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ABSTRACT Polar codes, ever since their introduction, have been shown to be very effective for various
wireless communication channels. This, together with their relatively low implementation complexity, has
made them an attractive coding scheme for wireless communications. Polar codes have been extensively
studied for use with binary-input symmetric memoryless channels but little is known about their effectiveness
in other channels. In this paper, a novel methodology for designing multilevel polar codes that works
effectively with arbitrary multidimensional constellations is presented. In order for this multilevel design
to function, a novel set merging algorithm, able to label such constellations, is proposed. We then compare
the error rate performance of our design with that of existing schemes and show that we were able to obtain
unprecedented results in many cases over the previously known best techniques at relatively low decoding
complexity.

INDEX TERMS Set merging, set partitioning, bit labeling, multilevel polar codes, code design.

I. INTRODUCTION
Multidimensional constellations are useful for improving
the SNR efficiency of systems and representing fractional
numbers of bits per two dimensions in comparison to 1 or
2 dimensional constellations [2]. Awell known example of an
irregular multidimensional constellation is the Golden code.
It is a full rate, full diversity space-time block code with
arguably the best performance for coherent MIMO channels
and is based on the Golden number. Another example of
irregular multidimensional constellations are codebooks of
unitarymatrices that are isotropically distributed on the (com-
pact) Grassmann manifold, specifically designed for nonco-
herent communication over block-fading channels [3]. These
multidimensional constellations work with the observation
that the distortion caused by a fading channel does not
change the subspace in which a transmitted signal resides,
it only rotates and scales the bases of the subspace [4].
These constellations exploit such characteristics and consider
orthogonal subspaces to detect the transmitted symbols at the
receiver [5]. It was shown in [4] that these constellations are
able to approach the ergodic capacity at high signal-to-noise
ratios (SNRs).

A natural way to improve the error rate performance of
a communication system is to use coded modulation which
involves combining error correcting codes with a signal con-
stellation. The field of channel coding is one that has existed
since the 1950s when Richard Hamming pioneered the first
error-correcting code, the Hamming (7,4) code [6]. Ever since
then, more powerful codes have been created such as the
capacity approaching low density parity check (LDPC) and
turbo codes. However, the decoding of these codes can be
computationally intensive.

Polar codes, a recent invention by Erdal Arikan, are a class
of error-correcting codes with the proven ability to achieve
the capacity of binary input, memoryless output symmetric
channels [7]. In addition, they require relatively low encoding
and decoding complexity. Although polar codes have been
used with bit interleaved coded modulation (BICM), gener-
ally speaking, they perform worse than other codes such as
LDPC and turbo codes [8]. However, it has been observed [9]
that polar codes perform better when used with multilevel
coding (MLC) [10] than with BICM [11].

In the literature, multidimensional constellations have
been used with different coded modulation techniques.
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Golden codes have been combined with trellis coded mod-
ulation in [12]. Grassmannian constellations have been com-
bined in a BICM fashion with turbo codes [13]. It was shown
that at a high data rate, this combination was able to outper-
form training based methods [14].

In this paper, we propose a novel methodology for design-
ing multilevel polar codes that works effectively with arbi-
trary, not necessarily structured, multidimensional signalling
schemes. For improved performance, MLC requires that the
signalling constellation uses a type of labelling in which con-
stellation points that are far in a Euclidean sense are assigned
labels with small Hamming distances. One such labelling is
the set partitioning (SP) one [15]. However, the current set
partitioning algorithms can only be used for regular constel-
lations, and so are unsuitable for irregular multidimensional
constellations. To alleviate this drawback, we will propose an
alternate algorithm that is based on a set merging philosophy,
rather the traditional set partitioning one.

The paper is arranged as follows. In Sections II and III,
the system models for the Golden code and Grassmannian
constellations are given, respectively. Although our proposed
polar code design methodology works well for a wide variety
of constellations, we focus here on these two. In Section IV,
the multilevel polar coded system set-up is given. The pro-
posed set merging algorithm is expounded upon in Section V.
In Section VI, the system design methodology for polar codes
and the bit error rate (BER) performance of the system is
provided. In Section VII, simulation results that show the
benefits of using our design methodology and algorithm are
given. The complexity analysis for our system in comparison
with other coding methods is given in Section VIII. Finally,
Section IX concludes the paper.

II. SYSTEM MODEL: GOLDEN CODES
Golden codes are full rate, full diversity space time block
codes for the coherent MIMO channel [16]. The transmitted
symbols are 2× 2 complex matrices of the form

X =
1
√
5

[
α(a+ bθ ) α(c+ dθ )
γ ᾱ(c+ d θ̄ ) ᾱ(a+ bθ̄)

]
, (1)

where θ = 1+
√
5

2 is the Golden number, θ̄ = 1 − θ ,
α = 1 + i(1 − θ ), ᾱ = 1 + i(1 − θ̄), and a, b, c, and d are
M -QAM symbols, which are normalized to a symbol energy
of 1. The total number of points in the Golden code signal
space is M4. The average signal energy EX = E[‖X‖2] =∑

i
∑

j E[|xi,j|
2] = 4 for any size of the underlying M -QAM

constellation. The 1
√
5
term normalizes the matrix X to a

unitary matrix. The received signal is given as

Y = XH+W, (2)

where H is a 2× Nr fading channel matrix with independent
elements which change independently after every block of
T = 2 channel uses. Each channel coefficient, hi,j, has a
complex Gaussian distribution, CN (0, 1) with a mean of 0
and a variance of E[|hi,j|2] = 1, and the real and imaginary

parts are independent. Similarly,W is a 2×Nr additive white
Gaussian noise matrix where its elements are independent
and have complex Gaussian distribution CN (0, σ 2

W ) with
variance E[|wi,j|2] = σ 2

W and the real and imaginary parts
are independent.

