
 i

Fast Optimization for Scalable Application Deployments in

Large Service Centers

By

Jim (Zhanwen) Li

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute of Electrical Engineering

Faculty of Engineering

Department of Systems and Computer Engineering

Carleton University

Ottawa, Ontario, Canada, K1S 5B6

April 29, 2011

Copyright ©2011 – Jim (Zhanwen) Li

 ii

The undersigned recommend to

the Faculty of Graduate and Postdoctoral Affairs

acceptance of this thesis

Fast Optimization for Scalable Application Deployments in Large

Service Centers

Submitted by

Jim (Zhanwen) Li. B.Eng.,M.Eng.

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Electrical and Computer Engineering

Chair, Howard Schwartz, Department of Systems and Computer Engineering

Thesis Supervisor, Murray Woodside

Thesis Co-Supervisor, John Chinneck

External Examiner, Daniel A. Menasce, George Mason University

 iii

Abstract

Large complex service centers such as clouds must provide many services to many

users with different service contracts. To deploy applications with many tasks across a

cloud infrastructure, many goals must be satisfied simultaneously, which poses a large

and complex optimization problem. The goals include quality-of-service targets, power

minimization, respecting limited memory and software licences, and ability to track

changing demands.

This thesis creates new approaches to task assignment in service centers that are QoS

driven and fast, scalable and extensible to new objectives and classes of restrictions. The

new approaches provide sound configurations across a large number of highly coupled

decisions. These approaches can effectively handle online resource management in

various difficult dynamic environments, increasing the stability of management.

The new approaches include (i) the combination of linear optimization with an

analytical performance model to solve a complex nonlinear optimization problem via a

series of LP solutions, (ii) a mixed-integer linear programming (MIP) model to address

many interacting integer constraints, (iii) a new heuristic to approximately solve large-

scale MIPs with greater efficiency, and (iv) strategies to increase robustness in the face of

dynamic changes in demand.

 iv

ACKNOWLEDGMENTS

First and foremost, my greatest appreciation goes to my supervisors, Prof. Murray

Woodside and Prof John Chinneck, for lending their extensive experiences and amazing

broad vision as well as great deal of energy to this thesis work.

I owe a great deal of thanks to Prof Greg Franks, the principle designer of LQN. He

offered many supports to improve the performance of LQNs for this research. I am also

indebted to Prof Marin Litoiu for his valuable comments on the research projects. Other

thanks are due to Prof Daniel Menasce for his thorough review on the thesis.

Many thanks to the friends from IBM and labs in school, including Tao Zhen , Yan

Rui, Nan Jian, Michael Xiao, Thomas Reidemeister, Xiuping Wu, Pengfei Wu, Jacky Liu

and Jin Xu et al, providing countless hours of discussion. I have had the pleasure of

working with these talented people. Many thanks to my friends, including Jason Zhu, Jie

Xiao, et al, who provided a constant source of entertainment and a nice accommodation

in Ottawa.

Irene (Aiying) Chen, my beloved, helped me in more ways than I can possibly

recount here. I am eternally grateful for her love and support that kept me going through

the many ups and downs. I greatly appreciate my parents for their enduring patience and

kind understanding throughout the course of my studies.

Moreover, I would like to thank Dr. Shiping Chen, my Master`s supervisor in CSIRO,

for introducing me to the research on software engineering.

 v

The financial support for the research was provided by IBM Toronto, through the

Center for Advanced Studied.

 vi

Table of Contents

Abstract iii

Table of Contents vi

List of Tables x

List of Figures xii

Notation xiv

Chapter 1 Introduction 1

1.1 Motivation... 1

1.2 Control Approaches .. 3

1.3 Contributions... 4

1.4 Thesis Organization .. 5

Chapter 2 Background 7

2.1 Large-Scale Service Systems.. 7

2.1.1 Service System Metamodel.. 7

2.1.2 Cloud Computing... 8

2.2 QoS in Service Systems .. 9

2.2.1 Performance Metrics and Relationships .. 10

2.3 Evaluation by Performance Model ... 11

2.3.1 Markov Modelling ... 11

2.3.2 Petri Nets.. 12

2.3.3 Queue-Based Performance Model ... 12

2.3.4 Layered Queuing Networks ... 14

2.4 Monitoring-Based Autonomic Computing ... 19

 vii

2.4.1 MAPE-K Architecture ... 19

2.4.2 Dynamic Management Approach .. 20

2.5 Optimization Approaches ... 23

2.5.1 Bin Packing.. 23

2.5.2 Hill Climbing ... 24

2.5.3 Reinforcement Learning .. 25

2.5.4 Flow Network Based Optimization ... 26

2.5.5 Mixed Integer Programming.. 26

Chapter 3 State of the Art in Optimal Deployment 28

3.1 Related Work .. 28

3.2 Weaknesses of Existing Work .. 31

Chapter 4 Problem Statement and Solution Overview 36

4.1 Problem Statement .. 36

4.2 Overview of the Solution .. 38

Chapter 5 Optimization Algorithms to Address Static Deployment (without Integer

Constraints) 41

5.1 Optimization Architecture .. 41

5.1.1 Deployment Management in a Cloud .. 43

5.2 Overview of the Optimization Approach.. 44

5.3 Step 1: Network Flow Model for the Service System .. 47

5.4 Step 2: Solve the Optimization Model.. 54

5.5 Step 3 and Step 4: Insert Deployments and Solve the LQN................................... 55

5.6 Step 5: Test for Convergence.. 55

5.7 Step 6: Linearized End-point Step (LEndStep) .. 57

5.7.1 Sensitivity Analysis of the Performance Model .. 57

5.7.2 LP Model to Seek Minor Adjustment.. 58

5.8 Case Study: Meet Response Time Goals at Low Execution Cost 60

Chapter 6 Discrete Optimization Algorithms for Static Deployment 65

 viii

6.1 Optimization Model with Integer Constraints .. 65

6.1.1 Mixed Integer Programming (MIP) Model.. 65

6.2 Solving the MIP .. 70

6.2.1 Algorithm: Heuristic Packing (HP) ... 71

6.2.2 Algorithm: Heuristic MIP (HMIP) .. 74

6.2.3 Evaluation of HP and HMIP.. 75

6.3 Revenue Model Supported by the Optimization... 81

6.4 Case Study: Deployment with Multiple Goals with Contentions........................... 82

6.4.1 Comparison with Other Approaches.. 85

Chapter 7 Management in Dynamic Environments 87

7.1 Re-Optimization with Persistence... 89

7.1.1 Constraints on the Flow Rates ... 89

7.1.2 Reward/Penalize the Allocations ... 90

7.1.3 Constrain New Replicas for Some Specific Tasks .. 91

7.1.4 Limit New Replicas to a Small Number .. 93

7.1.5 Reduce the Number of New Hosts... 94

7.2 Three Re-Optimization Strategies in Dynamic Environments 94

7.3 Experiments: Controlling the Scale of Changes ... 96

7.3.1 Case Study on Controlling the Costs of New Replicas for Specific Tasks 97

7.3.2 Case Study of Limiting New Replicas to a Small Value 99

7.4 Summary of Optimization with Persistence ... 101

Chapter 8 Case Study 102

8.1 Experimental Environment ... 102

8.2 Evaluate the Scalability of the Three Algorithms... 103

8.3 Evaluation of the Stability of Management in Dynamic Environments 110

8.3.1 Dynamic Case I: Varying Workloads .. 112

8.3.2 Dynamic Case II: Host Failures and Repairs... 119

8.3.3 Case III: Management for Applications Addition/Removal.......................... 125

8.3.4 Summary of the Effectiveness of the Algorithms in Dynamic Environments132

 ix

Chapter 9 Conclusions 134

9.1 Achievements.. 134

9.2 Limitations and Assumptions ... 136

9.3 Future Work .. 137

Reference 139

 x

List of Tables

Table 3.1 Overview of the Existing Solutions on Deployment Management 35

Table 5.1 Corresponding Entities in Different Views .. 49

Table 5.2. Host Resource Attributes in the Example.. 62

Table 5.3 Response Times of Classes in Each Iteration ... 63

Table 5.4 Host Multiplicity at each Iteration, and Final Utilizations 63

Table 5.5 Execution Cost and Number of Iterations Corresponding to Relaxation of the

