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ABSTRACT Most of the resource allocation literature on the energy-efficient orthogonal frequency divi-
sion multiple access (OFDMA)-based wireless communication systems assume continuous power alloca-
tion/control, while, in practice, the power levels are discrete (such as in 3GPP LTE). This convenient contin-
uous power assumption has mainly been due to either the limitations of the used optimization tools and/or the
high computational complexity involved in addressing the more realistic discrete power allocation/control.
In this paper, we introduce a new optimization framework to maximize the energy efficiency of the downlink
transmission of cellular OFDMA networks subject to power budget and quality-of-service constraints, while
considering discrete power and resource blocks (RBs) allocations. The proposed framework consists of two
parts: 1) we model the predefined discrete power levels and RBs allocations by a single binary variable and
2) we propose a close-to-optimal semidefinite relaxation algorithm with Gaussian randomization to effi-
ciently solve this non-convex combinatorial optimization problem with polynomial time complexity. We
notice that a small number of power levels suffice to approach the energy efficiency performance of the
continuous power allocation. Based on this observation, we propose an iterative suboptimal heuristic to
further reduce the computational complexity. Simulation results show the effectiveness of the proposed
schemes in maximizing the energy efficiency, while considering the practical discrete power levels.

INDEX TERMS Energy efficiency, OFDMA, convex optimization, semidefinite relaxation, Gaussian
randomization.

I. INTRODUCTION
Cellular communications plays an undeniable role in the daily
lives of millions of people worldwide. The demands on data
rates are growing exponentially mainly due to smartphones,
which are always connected to the cellular network during the
day. Due to the hike in energy consumption costs, and eco-
logical, and environmental reasons the increasing demands
of data rate cannot be achieved by simply scaling up the
transmit power. Instead, this has to be achieved at similar
or lower energy consumptions. That said, energy-efficient
communications have received a lot of attention from both
industry and academia in recent years [1]–[3].

Orthogonal frequency division multiple access (OFDMA)
is adopted in many contemporary wireless standards [4] due
to multi-user and frequency diversities. In OFDMA, the fre-
quency spectrum is divided into multiple subcarriers where

different groups of subcarriers may be allocated for the trans-
mission of different users depending on the varying channel
conditions [5]. Frequency diversity is achieved by activating
only subcarriers that can support high quality transmission
and nulling subcarriers with poor channel conditions. On the
other hand, multi-user diversity is achieved with appropriate
user mapping, i.e., a subcarrier may not be assigned to a
certain user if the channel between this user and the BS on
this subcarrier is in deep fade and in this case the subcarrier
should be assigned to a different user.

Most of the energy-efficient resource allocation algorithms
reported in the literature, for various OFDMA systemmodels,
are based on continuous power allocation rather than allo-
cation of discrete power levels [6]–[8]. Additionally, their
solution techniques are mainly based on the fractional prop-
erties of the energy efficiency maximization problem [9].
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In particular, the energy efficiency fractional objective
function is transformed into an equivalent weighted sum of
rate and power objectives. Then, dual Lagrangian method
is applied to achieve the global energy efficiency optimal
solution in an iterative manner. However, the complexity of
finding the Lagrange multipliers (associated with the contin-
uous power allocation) of the dual Lagrangian method is in
general of unknown computation complexity [10].

Discrete power control/allocation simplifies the transmitter
design, and also, significantly reduces the signalling overhead
among nodes [11]. Lei et al. [12] considered the discrete
power and subcarrier allocations to maximize the transmis-
sion rate of an OFDMA system, and solved the binary rate
maximization problem using concepts of dynamic program-
ming. Bacci et al. [13] investigated the uplink transmission
of contention-based synchronization in OFDMA systems,
and formulated a constrained finite non-cooperative game to
maximize the energy efficiency, where each mobile station
has its own discrete power levels. For single carrier transmis-
sion Nguyen and Hwang [14] considered predefined discrete
power levels at the BS and proposed a reduced complexity
algorithm that maximizes the energy efficiency of multi-cell
networks. The formulated problem is classified as a frac-
tional discrete optimization problem that is NP-hard to solve.
The structure of the fractional problem is investigated and a
suboptimal algorithm was proposed to attain an acceptable
solution with polynomial time complexity.

A. CONTRIBUTION OF THE PAPER
In this paper, we investigate the energy efficiency resource
allocation problem of the downlink transmission of OFDMA
networks subject to power budget and per user quality-
of-service (QoS)1 constraints, while considering practical
design issues, i.e., discrete power levels. Such a constraint
adds another dimension to the difficulty of the energy effi-
ciency maximization problem and we are going to efficiently
address in this paper. The main contributions of this paper are
summarized as follows.
• We introduce a novel optimization framework to effi-
ciently handle such energy efficiency maximization
problemwith discrete power levels and RBs. This frame-
work consists of the following two parts:
– We model the discrete power levels and discrete

RBs by a single binary variable. We then show
that the formulated energy efficiency maximization
problem is combinatorial non-convex problem that
turns out to be NP-hard to solve.