Upon receiving Y, the receiver used in this system uses
maximum likelihood (ML) detection to maximize Pr{Y|X}
which is given as

Pr{Y|X} ∝ exp

{
−1

σ 2
W

‖Y− XH‖2
}
, (3)

where ‖ · ‖ is the Euclidean distance.

III. SYSTEM MODEL: GRASSMANNIAN CONSTELLATIONS
Within the realm of noncoherent communication, Grassman-
nian signalling has been shown to approach the high-SNR
ergodic capacity of frequency-flat block fading channels.
It was shown in [4] and [5] that at high SNRs, the ergodic
capacity of the channel can be achieved by codebooks of
unitarymatrices that are isotropically distributed on the (com-
pact) Grassmann manifold. It was also shown that Grassman-
nian signalling achieves high SNR capacity when

T ≥ min{Nt ,Nr } + Nr , (4)

Given T and Nr that satisfy (4), to attain the maximum
number of independent channels exploited by the transmit-
ter (the communication degrees of freedom) for such a sys-
tem, the number of transmit antennas, Nt , should be

Nt = min
{⌊

T
2

⌋
,Nr

}
. (5)

The received signal is given as

Y = XH+W, (6)

where H is an Nt × Nr fading channel matrix where each
element has a complex Gaussian distribution, CN (0, 1), and
can change independently every block of T channel uses.
The random T × Nr noise matrix, W, is assumed to have a
complex Gaussian distribution, CN (0, σ 2

W ). The transmitted
T × Nt matrix, X, is assumed to be unitary in the sense that
X†X = INt . The superscript

† denotes the conjugate transpose
and INt is the Nt × Nt identity matrix. The matrices {X} are
isotropically distributed, and EX = ‖X‖2 = Nt where ‖ · ‖
is the Frobenius norm which is defined as

√
Tr(X†X). The

average SNR can then be calculated as

ρ =
E[‖XH‖2]
E[‖W‖2]

, (7)

where

E[‖XH‖2]=E[Tr{H†X†XH}]=E[Tr{H†H}]=NtNr , (8)

and

E[‖W‖2] = TNrσ 2
W , (9)
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FIGURE 1. Sample 4 bit channel polar encoder for a binary AWGN
channel with capacities shown. σ = 1.

so that

ρ =
NtNr
TNrσ 2

W

=
Nt
Tσ 2

W

. (10)

For uncoded communication, the receiver uses ML detec-
tion by searching the entire constellation to find the signal
which maximizes the likelihood function Pr{Y|X}, where [4]

Pr{Y|X} =
exp

{
−1
σ 2W

Tr
(
Y†
(
IT − 1

1+σ 2W
XX†

)
Y
)}

(πσ 2
W )

TNr (1+ 1
σ 2W

)
NtNr

∝ exp

{
‖X†Y‖2

σ 2
W (1+ σ 2

W )

}
. (11)

IV. MULTILEVEL POLAR CODES
As stated previously, polar codes have the ability to achieve
the capacity of binary input memoryless output symmetric
channels. These codes are able to achieve this by using an
effect known as channel polarization where channels are
transformed into good and bad ones (see Fig. 1). By recur-
sively applying such polarization transformation over the
resulting channels, the reliabilities of the synthesized chan-
nels will show significant difference: the ‘‘good ones get
better and the bad get worse’’ [8]. The channels get more
distinctly polarized as the code length is increased and the
good channels can be chosen to transmit information bits over
while the others are frozen (set to a zero).

The transmitter uses multilevel polar coding [17] as shown
in Fig. 2. A bank of m separate polar encoders are used,
one for each bit position in the signal constellation, where
m = log2M is the number of bits per symbol and M is the
constellation size. Each component polar code has a length
of N ′ and thus, the encoders output a total of N = mN ′ bits.
Each component code has a code rate of Ri that is chosen
in such a way that the overall rate is R = 1

m

∑m
i=1 Ri [17].

Each code bit from a polar code is transmitted in a different
symbol, and each symbol depends on m code bits, one from
each encoder.

It was shown in [17] and [18] that labelling generated using
the SP philosophy appear to yield favourable performance.
Therefore, SP should be used to define the labelling between

code bits and constellation points because this leads to large
bit level variances compared to other types of labelling
schemes. A novel set merging algorithm that yields labels that
resemble SP ones is presented in Section V. Unlike currently
available algorithms for generating SP labels, the proposed
algorithm can work with arbitrary multidimensional signal
constellations.

The receiver consists of a bank of m demapper/decoder
pairs, with one pair per polar subcode. The demapper used
in this system is a soft demapper that calculates the log
likelihood ratio (LLR) of each bit given the received signal
matrix as:

λl = ln
Pr{cl = 0|Y, c1, . . . , cl−1}
Pr{cl = 1|Y, c1, . . . , cl−1}

= ln

∑
X∈χl,0 Pr{Y|X}∑
X∈χl,1 Pr{Y|X}

, (12)

whereY is the received signal matrix, cl is a transmitted bit at
the l th level and the set χl,k contains all the possible matrices
in the constellation that can be received at level l which have
bit k at that level. The expression Pr{Y|X} is given in (11).
As (12) shows, the de-mapping of the bit at level l, cl ,

relies on knowledge of the originally transmitted bits of the
bit levels before it, (c1, . . . , cl−1). When the LLRs for a
particular level are calculated and the bits are decoded (using
a standard successive cancellation (SC) polar decoder),
the receiver passes those bits back into a polar encoder to
obtain an approximation of the bits that were transmitted.
These approximate codeword bits are then used in the de-
mapping of the next bit level and so on (Fig. 2).

