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ABSTRACT Faster-than-Nyquist (FTN) signaling is a promising non-orthogonal transmission technique to
considerably improve the spectral efficiency. This paper presents the first attempt in the literature to estimate
the transmit data symbols of any high-order quadrature amplitude modulation (QAM) FTN signaling in
polynomial time complexity. In particular, we propose a generalized approach to model the finite alphabet of
any high-order QAMconstellation as a high degree polynomial constraint. Then, we formulate the high-order
QAM FTN signaling sequence estimation problem as a non-convex optimization problem. As an example
of a high-order QAM, we consider 16-QAM FTN signaling and then transform the high degree polynomial
constraint, with the help of auxiliary variables, to multiple quadratic constraints. Such transformation allows
us to propose a generalized approach semidefinite relaxation (SDR)-based sequence estimation (GASDRSE)
technique to efficiently provide a sub-optimal solution to the NP-hard non-convex FTN detection problem,
with polynomial time complexity. For the particular case of 16-QAM FTN signaling, we additionally
propose a sequence estimation technique based on concepts from the set theory. We show that the set theory
SDR-based sequence estimation (STSDRSE) technique is of lower complexity when compared with the
proposed GASDRSE. Simulation results show the effectiveness of the proposed GASDRSE and STSDRSE
techniques in increasing the data rate and spectral efficiency of 16-QAM FTN signaling, without increasing
the bit-error-rate, the bandwidth, or the data symbols energy, when compared with the Nyquist signaling.

INDEX TERMS Faster-than-Nyquist (FTN), high-order QAM, intersymbol interference (ISI), Mazo limit,
semidefinite relaxation (SDR), sequence estimation.

I. INTRODUCTION
Higher spectrally efficient transmission techniques, e.g.,
faster-than-Nyquist (FTN) signaling, have attracted the atten-
tion of industrial and academic communities to meet the ever
increasing demands on data rates [1]. In FTN signaling, the
T -orthogonal pulses are sent at rate 1

τT which is higher than
the Nyquist signaling rate 1

T , where 0 < τ ≤ 1 is the time
packing parameter. Since FTN signaling violates the Nyquist
limit, inter-symbol interference (ISI) between the received
pulses is unavoidable.

The pioneering work of Mazo in [2] showed that
FTN signaling does not affect the minimum distance of
uncoded binary sinc pulse transmission, and hence the
asymptotic error probability, as long as the time packing
parameter τ is above a certain limit, i.e., τ ≥ 0.802,
later known as Mazo limit. Mazo limit has been extended

to root-raised cosine (rRC) pulses in [3], to frequency and
time domains simultaneously in [4], and to multiple-input-
multiple-output systems in [5].

Most of the research literature focused on the detection of
binary or low-order quadrature amplitudemodulation (QAM)
FTN signaling [6]–[10]; this is mainly due to the exces-
sive computational complexity involved in removing the ISI
of high-order constellations FTN signaling. For instance,
Bedeer et al. [6] proposed a reduced complexity sphere
decoding algorithm to optimally detect binary FTN signaling.
The reduction in complexity was achieved on average and
not in the worst case sense. However, extending such an
algorithm to high-order QAM results in prohibitive com-
putational complexity. Similarly, extending the truncated
state Viterbi algorithm (VA) [7] and the reduced state
Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [8] to
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high-order QAM are not straightforward and rather lead
to significant computational complexity. The worst case
computational complexities of the works in [6]–[9] are in
general exponential either in received block length [6] or
the ISI length [7]–[9]. Bedeer et al. [10] proposed reduced
complexity algorithms to detect binary and 4-QAM FTN
signaling on symbol-by-symbol basis. Extending these algo-
rithms to detect high-order QAM is not trivial and most likely
will lead to unsatisfactory performance. In [11], a modified
BCJR algorithm was proposed to detect 4-pulse amplitude
modulation FTN signaling. In [12], a 9-QAM super-Nyquist
signaling scheme is proposed for optical fiber communica-
tions to improve the spectral efficiency.

This paper presents the first attempt in the literature to
detect FTN signaling of any high-order QAM constellation
(and in particular 16-QAM constellation) in polynomial time
complexity. More specifically, we propose a generalized
approach to model the finite alphabet of any high-order
QAM constellation as a high degree polynomial constraint,
and we formulate the FTN signaling detection problem as
a non-convex optimization problem that turns out to be
non-deterministic polynomial-time (NP)-hard. This means
the FTN detection problem is at least as hard as the hardest
problems inNP [13]. As an example of a high-order QAM,we
consider 16-QAM FTN signaling and use auxiliary variables
to transform the high degree polynomial constraint to multi-
ple quadratic constraint. That said, we propose a generalized
approach semidefinite relaxation (SDR)-based sequence esti-
mation (GASDRSE) technique to efficiently provide a sub-
optimal solution to the NP-hard non-convex FTN signaling
detection problem, with polynomial time complexity. For the
particular case of 16-QAM FTN signaling, we additionally
propose a sequence estimation technique based on concepts
from the set theory. We show that the set theory SDR-
based sequence estimation (STSDRSE) technique is of lower
complexity when compared to the proposed GASDRSE.
Simulation results show the effectiveness of the proposed
GASDRSE and STSDRSE techniques, for moderate values
of τ , in significantly increasing the data rate and spectrum
efficiency of 16-QAM FTN signaling without increasing
the BER, the bandwidth, or the data symbols energy, when
compared to Nyquist signaling.