– To tackle such a non-convexity, we propose a
two stage close-to-optimal semidefinite relaxation
(SDR)-based algorithm with Gaussian randomiza-
tion, named COS, to efficiently solve this NP-hard
problem with polynomial time complexity. In
the first stage, the SDR generates a positive

1In this paper, the QoS is defined in terms of the minimum data rate that
a user requires.

semidefinite covariance matrix together with an
upper bound on the energy efficiency of the
downlink transmission. In the second stage, using
Gaussian randomization, we exploit the outputs of
the first stage to compute good approximate solu-
tions for the non-convex energy efficiency max-
imization problem with provable approximation
accuracy.

• We notice that a small number of the discrete power
levels is sufficient to approach the optimal energy effi-
ciency performance of the continuous power alloca-
tion in [15]. Based on this observation, we propose
a reduced-complexity iterative suboptimal heuristic,
named SOH, that adopts a single power level.

• Extensive simulations results are provided to show the
effectiveness of the proposed schemes inmaximizing the
energy efficiency of the downlink transmission. Results
reveal that COS achieves the optimal performance of
the exhaustive search. Additionally, results show that
SOH strikes a balance between complexity and energy
efficiency performance.

B. PAPER ORGANIZATION
The rest of this paper is organized as follows. Section II
presents the system model. In Section III, the optimiza-
tion framework for the joint optimization of the RBs and
the power allocation is provided. Section IV discusses a
two-stage close-to-optimal algorithm to solve the energy
efficiency maximization problem. Then, a low-complexity
suboptimal heuristic is proposed in Section V. In Section VI,
simulation results are provided, and Section VII concludes
the paper.

C. NOTATION
Throughout the paper we use bold-faced upper case
letters, e.g., X , to denote matrices, bold-faced lower case
letters, e.g., x, to denote column vectors, light-faced italics
letters, e.g., x, to denote scalars, and calligraphic letters,
e.g., X , to denote sets. I denotes the identity matrix. The
vectors of all-ones and all-zeros are denoted by 1 and 0,
respectively, and for ease of exposition, we drop the sub-
script indicating the dimension of the all-one and the all-zero
vectors and matrices. The trace, the rank, and the column
vector consisting of the diagonal elements of matrix X are
respectively denoted by Tr(X), rank(X), and diag(X). Lastly,
[·]T denotes the transpose operator, sgn(·) denotes the
element-wise signum function,N (·, ·) denotes Gaussian dis-
tribution with a particular mean and variance, and vec(·)
denotes the operator that stacks the columns of a matrix on
top of each other.

II. SYSTEM MODEL
We consider a single-cell OFDMA network, in which a base
station (BS) is located at the center of the cell. In this net-
work, K uniformly distributed users communicate with the
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BS over N RBs,2 each of them with a bandwidth of W0, and
L discrete power levels available to the BS. We respectively
denote the set of all users by K = {1, . . . ,K }, the set of
all RBs by N = {1, . . . ,N }, and the set of power levels by
P = {p1, . . . , p`, . . . , pL}, where L = |P| is the cardinality
of P . Moreover, we denote the channel gain between the BS
and the k-th user on the n-th RB as hnk , which includes the
path loss, shadowing, and small scale fading.

For such a network, we consider a centralized design, in
which a central node collects network parameters and decides
on the allocation of RBs between the users, as well as the
allocation of power levels over the RBs. Due to such a central
node, we assume that each RB is exclusively assigned to a
user throughout the signalling interval [7], [17]. Hence, the
signal-to-noise ratio (SNR) of the received signal by the k-th
user on the n-th RB using the `-th power level can be given
as

0n`k =
p`|hnk |

2

W0N0
, (1)

where N0 is the power spectral density of the additive white
Gaussian noise (AWGN). Hence, the maximum data rate that
can be reliably communicated between the BS and the k-th
user on the n-th RB using `-th power level is expressed as

rn`k = W0 log2
(
1+ 0n`k

)
. (2)

We note that for a known triplet, (k, n, `), the SNR, 0n`k , and
the data rate, rn`k , can be readily calculated, and they have
deterministic values.

III. ENERGY EFFICIENCY MAXIMIZATION PROBLEM
In this section, we propose an optimization framework that
jointly optimizes the RBs and the discrete power allocations
to maximize the energy efficiency of the downlink transmis-
sion ofOFDMAsystems.Wefirst introduce the RB usage, the
power budget and the QoS constrains, and the design objec-
tive considered in the system. We then present the energy
efficiency maximization problem formulation.