V. SET MERGING FOR IRREGULAR MULTIDIMENSIONAL
CONSTELLATIONS
Ungerboeck proposed an SP methodology [18] used for
regular constellations, such as PSK or QAM, that involves
dividing the signal points into two subsets in such a way
that the minimum Euclidean distance between any two points
in a subset is greater than the minimum distance in the
whole constellation (Fig. 3). All the points in one subset are
assigned a bit value of 0 in the first bit position, while all
the points in the other subset are assigned a 1. Each subset
is in turn divided into two subsets, again with increasing
minimum distance between points within a subset, and all
points within one of the new subsets are assigned a bit value
of 0 in the second position, while the points within the other
new subset are assigned a 1. This process is repeated until
each subset contains only one point, and all points have been
assigned a unique value of m = log2M bits, where M is the
number of points in the constellation. Forney later provided a
formalized algorithm for partitioning constellations when the
signal points fall on a regular multidimensional lattice [19],
but there are no general-purpose algorithms that work with
irregular constellations.

Ungerboeck’s method works well for regular constella-
tions, and could also be used with small irregular ones,
but implementation becomes problematic for large irregular
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FIGURE 2. Multilevel polar coding system model.

FIGURE 3. Ungerboeck’s method for set partitioning an 8-PSK
constellation.

multidimensional constellations. To alleviate this drawback,
we will now propose a novel low-complexity set merging
algorithm that generates SP-like labellings for arbitrary con-
stellations. As implied by its name, this algorithm works in
the opposite order from Ungerboeck’s, starting with M sub-
sets containing just one point each that are paired together to
formM/2 subsets of two points, which are in turn combined,
and so on, until there is one subset ofM points.

Given a constellation C = {Xi|i = 1, . . . ,M}, the ultimate
objective all labelling algorithms is to create a particular
mapping between sequences of log2M bits and points in C.
In this paper we propose a novel labelling algorithm based
on set-merging. Let Bi,l be the l th bit of the mapping for Xi.
Furthermore, let Sl,i be the set containing the indices of
the constellation points in the ith subset at level l. Note
that |Sl,i| = 2l−1 for i ∈ {1, . . . ,M/2l−1} and l ∈
{1, . . . , log2M}. Starting with S1,i = i, the algorithm
combines subsets at level l − 1 to produce subsets at
level l, based on the inter-subset distance table, Dl(i, j) =

min
a∈Sl,i,b∈Sl,j

d(Xa,Xb), where d(Xa,Xb) is the distance between

constellation points Xa and Xb. That is, Dl(i, j) contains the
distance between the two closest points in subsets i and j
at level l. For coherent detection schemes, the Euclidean
distance is normally used. Hence, the distance between
Xa and Xb is given by

d(Xa,Xb) = ‖Xa − Xb‖. (13)

It was shown in [4] that, for noncoherent detection of Grass-
mannian constellations, the chordal Frobenius norm is a more

appropriate metric. Hence, the distance between Xa and Xb
is given by

d(Xa,Xb) =

√√√√2Nt − 2
Nt∑
k=1

σk , (14)

where σk are the singular values of X
†
aXb.

When combining subsets it is desirable to pair subsets that
are as far apart as possible. That is, a greedy algorithm could
pair subset i with subset argmax

j
Dl(i, j). We note, however,

that at level l there will always be a pairing with at least
distance 1l = min

i
max
j

Dl(i, j). Since the system perfor-

mance depends mostly on this minimum distance, 1l , and
making themost greedy choices for each i tends tomake1l+1
smaller, we have found it better to pair subset iwith the subset
that is closest to i but with distance no less than1l . This will
ensure that the minimum distance is still 1l , without being
needlessly greedy.1 For some constellations, however, there
may be situations in which it is not possible to pair a subset
i with another subset j that is a distance of at least 1l away
simply because of a ‘poor’ pairing that was made previously.
To mitigate this problem, the algorithm simply keeps track
of each possible index j that could be paired to each subset i
in a tree, i.e. all indices Ji,l such that the distance between i
and any subset in Ji,l is at least 1l . The points in Ji,l are
sorted from lowest to highest distance away from i. If a proper
pairing cannot be made for a given i, the algorithm can then
backtrack to the previous paired subsets, uncouple them, and
pair i with another subset j that is in Ji,l . The algorithm can
then move through that branch of the tree until either all the
subsets are paired or a subset cannot be paired. The algorithm
will recursively backtrack through the tree until it finds a path
in the tree that satisfies the 1l condition. The proposed set
merging algorithm is formally given by the pseudo-code in
Algorithm 1. An example of the use of the algorithm is given
in Appendix A.

This algorithm aims to solve a difficult problem of pairing
points together in a constellation. For larger constellations,

1Because of numerical rounding errors in calculating the chordal
Frobenius norm, a more robust approach is to include a slight error toler-
ance and accept pairs with distances greater than 1l − ε for some small
ε (e.g., ε = 10−3).
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Algorithm 1 The Set Merging Algorithm
1: Initialize S1,i← {i},M1← M ,D1(i, j)← d(Xi,Xj)
2: for l = 1, 2, . . . , log2 M do
3: 1l ← min

i∈{1,...,Ml }
max

j∈{1,...,Ml }
Dl(i, j)

4: αi,l ← 1 ∀ i ∈ {1, 3, . . . ,Ml − 1}
5: for i = 1, 3, . . . ,Ml − 1 do,
6: Ji,l ← arg sort(Dl(i, j)) such that

Dl(i, j) > 1l − ε, j ∈ {i+ 1, . . . ,Ml}
7: if αi > |Ji,l | or |Ji,l | = 0 then
8: stepBack(αl, i, Ji,l)
9: else