Goals ... 64

Table 6.1 Variables and Parameters used in the MIP ... 67

Table 6.2 Variables used in HP and HMIP... 71

Table 6.3 CPLEX Configurations... 75

Table 6.4 Host Information... 76

Table 6.5 Pure MIP, Heuristic and HMIP Comparison (Without Contentions) 77

Table 6.6 Response Time and the Associated Cost in Each Iteration 84

Table 6.7 the Use of License of Each Task (HMIP)... 84

Table 6.8 Comparison of the HMIP and Simple Packing... 86

Table 7.1 Running Applications in the Cloud Infrastructure.. 97

Table 7.2 Re-Optimization with Limitations on the New Replicas per Task.................. 98

Table 7.3 Re-Optimization with Limitations on the Percentage of Changes 100

Table 8.1 Evaluation of Pure MIP, HP and HMIP with Contention............................... 105

Table 8.2 Average Response Time per Step (Varying Workloads)................................ 113

Table 8.3 Average Cost per Step (Varying Workloads) ... 114

Table 8.4 Average Active Hosts per Step (Varying Workloads).................................... 115

Table 8.5 Average Percentage of New Hosts per Step (Varying Workloads)................ 116

Table 8.6 Average Number of Replicas per Step (Varying Workloads) 117

Table 8.7 Average Percentage of New Replicas per Step (Varying Workloads) 118

 xi

Table 8.8 Average Costs per Step (Host Failures and Repairs)...................................... 121

Table 8.9 Average Number of Replicas per Step (Host Failures and Repairs) 122

Table 8.10 Average Percentage of New Replicas per Step (Host Failures and Repairs) 123

Table 8.11 Average Number of Hosts per Step (Host Failures and Repairs) 124

Table 8.12 Average Percentage of New Hosts per Step (Host Failures and Repairs) 125

Table 8.13 Average Costs per Step (Application Addition/removal)............................. 126

Table 8.14 Average Number of Active Hosts per Step (Application Addition/removal)

... 128

Table 8.15 Average Percentage of New Hosts per Step (Application Addition/removal)

... 128

Table 8.16 Average Number of Replicas per Step (Application Addition/removal) 130

Table 8.17 Average Percentage of New Replicas per Step (Application Addition/removal)

... 131

 xii

List of Figures

Figure 1.1 Application Deployment in a Cloud.. 2

Figure 2.1 Service System Metamodel ... 8

Figure 2.2 A Lab-Scale System with the Trade 6 Benchmark ... 16

Figure 2.3 An Example of a Layered Queuing Network Model of a Service System...... 18

Figure 2.4 MAPE-K Architecture, from [44] ... 19

Figure 2.5 Feedback control for QoS and optimization, from [86] 20

Figure 5.1 Sketch of model-based optimization architecture ... 42

Figure 5.2 Application Processes in a Cloud.. 44

Figure 5.3 Network Flow Model .. 48

Figure 5.4 An example of a web application .. 52

Figure 5.5 LQN Model of a Service Center.. 61

Figure 5.6 Fragment of Network Flow Model.. 62

Figure 5.7 Near Optimal Deployment for the Service Center in Figure 5.5..................... 64

Figure 6.1 Linear Approximation of the Power Consumption against the Utilization of

CPU... 66

Figure 6.2 the LQN Model of an Application to be Deployed with Multiple Goals........ 83

Figure 6.3 the Use of CPU and Memory in Hosts (HMIP) .. 85

Figure 7.1 Deployment Scenarios... 88

Figure 7.2 the number of new replicas of each task created in re-optimization (constraint

on new replicas per task)... 99

Figure 7.3 the number of new replicas of each task created in re-optimization (Ptg

Control) ... 101

Figure 8.1 Response Time of the Application with Varying Workloads 113

Figure 8.2 Total Energy and License Cost Subject to Varying Workloads.................... 114

Figure 8.3 Total Number of Hosts subject to Varying Workloads 115

 xiii

Figure 8.4 the Percentage of New Hosts in Use subject to Varying Workloads 116

Figure 8.5 the Total Number of Replicas in Use subject to Varying Workloads 117

Figure 8.6 the Percentage of New Replicas subject to Varying Workloads................... 118

Figure 8.7 the Variation of the Size of the Host Pool in Host Failures and Repairs

Environments .. 119

Figure 8.8 the Total Energy and License Cost Required by Each Approaches subject to

Host Failures and Repairs ... 120

Figure 8.9 the Total Number of Replicas in the Host Failures and Repairs Environment

... 122

Figure 8.10 the Percentage of New Replicas in the Host Failures and Repairs

Environments .. 123

Figure 8.11 Active Hosts in the Host Failures and Repairs Environment 124

Figure 8.12 Active Hosts in the Host Failures and Repairs Environment 124

Figure 8.13 the Total Energy and License Cost subject to Application Addition/removal

... 126

Figure 8.14 the Total Number of Hosts in Use subject to Application Addition/removal

... 128

Figure 8.15 the Percentage of New Hosts subject to Application Addition/removal..... 128

Figure 8.16 the Total Number of Replicas subject to App Addition/removal................ 130

Figure 8.17 the Percentage of New Replicas subject to the App Addition/removal 131

 xiv

Notation

acronym

SLA Service Level Aggreement
MIP Mixed-Integer Linear Programming
LP Linear Programming
HP Heuristic Packing
HMIP Heuristic MIP

QoS Quality of Service
NFM Network Flow Model
LQN Layered Queuing Network
Arc arc used in the NFM
Arcsrc-dest. the arc can send flows from source node src to destination node dest
larc the lower flow bound of the arc.
uarc

 the upper flow bound of the arc.
Carc the Cost per unit of the flow using arc.
parc the reward/penalty on the arc.
αht variable, the operation demand rate from host h assigned to task t

β ts variable, the operation demand rate from task t assigned to service s

γ sc variable, the operation demand rate in service s assigned to user class c
User Class c
fc request rate of UserClass c, requests/sec
Sc the set of services used by class c

Ycs

meanRequests by UserClass c to Service s, during one response to a user
request. This includes the effect of indirect calls to other services at rate
meanCalls

Zc
the average time the user in class c spends between receiving one
response and making the next request (sometimes called a think time)

Nc Population of users in class c, called a closed workload situation
RTc mean response time of class c

 xv

RTc,SLA
target response time of class c written in the service level agreement
(SLA)

fc,SLA
the minimum required value of fc. written in the service level agreement
(SLA)

Host h (a host is a processor or other device)

Ωh

the capacity limit of host h, given as a processing rate relative to a
“standard” host used to calibrate execution demands of services. The
saturation Capacity of host h is given in the same units, and the utilization
to provide a margin

Mh Memory Capacity of host h, memory available for application tasks

Ω+
h

 remaining execution demand capacity of host h
Ω*

h
 The used capacity of host h, Ω*

h = Ωh - Ω+
h

M+
h remaining memory space of host h

M*
h The used memory space of host h, M*

h = Mh - M+
h

ϕh expected upper utilization of host h. ϕ h = Ωh/saturationCapacity of h

θh
expected lower utilization bound of host h .
assigned demand /saturation capacity≥ θ h

Ch
Execution cost of host h, a cost factor for a unit of execution on this host.
In a homogeneous cloud these are all equal.

Cf h
 Fixed Cost of host h.

Cht
 The cost of the host h shared by the task t

Sh The selection of host h, binary
Aht Binary variable, to indicate if the task t is allocated on the host h
Rh Start-up cost of the host h
Service s (a service is an operation carried out by a task (process))

ds
mean hostDemand of Service s, per invocation, in CPU-sec. ds can be
obtained by measurement on the reference processor type

ds,SLA
the processor demands for service s (regardless of the impacts due to
contentions) ,ds,SLA = Σc fUser,c,SLA (Ycs ds)

Task t (a Task has one or more Services)

dt,SLA

the sum of the processor demands for task t
dt,SLA = Σc fUser,c,SLA Σs ∈ SUser,c ∩STask,t

 (Ycs ds)

dht the processing demands of host h are used by task t.

mt
Memory Requirement of task t, in order to execute (assumed the same for
all nodes in this research)

Lt
 maxLicenses available for task t (these are the concurrent licenses)

 xvi

d+
t remaining execution demand of task t

L+
t Remaining available licenses for use

L*
t
 Total number of license in use, L*

t
 = Σh Aht

Lt' Extra number of licesne in use, integer

St the set of services provided by task t
CLt pay-per-use cost of every extra license for task t, beyond Lt
Parameters used in LQN
De processing demand of the entry e
Parameters used in optimization framework

ei
c

at iteration i, let the throughput of user class c be f i
c,LQN, and define the

shortfall in throughput to be e ic: e ic = fc,SLA − f ic,LQN

ei
sc

at iteration i, define the shortfall in service demands to be e i
sc: e i

sc =Σc ds
e ic

δ is
at iteration i , for service s. Over all users, the flow adjustment to service s
is δ is = Σc e isc = Σc ds e ic.