A. SYSTEM CONSTRAINTS
1) RB USAGE CONSTRAINTS
We use an indicator variable, φn`k , and let it represent whether
the triplet of (k, n, `), k ∈ K, n ∈ N , and ` ∈ P , is used for
communication or not. If the k-th user is associated with the
BS on the n-th RB using the `-th power level, then φn`k = 1;
otherwise, φn`k = 0. Hence,

φn`k ∈ {0, 1}, ∀k ∈ K, ∀n ∈ N , and ∀` ∈ P. (3)

Using the defined binary variable, the total usage of the
n-th RB across the entire network can be shown to be∑

k∈K
∑
`∈Pb

φn`k . To avoid interference, in the systemmodel

2In 3GPP LTE networks [16], the BS allocates two-dimensional time-
frequency resource units, among the users, i.e., scheduling RBs. An RB has
a frequency bandwidth of 180 kHz and a time duration of one slot of 0.5 ms.

considered herein, each RB is constrained to be used at most
once, and this constraint can be expressed as∑

k∈K

∑
`∈P

φn`k ≤ 1, ∀n ∈ N . (4)

This constraint implies that at a given time instant, at most
one power level can be used on each RB, and each RB can at
most be used on one BS-to-user link.

2) POWER ALLOCATION CONSTRAINT
In a practical system, the total power consumption of the
BS cannot exceed a maximum total power budget, Pmax.
The total power consumed by the BS can be expressed as∑

k∈K
∑

n∈N
∑
`∈P φ

n`
k p

`. Hence, the power budget con-
straint is expressed as∑

k∈K

∑
n∈N

∑
`∈P

φn`k p
`
≤ Pmax. (5)

Implicit in (5) and the one in (4) is that at most one non-zero
power level is allowed on an RB at a given time instant.

3) QoS CONSTRAINTS
Utilizing the expression given in (2), the maximum total
data rate that the BS can reliably communicate with the
k-th user can be expressed as

∑
n∈N

∑
`∈P rn`k φ

n`
k . To ensure

that the QoS requirement of the k-th user is met, the following
minimum supported rate constraint should be satisfied:∑

n∈N

∑
`∈P

rn`k φ
n`
k ≥ r

min
k , ∀k ∈ K, (6)

where the QoS demanded by k-th user is denoted by rmin
k .

B. SYSTEM DESIGN OBJECTIVE
The energy efficiency of the network is defined as the ratio
of the total data rate and the total consumed power, with unit
of bits/Joule. The total BS power consumption is obtained as

PT = PC + ε
∑

k∈K

∑
n∈N

∑
`∈P

φn`k p
`, (7)

where PC is the total circuitry power consumption required
to deliver the information from the BS to the users, and ε
is a constant defined by the inverse of the power amplifier
efficiency. The total transmission data rate can be written as

rT =
∑

k∈K

∑
n∈N

∑
`∈P

φn`k r
n`
k . (8)

Hence, the energy efficiencymetric of the downlink transmis-
sion can be expressed as

ηEE =
rT
PT
. (9)

The design objective in this work is to maximize the energy
efficiency metric given in (9).
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C. OPTIMIZATION PROBLEM FORMULATION
Subsequently, we can cast the joint RB and power allocation
problem for energy efficiency maximization in the downlink
of an OFDMA network in the following form:

max
φn`k

ηEE =

∑
k∈K

∑
n∈N

∑
`∈P rn`k φ

n`
k

ε
∑

k∈K
∑

n∈N
∑
`∈P p`φn`k + PC

,

(10a)

subject to
∑
k∈K

∑
`∈P

φn`k ≤ 1, ∀n ∈ N , (10b)∑
k∈K

∑
n∈N

∑
`∈P

φn`k p
`
≤ Pmax, (10c)∑

n∈N

∑
`∈P

rn`k φ
n`
k ≥ r

min
k , ∀k ∈ K, (10d)

φn`k ∈ {0, 1}, ∀k ∈ K,∀n ∈ N , and ∀` ∈ P.
(10e)

The formulation in (10) is an integer non-linear program. In
particular, it is an integer linear fractional program due to the
constraint in (10e), in which the optimization variables are
restricted to be integer. For solving such a problem optimally,
branch-and-bound type algorithms can be used. However,
these algorithms have exponential complexity. We note that
if the restriction on the variables is removed, then the energy
efficiency problem in (10) becomes a linear fractional pro-
gram and belongs to the class of quasiconvex programs3 [18].
Hence, it can be solved efficiently using bisection method, in
which a sequence of feasibility problems need to be solved.

IV. CLOSE-TO-OPTIMAL RESOURCE ALLOCATION:
A SEMIDEFINITE RELAXATION-BASED APPROACH
For solving the non-convex problem in (10), we use the
SDR technique with Gaussian randomization. This technique
obtains close-to-optimal solutions for the energy efficiency
problem in (10) with polynomial-time complexity.4 A similar
approach employed herein was considered in [20] for the user
association problem in heterogeneous networks to maximize
the number of the accommodated users while to minimize
the number of RBs used in the network. The problem consid-
ered in [20] was integer linear programming, in which apart
from the integer constraints, the objective function and the
constraints were linear. However, in this paper, we consider
joint optimization of RB and power allocation to maximize
the energy efficiency in a macro-only network. Here, the
problem in (10) is integer linear fractional programming, in
which the objective function is quasi-convex, the constraints
are linear, and the optimization variables are integer.

3Since all constraints are linear, they comprise a convex set. Moreover,
the objective function is quasi-linear in the variable φn`k as its superlevel and
sublevel sets are convex.