10: j← Ji,l(αi,l)
11: Ba,l ← 0, ∀ a ∈ Sl,i
12: Bb,l ← 1, ∀ b ∈ Sl,j
13: Sl+1,(i+1)/2← Sl,i ∪ Sl,j
14: swap row j of Dl with row i+ 1
15: swap column j of Dl with column i+ 1
16: αi,l ← 1 ∀ i ∈ {i+ 2, . . . ,Ml − 1}
17: end if
18: end for
19: Ml+1← Ml/2
20: Dl+1(i, j)← min(Dl(2i− 1, 2j− 1),

Dl(2i− 1, 2j),Dl(2i, 2j− 1),Dl(2i, 2j))
∀i, j ∈ {1, 2, . . . ,Ml+1}

21: end for
22: function stepBack(αl, i, Ji,l)
23: i← i− 2
24: if αi,l < |Ji,l | then
25: αi,l ← αi,l + 1
26: else
27: stepBack(αl, i, Ji,l)
28: end if
29: end function

the algorithm may take an unreasonable amount of time to
backtrack through the possible pairs for each subset i, there-
fore, a simpler, albeit sub optimal, set merging algorithm is
proposed. If a pair cannot be found for a subset i that satisfies
the 1l constraint, a compromise is made and i is paired with
a subset that is the closest distance to 1l away. This ensures
that the algorithm is not greedy in trying to look for the perfect
pairs but is able to produce labels in a single pass.

Figures 4 and 5 show the comparisons between the perfor-
mance of two constellations partitioned using both the simple
and the complex set merging algorithms. The backtracking
algorithm makes a significant difference when the size of the
constellation is small, but, this advantage fades away as the
size of the constellation increases. Therefore, for the larger
constellations used in the results section of this paper, the
simpler algorithm is used to generate the labellings.

VI. SYSTEM DESIGN METHODOLOGY
Due to the polarization effect that occurs in the polar codes,
data should be transmitted over the bit channels that have the
best channel capacity while the others are not used. With a

FIGURE 4. Comparing the two algorithms with a circular 8 QAM
constellation.

FIGURE 5. Comparing the two algorithms with a 256 point Golden code
constellation.

simple binary erasure channel or a binary AWGN channel,
it is easy to calculate the capacities of each bit channel.
However, with our system, this computation is not trivial.
Therefore, code design was carried out using MATLAB
simulations. The code design component of the system is
similar to the set-up described above where anM point signal
constellation is combined withm = log2 M component polar
encoders each with length N ′ (where mN ′ = N ). Because
the positions of the frozen bits are not yet known however,
the component codes all operate at a rate Ri = 1.

The design methodology involves simulating the transmis-
sion of a large number of message words through the system
at a specified design SNR, and recording the bit positions
where the first errors occur. When polar codes are decoded
using the successive cancellation decoder, the message bits
are recovered one at a time, in order from the first to the
last message bit. For the purpose of code design, the ‘‘first
error’’ bit is defined as the first message bit to be decoded
incorrectly in a message word (if a message word is decoded

VOLUME 5, 2017 21945



P. R. Balogun et al.: Polar Code Design for Irregular Multidimensional Constellations

FIGURE 6. Effect of design SNR on the frame error rate (FER) performance
of our system. N ′ = 512, rate R = 4/5, M = 4096.

correctly then there is no first error bit for that word). The
first error probability for a bit is the probability of error for
a bit, given that all previous bits are known (i.e. are either
frozen or have been decoded correctly). This error represents
the error of the bit channel and does not include propagated
errors while decoding. In order to record only first errors,
the receiver would need to stop decoding a frame as soon as
the first error is detected and keep track of how many times
each bit position in the frame was reached as well as how
many times an error occurred there.With thismethod, the first
error probabilities would likely not be accurately estimated
in the higher level codes without simulating an extremely
large number of message words. Therefore, we use a system
where the receiver knows the bits that were transmitted and
keeps track of every bit position in the received frame where
an error occurred. Once an error is detected and registered,
the receiver corrects the error, thereby preventing that error
from propagating. In this way, the next error detected can
be counted as a ‘first’ error for that particular bit position
in the frame, so, the first errors can be calculated wherever
they occur in every received frame. Eventually, with enough
simulated bits, the total number of errors that occurred for
each bit channel will be recorded and their respective first
error probabilities can be calculated. This method of cal-
culating first errors is necessary because our system uses a
multilevel design where the de-mapping of each successive
level depends on the correct detection of all the previous
levels. Depending on what coding rate was required, the
channels with the smallest first error probabilities would be
chosen to transfer our data bits over.

The performance of the system can then be evaluated
using Monte Carlo simulations. However, as shown in Fig. 6,
the system performance is heavily dependent on the design
SNR – although the designed code tends to work well at
the design SNR, its performance can be quite poor at other
SNRs. It is often preferable to design a code with a given
rate that achieves a given target frame error rate (FER) at the
lowest possible SNR. For example, from Fig. 6, to achieve a

Algorithm 2 Bisection Algorithm
1: F(SNR) is the function that designs and simulates at

a given SNR, producing the optimal FER. SNRH and
SNRH are chosen such that F(SNRL)>target FER>
F(SNRH ).