The remainder of this paper is organized as follows.
Section II presents the system model of the high-order
QAMFTN signaling and formulates the maximum likelihood
sequence estimation (MLSE) detection problems. The pro-
posed GASDRSE technique for the case of 16-QAM FTN
signaling is discussed in Section III; while in Section IV we
introduce the proposed STSDRSE technique. The computa-
tional complexities of the proposed algorithms are discussed
in Section V. Section VI provides the simulation results, and
finally the paper is concluded in Section VII.

Throughout the paper we use bold-faced upper case letters,
e.g., X , to denote matrices, bold-faced lower case letters,
e.g., x, to denote column vectors, and light-faced italics
letters, e.g., x, to denote scalars. The complex conjugate of

FIGURE 1. Block diagram of FTN signaling.

a complex number x is denoted as x∗, xi denotes the ith
element of vector x and tr(X), rank(X), and diag(X) denote
the trace, rank, and a column vector consisting of the diagonal
elements of matrix X , respectively. The operator E(.) denotes
the expectation, [.]T denotes the transpose operator, I is the
identity matrix, ‖.‖p is the p-norm, and N (., .) represents
the Gaussian distribution. 1 denotes the vector of ones,
<{.} and ={.} represent the real and imaginary parts of
complex numbers, respectively.

II. SYSTEM MODEL AND FTN SIGNALING DETECTION
PROBLEM FORMULATION
Fig. 1 shows a block diagram of a communication system
employing FTN signaling. Data bits to be transmitted are
gray mapped1 to data symbols through the bits-to-symbols
mapping block. Data symbols are transmitted, through the
transmit filter block, faster than the traditional Nyquist trans-
mission, i.e., every τT , where 0 < τ ≤ 1 is the time
packing/acceleration parameter and T is the symbol duration.
A possible receiver structure is shown in Fig. 1, where the
received signal is passed through a filter matched to the
transmit filter followed by a sampler and an optional discrete-
time filter. Since the transmission rate of the transmit pulses
carrying the data symbols intentionally violate the Nyquist
criterion, ISI occurs between the received samples. Accord-
ingly, sequence estimation techniques are needed to remove
the ISI and to estimate the transmitted data symbols. The
estimated data symbols are finally gray demapped to the
estimated received bits.

The received FTN signal in case of additive white Gaussian
noise (AWGN) channel is written as

y(t) =
√
τEs

∑N

n=1
ang(t − nτT )+ q(t), (1)

whereN is the total number of transmit data symbols, an, n =
1, . . . ,N , is the independent and identically distributed data
symbols drawn from any high-order QAM constellation, Es is
the data symbol energy, g(t) =

∫
p(x)p(x−t)dx, where p(t) is

a real-valued and unit-energy pulse, i.e.,
∫
∞

−∞
|p(t)|2dt = 1,

q(t) =
∫
n(x)p(x − t)dx with n(t) is the additive white

Gaussian noise (AWGN) with zero mean and variance σ 2,
and 1/(τT ) is the signaling rate.

1 In this paper, we focus on 16-QAM, and hence, graymapping is possible.
Optimization of the bits-to-symbol mapping is an interesting topic itself
which is beyond the scope of this paper.
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Assuming perfect time synchronization between the trans-
mitter and the receiver, the received high-order QAM FTN
signal y(t) is sampled every τT and the kth received sample
is expressed as

yk = y(kτT ),

=

√
τEs

∑N

n=1
ang(kτT − nτT )+ q(kτT ),

=

√
τEsakg(0)︸ ︷︷ ︸

desired symbol

+

√
τEs

∑N

n=1,n 6=k
ang((k − n)τT )︸ ︷︷ ︸

ISI
+ q(kτT ). (2)

As can be seen, the kth received data symbol depends on
the kth transmit data symbol, as well as, ISI from adjacent
symbols.

A. FORMULATION OF THE HIGH-ORDER QAM FTN
SIGNALING DETECTION PROBLEM
FOR GENERAL PULSE SHAPE
The received FTN signal after the matched filter and sampler
can be written in a vector form as

yc = Ga+ qc, (3)

where yc is the N × 1 received samples vector that contains
colored noise samples, G is the N × N intersymbol interfer-
ence (ISI) matrix,2 a is the N × 1 transmitted data symbols
vector, and qc ∼ N (0, σ 2G) is the N × 1 Gaussian noise
samples with zero-mean and covariance matrix σ 2G [6].