4In some particular cases, the SDR technique with Gaussian random-
ization can have a provable approximation accuracy. Finding the bound
(quantifying the gap between the performance of the SDR-based technique
and the optimal one) is in general an involved problem and it is out of
the scope of the current paper. However, a summary of some of the major
approximation accuracy results is given in Tables I and II in [19].

Before discussing the SDR technique with Gaussian
randomization, we first express the energy efficiency, the
RB usage, and the power budget, and the QoS constraints in
vector form. For this purpose, we introduce a 3-dimensional
tensor 8 with entries denoted by φn`k . We express this ten-
sor in the form of a N × KL block-partitioned matrix, and
particularly, it is written as a matrix of 1× K blocks,

8 =
[
81 . . . 8K

]
, (11)

where each blocks of that matrix has N × L entries, and for
j = 1, . . . ,K , 8j is given as

8j =


φ11j . . . φ

1,`
j

...
. . .

...

φN1
j . . . φNLj

 . (12)

We also introduce four additional 3-dimensional tensors: An,
Bk , C, and D. Similar to 8, these tensors are expressed in
the form of a N × KL block-partitioned matrix with 1 × K
blocks, each with N ×L entries. We define these four tensors
as follows:

The tensor An can be written as

An =
[
An1 . . . AnK

]
, n = 1, . . . ,N , (13)

where, for all j = 1, . . . ,K , Anj = en1TL , where en is the
n-th column of the N × N identity matrix IN . Likewise, the
tensor Bk can be expressed as

Bk =
[
Bk1 . . . Bkk̂ . . . BkK

]
,

k = 1, . . . ,K , (14)

where, for j = 1, . . . ,K , Bkj = 0N×L when j 6= k̂ , and, when
j = k̂ ,

Bkk̂ =


r11
k̂

. . . r1`
k̂

...
. . .

...

rN1
k̂

. . . rNL
k̂

 . (15)

Similar to the tensor Bk , the tensor C can be expressed as

C =
[
C1 . . . CK

]
, (16)

where, for j = 1, . . . ,K , C j can be given as

C j =

r
11
j . . . r1`j
...

. . .
...

rN1
j . . . rNLj

 . (17)

The tensor G can be written as

G =
[
G1 . . . GK

]
, (18)

where, for j = 1, . . . ,K , Gj is given as

Gj =

p
1 . . . pL
...

. . .
...

p1 . . . pL

 . (19)
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Finally, we make these definitions: φ , vec(8T ), an ,
vec(ATn ), bk , vec(BTk ), c , vec(CT ), and g , vec(GT ).

Using the defined vectors, the problem in (10) can be
expressed as in the following form:

max
φ

cTφ
εgTφ + PC

, (20a)

subject to aTn φ ≤ 1, ∀n ∈ N , (20b)
gTφ ≤ Pmax, (20c)
bTk φ ≥ r

min
k , ∀k ∈ K , (20d)

φ ∈ {0, 1}KNL . (20e)

To express this problem in a form amenable to SDR, we
transform the binary optimization variables to antipodal ones.
In particular, we introduce the vector θ = 2φ − 1, which
implies that θ ∈ {−1, 1}KNL , and

φ =
1
2
(θ + 1). (21)

Using (21), the formulation in (20) can be rewritten as:

max
θ

cT (θ + 1)
εgT (θ + 1)+ 2PC

, (22a)

subject to
1
2
aTn (θ + 1) ≤ 1, ∀n ∈ N , (22b)

1
2
gT (θ + 1) ≤ Pmax, (22c)

1
2
bTk (θ + 1) ≥ rmin

k , ∀k ∈ K , (22d)

θ ∈ {−1, 1}KNL . (22e)

To use the SDR-based technique, we consider a homogeneous
reformulation of the problem in (22), and the optimization
variables in (22) are constrained to be in the cone of sym-
metric positive semidefinite (PSD) matrices [19]. To do so,
we define the following vectors in RKNL+1, ĉ , [cT cT 1]T ,
ĝ , [εgT εgT 1 + 2PC ]T , ân , [aTn aTn 1]

T , n = 1, . . . ,N ,
b̂k , [bTk b

T
k 1]

T , k = 1, . . . ,K , 1̂ , [1T 1T 1]T , θ̂ , [θ 1]T

and f̂ , [0T 1]T . We also define the symmetric matrices
2 ∈ RKNL×KNL and � ∈ R(KNL+1)×(KNL+1) to be 2 , θθT

and� = θ̂ θ̂
T
, in particular,� =

[
2 θ
θT 1

]
. Finally, we define

the following (KNL + 1) × (KNL + 1) matrices H1 , f̂ 1̂T ,
H ĉ , f̂ ĉT , H ân , f̂ âTn , and H ĝ , f̂ ĝT , H b̂k

, f̂ b̂
T
k .