2: for i = 1, 2, . . . , imax , do
3: SNRD = (SNRL+SNRH )/2
4: if |F(SNRD) - target FER| < ε then
5: target SNR = SNRD. stop program
6: end if
7: if F(SNRD) > target FER then
8: SNRL = SNRD
9: else
10: SNRH = SNRD
11: end if
12: end for
13: output error

target FER of 10−2, a design SNR of between 10 and 10.5 dB
should be used. Since the optimal design SNR is not known
in advance, we use a bisection search to find it. This search,
which is known for its rapid convergence, works with the
observation that a code designed at a particular SNR will
perform the best at that SNR. That is, for example, as shown
in Fig. 6, the code designed at 9.5 dB has the best FER
performance at that SNR while the code designed at 10.5 dB
performs the best at that SNR. Note also that the two SNRs
produce different optimal FERs (e.g. the 10.5 dB code is
optimal at a FER of 3×10−3). Therefore, the bisection search
starts by choosing two SNRs, one low and one high, as our
starting points such that when the code designed at the lower
SNR (SNRL) is simulated at that SNR, it produces an optimal
FER greater than our target FER. Conversely, when the code
designed at the higher SNR (SNRH ) is simulated at that SNR,
the resulting FER is less than our target FER. A design SNR
(SNRD) is chosen such that SNRD = (SNRD + SNRh)/2.
The code is designed and simulated at SNRD and its optimal
FER is obtained. If the FER is equal to our target FER (with
a small tolerance of ±ε), SNRD is our target design SNR.
If the FER is greater than our target FER, SNRL = SNRD,
else, SNRH = SNRD. The algorithm repeats by calculat-
ing a new SNRD with the new values of SNRL and SNRH
until a design SNR produces an FER approximately equal
to our target FER. In order to prevent a possible infinite
loop, a maximum number of iterations, imax, is included and
once this number is reached, the algorithm ends with an error
message. The algorithm is formally given by the pseudo-code
in Algorithm 2. This method differs from what is normally
done where the FER is optimised for a chosen SNR [20].

VII. SIMULATION RESULTS
In order to investigate the performance of the proposed
system with arbitrary multidimensional constellations,
we use two constellations: the noncoherent Grassmannian
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FIGURE 7. 4096 point Grassmannian constellation with multilevel polar
codes of different sub-code lengths. The overall code rate R = 4/5. The
SNR threshold is shown at an Eb/No of about 7.8 dB.

constellation and the coherent Golden codes. An M = 4096
point Grassmannian constellation (m = 12), designed as
described in [4], for a 2× 2 MIMO channel with a coherence
time of T = 4 is used. An M = 256 point Golden code,
designed as described in [16], for a 2 × 2 MIMO channel
with coherence time of T = 2 is also used. To show the bit
error curves with respect to the energy per bit, Eb/No was
used instead of SNR.

As one might expect, increasing the frame size improves
the bit error rate, but not above the SNR threshold set by the
channel capacity. In Fig. 7 we show the effect of increasing
the frame size when the code rate is 4/5. The figure shows a
4096 point Grassmannian constellation combined with polar
codes of varying sub-code lengths ranging from N ′ = 8
to N ′ = 8192 which corresponds to total code lengths of
N = 96 to N = 98304 bits respectively. As expected,
the longer the length of the polar codes, the better the BER
performance; However, this improvement is limited by the
channel capacity. The SNR limit at capacity was calculated
using the expression computed for Grassmannian constel-
lations with equal number of transmit and receive antennas
found in [3].

The SNR threshold for the constellation at rate 4/5
(2.4 bits per channel use) is calculated to be 11.6 dB and this
corresponds to an Eb/No value of about 7.8 dB. As Fig. 7
shows, with a sub-code length of N ′ = 8192, this design is
able to operate within 1.6 dB of the approximate noncoherent
ergodic capacity at a BER of 10−4. This is the closest to
the channel capacity for a noncoherent system that has been
reached as far as we are aware.

Thus far, the results seem to indicate that our new sys-
tem performs quite well. However, it is useful to compare
it with other well known design methodologies and codes.
Fig. 8 shows the comparison between our polar code design
and other polar, turbo and LDPC designs with a 4096 point
Grassmannian constellation at a rate of 4/5. The figure shows

FIGURE 8. Different codes running with 4096 point Grassmannian
constellation with rate R = 4/5. All BICM figures use quasi-Gray labelling
for the constellation. Multilevel code uses the proposed set merging
labelling. Unoptimized BICM codes are not optimized for the
multidimensional constellation channel but for a BPSK AWGN channel
only.

the BER performance of our design usingm = 12 component
codes and choosing each to have N ′ = 2048 and N = 24576.
Also shown is the performance of a turbo coded system as
designed in [14] withN = 32016, using bit interleaved coded
modulation with iterative detection and decoding (BICM-
IDD), and quasi-Gray labelling for the constellation. Also,
the performance of a BICM system using the standard single
level DVB-S2 LDPC code also with quasi-Gray labelling for
the constellation and N = 64800 is shown in the figure.
The performance of an unoptimized (that is, not optimized
for the Grassmannian channel) BICM polar code system with
N = 32768 is shown as well. Finally we see in the figure the
same BICM polar code system with N = 32768 but with
polar codes designed for the Grassmannian channel using our
design methodology. As the figure shows, the polar coding
technique outperforms all the other BICM based techniques
even those of turbo and LDPC codeswith longer code lengths.
It is also of note that the polar encoder/decoder has signif-
icantly less complexity compared with the other two codes.
Therefore, the polar scheme not only provides better error rate
performance, but it does so with a much lower complexity.

Fig. 9 shows the performance comparison between our sys-
tem and other design methods using a 256-point Golden code
constellation with N = 8192 over a MIMO fading channel.
We compare the performance of the Golden code constella-
tion, labelled with either our set merging algorithm or with
Gray labelling, when used with an optimized multilevel polar
code designed for this constellation and labelling with a
MIMO fading channel. We see more than 2 dB of gain at
a BER of 10−4 when set merging labelling is used instead
of Gray labelling. To illustrate the importance of designing
the polar code for the intended channel, we also show the
performace of the set-merging labelled constellation when
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FIGURE 9. Polar codes with 256 point coherent Golden codes with
R = 1/2 and N = 8192.

used with a multilevel polar code designed for use over
an AWGN channel. By optimizing the polar codes for the
MIMO fading channel, we are able to achieve more than a
4 dB gain compared with the unoptimized case at a BER of
10−4. For a final comparision, the performance of a standard
single-level BICM polar code, optimized for the Golden code
constellation with Gray labelling for MIMO fading is shown.
The optimized multilevel polar code achieves a gain of about
9.5 dB a BER of 10−4 over the optimized BICM method.