Δi
s

The total surrogate flows (virtual demand) of serivce s at iteration i , Δi
s =

Σi-1
j=1 δ js

δ it
at iteration i , over all users, the flow adjustment to task t is

δ it = Σs ∈ S(t)δ is, S(t) are the services at task t.

Δi
t

The total surrogate flows (virtual demand) of task t at iteration i ,

Σs ∈ S(t)Δ
i
s , S(t) are the services at task t.

CHP The total energy and license cost retuned by the heuristic packing
BigC A very large constant
Parameters used in Sensitivity with LP

Ε an entry in the application template, instantiated in task replicas as replica
entries denoted as e

φ A vector to store the throughputs of entries
δφ A vector to store the the change of throughputs

φ A vector to store the baseline throughputs returend from the iteration loop

J
Senstivity matrix, showing the change on outputs due to the change of
parameters

δy
a vector, each element is a varaible to represent the change of the request
rates

y A vector of the baseline of the request rates

 xvii

σh
A fraction to control the size of the remaining capacity that can be used.
σh ≤ 1.

Perfi The value of the ith performacne

Mparj The performacne model parameter j

Parameters used in Sensitivity with LP
C_Rt Cost of each new replica for task t
S_Rt The number of replicas above the limit of task t
ptgT percentage of running tasks that could be migrated
Slack_T the extra number of migrations

1

Chapter 1 Introduction

1.1 Motivation

New enterprise service centers need to deliver efficient, flexible and scalable services

that respond rapidly to shifting business requirements. The ideal service infrastructure

can help businesses make sound decisions in real time and can create opportunities for

businesses to respond instantaneously to evolving demands. These new enterprise service

centers will give the advantage of flexible deployment as needs change, hide

management details from the user and the service provider, and require payment only for

resources used [43] [40].

In a new enterprise service center, there are many applications comprised of many

interacting tasks. Each task has one or several replicas deployed in the service center or

the Cloud infrastructure, which consists of many heterogeneous machines, as shown in

Figure 1.1.

 2

Figure 1.1 Application Deployment in a Cloud

A deployment method must scale up to thousands of services running on thousands of

hosts, and must be cheap enough to re-run frequently as loads and requirements change.

An integrated management viewpoint of deployment should consider numerous

constraints, objectives and relationships between many interacting elements with higher-

order nonlinear terms, which include the performance and quality of service (QoS) goals

of each application, resource use (CPU cycles and memory space) and available capacity,

license availability, software and hardware queuing delays, economic and latency issues,

robustness in dynamic conditions, number of machines in use and energy consumption

etc. Moreover, the ideal management system must be able to account for numerous

constraints in a virtual environment and keep the models and decisions up to date in

response to the changing workloads and computing resources, so as to minimize the risks

of transitions and ensure system performance during certain critical periods.

 3

Problem Statement: The goal of this research is to develop an efficient heuristic to

optimize deployment problems for these large service centers. The new approach must be

able to:

1. Satisfy many simultaneous goals

2. Handle may interacting constraints, such as minimum contracted quality of

service, many resource and economic constraints etc.

3. Scale well to support many classes of users, many interacting tasks and many

heterogeneous hosts on the Cloud infrastructure

4. Provide sound reconfiguration in response to change of loads and requirements

5. Extend to other objectives and constraints.

1.2 Control Approaches

Analytical performance models and measurement based reconfigurations are two

ways to deliver the required performance, such as QoS, for service systems [62].

Performance models give a way to estimate the value of performance metrics, which are

often used for capacity planning purposes. For example, they can help find bottlenecks

[29] or compare competing alternatives [57]. By including tracking methods to update

performance models at runtime, an analytical model can be extended for use in dynamic

management [70][71]. Monitoring-based reconfigurations are dynamic control

approaches for real-time management in response to the changing workloads and

environment. In general a dynamic controller uses monitors to collect system information

and then applies control policies to adjust the system configurations to achieve the

desired outputs [36] [37]. Control approaches capable of supporting performance

management in general can be classified into a few categories, as shown below:

 4

1. Threshold Control: As some important performance value reaches a certain

threshold, controllers execute operations according to the policies [18][95][104].

2. Control Theories: Based on a system control model, controllers attempt to

achieve the desired effect on the outputs by manipulating the inputs to the system.

For example, in [1][2], the system adjusts the acceptance rate to ensure multi-

class QoS for web servers; in [25][26][27][28][35][37], control theory is used to

manage the performance of various web servers and databases by regulating the

thread pool size or workload distributions. In [59][102], control theory is used to

control large-scale event-driven service systems.

3. Optimizations: An optimizer looks for the best (or near-optimal) solution among a

set of available alternatives in an optimization domain. Optimization includes a

variety of approaches such as heuristic packing [109][88][16][13][21], hill-

climbing [99][113], machine learning [80][97], genetic algorithms [67][79],

nonlinear optimization [24], mixed integer programming [15] [66] [98] etc.

With the emergence of new service systems, new requirements bring new challenges

to existing solution methods. Rapid optimization of large-scale application deployments

is one of the new control properties required by the evolution of service systems [1][43].

1.3 Contributions

This thesis develops an effective optimization approach that is able to rapidly solve

large-scale deployment problems for service centers. The main contributions include:

1. A heuristic approach that combines linear programming (or mixed-integer

programming) and nonlinear performance analytical model to optimize

nonlinear deployment problems. The approach is fast, scalable and extensible

 5

to new objectives and can satisfy a diversity of simultaneous goals, which

may be nonlinearly coupled.

2. An algorithm that improves the scalability of the mixed-integer programming

(MIPs) for task assignment in service centers. In comparison with a pure

mixed-integer program, the new algorithm can handle larger number of

configuration options and obtain a good quality solution with much greater

efficiency.

3. The application of optimization with persistence for dynamic task assignment.

The new approach accounts for the risks and costs associated with changes

and helps high-quality solutions to persist, and performs very well in a variety

of dynamic environments, including varying workloads, the addition and

removal of applications, and the failure and repair of host machines. The

approach balances the risks of impacting running tasks against the increase of

the share of resources subject to various requirements.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the background of

performance management for service systems, including cloud computing, MAPE,

performance models and various optimization approaches. Chapter 3 reviews related

works on deployment optimization. Chapter 4 provides the problem statement and gives

an overview of the solution. Chapter 5 proposes an optimization algorithm to address

nonlinear contentions with a heuristic loop. Chapter 6 presents a MIP model to consider

integer constraints and new algorithms to address large scale MIPs with greater

efficiency. Chapter 7 proposes several approaches to provide optimization with

 6

persistence for advanced deployment management in response to various dynamic

changes. Chapter 8 evaluates the effectiveness and computational cost of the algorithms.

 7

Chapter 2 Background

2.1 Large-Scale Service Systems

Large complex service systems, such as enterprise data centers [43], need to offer

many services to many enterprise users with separate contracts for quality of service.

Resource virtualization is a core technology to support resource sharing and

consolidation, system management and environment isolations, so that computing

environments can more quickly and reliably be dynamically created, expanded, shrunk or

moved in response to the requests. Virtualization enhances flexibility and agility. [34]

2.1.1 Service System Metamodel

We view a service system as comprising UserClasses, Services, ServerTasks,

Resources and Hosts, related as sketched in [107] and illustrated through a UML class

diagram in Figure 2.1. A UserClass is a group of users which requests services from

outside the system, and these services request other services inside or outside the system

(exploiting the concepts of Service-Oriented Architecture), forming a web of inter-

service traffic. Services are implemented by Applications (ServerTasks), which run as

system tasks or thread pools, which may have limited capacity. UserClasses have

throughput and delay requirements expressed by their SLAs. Resources, such as

ServerTasks and Hosts, make up the system and are shared among many running

Applications. Hosts have constraints due to limited memory or processing capacity.

 8

ServerTasks can have license constraints. Thus, an Application can run its ServerTasks

within commercial Data Base Management Systems or in Application Servers and there

are upper limits on how many instances of those can be deployed.

« Host»
-saturationCapacity
-executionCost
-memoryCapacity

« UserClass»

-requestRate
-classSize

« Service»

- hostDemand
*

* 1

* requester

1

1 service

« reqDirect»
{meanRequests}

« provides»

« executes»

« ServerTask»
-memoryRequirement
-maxLicenses

« Resource»

«Application»

*

*
callee

1
caller

« reqIndirect»
 {meanCalls}

«Cloud»

**« runs»

Figure 2.1 Service System Metamodel

2.1.2 Cloud Computing

Cloud computing is a term used to describe a style of computing for next generation

service centers where massively scalable service-oriented IT-related capabilities are

dynamically delivered to multiple external customers. A cloud may host a variety of

services, that include Web applications (i.e. Software as a Service (SAAS) [84]), legacy

client-server applications, platforms (i.e. Platform as a Service (PAAS) [39]),

infrastructure (i.e. Infrastructure as a Service (IAAS) [40]), and information services

[41][43].