To avoid handling complex-valued variables, we use the
following equivalent real-valued model of (3) as follows3

yc,2N×1 = G2N×2Na2N×1 + qc,2N×1,[
<{yc}
={yc}

]
=

[
<{G} −={G}
={G} <{G}

] [
<{a}
={a}

]
+

[
<{qc}
={qc}

]
. (4)

Assuming that G is invertible, one can rewrite (4) as

G−1yc = a+ G−1qc,

z = a+ η, (5)

where z = G−1yc and η = G−1qc. The high-order QAMFTN
signaling sequence estimation problem can be interpreted as
follows. Given the received samples z (or yc), we want to find
an estimated data symbol vector â, to the transmit data symbol
vector a, such that the probability of error is minimized.
In other words, the FTN detection problem can be seen as
a maximization of the probability that the data symbol vector
a is sent given the received samples z (or yc). With the help of
Bayes rule, such maximization problem can be re-expressed
equivalently as

â = argmax
a∈D

P (z|a) . (6)

2The ISI matrix matrixG is a Toeplitz matrix, and hence, some errors may
occur at the boundaries between data blocks. Ideas of overlap and reject can
be employed to mitigate such errors.

3One can use the structure in (4) (i.e., the fact that the real and imaginary
parts of the received signal and noise are independent and the fact that the
imaginary part of the ISI matrix is zero for the case of AWGN channel) to
implement the proposed algorithms in parallel, i.e., by separately processing
the real and imaginary parts of the received signal.

The probability P (z|a) is usually known as the likelihood
probability, and hence, the problem to estimate the received
symbol vector â is known as the maximum likelihood
sequence estimation (MLSE) problem.

Following (5), for a given set of data symbols a, the
received samples z can be seen as Gaussian random variables
with a mean a and covariance matrix 1

2σ
2G−1, i.e., η ∈

N (0, 12σ
2G−1) (the proof is provided in Appendix). That

said, the likelihood probability in (6) to detect the high-order
QAM FTN signaling is expressed as [14]

P(z|a) =
(

1
2πσ 2

)N/2 1√
det[G−1]

× exp
(
−

1
σ 2 (z− a)

TG(z− a)
)
. (7)

One can see from (7) that maximizing the likelihood function
is equivalent to maximizing the exponent of the exponential
function (or minimize its negative value). Accordingly, the
MLSE problem to detect high-order QAM FTN signaling is
written as

OPMLSEc : â = argmin
a∈D

(z− a)TG(z− a). (8)

B. FORMULATION OF THE HIGH-ORDER QAM FTN
SIGNALING DETECTION PROBLEM
FOR rRC PULSE SHAPE
Equation (5) assumes the ISI matrixG is invertible. However,
this does not necessarily hold for common pulse shapes such
as rRC pulses operating at very small values of τ [7]. In such
cases, designing a causal and stable whitening matched filter
is necessary, and we follow a designing approach similar to
the one in [7]. That said, (2) can be re-written as

yc =
√
τEsa ? g+ qc, (9)

where ? denotes the convolution operator. The whitening
filter decorrelates the noise qc and can be constructed from
g by spectral factorization of its all-zero z-transform G(z)
into V (z)V (1/z∗) [15]. After whitening the received vector
yc by 1/V (1/z∗), the whitened received vector can be repre-
sented as

yw =
√
τEsa ? v+ qw, (10)

where qw is white Gaussian noise with zero mean and
variance σ 2 and v represents the causal ISI such that v[n] ?
v[−n] = g. It is not possible to design an exact whitening
filter, i.e. to have V (z) with all zeros strictly outside the unit
circle, especially for very small values of τ . That said, we
design approximate whitening filter as follows [7]. We find
G(z) with quartets of zeros on the unit circle (zeros has
to occur in quartets as V (z) and V (1/z∗) each requires a
conjugate pair). Then, we split the quartet of zeros such that
one conjugate pair is slightly inside the unit circle and one
is outside. Our aim is to have the spectrum of approximation
whitening filter 1/V (1/z∗) and channel model V (z) as close
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as possible to the the spectrum of g. Equation (10) can be
written in a vector form as

yw = Va+ qw, (11)

where V is the ISI matrix constructed from the vector v.
Similar to the previous discussion, we use the following
equivalent real-valued model of (11) as follows

yw,2N×1 = V2N×2N a2N×1 + qw,2N×1,[
<{yw}
={yw}

]
=

[
<{V} −={V}
={V} <{V}

] [
<{a}
={a}

]
+

[
<{qw}
={qw}

]
. (12)

Similar to the previous discussion, we can formulate the high-
order QAM FTN signaling detection problem as

OPMLSEw : â = argmin
a∈D
‖yw − Va‖

2
2. (13)

C. COMMENTS ON COMPLEXITY OF OPTIMAL
DETECTION OF HIGH-ORDER QAM FTN
SIGNALING DETECTION PROBLEMS
The OPMLSEc and OPMLSEw problems can be solved by a
brute force search with a complexity in the order of M2N ,
where M is the modulation order of the transmit symbols of
the real-valued model in (4) or (12). However, such exten-
sive computational complexity hinders the MLSE practical
implementations. Other techniques such as BCJR [8], [9],
Viterbi algorithm [7], and sphere decoding [6] (that approx-
imate the optimal detection of the OPMLSEc and OPMLSEw
problems) require an exponential (in ISI length at best) worst
case computational complexity. In the following sections,
we propose reduced-complexity SDR-based sequence esti-
mation techniques, namely, GASDRSE and STSDRSE tech-
niques, to provide a suboptimal solution to theOPMLSEc and
OPMLSE,w problems, with polynomial time complexity.