VIII. COMPLEXITY ANALYSIS
So far, we have seen that our system is able to produce
significantly better error rate performances compared with
other coding and mapping systems. Therefore, an impor-
tant metric to consider is the receiver complexity, especially
compared with the other coded schemes. Precise compar-
isons of relative complexity between different algorithms is
subjective without a standard definition of complexity. For
software implementations, the execution speed is a useful
metric whereas for hardware implementations, the chip area
and power draw may be more relevant. In this paper, we will
use the number of floating point operations (flop) required
to de-map and decode one message. Although the flop count
is a useful and widely used metric, it does not distinguish
between the relative costs of performing different opera-
tions, (for example, modern Pentium processors can perform
additions twice as quickly as multiplications which in turn
are 20 times faster than division [21]), which can also vary
greatly depending on the type of processor being used and
how carefully optimized the algorithm is to fully exploit the
operator pipeline. Since these finer details are particularly
subjective, in the following we restrict our attention to the
flop count. Each complex addition requires two flop and each
complex multiplication requires six flop. Logarithmic and
exponential operations, which are typically calculated using
rational polynomial interpolation, require 20 flop.

TABLE 1. De-mapping complexity comparison of Grassmannian
constellation and Golden codes.

A. DE-MAPPING COMPLEXITY ANALYSIS
We first consider the de-mapping complexities of Grassman-
nian constellations andGolden code signals. As both schemes
use the same multilevel polar coding technique, the encoding
and decoding complexities, described in the next subsection,
are therefore the same.

After the signals Y are received, the de-mapper works out
the ML probabilities as follows:

Pr{Y|X}∝


exp

{
‖X†Y‖2

σ 2
W (1+ σ 2

W )

}
for the Grassmannian,

exp

{
‖Y− XH‖2

σ 2
W

}
for the Golden code.

(15)

The de-mapper calculates these values for every received
block (i.e. after T channel uses). For the Grassmannian de-
mapper, the value X†Y is calculated first. Since X† is an
Nt × T matrix and Y is a T × Nr matrix, the calculation has
NtNr (T − 1) complex additions and NtNrT complex multi-
plications, for a total of 8NtNrT −2NtNr flop. Next, the ‖·‖2

operation is performed, where ‖A‖2 =
∑Nr

i=1
∑Nt

j=1 |ai,j|
2

with ai,j being the element in row i and column j of A. This
requires 6NtNr flop to calculate all |ai,j|2, and NtNr − 1
flop to sum all the elements, for a total of 7NtNr − 1 flop.
To finally calculate Pr{Y|X}, one division by the constant
σ 2
W (1 + σ 2

W ) and one exponent operation (20 flop) are also
needed. Therefore, calculation of Pr{Y|X} requires a total
of 8NtNrT + 5NtNr + 20 flop. This must be repeated M
times, for each X in the constellation. Furthermore, since the
transmission of one message word requires the transmission
of N ′ Grassmannian symbols, the flop count must be multi-
plied by N ′, where N ′ = N/m. The total flop count for the
Grassmannian de-mapper is shown in Table 1.

Similarly, for the coherent Golden code de-mapper,
‖Y−XH‖2 is calculated for eachX and for each transmission
block. The Nt × Nt matrix, X, is multiplied by the Nt × Nr
matrix, H, requiring NtNrNt complex multiplications, and
NtNr (Nt − 1) complex additions, or 8N 2

t Nr − 2NtNr flop.
Subtracting the result from Y requires an additional 2NtNr
flop, and calculating ‖ · ‖2 needs another 4NtNr − 1 flop.
Calculation of Pr{Y|X} requires an additional 21 flop for the
exponent and division by σ 2

W . The total flop count for all M
possibilities of X and for all N ′ blocks is given in Table 1.

As an example using our set-up with Nt = Nr = 2, T = 4,
and using 4096 point constellations and a sub-code length
N ′ = 512, we see the number of operations required to de-
map both a Grassmannian and a Golden code constellation
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TABLE 2. Example of de-mapping complexity comparison of
Grassmannian constellation and Golden codes for Nt = Nr = 2, T = 4,
M = 4096, and N ′ = 512.

in Table 2. As expected, the table shows, the Grassmannian
constellation method is more computationally intensive than
the Golden code method and this is due to the fact that
while information bits are transmitted over T timeslots for a
Grassmannian constellation, the Golden code only transmits
information bits over Nt time slots. Therefore, while the
Grassmannian approach has been shown to produce better
error rate performances than its noncoherent Golden code
counterpart under block fading conditions, there is a trade-
off between complexity and performance. However, in both
cases, there are between two hundred to three hundred and
thirty million flop, which may not amount to much of a differ-
ence depending on the coding used in the system. As we will
soon see, a large part of a system’s complexity could poten-
tially come from the decoding process, therefore, choosing a
good coding scheme is necessary.