 9

A strength of cloud computing is the infrastructure management. Each process (task)

has its own virtual machine. Each application in a cloud sees a virtual environment

dedicated to itself, such as virtual machines for its deployable processes and virtual disks

for its storage. The cloud management allocates real resources to the virtual resources by,

for instance, giving a share of a real processor or memory to a virtual machine, or by

deploying several virtual machines with replicas of application processes. The application

offers services, and also uses services offered by other applications. Cloud computing

provides high quality management as a service, allowing users to reduce time and skill

requirements on lower-value activities and focus on strategic activities with greater

impact on the business [38] [41][40].

Clouds can be classified as public and private. A public cloud is a collection of

computers providing services at retail, where users pay for services they use (processing

cycles, storage or higher level services), and do not worry about the mechanisms for

providing these services. A private cloud, say within a company, may expose more

mechanisms and provide more control to its users. Cloud management is responsible for

all resources used by all the applications deployed in the cloud, and the opportunity for

global resource optimization is a major driver for implementation of clouds [43].

2.2 QoS in Service Systems

A service system needs to deliver ensured quality of service, including service

availability, performance, accessibility, integrity, reliability, regulatory and security [45],

and should be able to give scalable services to increasing volumes of requests with

satisfied latency and throughputs.

 10

2.2.1 Performance Metrics and Relationships

Quality of Service is often stated in terms of response delay or throughput [83].

Response time constraints can be rewritten as equivalent throughput constraints, based on

finite user populations, as described below.

A finite population (closed workload) is preferable for the performance calculations

because the results are never unstable due to overloaded hosts, which can happen when

throughput is fixed (open workload). Suppose UserClass c has a fixed population of Nc

users (called a closed workload situation), and has throughput fc and mean response time

RTc, then Little’s identity [63] states that

fc = Nc / (RTc + Zc) (1)

where Zc is the average time the user spends between receiving one response and making

the next request (sometimes called a “think time”). If Nc is specified in the SLA, and a

target response time RTc,SLA is given, then the target throughput is given by:

fc,SLA = Nc /(RTc,SLA+ Zc) (2)

When Zc is unknown the worst-case value of 0 can be taken. If both fc,SLA and RTc,SLA

are specified, a throughput is computed from the latter using Eq. (2) and the larger

throughput is used.

If on the other hand the throughput is assumed fixed (called an open workload

situation) and the SLA specifies response time, then appropriate values of Nc and Zc are

chosen to approximate the open situation by a closed one, with Nc and Zc chosen to give

the target fc,SLA according (2).

 11

Percentile response time is another important performance metric, which indicates the

percentage of requests that can achieve the response with a specified latency. It can be

estimated by queuing model analysis with the distribution of response time [32].

2.3 Evaluation by Performance Model

 Analytical performance models give efficient evaluation of the performance of a

system, and they are widely used for capacity planning [65] and configuration

evaluations [12] [10][70][71][95]. Markov models, Petri-Nets and Queuing models are

some of the most typical performance models for software systems.

2.3.1 Markov Modelling

A Markov chain is a stochastic process that consists of a number of states and some

known rates of moving from one state to another. In a Markov chain, future states depend

only on the present state, and are independent of past states. In other words, the

description of the present state fully captures all the information that could influence the

future evolution of the process.

However, Markov models have three major problems which limit their use. First,

some Markov models are incapable of being scaled. The state space may explode for all

but the smallest of models, though Markov models that have a regular structure (such as a

birth-death Markov chain) may be handled by a closed form solution. Second, large

differences in transition rates may cause numerical instability. Finally, Markov models

cannot model systems correctly when a system has purely deterministic services times or

service time distributions without a rational Laplace transform. Of the three, the state

explosion problem is the one that most often limits the use of this technique [50].

 12

2.3.2 Petri Nets

A Petri Net is a graphical and mathematical modeling approach used to describe

information processing systems that are characterized as concurrent, asynchronous,

distributed, parallel, nondeterministic and/or stochastic [78]. A Petri Net consists of

places, transitions, and directed arcs. Each arc connects a place and a transition.

Traditional stochastic Petri Nets are unable to describe scheduling strategies with Petri

Net elements. Some more recently developed Petri Nets, such as Queueing Petri Nets

(QPNs) [49], can address this problem.

One major weakness of Petri Nets is the “complexity problem” – Petri Net models of

even modestly-sized systems are too large for analysis. Similar to Markov models, Petri

Nets also suffer state space explosion as the system scales up.

2.3.3 Queue-Based Performance Model

Queuing models rest on queuing theories (e.g., Mean Value Analysis) to provide

mathematical analysis of many queue-based performance problems. Queue-based

performance models have many variants, which include queueing network (QN) models

and layered queueing network (LQN) model. A queuing model is a nonlinear function.

Queuing models provide efficient calculations of performance measures with state

probabilities and can easily be scaled to large systems [31].

Queue-based performance models are widely used to analyze static performance for

capacity planning. They can help to find optimal selection of CPU speed, device

capacities and file assignments [93]. Lazowska et al. [52] gave a thorough discussion of

computer system performance analysis with queueing network models. In [68] [69]

Menascé et al. extended the use of queuing models for performance analysis of service

 13

systems. Queuing models are effective in providing analysis of the performance impact

of software and hardware resource contentions. This capability helps to find management

policies to achieve satisfactory performances [100]. Queuing models can be used to

predict performance metrics in nonlinear dynamic systems and help to reconfigure the

systems [65]. Optimization techniques can be combined with a queuing model to conduct

dynamic management. For instance, the works in [70] and [71] respectively presented a

use of queuing models to seek optimal services in distributed systems, and in [57] a

performance model is applied to maximize system workloads.

However, the difficulties of determining model parameters (e.g. the CPU demands of

particular operations) from real world systems at runtime have discouraged the use of

queuing models in dynamic systems. Recent works on parameter estimation proposed

some solutions to address this issue. Liu et al. inferred the service demands of queueing

models by minimizing the estimation errors of the end-to-end response times [64]. Zhang

et al. used regression-based approximation to estimate the service demands of different

transactions, then used a queueing network model to predict performance metrics with

different transaction mixes [112]. Pacifici et al. [77] leveraged multivariate linear

regression to estimate dynamic CPU demands on the basis of the time-varying nature of

the request traffic. In [114] Zheng and Woodside et al. showed that a Kalman filter can

quickly estimate parameters in real time and indicate that such a filter is capable of

tracking the changing parameters. In [106] Woodside bridged a gap between the practice

of measurement and the practice of modeling with statistical concepts, and presented a

framework for estimating a model by nonlinear regression. This provides a basis for

making software performance models available in dynamic systems.

 14

2.3.4 Layered Queuing Networks

Resource contention increases delays. If software resources are ignored, then all

waiting occurs at processors and where throughputs are fixed (open workloads)

contention may in principle be controlled by limiting processor utilizations to some

chosen amount such as 80%. However this does not provide an estimate of delay so one

cannot address the SLA for delay using this solution. This is why, in e.g.[70][71], a

performance model for the processors is introduced. However, there is increasing

evidence that software resources are also important, and for this a more structured

performance model is required. A layered queueing network (LQN) is an extension of

queuing models [30][82][108] capable of addressing software contention effects [56].

A Layered Queueing Network (LQN) model of a service system is a simplified view

of its structure, emphasizing its use of resources. This is illustrated by a small system

shown in Figure 2.2. The users (UserClasses) are represented in the LQN by userTasks, in

which userTask c has population Nc. A userTask does not receive any requests, but rather

cycles forever, waiting for a think time Zc given as their demand (e.g. [1000 ms]), and

then making a set of requests for service shown by directed arcs to the services. The arcs

or arrows are labelled with mean counts of requests, per operation of the requester, e.g.

(1). Services are represented by entries, which have processing demands De and make

requests to other entries. Where a Service is provided by a ServerTask, the entry forms

part of a corresponding resource called a task, and is deployed on a processor. Tasks and

processors have a multiplicity {m} (e.g. {50}, modeling multiple threads or a

multiprocessor). As discussed in [30], other software resources such as buffer pools may

also be modeled as tasks.

 15

A LQN incorporates services with nested requests for other services. Three types of

communications are supported by LQN: synchronous call, asynchronous call, and

forwarding call.