III. PROPOSED GASDRSE TECHNIQUE
In this section, we propose a generalized approach reduced-
complexity SDR-based sequence estimation technique that
provides a sub-optimal solution for the detection of any high-
QAM FTN signaling.

A. FORMULATION OF QUADRATIC CONSTRAINTS
In order to transform the OPMLSEc and OPMLSE,w in
(8) and (13), respectively, to an SDR problem, wemake use of
the following observation. Any finite alphabet constellation
can be replaced by a high degree polynomial constraint [16],
e.g., if x ∈ {x1, x2, . . . , xM }, then (x − x1)(x − x2) . . .
(x−xM ) = 0. Next, by introducing appropriate auxiliary vari-
ables, the high degree polynomial constraint can be replaced
by multiple quadratic constraints.

In our case of interest, i.e., 16-QAM, the setD inOPMLSEc
and OPMLSEw includes the constellation points whose real
and imaginary parts belong to the set {±1,±3}, and hence,
the high degree polynomial constraint can be written as

(an − 1)(an + 1)(an − 3)(an + 3) = 0, n = 1, . . . , 2N .

(14)

By introducing the auxiliary variables bn = a2n, n =
1, . . . , 2N , the constraints in (14) can be further written as

a2n − bn = 0, n = 1, . . . , 2N , (15)

b2n − 10bn + 9 = 0, n = 1, . . . , 2N . (16)

To facilitate formulating the SDR sequence estimation prob-
lem, we define the following 4N × 1 column vector

ωT
= [aTbT1], (17)

and we find the rank-one positive semidefinite matrix � =
ωωT

(
of dimension (4N + 1)× (4N + 1)

)
as

� =

aaT abT a
baT bbT b
aT bT 1

 . (18)

The constraints in (15) and (16) can be re-expressed in terms
of �, as

diag{�1,1} −�2,3 = 0, (19)

diag{�2,2} − 10�2,3 + 9.1 = 0, (20)

�3,3 = 1, (21)

where �i,j, i, j = 1, 2, and 3, are the (i, j)th sub-blocks of
� of appropriate sizes, e.g., �1,1 = aaT (of size 2N × 2N ),
�2,3 = b (of size 2N × 1), �2,2 = bbT (of size 2N × 2N ),
�1,3 = a, and �3,3 = 1.

B. FORMULATION OF OBJECTIVE FUNCTION
1) GENERAL PULSE SHAPE
Since the matrix G is symmetric, the objective function of
OPMLSEc in (8) can be rewritten in terms of � as [16], [17]

ωT8cω = tr{8cωω
T
} = tr{8c�}, (22)

where

8c,(4N+1)×(4N+1) =

 G 0 −yc
0 0 0
−yTc 0 zTGz

 . (23)

2) rRC PULSE SHAPE
For the case of rRC and given that the matrix V is symmetric,
the objective function of OPMLSEw in (13) can be rewritten
in terms of � as [16], [17]

tr{8w�}, (24)

where 8w is given by

8w,(4N+1)×(4N+1) =

 VTV 0 −VTyw
0 0 0
−yTwV 0 yTwyw

 . (25)
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C. SDR OPTIMIZATION PROBLEM AND PROPOSED
GASDRSE ALGORITHM
Finally, the optimization problems OPMLSEc and OPMLSEw
in (8) and (13), respectively, to detect 16-QAMFTN signaling
is re-expressed as

min
�

tr{8�}

subject to (19), (20), and (21),

� � 0, (26)

rank{�} = 1, (27)

where 8 ∈ {8c,8w} and the constraints in (26) and (27) are
used to reflect that� is a positive semidefinite and a rank-one
matrix, respectively. Such an optimization problem is non-
convex due to the rank-one constraint in (27). By relaxing this
constraint, we obtain an upper bound on its optimal solution
as

OPGASDRSE : min
�

tr{8�}

subject to (19), (20), (21), and (26).

Please note that the objective function of OPGASDRSE is
linear in � subject to affine equalities and a linear matrix
inequality.