B. BIT LLR CALCULATION COMPLEXITY ANALYSIS
The decoders are fed soft symbols (the LLRs), which are
calculated from Pr{Y|X}. As shown previously in (12), the
LLRs for the polar MLC are calculated as

λl = ln

∑
X∈χl,0 Pr{Y|X}∑
X∈χl,1 Pr{Y|X}

, ∀ 1 ≤ l ≤ m. (16)

We see from (16) that for each bit level one, there is one log
operation and one divide operation for a total of m log oper-
ations and m divide operations per received symbol/block.
When l = 1, the sets χl,1 and χl,0 are each half the size
of Pr{Y|X} which has M elements. The summation opera-
tor adds these elements in the numerator and denominator,
requiring M

2 − 1 additions each. With l = 2, the sets χl,k ,
k = {0, 1}, which depend on the knowledge of the decoded
bits of the level l = 1, are half the size of the sets χ1,k . Thus
the numerator and denominator each have M

4 − 1 additions.
Similarly, the sets χ3,k , which depend on the knowledge of
the decoded bits of levels l = 1 and l = 2, are half the size
of the sets χ2,k and the numerator and denominator each have
M
8 −1 additions each.When l = m, the sets χl,k have only one
element each and therefore no additions. There are therefore
a total of 2

∑m
l=1

(
M
2l − 1

)
= 2(M − 1 − m) additions per

block. Taking into account the division and logarithm needed
in (16) for each bit increases the flop count per block to
2(M − 1) + 19m, which must be multiplied by N ′ to give
the count per frame as shown in Table 3.

When BICM is used instead of MLC, knowledge of the
previously decoded bits cannot be exploited since the LLRs
of all bits are calculated at the same time. Therefore the sets

TABLE 3. LLR Calculation, b = number of de-mapping iterations for
m = log2 M.

TABLE 4. Decoding complexity of turbo and multi-level polar codes for
n′ = log2 N ′ , k = constraint length, N = Frame length, i = total number of
decoder iterations, d = number of decoders, b = number of de-mapping
iterations.

FIGURE 10. Sample 16-QAM Constellation.

χl,k in (16) are always of size M/2, and the total flop count
to calculate the LLRs is 2m(M2 − 1)+ 21m = m(M + 19) per
block.

The use of BICM-IDD, as in [13], further increases the
complexity of the LLR calculations. Instead of (16) we use

λl = ln

∑
X∈χl,0 Pr{Y|X}µX∑
X∈χl,1 Pr{Y|X}µX

, ∀ 1 ≤ l ≤ m. (17)

where µX is the a priori probability that X was transmitted,
based on feedback from the decoder during the previous
iteration. Calculation of µX for all M values of X can be
performed efficiently usingM−2 additions andM exponents,
or 21M−2 flop. A furtherM multiplications are needed when
multiplying by Pr{Y|X}, so BICM-IDD requires (22+m)M−
2+19m flop for each block for all but the first iteration, when
only m(M + 19) are needed.

C. DECODING COMPLEXITY ANALYSIS
We now consider the total decoding complexity of the polar
MLC system. Recall from Fig. 2 that the decoding process
requires a multi-stage decoding method in which bits from
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FIGURE 11. Distance table for labelling the 16-QAM constellation shown in Fig. 10.

FIGURE 12. Set merging the 16-QAM signal constellation using our algorithm, showing how pairs of signal points are merged into sets based on the distance
tables, and then pairs of these sets are in turn merged into larger sets. The signal points, and the resulting bit labelling, are shown at the top. 11 =

√
32,

12 =
√

16, 13 =
√

8, 14 =
√

4.

lower levels are decoded, re-encoded, and used to decode
bits of the higher levels. Table 4 compares the decoding

complexity of the polarMLC decoder and that of turbo codes.
First, we consider the complexity of a single polar decoder.
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The polar decoder makes use of two basic node calculations
in order to decode received signals. These are

λi,j =


ln

[
exp{λi,j+1} exp{λi+2j,j+1} + 1

exp{λi,j+1} + exp{λi+2j,j+1}

]
,

if
⌊
i−1
2j

⌋
≡ 0 mod 2

λi,j+1 + (1− 2v̂i−2j,j)λi−2j,j+1, otherwise
(18)

for 1 ≤ i ≤ N ′ and 0 ≤ j ≤ n′, where n′ = log2 N
′. The

upper node calculation for λi,j requires two exponential com-
putations, two additions, one multiplication, one division,
and one logarithm, or 64 flop. The lower node calculation
needs either one addition or one subtraction, depending on
v̂i−2j,j. For each polar decoder in the MLC, the upper node
calculations occur in each column j < n′ and in half the
rows of i where

⌊
i

j−1

⌋
≡ 0 (mod 2), while the lower node

calculations also occur in each column and in the other half
of the rows. Therefore, the lower and upper node values of
λi,j are each calculated a total of N ′

2 n
′ times per decoder and

there are m decoders in the MLC system.
In [22], the complexity of a turbo decoder per bit was

determined. For each code bit, each decoder requires 2k

exponents, one log, 2k+3+22k multiplications, 2k+2+22k−2
additions, and 2k+1 + 1 divisions for a total of 11(2k+1) +
2k+3 + 22k+1 + 2k+2 + 19 flop where k is the constraint
length of the turbo encoders. To obtain the number of flop
for the entire decoding procedure, this must be multiplied by
the frame length N , the number of decoders used d and the
total number of decoder iterations performed a.

TABLE 5. Decoding complexity example of turbo and multi-level polar
codes for n′ = 9, k = 5, N = 6144, i = 32, d = 2, b = 4.

As an example, with a sub-code length of N ′ = 512
and a Grassmannian constellation with M = 4096 points,
m = log2 4096 = 12 and N = 12 × 512 = 6144 bits,
Table 5 shows the number of operations needed for decoding
polar and turbo codes per received frame. The turbo decoder
implemented in [13] uses d = 2 MAP decoders with
b = 4 de-mapping/decoding iterations (the LLRs are calcu-
lated 4 times) and a = 8 BCJR-based turbo iterations within
each de-mapping/decoding iteration for a total of i = 32
iterations each, and k = 5. We see from Table 5 that the turbo
decoder is orders of magnitude more complex than the polar
MLC decoders.