Using the defined matrices, it can be verified that the
problem in (10) is equivalent to the following optimization
problem:

max
�

Tr(H ĉ�)
Tr(H ĝ�)

, (23a)

subject to
1
2
Tr(H ân�) ≤ 1, ∀n ∈ N , (23b)

1
2
Tr(H ĝ�) ≤ εP

max
+ PC (23c)

1
2
Tr(H b̂k

�) ≥ rmin
k , ∀k ∈ K , (23d)

� � 0, (23e)
diag(�) = 1, (23f)
rank(�) = 1. (23g)

The formulation in (23) is non-convex due to the rank-1
constraint in (23g). To find a close-to-optimal solution, we
consider a relaxed version of (23) by dropping rank-1 con-
straint. Let z, Z and M be the optimization variables of
the relaxed problem corresponding to θ , 2 and � in the
original problem in (23), respectively. We then end up with
the following formulation

max
M

Tr(H ĉM)
Tr(H ĝM)

, (24a)

subject to (23b)− (23f).

Though the formulation in (24) is still non-convex in M , it
is quasi-convex due to its linear fractional objective struc-
ture. It is known that a quasi-convex problem can be opti-
mally solved using the bisection method. Hence, we solve a
sequence of convex feasibility problems, and these feasibility
problems are in the following form:

find M, (25a)

subject to Tr((η0H ĝ −H ĉ)M) ≤ 0, (25b)

(23b)− (23f).

For each instance of this problem, the value of η0 is fixed
and represents the energy efficiency in the network. The
optimal η0 must lie in [0, ηmax], where ηmax

= cT 1/PC .

A. GAUSSIAN RANDOMIZATION
In the previous section, the optimal value of η0 is obtained
using bisection search. Let z∗, Z∗ and M∗ be the optimal
solution of the convex problem in (25) corresponding the
optimal value of η0. Since the solution of the relaxed problem
is not rank-1 in general, we use the Gaussian randomiza-
tion approach to obtain a close-to-optimal solution for the
problem in (23). In the Gaussian randomization approach,
the vector z∗ generated by solving the relaxed program is
considered as the mean of a multivariate Gaussian KNL-
dimensional random vector, and Z∗ − z∗z∗T is considered as
the covariance matrix of this random vector. Specifically, a
set of J random vector samples is drawn from the Gaussian
distribution with mean z∗ and covariance Z∗ − z∗z∗T . We
denote the set byR = {νj}Jj=1, where ν

j
∼ N (z∗,Z∗−z∗z∗T ),

j = 1, . . . , J . Letting ν̂ = [νT 1]T , and ẑ∗ = [z∗T 1]T , it can
be seen that the vectors inR provide an approximate solution
to the following stochastic optimization problem:

max
E{ν̂ν̂T } = M∗,

E{ν̂} = ẑ∗

E
{
ν̂
TH ĉν̂

}
E
{
ν̂
TH ĝν̂

} , (26a)

subject to
1
2
E
{
ν̂
TH ân ν̂

}
≤ 1, ∀n ∈ N , (26b)

1
2
E
{
ν̂
TH ĝν̂

}
≤ εPmax

+ PC , (26c)

1
2
E
{
ν̂
TH b̂k

ν̂
}
≥ rmin

k , ∀k ∈ K, (26d)

E
{
ν̂
2
i
}
= 1, i = 1, . . . ,KNL. (26e)
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It is important to mention that the Schur complement of the
matrixM∗ is Z∗ − z∗z∗T , and it is PSD.
We use the vectors in R to obtain candidate binary solu-

tions {θ̃
j
}
J
j=1 for the problem in (22) by quantizing the entries

of each realization of {νj}Jj=1. Specifically,

θ̃
j
= sgn(νj), j = 1, . . . , J . (27)

Using (27) and (21), we obtain candidate binary solutions
of (20), φ̃

j
. The candidate that yields the largest objective and

satisfies the constraints in (20) is used for allocating the RBs
and the discrete power levels, i.e.,

φ∗ = argmax
Dj

φ̃
j
, Dj , {φ̃

j
: φ̃

j
satisfying (20b)–(20d)}.

(28)

The proposed close-to-optimal algorithm based on
SDR with randomization, viz., COS, is summarized in
Algorithm 1.

Algorithm 1 Proposed COS

Input: PC , ε, Pmax, rmin
k , J , κ , ηmin

= 0, and
ηmax
= cT x/PC

Output: φ∗

1 while ηmax
− ηmin

≥ κ do
2 η0 = 0.5 (ηmin

+ ηmax)
3 Solve (25) to findM .
4 if feasible then
5 ηmin

= ηmax

6 M∗ = M

7 else
8 ηmax

= ηmin

9 Find z∗, and Z∗ fromM∗.
10 for j = 1 : J do
11 νj ∼ N (z∗,Z∗ − z∗z∗T )

12 θ̃
j
= sgn(νj)

13 φ̃
j
= 0.5(θ̃

j
+ 1)