The optimization problem OPGASDRSE can be efficiently
solved to any arbitrary accuracy using well-developed reli-
able numerical solvers [18]. By solving OPGASDRSE, we
obtain the optimal solution �op which is the global optimal
solution to the convex problem OPGASDRSE. In order to
obtain a feasible solution to the original non-convex FTN
detection problem, we use Gaussian randomization [17].
The intuition behind Gaussian randomization is to solve a
stochastic version of OPGASDRSE, where the sub-optimal
solution ŵ is considered as the random vector—generated
from a multivariate Gaussian random vector with zero mean
and covariance matrix �op—that maximizes the objective
in OPGASDRSE. The Gaussian randomization procedure can
be explained as follows. We generate ξ `, ` = 1, . . . ,L,
where L is the total number of randomization iterations,
as ξ ` ∼ (0,�op), then we find ω̆` = quantize{ξ `},
where quantize(x) rounds x to the nearest element in the set
{±1,±3}. Then, we select the optimal value of `, i.e., `op,
that minimizes the objective function in OPGASDRSE as

`op = arg min
`=1,...,L

tr{8ω̆`ω̆
T
` }, (28)

where one can easily find the sub-optimal vector ω̂ as

ω̂ = ω̆`op . (29)

Finally, the estimated data symbols vector â can be found
from the first 2N elements in ω̂.

The proposed GASDRSE technique is formally expressed
in Algorithm 1 as follows

Algorithm 1: Proposed GASDRSE Technique
1) Input: Pulse shape p(t) (ISI matrix G), received

samples yc or yw, and number of randomization
iterations L.

2) Solve OPGASDRSE to find �op.
3) Generate random variable ξ ` as ξ ` ∼ (0,�op), ` =

1, . . . ,L.
4) Find ω̆` = quantize{ξ `}.
5) Find `op = arg min

`=1,...,L
tr{8ω̆`ω̆

T
` }.

6) Set ω̂ = ω̆`op .
7) Output: The estimated data symbols â which are the

first 2N elements of ω̂.

IV. PROPOSED STSDRSE TECHNIQUE
In this section, we propose a STSDRSE technique to detect
16-QAM FTN signaling with reduced complexity. The pro-
posed sequence estimation technique is more computation-
ally efficient when compared to the proposed GASDRSE.
As can be seen inOPGASDRSE, the dimension of the decision
matrix � is (4N + 1) × (4N + 1), where N is the length of
the complex data symbol vector. In this section, we reduce
the dimension of the decision matrix, and hence, decrease the
computational complexity.

A. FORMULATION OF QUADRATIC CONSTRAINTS
We replace the generic high degree polynomial constraint that
models any high-order QAM, using concepts from the set the-
ory, with a set of quadratic constraints suited to our particular
case of interest in this paper, i.e., 16-QAM. Towards this goal,
let us define the following sets

D1 := (−∞,−3),

D2 := (−3,−1),

D3 := (−1, 1),

D4 := (1, 3),

D5 := (3,∞). (30)

Then, the constraints in OPMLSEc and OPMLSEw can be
expressed as [16]

{±1,±3} = D1 ∪D2 ∪D3 ∪D4 ∪D5. (31)

With the help of De Morgan’s associative laws [19], the
constraints can be further rewritten as

{±1,±3} = D1 ∩D2 ∩D3 ∩D4 ∩D5,

= ((D1 ∩D5) ∩D3) ∩D2 ∩D4

= ([−3,−1] ∪ [1, 3]) ∩D2 ∩D4. (32)

Accordingly, [−3,−1] ∪ [1, 3], D2, and D2 can be respec-
tively written as

1 ≤ a2n ≤ 9, (33)

(an + 1)(an + 3) ≥ 0, (34)

(an − 1)(an − 3) ≥ 0. (35)
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To facilitate formulating the new SDR problem, let us refor-
mulate OPMLSEc and OPMLSEw in a higher dimension by
defining

ψT
= [aT1],

9(2N+1)×(2N+1) = ψψ
T
=

[
aaT a
aT 1

]
. (36)

The constraints in (33) - (35) can be re-written in terms of 9
as

1 � diag{91,1} � 9.1, (37)

diag{91,1} + 491,2 + 3.1 � 0, (38)

diag{91,1} − 491,2 + 3.1 � 0, (39)

92,2 = 1, (40)

where 9 i,j, i, j = 1, 2 are the (i, j)th sub-blocks of 9 of
appropriate sizes, e.g., 91,1 = aaT (of size 2N × 2N ),
91,2 = a, 92,1 = aT, and 92,2 = 1. The constraints in
(37), (38), and (39) are equivalent to (33), (34), and (35),
respectively.

