the performance of the
two-tier framework is significantly superior to the one with
fixed power allocations. For instance, for an average sum rate
of 400 bits/s/Hz, the two-tier approach has a power advantage
of 5 dBm, and this advantage is larger for higher rates.

It is worth emphasizing that while the complexity of
the algorithms in [19] allow the joint design of networks
with up to 10 nodes, the two-tier algorithm in Section VI
allows the joint design of significantly larger networks.
In fact, our numerical evaluations suggest that this algorithm
can be used to design networks with tens of thousands of
nodes.

VIII. CONCLUSION
In this paper we considered the joint optimization of the
routes, subcarrier schedules, time-shares and power alloca-
tions in large scale D2D communication networks. We made
two main contributions. In the first contribution, we devel-
oped an iterative approach in which the design problem is
decomposed into two sub-problems: one for scheduling and
the other for power allocation. The latter is non-convex and
to deal with it, we developed a constraint splitting approach,
whereby the problem is further split into effectively two con-
vex problems. The approach proceeds by performing inner
iterations over the convex problems and outer iterations over
the scheduling and power allocation sub-problems. This iter-
ative approach is capable of jointly designing networks with
up to 100 nodes. In the second contribution, we developed a
two-tier approach whereby the network is divided into a set of
non-overlapping clusters, each with a controller that acts as
a gateway for managing inter-cluster communications. The
first tier of this approach deals with intra-cluster communi-
cations, whereas the second tier deals with inter-cluster com-
munications, both using the iterative algorithm developed in
the first contribution. In comparison with existing algorithms,
the ones developed herein yield better performance and can
be used to design larger networks with significantly lower
computational complexity.
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