14 if (20b) – (20d) satisfied then

15 Record φ̃
j
.

16 φ∗ = argmaxDj φ̃
j

B. COMPUTATIONAL COMPLEXITY ANALYSIS
The joint design problem in (20) can be optimally solved
using exhaustive search with complexity O(2KNL), which
is computationally prohibitive. In contrast with exhaustive
search, the two-stage algorithm proposed herein, COS, has
a polynomial-time complexity, and hence, it is suitable for
solving large-scale RB and power allocation problems. More

specifically, the complexity of solving the relaxation of (25),
a PSD-constrained convex problem, is O

(
(KNL)3.5

)
.5

The number of iterations required for the convergence of
bisection method is log(ηmax/κ), where κ > 0, is the solution
accuracy of the bisection method. Lastly, for the Gaussian
randomization, the complexity of generating and evaluating
the objective function corresponding to the J random samples
is O

(
(KNL)2J

)
. Hence, the overall complexity of COS is

O
(
(KNL)3.5 log(ηmax/κ)+ (KNL)2J

)
.

V. SUBOPTIMAL RESOURCE ALLOCATION:
A HEURISTIC-BASED APPROACH
In the previous section, we described the proposed COS
that provides a lower computation complexity compared to
exhaustive search. However, to further reduce the computa-
tional complexity, we propose an iterative suboptimal heuris-
tic SOH that offers a trade-off between the computational
complexity and performance.

To reduce the computational complexity involved in solv-
ing the energy efficiency maximization problem, SOH per-
forms RBs and discrete power allocations, separately. For
discrete power allocation, SOH considers a uniform single
power level that is obtained with an offline search. The
rationale behind this consideration is that as the transmit
power of the BS increases power allocation across RBs tends
to become uniform. It is intuitive that when the BS has a
low transmit power, power allocation has a pivotal role and
increasing the number of power levels affect the performance
significantly, whereas it becomes less critical when the BS
has a high transmit power. In [21] and [22], it is shown
that uniform power allocation is sufficient to approach the
maximum transmission rate and maximum energy efficiency.
Based on our simulation results in Section VI, we verify that
a single power level can provide a desired level of energy effi-
ciency. For instance, in SectionVI, we provide an example for
obtaining a tuned power level that can be then used for allocat-
ing the RBs among the users instead of large sets of power lev-
els. Using this observation, when power allocation is assumed
to be fixed, the overall complexity of COS given in IV-B can
be reduced to O

(
(KN )3.5 log(ηmax/κ)+ (KN )2J

)
. However,

with the aim of further reducing computational complexity,
we use a heuristic approach in SOH to determine the RB
allocation between the users with QoS requirements. We first
assign each RB to the user with highest SNR on that RB until
meeting the QoS requirements of all users, as long as the BS
power budget is not violated. Afterwards, the remaining RBs
are allocated among the users in a greedymanner tomaximize
the energy efficiency. In other words, the RB having the
highest energy efficiency is assigned to corresponding user
to maximize energy efficiency.

5We note that this technique relies on constructing PSD matrices with a
number of entries that scales with the square of the number of variables.
The number of variables in a network with K users, N RBs, and L power
levels isKNL. Hence, as the network size enlarges, simulation of the network
becomes more challenging. Unless special-purpose computers are used, it
can be time-consuming
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The proposed suboptimal heuristic, SOH, is summarized
in Algorithm 2.

Algorithm 2 Proposed SOH

Input: PC , ε, p1, Pmax, 0n`k , rmin
k , K̄ = K, and N̄ = N

Output: φ∗

1 for n = 1 : |N̄ | do
2 if Pmax

≥ p1 and |K̄| ≥ 0 then
3 k∗ = argmaxk∈K̄ 0

n`
k

4 k∗← n
5 φn1k∗ = 1
6 Pmax

= Pmax
− p1

7 N̄ = N̄ \n
8 if rn1k∗ ≥ r

min
k∗ then

9 K̄ = K̄\k∗

10 for n = 1 : |N̄ | do
11 if Pmax

≥ p1 then
12 for k = 1 : |K̄| do
13 k ← n
14 φn1k = 1
15 Calculate η(k←n)

EE using (10a).

16 k∗ = argmaxk∈K̄ η
(k←n)
EE

17 k∗← n
18 φn1k∗ = 1
19 Pmax

= Pmax
− p1

A. COMPUTATIONAL COMPLEXITY ANALYSIS
The computational complexity of SOH can be analyzed as
follows:

• Step 1 requires a complexity ofO(N ) to evaluate the for
loop.

• Step 2 requires a complexity of O(K ) to calculate the
cardinality of the set of the unsatisfied users with QoS
requirements, K̄.

• Step 3 requires a complexity of O(K ) to find the user
with the highest SNR on the respective RB.

• Step 7 requires a complexity ofO(N ) to remove the used
RB from the set of the unused RBs, N̄ .

• Step 9 requires a complexity of O(K ) to remove the
satisfied user with QoS requirement from the set of the
unsatisfied users with QoS requirement.

• Step 10 requires a complexity of O(N − K ) to evaluate
the for loop for the remaining (N − K ) RBs at most.

• Step 12 requires a complexity of O(K ) to evaluate the
for loop.