B. FORMULATION OF OBJECTIVE FUNCTION
1) GENERAL PULSE SHAPE
Since the matrix G is symmetric, the objective function of
OPMLSEc can be expressed in terms of 9 as [16], [17]

ψT2cψ = tr{2cψψ
T
} = tr{2c9}, (41)

where

2c,(2N+1)×(2N+1) =

[
G −yc
−yTc zTGz

]
. (42)

2) rRC PULSE SHAPE
For the case of rRC and for symmetric ISI matrix V , the
objective function of OPMLSEw in (13) can be rewritten in
terms of 9 as [16], [17]

tr{2w9}, (43)

where2w is given by

2w =

[
VTV −VTyw
−yTwV yTwyw

]
. (44)

C. SDR OPTIMIZATION PROBLEM AND PROPOSED
STSDRSE ALGORITHM
Finally,OPMLSEc andOPMLSEw can be casted as the follow-
ing optimization problem

min
9

tr{29}

subject to (37), (38), (39), and (40)

9 � 0, (45)

rank{9} = 1, (46)

where 2 ∈ {2c,2w} and the constraints (45) and (46)
reflect that9 is a positive semidefinite and a rank-onematrix,

respectively. It is clear that the above optimization problem is
not convex due to the rank-one constraint in (46). By relaxing
this constraint, we obtain an upper bound on its optimal
solution as

OPSTSDRSE : min
9

tr{29}

subject to (37), (38), (39), (40), and (45),

which can be solved efficiently [18] with polynomial time
complexity.

Similar to the previous discussion of the proposed
GASDRSE, the optimal solution9op ofOPSTSDRSE will not
necessarily be a feasible solution of the original non-convex
optimization problem; hence, we use Gaussian randomiza-
tion to obtain an efficient feasible solution. We generate
ζ `, ` = 1, . . . ,L, as ζ ` ∼ (0,9op), then we quantized each
random variable as ψ̆` = quantize{ζ `}. Finally, we find the
solution as

`op = arg min
`=1,...,L

tr{2ψ̆`ψ̆
T
` }, (47)

ψ̂ = ψ̆`op . (48)

Finally, the estimated 16-QAMconstellation vector â is found
from the first 2N elements in the vector ψ̂ .
The proposed STSDRSE technique is formally expressed

in Algorithm 2 as follows

Algorithm 2: Proposed STSDRSE Technique
1) Input: Pulse shape g(t) (ISI matrix G), received

samples yc and yw, and number of randomization
iterations L.

2) Solve OPSTSDRSE to find 9op.
3) Generate random variable ζ ` as ζ ` ∼ (0,9op),
` = 1, . . . ,L.

4) Find ψ̆` = quantize{ζ `}.
5) Find `op = arg min

`=1,...,L
tr{2ψ̆`ψ̆

T
` }.

6) Set ψ̂ = ψ̆`op .
7) Output: Estimated data symbols â are the first

2N elements of ψ̂ .

V. COMMENTS ON THE PROPOSED GASDRSE AND
STSDRSE TECHNIQUES
A. COMPLEXITY DISCUSSION
The worst case computational complexity of solving the
relaxedOPGASDRSE isO((4N + 1)3.5 [17]. Additionally, the
complexity of generating and evaluating the objective func-
tion corresponding to the L random samples of the Gaussian
randomization is O((4N + 1)2L [17]. Hence, the total com-
putational complexity of the proposed GASDRSE technique
is O((4N + 1)3.5 + (4N + 1)2L), which is polynomial in the
received block length.

As mentioned earlier, the proposed GASDRSE technique
can be extended to any high-order QAM FTN signaling, with
polynomial time computational complexity. For instance, for
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the case of 64-QAM FTN signaling, we need to use an
additional auxiliary variable cn = b2n, n = 1, . . . , 2N ,
in order to formulate the detection problem. In this case,
the complexity of solving the relaxed OPGASDRSE is
O((6N + 1)3.5, and the complexity of generating and evalu-
ating the objective function corresponding to the L random
samples of the Gaussian randomization is O((6N + 1)2L.
Hence, the overall complexity of the proposed GASDRSE
to detect 64-QAM FTN signaling will be in the order of
O((6N + 1)3.5 + (6N + 1)2L), which is still polynomial.
The computational complexity reduction of the pro-

posed STSDRSE technique, when compared to the proposed
GASDRSE, comes from the fact that the dimension of the
unknown matrix 9 is (2N + 1)× (2N + 1) which is smaller
than its counterpart � of (4N + 1) × (4N + 1) of the pro-
posed GASDRSE. Accordingly, the computational complex-
ity of the proposed STSDRSE technique is O((2N + 1)3.5 +
(2N + 1)2L).

B. SOFT-OUTPUTS
The proposed GASDRSE and STSDRSE schemes produce
hard-output, and in their current forms they may not be suit-
able to be used with channel coding. Fortunately, Gaussian
randomization can be effectively used to reduce the complex-
ity of evaluating the log-likelihood ratio (LLR) as follows.
Inspired by the idea of the list sphere decoding in [20], the
Gaussian randomization step can store a list of vectors that
achieve the lowest values of the objective function (instead of
storing only one vector that achieves the minimum objective
value). This candidate list can then be used to approximate
the LLR calculations. In other words, instead of searching the
whole search space, Gaussian randomization can efficiently
produce candidate vectors that contribute more towards the
calculation of the LLR equation. However, there is a possi-
bility that some bit positions in the candidate list are empty.
In this case, we can extend the candidate list to include all bit
vectors with hamming distance of 1 of the bit vectors in the
original candidate list as in [21].