Synchronous call: This is a pattern of Remote Procedure Call (RPC). Sender blocks

when waiting for a reply from receiver.

Asynchronous call: This is a non-blocking pattern. Senders can send new requests

without the need to wait for replies of previous requests.

 Forwarding call: The receiver can forward a synchronous call to a third task and the

third task might reply or forward it further. Receiver does not block after forwarding and

the final receiver sends a reply to the blocked sender directly.

These communication patterns can model multiphase types of software service with

synchronous (in-rendezvous) and asynchronous (post-rendezvous) phases. They have

been successfully applied to many applications.

Based on queuing analysis, an LQN solution determines throughputs at users, entries,

tasks and processors, delays including queueing for requests, and resource utilizations.

Number the userTasks as c = 1...C; entries as s = 1...S, tasks as t = 1...T, and host

processors as h = 1,...H. Then throughputs at these entities are fc, fENTRY,s, fTASK,t, and

fHOST,h respectively. Task and processor utilizations are uTASK,t and uHOST,h respectively,

and for a multiple resource, full utilization makes the utilization equal to the multiplicity

m.

 16

(a) The service system

Clients

WebServer

Application

DataServer

tWSdisk

tApDisk

tDBdisk

pDBCPU

pWSCPU

pAppCPU

pApDisk

pWSdisk

pDeskTop

pDBdisk

userRqst

appService

givePage

Rd update

Rd Wrt

Rd Wrt

Rd Wrt

(b) The LQN performance model

Figure 2.2 A Lab-Scale System with the Trade 6 Benchmark

The more complex LQN in Figure 2.3 indicates the potential of the LQN framework,

with the main features of a shopping service application. The two topmost user tasks

represent the two classes of users, with 250 and 100 users. The pUsers processor

 17

represents the user desktops. Arrows represent requests for services (labeled by the mean

number of calls, e.g. (2)), with a filled arrowhead indicating a synchronous request (the

requester waits for a reply), and an open arrowhead, an asynchronous request. There are

databases for inventory and customer information. Entries are named beginning with “e”

in Figure 2.3 and carry labels (e.g. [1]) for the mean execution demand D on the host in

ms. Processors are shown as ovals, linked to tasks deployed on them; a processor entity

may represent a multiprocessor. Processors and tasks are labeled by a resource

multiplicity (e.g. {100}). For a user task the multiplicity is the number of users in the

class. Pure delays without contention are represented by infinite-multiplicity tasks and

processors. Some additional details: a device like a disk is modeled by a task with entries

to describe its services, and a processor representing the physical resource. Delay for an

external service not modeled in detail can be represented by a surrogate task with a pure

delay (infinite task) and entries for its services, as for the Payment Server and Shipping

Server.

 18

(Other services are
indicated by a dashed
outline)

eBrowse

InventoryDB {7}

eRead eUpdate

ShoppingCart {10}

StoreApp {90}

eCustUp

CustomerDB {1}

eShipService

ShippingServer

eAuthorize

PaymentServer

eStoreAccess

WebServer {90}
[2]

[25]

[2,1]

[2]

[30]

[5] [1, 10]

FileServer {10}

eFRead eFWrite
[3] [1, 3]

pHTTPServer {1}

pStore {3}

pDBServers

pFileServer

eUser1Behav

UserClass1 {250}
[1000]

eUser2Behav

UserClass2 {100}
[10000

]
pUsers {inf}

(1)

(0.9)

(7.3) (6.3)

(1)

(1.2)

(1)

(1)

(1)

(1)

(2.5)(1) (1.8)

eReadImage

ImageDisk {1}
[1]

pImgDisk {1}

(15)

eLogin eOrder

(0.01) (0.09)

[100][15]

eBuy eCart

(3)

eCustRd
[3] [1500]

[230]

(0.12)

Figure 2.3 An Example of a Layered Queuing Network Model of a Service System

In practice the performance model is derived from ordinary measurements on the

running system. The structure of tasks and entries participating in each service is found

either from the system design or by tracing some representative requests as described in

[114]. The parameters are determined by profiling, by regression techniques [118] or by

using a tracking filter [106][117]. In practice these models are not perfect, because of

statistical estimation errors, and delays in computing the parameters (during which the

system may change). The references above discuss how this inaccuracy may itself be

estimated and controlled.

 19

2.4 Monitoring-Based Autonomic Computing

2.4.1 MAPE-K Architecture

Monitor, Analysis, Plan, Execute and Knowledge (MAPE-K) are the five basic parts

to consist an autonomic manager for controlling either a system or a component,

proposed by IBM with the following architecture [44].

Figure 2.4 MAPE-K Architecture, from [44]

In the control loop, monitor, analysis, plan and execute communicate and work

together with one another and exchange appropriate knowledge and data.

• Monitor: collects system information from sensors;

• Analyze: correlates and models complex situations;

• Plan: constructs the actions to achieve the desired targets;

• Execute: performs the necessary changes to the system via the effectors.

• Knowledge: maintains the data shared by the above four parts.

Under the MAPE-K architecture the self-optimization loop for service systems can

have the structure shown in Figure 2.5. Performance models are the core knowledge

inside the loop in the approach used in this thesis. Monitors collect system information to

 20

construct and update the performance models. Analysis components such as filters are

used to estimate the parameters that cannot be observed but needed in modelling. Based

on the performance models and the QoS goals, optimization is conducted to seek the best

decisions in response to varying conditions. These decisions are finally executed by the

system effectors. The optimization feedback loop gives a generic solution to support

performance-driven self-management on autonomic systems. This loop enables the

developer (or system administrator) to modify the code using intuitive mental models for

performance tuning, perhaps guided by principles such as given in [86].

 Optimize
(Analyze, Plan)

Monitor

Sensor

Resources

Effector

Performance
models

Execute

(observation) y u (control)

QoS Goals

 Figure 2.5 Feedback control for QoS and optimization, from [86]

2.4.2 Dynamic Management Approach

Many monitor-based control approaches have been developed for dynamic system

management in response to runtime changes. The approaches in general can be grouped

into threshold-based control, dynamic control theories and optimization.

• Threshold Control

Threshold control makes decisions based on the values of monitored variables, such

as response time or utilization rates. When the value reaches a certain threshold, then the

 21

system controller executes policies to change configurations. Threshold control is widely

used because of its simplicity. For instance, in multi-tiered systems threshold control can

give a straightforward way to adaptively adjust capacity provisioning in terms of

response time [95][84] or to improve performance for overloaded systems [19].

Admission control and congestion control are typical examples of the use of threshold

management. In admission control, response latency determines the acceptance or

rejection of the new arrival requests. Welsh et al [104] demonstrated that admission

control can be used to ensure percentile response time on such complicated systems as

SEDA.

A threshold controller is driven by control policies. However it is difficult to create

good adaptive policies for complex systems under many constraints and uncertainties.

Threshold control is limited to controlling one parameter from one measurement variable.

In service systems, many activities and configurations interact and many decisions have

some alternatives, and threshold control is inadequate.

• Dynamic Control Theories

The motivation of control theory is to manipulate the inputs to a system to achieve the

desired effects on the outputs. Control theory views a service system as a dynamic

system, modelled with H(s), which describes the relationships between the input

configurations X(s) and the output performance Y(s). With the use of a transfer function

shown in Equation 1, the desired performance Y(s) can be obtained by regulating X(s).

H(s) could be a large matrix consisting of many interacting elements with higher-order

nonlinear terms. The control approach seeks a configuration X(s) that provides the

expected output Y(s).

 22

Y(s) = H(s)X(s) (3)

Linear and nonlinear controllers have been used to adjust configurations in a variety

of software systems. For instances, Hellerstein and Diao et al. applied linear control

theories such as linear-quadratic regulator (LQR) to control many multiple-input and

multiple-output (MIMO) commercial software systems, including workload management

on web servers [1][25][27] and memory management in databases [60][89] as well as

connection control in communication software [28]. Abdelzaher et. al. applied

proportional-integral (PI) control on workloads to obtain the desired response time [2].

Chen et al. deployed control theories to manage the replication of databases in a data

center [17]. The current author employed feedback control to deliver quality performance

for stage-event-driven systems [58][59]. Xu et al. used predictive control to control

dynamic resource allocation in data centers [102].

The effectiveness of control theory relies on the accuracy of system modelling. The

complexity of a service system hides many uncertainties, which make it difficult to

explicitly describe the relationship between outputs and inputs. Controllers are driven by

reference outputs, but the desired values of some outputs are unachievable in some

service systems; for instance the maximum capacity of a service center is hard to estimate

accurately in advance. A decision maker in a service system must be able to coordinate

many decisions with numerous classes of restrictions. These requirements are beyond the

capability of control theories. Moreover, the system models could be quite different to

address different dynamic problems, limiting the persistence of the management.