• Step 16 requires a complexity of O(K ) to find
the user with the highest energy-efficiency on the
respective RB.

Finally, Steps 1 to 9 require a complexity of
O(KN (2K +N )), and Steps 10 to 19 require a complexity of

O(2(N − K )K ). Hence, the worst case computational com-
plexity of SOH is calculated asO(KN (2K+N )+2(N−K )K ).
As it can be seen that SOH has less complexity than COS.

VI. SIMULATION RESULTS AND DISCUSSIONS
In this section, we will present the simulation results to verify
the proposed algorithms, and provide discussions regarding
the obtained results.

A. SIMULATION MODELS AND PARAMETERS
We consider a single-cell network, in which the BS is
located in the center of the cell, and the location of users
are randomly generated and uniformly distributed over
500×500m2 square. For brevity, we assume the QoS require-
ments of all users are equal. We use the 3GPP propagation
model [16]. According to [16], the path loss is assumed to be
given by PL(d) = 128.1+37.6 log10(d) for the link between
the BS and the users, where d is the distance in kilometers.
The shadowing component is assumed to have a log-normal
distribution with a standard deviation of σs = 8 dB. The
bandwidth of each RB is assumed to be 180 kHz, and the
noise power spectral density is assumed to be -174 dBm/Hz.
In addition, the efficiency of the power amplifiers for the BS
is assumed to be 38% [23]. Furthermore, the set of power
levels used by the BS is assumed to consist of L equally
spaced points in the interval [Plower, Pupper], wherePlower and
Pupper are the lower and upper bounds of that set.

We consider Monte Carlo simulations to evaluate the
network performance. The reported simulation results are
averaged over 100 independent channel realizations. For each
channel realization, the solution to the problem of energy
efficiency maximization in Section IV is obtained using
the CVX [24] with the SDPT3 solver, and the number of
Gaussian samples used in the randomization stage is set to
be J = 104.

B. LOWER AND UPPER LIMITS FOR
THE SET OF POWER LEVELS
In Fig. 1, we consider a scenario, where the minimum rate
requirement for all users is zero, the BS static power con-
sumption is PC = 50 dBm, the number of users is set to be
K = 4, the number of RBs is set to be N = 8, and the number
of power levels is L = 2.

Fig. 1 investigates the performance of COS with the given
different sets of the two power levels. From this figure, it
can be seen that the choice of the set of the power levels
heavily influences the network performance, and a well-
chosen set of power levels can enhance the energy effi-
ciency of the system in a positive way. For instance, when
Pmax

= 45 dBm, using the set of P = {0.05Pmax, 0.5Pmax
}

rather than the set of P = {0, Pmax
} can improve the

energy efficiency of the system from 3.436 × 104 bits/Joule
to 2.104 × 105 bits/Joule. Another important observation is
that the sets ofP = {0, 0.5Pmax

},P = {0.5Pmax, Pmax
}, and

P = {0.75Pmax, Pmax
} show very close performances, since

they tend to employ 0.5Pmax for transmission. Moreover, the
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FIGURE 1. Performance of COS with different set of two power levels.

best performance for all values of the transmit power can
be achieved using the set of P = {0.05Pmax, 0.5Pmax

}.
Based on these observations, for the following simulations,
unless otherwise stated, the lower and upper bounds for the
set of power levels is assumed to be Plower = 0.05Pmax, and
Pupper = 0.5Pmax, respectively.

C. PERFORMANCE COMPARISON
WITH OPTIMAL SOLUTION
In Fig. 2, we consider a relatively small scenario, where the
minimum rate requirement for all users is zero, the BS static
power consumption is PC = 50 dBm, the number of users
is K = 3, the number of RBs is N = 4, and the number of
power levels is L = 2, viz., P = {0.05Pmax, 0.5Pmax

}.

FIGURE 2. Performance of COS in comparison with exhaustive search.

Fig. 2 compares the performance of COS with the optimal
energy efficiency solution obtained by exhaustive search in
order to validate COS. It is worth to mention that the baseline
exhaustive search method looks at every possible triplets of

(k, n, `), k ∈ K, n ∈ N , and ` ∈ P , in order to find which
one yields the maximum energy efficiency. As it can be seen
from Fig. 2, the algorithm proposed herein attains the optimal
solutions for the entire range of Pmax.

D. EFFECT OF NUMBER OF POWER LEVELS
In Fig. 3, we consider a scenario with the different number of
power levels. In this scenario, the minimum rate requirement
for all users is zero, the BS static power consumption is
PC = 50 dBm, the number of users is set to be K = 4 and
the number of RBs is set to be N = 8.

FIGURE 3. Effect of the number of power levels on the energy efficiency.