VI. SIMULATION RESULTS
In this section, we evaluate the performance of the proposed
GASDRSE and STSDRSE techniques in detecting 16-QAM
FTN signaling. We employ an rRC filter4 with roll-off factors
β = 0.3 and 0.5. The length of the ISI is set to 23 symbols
and the number of randomization iterations L is set to 1000.

A. PERFORMANCE OF THE PROPOSED GASDRSE AND
STSDRSE TECHNIQUES
Fig. 2 depicts the BER of 16-QAM FTN signaling as a
function of Eb/N0 for both the proposed GASDRSE and
STSDRSE techniques for β = 0.3 and τ = 0.7 and 0.8.
As can be seen, in general both the proposed GASDRSE

4 It is worthy to mention that the proposed GASDRSE and STSDRSE
techniques are independent of the pulse shape, and they can be used with
other pulse shapes, e.g., Gaussian pulses.

FIGURE 2. BER performance of 16-QAM FTN signaling as a function of
Eb/N0 for the proposed GASDRSE and STSDRSE techniques for β = 0.3
and τ = 0.7 and 0.8.

FIGURE 3. BER performance of 16-QAM FTN signaling as a function of
Eb/N0 for the proposed GASDRSE and STSDRSE techniques for β = 0.5
and τ = 0.7 and 0.8.

and STSDRSE techniques almost achieve the BER perfor-
mance of Nyquist signaling at τ = 0.8. This means that the
proposed GASDRSE and STSDRSE techniques can achieve
1
0.8 − 1 = 25% increase in the data rate, when compared to
Nyquist signaling at β = 0.3, without increasing the BER,
the bandwidth, or the data symbols energy. Additionally, one
can notice that as the value of τ increases from 0.8 and 0.7
(i.e., the ISI between adjacent symbols increases), the BER
performance deteriorates as expected. This clearly shows that
our proposed algorithms provide sub-optimal solutions to the
16-QAM FTN signaling detection problem, as they cannot
achieve the orthogonal error performance with τ at the Mazo
limit, which for β = 0.3 lies at τ = 0.7 [3].
Fig. 3 plots the BER of 16-QAM FTN signaling as a

function of Eb/N0 for both the proposed GASDRSE and
STSDRSE techniques for β = 0.5 and τ = 0.7 and 0.8.
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FIGURE 4. Spectral efficiency of 16-QAM FTN signaling as a function of β
using the proposed STSDRSE at BER = 10−4.

One can see from Fig. 3 that up to 24.72% increase in the data
rate of 16-QAM FTN signaling can be achieved for τ = 0.8
and β = 0.5, without increasing the BER, the bandwidth, or
the data symbols energy, when compared to 16-QAMNyquist
signaling. Additionally, up to 42.86% increase in the data rate
can be achieved for τ = 0.7 and β = 0.5 at BER = 10−4 at
the expense of 0.7 dB increase in the SNR.
Fig. 4 plots the spectral efficiency of 16-QAM Nyquist

(i.e., no ISI and τ = 1) and the proposed STSDRSE5 of
16-QAM FTN signaling as a function of the roll-off factor β
at the same SNR and BER = 10−4. In order to have a fair
comparison, the value of τ of the 16-QAM FTN signaling
is selected to be the smallest value such that the proposed
STSDRSE achieves the same BER = 10−4 of 16-QAM
Nyquist signaling at the same SNR. As can be seen, the
spectral efficiency of 16-QAM FTN signaling is higher than
its counterpart of Nyquist signaling for all values of β. For
instance, at β = 0 the proposed STSDRSE improves the
spectral efficiency by 7.53% for the same BER and SNR
values, when compared to Nyquist signaling. Further, the
improvement of the spectral efficiency increaseswith increas-
ing the value of the roll-off factor β. Additionally, results
revealed that the proposed STSDRSE can achieve spectral
efficiency higher than the maximum spectral efficiency of
16-QAM Nyquist signaling (4 bits/s/Hz achieved at β = 0)
for the range of β ∈ [0, 0.15].

B. PERFORMANCE COMPARISON WITH
QUASI-OPTIMAL DETECTORS
In Fig. 5, we compare the performance of 16-QAM FTN
signaling detection using the proposed STSDRSE technique
and QPSK FTN signaling detection using the scheme in [9],
for β = 0.3 and same spectral efficiencies of 4.3956 and
3.8462 bits/s/Hz. As can be seen, the proposed STSDRSE
provides a trade-off between complexity and performance.

5Spectral efficiency results of the proposed GASDRSE are not included
as it is similar to that of the STSDRSE as shown in Figs. 2 and 3.

FIGURE 5. Performance comparison between 16-QAM FTN detection
using the proposed STSDRSE technique and QPSK FTN signaling detection
using the scheme in [9], for β = 0.3 and same spectral efficiencies of
4.3956 and 3.8462 bits/s/Hz.