As for the LDPC decoder, it is difficult to estimate the
number of iterations needed for decoding a frame. How-
ever, because the LDPC system simulated in this paper uses
BICM (Table 3). The LLR calculations, even without tak-
ing into consideration the computational cost of the actual

LDPC decoder, require 25, 282, 560 flop using our example.
In comparison, the polar MLC requires 6, 107, 136 flop for
decoding and LLR calculations. The LLR calculations for
the BICM LDPC system alone require about 4 times more
flop. It is of note however, that the SC polar decoder is a
serial process and cannot be parallelized like the decoding
process for LDPC codes and this affects the latency. However,
even with this taken into account, the overall latency for the
polar code system will still be less than that of the LDPC
codes. Therefore, we see that the polar decoder system is
significantly less complex than both the LDPC and the turbo
systems while still providing superior error rate performance.

IX. CONCLUSION
A novel methodology for designing polar codes that work
effectively with Grassmannian constellations was proposed
in this work. This combination, based on multi-level
polar coding, was effectuated by the help of a novel set
merging algorithm. This algorithm is a generalised one that
works both for regular and irregular constellations. It was
shown that this algorithm was able to label both noncoherent
(Grassmannian) and coherent (Golden codes) multidimen-
sional constellations. In addition, a different way of designing
polar codes which involves finding the codes that achieve
a target FER at the lowest possible design SNR was pro-
posed. This is in contrast to the previous design methodolo-
gies which seek to minimize the FER at one design SNR,
which tends to produce codes that perform poorly at other
SNRs. By combining these two propositions, the error rate
curves showed that this novel system came the closest to the
noncoherent MIMO capacity compared with the other state-
of-the-art coding techniques. In addition, this novel method
is significantly less computationally intensive than the other
BICM based coding methods.

APPENDIX
APPLYING THE PROPOSED SET MERGING ALGORITHM
ON A 16-QAM CONSTELLATION
As an illustrative example of the operation of the set merging
algorithm, consider the rectangular 16-QAM constellation
shown in Fig. 10, which has a distance metric table D1 as
shown in Fig. 11. Here, there are M1 = 16 sets of S1,i
each containing 1 point. The maximum distance from each
point, highlighted in the figure, is obtained and the minimum
of these is selected. In this example, 11 =

√
32. Point

i = 1 is paired with point j = 11 then i is assigned a bit
value of 0 while j is assigned a bit value of 1 in the first bit
position (i.e., the least significant bit). These two points are
then concatenated into one set S2,1. Row i+1 = 2 is swapped
with row j = 11 such that the paired sets are next to each
other and row 2 is now in the eleventh position (shown on
top of the table). The same is done for the columns. In the
next iteration, i = 3 and is paired with j = 9. The bits are
assigned, the sets are concatenated and the rows and columns
are swapped. This continues till i = 15 and the paired sets
are S2,1 = {1, 11}, S2,2 = {3, 9}, S2,3 = {5, 15}, S2,4 =
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FIGURE 13. Bit error rate per bit of the 16-QAM constellation labelled
with set merging.

{7, 13}, S2,5 = {4, 10}, S2,6 = {2, 12}, S2,7 = {8, 14} and
S2,8 = {6, 16}. At the end, there are M2 = 8 sets of S2,i
each containing 2 points. The distance tableD2, shown in the
figure, is generated by taking the minimum distance between
each point in the new sets and all the sets. The maximum
distance from each set is obtained and the minimum of these
is selected with 12 = 4. Sets S2,1 and S2,2 are concatenated
with all the points in the former set assigned a value of 0
and all the points in the latter a value of 1 in the second bit
position. No swaps are necessary here because the paired set
is already adjacent. In the second iteration, i = 3 and the
sets S2,3 and S2,4 are concatenated and the bits are assigned.
This continues till all the sets are paired and concatenated
and the bits are assigned. In the next level, there are M3 =

4 sets where S3,1 = {1, 11, 3, 9}, S3,2 = {5, 15, 7, 13},
S3,3 = {4, 10, 2, 12}, and S3,4 = {8, 14, 6, 16}. By taking
the minimum distance between these sets, D3 is formed. The
minimum of the maximum distance from each set is obtained
an at this level, 13 =

√
8. S3,1 is paired with S3,4 and sets

S3,2 and S3,4 are swapped in the distance table. The bits
are labelled appropriately and the next two sets are paired,
concatenated and labelled accordingly. In the last level with
M4 = 2 sets where S4,1 = {1, 11, 3, 9, 8, 14, 6, 16} and
S4,2 = {4, 10, 2, 12, 5, 15, 7, 13}, 14 = 2. The two sets are
paired, all points in S4,1 are labelled 0 and S4,2 are labelled 1
in the fourth bit position, and these are concatenated giving a
final set S5,1 which contains all of the points in the constella-
tion. Thus, the set merging is completed and a visual example
can be seen in Fig. 12.

Fig. 13 shows the BER per bit level of the 16-QAMconstel-
lation labelled using the proposed set merging algorithm. This
bit variance can be obtained in simulation when the receiver
detects the signals one bit at a time, assuming the previous bits
have been detected correctly. Because the bits at the lower
levels have a greater distance apart in the signal space than
those at the higher levels, i.e. 1l > 1l+1, those bits show a
better performance.

We see therefore that our set merging algorithm con-
verges to the Ungerboeck SP solution when used on a
16-QAM constellation. Our numerical experiments suggest
that the proposed set merging algorithm yields close-to-
optimal labellings in the majority of cases.
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