 23

• Optimization

An optimization method in general includes an optimization model and optimization

algorithms. Optimization can automatically seek the best (or near-optimal) solution in

terms of diverse constraints and objectives. There are many optimization approaches

developed for software system performance, such as bin-packing, hill-climbing, machine

learning, genetic algorithms etc., surveyed below.

Almost every commercial enterprise product has optimization mechanisms to give the

required system performance. With the emergence of new styles of computing, higher

quality optimization approaches are needed to satisfy new requirements. For example,

rapid optimization algorithms that can address complex and scalable configuration issues

are urgently needed by large enterprise service systems [43]. Dynamic optimization

periodically seeks new optimal solutions to adapt to the changes. In each period, a static

optimization is solved.

2.5 Optimization Approaches

Following are some of the optimization approaches used in deployment management.

Each approach takes a particular view of the service system and this view conditions the

approach.

2.5.1 Bin Packing

Bin-packing views the deployment problem as placing a set of tasks, each taking up a

certain amount of volume, into a set of hosts, that each has a limited available capacity

(space or time) to host tasks. Tasks and hosts are respectively regarded as items and bins

in the algorithms. The goal of bin packing is to place these items into the smallest number

of bins. An item must be packed into a bin without violating the space constraints.

 24

Though the solution cannot be guaranteed to be optimal, bin packing algorithms are

widely adopted in many cases because of efficiency and simplicity.

In the simplest version of bin-packing, a set of items, each having a single dimension

of “size” (e.g. length) is given, and the task is to pack all of the items into the smallest

number of identical bins, each of which has a limited capacity. This problem is known to

be NP-complete (e.g. [33]), hence it is usually solved in practice by heuristics which

return approximate solutions. Some heuristics provide tight bounds on the optimal

solution.

Multi-dimensional bin-packing is an extension of bin-packing to satisfy more packing

constraints. In multi-dimensional bin-packing, items and bins have more than one

dimension, e.g. height, width, and depth, to account for additional requirements. In

online bin-packing the set of items is not known in advance: items arrive in a stream and

must be packed upon arrival. In dynamic bin-packing the items stay in the system for

only a certain time period and then disappear. See Coffman et al [22] for a survey of bin-

packing methods.

Though deployment problems have some similarities to bin-packing, a significant

difference between them is an application deployment problem allows subdividing

processing capacity into parts of any size for allocation, which means a deployment

would have more allocation choices than standard bin-packing problems and the problem

is more complex.

2.5.2 Hill Climbing

Hill climbing views optimization as exploring decisions on a static surface where

each response is mapped onto a set of coordinates. The strategy of hill climbing is to

 25

iteratively improve the current state by varying each variable one at a time, comparing its

function costs with its neighbours, and moving to the neighbour state with the best

function cost value. The process terminates when the function cost value cannot be

improved anymore [81]. The quality of hill-climbing can be improved by multi-start if

searching for a global optimum [103].

Hill climbing is a simple and popular search algorithm that is used to find a local

optimum. However, it cannot guarantee the global optimum unless the surface of the

function cost is concave. The algorithm may encounter problems if the surface of the

function cost has ridges or a plateau. Expensive cost function evaluation and the state

explosion problem are the most common limitations on the application of hill climbing.

2.5.3 Reinforcement Learning

As a sub-area of machine learning, reinforcement algorithms attempt to derive best

configurations for the specific system states by a trial-and-error methodology. Basic

reinforcement learning contains system states, actions and scalar rewards. At each step,

an action is taken to transit a state and assign rewards to update the value function. Best

configurations to achieve maximum rewards are obtained when the objective function

converges [90]. Reinforcement learning is a “knowledge free” approach, meaning that

configuration parameters are mapped onto evaluation functions without the need of

system modelling.

A weakness of RL is that the learning phase takes a long time, and may not react to

dynamic changes in a timely way. Furthermore, some of the machine learning algorithms

(e.g. MDP) may suffer state explosion when handling large-scale optimization.

 26

2.5.4 Flow Network Based Optimization

Optimization with flow networks is a sub category of graph theory. A flow network

takes a view of a service system as a network. A classic flow network includes a

collection of nodes and directed arcs that connect pairs of nodes. Each arc is labeled with

a triple of parameters [l, u, c]: the lower flow bound l , the upper flow bound u and the

cost per unit of flow c. A flow in an arc must satisfy the lower and upper bound of the

capacity. Ordinary nodes are of three types, and are shown as circles in a network

diagram. Source nodes introduce flow into the network and sink nodes remove flow from

the network, at rates given by the input and output arcs attached to them, called phantom

arcs. Ordinary nodes simply balance flow between their input and output arcs (total input

= total output) [20]. In addition, a special type of network flow model (NFM) called a

processing network [20] has at least one processing node which has fixed ratios of the

flows in its incident arcs. Processing nodes are shown as squares labelled with the fixed

proportion of flow at the attachment point of each incident arc.

The strength of the flow network model is it can model many distribution and

assignment problems. By optimizing the distribution of flows across the network, optimal

configurations can be achieved. Flow networks have many variants, such as circulation

and max-flow min-cost problems etc. However the effectiveness of flow networks stands

on the basis that the problem can be modelled with flows and there are effective

algorithms that can solve the flow model.

2.5.5 Mixed Integer Programming

Mixed Integer Programming (MIP) extends linear programming to account for some

variables that must take integer values. A special case of MIP is binary integer

 27

programming, in which the integer variables are binary-valued. Some advanced

algorithms, such as branch and bound, can be used to address MIP problems. But MIPs

are generally NP-hard, meaning that the solution time is non-polynomial and hence slow

to solve a problem having many integer variables. An effective bounding function can

significantly improve the efficiency of a MIP solution, but it is a creative work subject to

the requirements of specific problems.

 28

Chapter 3 State of the Art in Optimal Deployment

3.1 Related Work

Optimization approaches can seek better deployment decisions to improve system

performance. Bin-packing is probably one of the most commonly used approaches to find

optimal deployments. It has been widely used to pack execution requirements [21],

execution and communications requirements [109], and memory; all of which have been

combined in multidimensional bin-packing [16]. More recently, the use of bin-packing is

extended to optimize task allocations in virtual environments [13].

Bin-packing motivates many new packing approaches. For example, Karve [48] and

Steinder et al. [88] created heuristics to distribute workloads across virtual nodes in a

virtual computing environment, and Tang et al. [91] combined max-flow algorithms and

heuristics to manage large-scale resource allocations on Websphere XD. However these

packing approaches oversimplify the deployment problems in that blocking delays and

the availability of task replicas are important to system performance, but cannot be

handled by these packing approaches.

Hill climbing has been applied to maximizing system workloads in service systems

[61], minimizing replicas to provide satisfied QoS [115], seeking optimal QoS

components for distributed systems [71], and finding resource allocations for DBMS

management [113]. Expensive evaluation costs and the state explosion issue limit the

 29

application of hill-climbing on medium or large scale systems. In existing applications

hill climbing can support only a few tens of variables.

Reinforcement learning (RL) was first applied by Vengerov et al. [97] to seek optimal

resource allocation decisions in terms of changing workloads. Rao et al. [80] made RL

available to optimize configurations in virtual environments. In [87], Soror et al.

successfully used RL to configure database workloads on virtual machines. In current

works the RL is successfully used to support systems with a few tens of configuration

parameters.

Flow networks were applied as early as 1980 by Bokhari et al. [9] who discussed the

use of flow networks to solve a partitioning problem in multicomputer systems. In [91]

Tang et al. presented a combination of max-flow algorithms with a heuristic to allocate

varying workloads on a large scale commercial system such as WebsphereXD. This

approach can handle thousands of application deployments at the same time, but it

ignores the impacts of resource contentions on QoS, and thus cannot deliver ensured QoS

for multiclass users. Toktay and Uzsoy [92] leverage a flow model to maximize resource

utilizations and demonstrate that a heuristic can achieve almost the same result as a mixed

integer programming (MIP), but with much more efficiency. However, this approach ignores

the minimum execution demands required by each task and the QoS constraints.