Fig. 3 illustrates the effect of the number of discrete power
levels on the energy efficiency. Here, we evaluate the per-
formance of COS through numerical comparisons with the
energy efficiency maximization scheme proposed in [15]
that considers a joint design of the RBs and the continuous
power allocation. From this figure, it can be observed that
as the number of power levels available at the BS increases,
the performance of COS is enhanced, and the gap between
the discrete power allocation and the continuous one becomes
smaller. It is worth to mention that an increase in the number
of power levels helps to improve the performance, especially
when the number of power levels is low. For instance, when
the number of power level is increased from two to four,
the gain in the energy efficiency is 4% at Pmax

= 38 dBm,
whereas when the number of power level is increased from
four to eight, the gain in the energy efficiency is only 1.8%
at Pmax

= 38 dBm. Hence, in the subsequent figure, we
consider four number of power levels at the BS. Another
interesting observation is that the algorithm with a carefully
chosen single power level reveals a quite good performance
even at low Pmax values, and its performance improves as
Pmax increases. Using this observation, we propose SOH that
has not only a good performance, but also, a lower complex-
ity. We will show the performance of SOH in comparison to
COS below.
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FIGURE 4. Effect of circuitry power consumption on the energy efficiency.

E. EFFECT OF CIRCUITRY POWER CONSUMPTION
In Fig. 4, we consider a scenario, where the minimum rate
requirement for all users is zero, the number of users is
K = 8, the number of RBs is N = 12, and the number of
power levels is L = 4.

Fig. 4 investigates the impact of the BS static power con-
sumption on the energy efficiency. From this figure it can be
seen that the energy efficiency decreases with the increase
of the BS circuitry power consumption, because transmit-
ting data requires more total power. For instance, when
Pmax

= 50 dBm, increasing the circuitry power consumption
from 40 dBm to 55 dBm decreases the energy efficiency from
1.175 × 106 bits/Joule to 1.137 × 105 bits/Joule for COS.
Another important observation is that as the static power
consumption increases, the network performance becomes
less sensitive to a change in the transmit power, especially
at the medium and high transmit power values.

F. PERFORMANCE COMPARISON OF
PROPOSED ALGORITHMS
In Fig. 5, we consider a scenario, where the number of users
is K = 4, the number of RBs is N = 8, and the number of
power levels is L = 4.
Fig. 5 investigates the effect of increasing the transmit

power on the performance of the proposed algorithms, viz.,
COS and SOH. Particularly, in Fig. 5(a), we study the effect
of increasing the transmit power at different circuitry power
consumptions without the effect being obscured by poten-
tially different minimum rate requirements per users, while in
Fig. 5(b), we study the effect of increasing the transmit power
at different minimum rate requirements per users without the
effect being obscured by potentially different circuitry power
consumptions.

In Fig. 5(a), the energy efficiency is plotted as a function
of the available power budget at the BS for different static
power consumption values. In this figure, we assume that
the minimum rate requirement is the same for all users, i.e.,
rmin
k = 1 Mbps, ∀k ∈ K. One can see that for high power
budget values both COS and SOH provide almost identical
results, for all static power consumption values. On the other
hand, for low power budget values COS outperforms SOH.
For instance, when Pmax

= 45 dBm and PC = 50 dBm,
the gain achieved using COS over SOH is only 6%. Such
trend suggests that the uniform power allocation assumed by
SOH is a good approximation, especially for high BS transmit
power.

In Fig. 5(b), the energy efficiency is plotted as a func-
tion of the available power budget at PC = 50 dBm
and for different minimum rate requirements per users. As
it can be seen, the performance of the SOH scheme is
close to that of the COS scheme for high power budget
(although users have different minimum rate requirements),
while for low power budget the energy efficiency of the COS
scheme is higher than its counterpart of the SOH scheme.

FIGURE 5. Performance comparison of COS and SOH. (a) Comparison of the proposed algorithms, considering different circuitry power
consumption values. (b) Comparison of the proposed algorithms, considering different minimum rate requirements for the users.
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Fig. 5(b) with Fig. 5(a) suggest that the uniform power
allocation assumption is directly related to the BS power bud-
get. Hence, regardless of both the circuitry power consump-
tion and the minimum rate requirements. the gap between
COS and SOH becomes smaller as the BS transmit power
increases.

VII. CONCLUSION
This paper presented a new optimization framework that
efficiently handle practical design issues, i.e., discrete power
levels, in resource allocation problems in OFDMA networks.
The proposed framework maximized the energy efficiency of
the downlink transmission of cellular OFDMA networks sub-
ject to RB usage, power budget and per-user QoS constraints.
In particular, we modelled both the discrete power levels and
discrete RBs by a single binary variable. Then, we used SDR
technique with Gaussian randomization to efficiently solve
the combinatorial non-convex problem, with polynomial time
complexity. We noticed from the solution of the close-to-
optimal SDR-based (COS) algorithm that a small number
of discrete power levels is sufficient to approach the maxi-
mum energy efficiency performance of the continuous power
allocation solution. Based on this observation, we proposed
a low-complexity iterative suboptimal heuristic (SOH) algo-
rithm that relies on a single power level. Simulation results
showed that the energy efficiency of the COS algorithm
approaches that of the exhaustive search. Additionally, the
simulation results revealed that the SOH strikes a balance
between the performance and complexity.
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