FIGURE 6. Performance comparison between 16-QAM FTN detection
using the proposed GASDRSE and STSDRSE techniques and QPSK FTN
signaling optimal detection using the sphere decoding in [6],
for β = 0.5 and same spectral efficiency of 3.33 bits/s/Hz.

For instance, the scheme in [9] (that operates at τ = 0.35 and
spectral efficiency of 4.3956 bits/s/Hz) achieves better perfor-
mance than the proposed STSDESE technique (that operates
at τ = 0.7 and spectral efficiency of 4.3956 bits/s/Hz), at
the expense of higher computational complexity. In addition,
the proposed STSDRSE technique (that operates at τ = 0.8
and spectral efficiency of 3.8462 bits/s/Hz) achieves the same
performance as the scheme in [9] (that operates at τ = 0.4
and spectral efficiency of 3.8462 bits/s/Hz), with reduced
computational complexity.

Fig. 6 compares the performance of 16-QAM FTN signal-
ing detection using the proposed GASDRSE and STSDRSE
techniques and QPSK FTN signaling optimal detection using
the SDSE technique in [6], for β = 0.5 and same spectral
efficiency of 3.33 bits/s/Hz. Although both 16-QAM and
QPSK FTN signaling have the same BER performance for
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β = 0.5 and SE of 3.33 bits/s/Hz, but as mentioned earlier the
computational complexity of the proposed GASDRSE and
STSDRSE is much lower than its counterpart of the SDSE
technique required to detect QPSK FTN signaling.

VII. CONCLUSION
FTN signaling is a promising transmission technique to sig-
nificantly improve the spectral efficiency, when compared to
Nyquist signaling. In this paper, we presented the first attempt
in the literature to detect any high-order QAMFTN signaling,
in polynomial time complexity. More specifically, we intro-
duced a general approach to model the finite alphabet of any
high-order QAM constellation as a high degree polynomial
constraint, and we formulated the high-order QAM FTN
signaling detection problem as a non-convex optimization
problem that turns out to be NP-hard to solve. We showed
that for 16-QAM, the high degree polynomial can be replaced
with multiple quadratic constraints, with the help of auxiliary
variables. This enabled us to propose a GASDRSE technique
that efficiently provides a sub-optimal solution to theNP-hard
non-convex FTN detection problem with polynomial time
complexity. For the 16-QAM FTN signaling, we additionally
proposed a STSDRSE technique that is of lower complex-
ity when compared to the GASDRSE technique. Simulation
results showed that up to 25% increase in the data rate can
be achieved at β = 0.3 without increasing the BER, the
bandwidth, or the data symbols energy, when compared to
Nyquist signaling; or up to 42.86% increase in the data rate
can be achieved at β = 0.5 with 0.7 dB penalty in the SNR.
Additionally, results revealed that the proposed STSDRSE
can achieve spectral efficiency higher than the maximum
spectral efficiency of 16-QAM Nyquist signaling (4 bit/s/Hz
achieved at β = 0) for the range of β ∈ [0, 0.15] for the same
BER and SNR.

APPENDIX
COVARIANCE OF NOISE VECTOR η
The covariance matrix of the noise vector η can be calculated
as

E{ηηT} = E{G−1qcqTc (G
−1)T}

= G−1E{qcqTc }(G
−1)T. (49)

Given that the real noise vector is qc = [<{q}T,={q}T]T, the
value of E{qcqTc } can be calculated as

E{qcqTc } =
[
E{<{qc}<{qc}T} E{<{qc}={qc}T}
E{={qc}<{qc}T} E{={qc}={qc}T}

]
. (50)

The values of E{<{qc}<{qc}T} and E{<{qc}={qc}T} can be
calculated with the help of E{qcqHc } = σ 2G as follows.

E{qcqHc } = E{(<{qc} + j={qc})(<{qc}T − j={qc}T)}
= E{<{qc}<{qc}T} + E{={qc}={qc}T}
+ jE{={qc}<{qc}T} − jE{<{qc}={qc}T}.

= σ 2G (51)

We assume that E{={qc}<{qc}T} = E{<{qc}={qc}T} = 0
(this assumption can be further verified from the fact that
p(t) is real-valued, and hence, ={G} = 0 for the considered
AWGN case; accordingly, σ 2G does not have imaginary
parts). Accordingly, (51) is re-written as

E{<{qc}<{qc}T} + E{={qc}={qc}T} = σ 2G. (52)

We also assume that the noise is a proper random variable,
i.e. its real and imaginary parts have equal variance [22]; that
said we can conclude that

E{<{qc}<{qc}T} = E{={qc}={qc}T} =
1
2
σ 2G. (53)

By substituting (53) into (50), we get

E{qcqTc } =

1
2
σ 2G 0

0
1
2
σ 2G

 ,
=

1
2
σ 2G, (54)

which is reached by knowing that <{G} = G and ={G} = 0
for the considered AWGN case. Finally, from (49) and (54),
one can easily find that E{ηηT} = 1

2σ
2G−1.
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