Knapsack optimization can be used to address some combinatorial optimization

problems. A multiple knapsack problem is a variant used to address general resource

allocation problems that account for the allocation of n items into m knapsacks. Bilgin et

al. [7] demonstrate that the Knapsack allocation problem can be modelled by a simplified

flow network. In [48] Karve et al. present a heuristic approach for optimizing application

allocations in terms of a knapsack model. Similarly, Zhang et al. [111] present a

 30

combination of a queuing model with a nonlinear integer optimization to determine the

number of hosts required by a multi-tier server network subject to some QoS

requirements. However, this approach only considers the number of machines in use but

ignores many performance issues such as how to improve the machine utilization and the

constraints imposed by memory, and it is incapable of optimizing the allocation/creation

of replicas. Since these algorithms cannot accommodate many optimization constraints

and variables, they are unable to coordinate a large number of decisions at the same time.

MIP is effective to model the allocation problems with such integer constraints as

memory and host activity etc. In [15], MIP is applied to manage VM deployments in a

cloud infrastructure. It optimizes VM allocations taking account of computation power,

electric power, storage and network bandwidth, but it does not consider QoS constraints,

service allocation and workload balance across VMs. In [98] and [66] MIP was used to

conduct power optimization, which is applicable to handle fixed power consumption and

execution power consumption in terms of freezing deployments.

Nonlinear programming is applicable to address complicated deployment problems

with nonlinear terms. It leverages an iterative process to explore the optima with methods

like gradient descent. Many researchers used nonlinear optimization to handle complex

deployment problems. For example, in [24] the authors proposed a combination of

nonlinear optimization and control theory to solve a revenue problem subject to QoS

requirements and dynamic changes. This approach optimizes allocations across a set of

heterogeneous hosts by solving an optimization model that includes the nonlinear

calculation for performance. This approach is effective for small scale problems with a

few servers and hosts, but does not scale for large problems with many optimization

 31

options, because search methods for a large-scale nonlinear problem are very time-

consuming. In general a nonlinear optimization model is only available for specific

problems, but it is not a generic solution extendable to address new objectives and

constraints. Modelling a nonlinear optimization model subject to many coupled

relationships is complicated.

Utility functions can be used in some autonomic computing systems [47][85][73][75].

Utility functions are the objective functions for optimization, mapping each possible state

into a scalar value. A utility function can be constructed in several ways, such as by

ranking the objective functions in importance, or using a weighted combination of the

objectives. Optimization techniques are applied to seek solutions for the goal of the utility

functions [101]. Menasce et al. used hill climbing [6][75][76] and beam search [5][72]

for resource management in service systems. These approaches apply analytical

performance models to evaluate the utility functions for decision making. However a

utility function alone cannot guarantee the constraints are met. A returned solution may

achieve a good utility value, but violate some constraints. And the quality of management

with utility functions is strongly affected by the optimization techniques.

3.2 Weaknesses of Existing Work

The emergence of large-scale service computing results in three main challenges for

existing optimization approaches. Increased complexity is the first, which requires the

optimization to be able to satisfy many coupled objectives and constraints at the same

time, scalability is the second, and the third is the dynamic changes of the requirements.

New solutions are needed to meet these new challenges.

 32

Bin-packing cannot address the complexities. A standard bin-packing algorithm seeks

placement decisions on the basis of the available host capacity and the size of each item,

but the algorithms cannot address packing problems that allow merging or dividing items

into arbitrary size, and the algorithms are poor at finding an optimal packing for items

whose volumes interact with each other. In a service system there are many resource

issues that cannot be described by bin-packing. For instance, processing capacity can be

subdivided into parts of arbitrary size for allocation, and this is not a standard bin-

packing problem. Another weakness of bin-packing is that it cannot ensure QoS in a

straightforward manner. Bin-packing algorithms will terminate at some local optimal

point, but this might be far from any global optimum.

Hill climbing requires evaluation of every candidate decision. Expensive evaluation

costs and the state explosion problem make hill climbing suitable for small systems only

(see Section 2.5.2). At present hill-climbing approaches can support only one or two

dozen configuration parameters. Such capability is far from the requirement of large-

scale service systems that need to adjust over a thousand variables at the same time.

Machine learning is particularly suitable to long-term running systems. Nonetheless

as the system varies significantly, the learning process may be incapable of finding good

up-to-date configurations. And the limitation of the number of states means that the

algorithms do not scale up. Thousands of runtime configuration parameters are beyond

the capability of current reinforcement learning algorithms. (See Section 2.5.3)

Pure flow networks ignore complex performance issues, such as blocking delays due

to resource contention, which are in general nonlinear and NP-hard. Oversimplifications

make for an optimistic flow network solution, which may be very different from reality.

 33

A flow network can model resource provisioning and consumption using a flow

representation; however, there is a gap between resource utilization and QoS. How to

bridge this gap has not been addressed in the existing research. To solve scalable flow

networks, rapid algorithms are required, but further research is needed to accommodate

this requirement.

MIP is another approach used for deployment optimization, which can be applied to

handle more practical problems than LP. However, MIP is NP-hard. It does not scale to

solve large problems. And MIP cannot account for nonlinearities. This limits the use of

MIPs in problems with nonlinear coupled goals. Current research on deployment often

only focuses on how to model the problem in MIP, and then use general algorithms via

solvers to seek the optimal configurations, but ignore the weakness of MIP solvers, which

may limit the efficiency and scalability. Other algorithms could be more effective than

the algorithms in MIP solvers to address some specific MIP problems.

Nonlinear optimization is an approach capable of accommodating nonlinear terms in

the optimization model. It gives greater flexibility to model the problem for optimization.

Nonlinear problems are solved via an iterative process with gradient descent. Because

this process could be time-consuming for complex problems with higher-order nonlinear

terms, nonlinear optimization is ineffective for allocation problems with many

simultaneous highly coupled goals. Moreover, for QoS management contention must be

considered, but the complexity of the calculations for contention makes it hard to model

for an optimization solution. Therefore, it is difficult to use nonlinear optimization to

deliver QoS-ensured performance.

 34

Table 3.1 summarizes the strengths and weaknesses of the above solution approaches

for deployment management. It compares the decision quality, scalability, efficiency, and

the effectiveness for satisfying nonlinear coupled goals, including multiclass QoS

constraints, and the extensibility for new requirements, ease of modeling, as well as the

performance in response to dynamic changes.

35

Table 3.1 Overview of the Existing Solutions on Deployment Management

Approach Decision Quality Scalability Efficiency QoS
Constraints

Coupled goals Extendibility Ease of
Modeling

Dynamic
Performance

Bin Packing Non Optimal Yes Yes No Weak Weak Easy Weak

Hill Climbing Local Optimal No No Probably Good Good Easy Weak
Control Theories Good ---- Yes Yes Probably Weak Hard Good

Machine Learning --- ---- No --- ---- Weak --- ---

Flow Networks Global Optimal Yes Yes No Probably Good Depends Good

MIP Near Optimal No No No Good Good Depends ----
Nonlinear Optimization Local Optimal No No Probably Weak Weak Depends ----

• Decision Quality: the accuracy of the solution, measured by the results that are global optimal, near optimal or non optimal

• Scalability: the size of the problem can be handled

• Efficiency: the speed to solve a problem

• QoS Constraints: capability to ensure the quality of service, such as response time, throughputs, including the account of QoS

loss due to resource contention

• Coupled Goals: the capability to address multiple interacting goals at the same time

• Extendibility: good extension to accommodate new objectives and constraints.

• Ease of Modeling: the difficulties to build up a control/optimization model

• Dynamic Performance: the stability of management and the quality of optimization during a dynamic process.

36

Chapter 4 Problem Statement and Solution Overview

4.1 Problem Statement

The goal of this research is to develop algorithms that provide advanced performance

management for large service centers, including the ability to satisfy many simultaneous

goals. They should optimize numerous coupled configurations at the same time. These

new algorithms must:

1. Scale up to provide the minimum contracted quality of service (QoS) for

many users subject to many resource and economic constraints, which

include:

• Multiclass performance targets described in service contracts, (e.g.

response time, number of users, capacity given as arrival rates),

• Constrained software and hardware queuing delays,

• Constraints on the number of replicas of each service,

• Constraints on the number of hosts in use,

• Economic targets (e.g. cost budgets, power consumption, profit targets).

2. Operate quickly enough to provide frequent adjustment as loads and

requirements change.

37

• The new algorithms must be capable of making high quality decisions for

possibly thousands of simultaneous configurations across a large-scale

system within a few minutes.

3. Give high-quality robust decisions in response to shifting circumstances.

• Stability in various dynamic environments (e.g. varying workloads, the

addition and removal of applications, and the failure and repair of host

machines),

• Control the costs/risks associated with changes,

• Control creation of replicas.

4. Coordinate decisions subject to numerous simultaneous constraints, objectives

and relationships between many interacting elements with higher-order

nonlinear terms, which include,

• The selection of hosts,

• Computing power consolidation,

• Allocation of service replicas,

• Workload balancing and distribution.

5. Provide extensibility of the solution.

• The solution must be extendable to satisfy new objectives and classes of

restrictions.

Existing approaches can give some of these control properties, but not all at once. Bin

packing cannot address multiple goals at the same time, and optimization quality is not

guaranteed. Hill climbing cannot respond to changes rapidly. Modelling a controlled

38

system for a large-scale service system is challenging, though control theory performs

well for dynamic problems. Machine learning requires a great deal of history data, and is

weak in addressing new requirements. Flow Network Optimization and MIP are effective

for modelling some issues, but cannot address nonlinear problems. Nonlinear

optimization is limited by the efficiency of the iterative gradient search.

The new optimization algorithms developed in this research are required to deliver all

these properties at the same time. They must be applicable to managing a set of

applications to share a cloud infrastructure in an optimal manner, ensuring multiclass

users the expected performance at low cost. They should be able to provide high quality

solutions that persist, taking into account the risks and costs associated with changes.

4.2 Overview of the Solution

The solution proposed in this thesis provides dynamic management by solving a

sequence of static deployment problems as conditions change. It includes an optimization

approach for static deployment based on a snapshot of the system requirements and state,

and a persistent control mechanism, giving stable/persistent management in a variety of

dynamic environments. This solution models the problem with these goals by an

optimization model comprised of an objective function (which addresses multiple goals

by weights, rewards and penalties on the objectives) and a set of constraints.

For each static deployment problem, the approach leverages an analytical

performance model and scalable heuristics to seek near-optimal deployments which

deliver the required performance for each class subject to the cost and quality constraints.

The optimization process iterates between a sub-optimization problem and a layered

39

queuing network (LQN), in which the optimization uses a network flow model (NFM) or

a mixed integer programming (MIP) problem. Rapid algorithms are developed to solve

these optimization models either exactly (in the case of NFM) or approximately (in the

case of MIP). The optimization solution returns high quality deployments allocating host

reservations to tasks. The performance model (like LQN) predicts the effect of

contentions, which reduce the throughputs. The optimization model is then adjusted by

introducing surrogate flows at the services, which account for the additional capacity

required to overcome contentions, and the sub-optimization problem is re-solved.

This iteration loop provides an effective approach to seeking sound deployment

decisions while considering the effect of resource queueing, including logical resources

modeled by extended queueing [56], thereby satisfying constraints on multiclass average

response times. This was extended to find a minimal change to accommodate one new

application, in [55]. In [57] the optimization approach was extended by combining

heuristic packing (HP) and linear programming (LP) to account for memory and license

constraints. This approach is fast and scales well.

The algorithm is further improved by combining heuristic packing with mixed integer

programming (MIP), to increase the quality of optimization and satisfy more goals,

including minimizing the energy consumption, number of hosts in use, and maximizing

robustness in dynamic conditions and persistence of solutions subject to changing

circumstances. In comparison with a pure MIP via the CPLEX tool, the heuristic MIP

(HMIP) can solve much larger optimization problems and obtain a good quality solution

with greater efficiency. Contention linearization via sensitivity analysis and linear

programming is applied to reduce costs due to over-allocated resources. [53]

40

During a dynamic process, soft and hard constraints can be added on related variables

in the optimization model in order to take account of the change of the environment,

providing persistent solutions that reduce the risks/costs associated with changes. In

addition, a new model capable of accommodating constraints to limit the scale of changes

and control new replicas to specific tasks is described. These persistence mechanisms can

deliver advanced robust deployment management in response to a variety of dynamic

changes, guaranteeing system stability [54].

The solution is evaluated by a set of experiments in static and dynamic environments.

The unit of time in all experiments is milliseconds, and the processor speed, memory

space and costs considered in the optimization functions are relative to a standard host.

These experiments assume the performance model of each application is up-to-date and

accurate. Based on an assumption that the time interval between optimization solutions is

long enough that the system will actually settle down to steady state, the results returned

by the performance model LQN are steady-state and the mean-value LQN model can be

used to predict performance on the real systems.

41

Chapter 5 Optimization Algorithms to Address Static
Deployment (without Integer Constraints)

This chapter presents the fundamentals of the static deployment algorithm, which

combines network optimization and contention calculations, effectively solving a

nonlinear optimization problem by iterative LP solutions. The returned solution allocates

host reservations to tasks, and divides request traffic between multiple task replicas,

where applicable.

5.1 Optimization Architecture

In a large-scale service system, such as a cloud, the system incorporates several

elements in order to provide the feedback control shown in Figure 2.5; the resulting

architecture is sketched in Figure 5.1. Monitoring of resources provides utilization

information at the level of the physical processor, virtual machine, and other logical

resources. Monitoring of user requests gives measures of throughput and response time.

The performance model tool stores a model of each application and its deployment, and

is connected to estimation tools for updating the model parameters periodically from the

monitoring (the Model Tracker). When a new application is loaded, an initial

performance model is supplied by the application provider, derived either from the

application design (as described in [110]), from other knowledge of the application, or by

tracing its behaviour (as described in [115]). Finally some deployment effector tools must

42

be included to load and initialize VM images on host processors, as indicated by the

optimization.

A management platform might include one or several optimizers to satisfy different

requirements. Each optimizer has an optimization model to describe its part of the

problem and a corresponding solver to seek the optimal solution in terms of the

optimization model. In this research, the optimization aims to satisfy performance targets.

Users

UInterface

Service

UServMon

App

VMMonVM

AppMon

ServTask

Host HostMon

ServiceMon

CloudGoals

Management
Platform Optimizer

Deployment
Effector

AppModel

Optimization
Solver

CloudMgr

AppMgr

App. Tuning
Effector

ModelTracker

ModelSolver

*

(missing connection
multiplicities are 1)

AppAdmin CloudAdmi

AppGoals

Model Pool

Host Pool

*

*
*

Cloud

Optimization
Model

*

*

VM Pool

*
*

*
*

*

*

*
*

*

*

*

* CloudModel

*

*

*

 Figure 5.1 Sketch of model-based optimization architecture

43

5.1.1 Deployment Management in a Cloud

Based on the architecture of Figure 5.1, a scenario of the deployment management is

shown in Figure 5.2. When initializing an application deployment, a performance model

is constructed from the software specification or from previous operational data.

Deployment decisions are created by the optimizer based on predictions by the

performance model. Dynamic changes in the system synchronously update the

performance models, which then keep the corresponding optimization models up to date.

New optimization solutions are sought periodically by solving the optimization models in

response to changes.

Virtualization of processors makes it possible for separate applications with separate

virtual machines (VMs) to safely share a physical node, and a virtual machine monitor

can control the rate of processing provided to each VM. During the runtime deployment

is adjusted in terms of the tracked performance model in response to the changes.

44

Cloud with multiple clusters

Cluster with multiple hosts

Physical host with several VMs

Users

Services offered by an
Application

VM

Optimize this deployment
decision based on predictions

by a performance model

Deployed Application

Prior performance model
from
(a) software specification,
(b) previous operational

data.
used for the initial
deployment

Tracked performance
model based on
operational data, used
for adjusting the
deployment

. . .

Figure 5.2 Application Processes in a Cloud

5.2 Overview of the Optimization Approach

The optimization algorithm consists of an optimization loop and a Linearized End-

point Step (LEndStep). The optimization loop seeks near-optimal feasible solutions. It

iterates between a linear (or MIP) sub-optimization problem and a nonlinear cost

calculation to find a near optimal solution. Then the LEndStep solves a linearization of

the entire problem a single time, improving the quality of the final solution, constrained

by the deployment decisions in the feasible solution. The LEndStep tunes the loading of

different tasks to minimize cost subject to the QoS constraints. A high-level algorithm

describing the execution of the approach is shown as Algorithm I.

45

Algorithm I. Generic High-Level Iterative Algorithm

In the algorithm, the optimization loop is made up of 5 main steps and iterates until

finding a near optimal configuration capable of achieving the required QoS. The steps

are:

Step 1. construct the Optimization Model for the service system,

Step 2. solve the Optimization Model to find the suggested deployment decisions.

Step 3. reconfigure the Performance Model to incorporate the deployment

decisions given by Step 2.

Step 4. solve the Performance Model

Performance Model (LQN)

Optimization Model

Solve the Optimization Model

LQN updated for deployment

LQN Solution

Linearized End-Point Step

Optimization Model
updated for contention

Step 3

Step 2

Step 1

Step 4

Step 5

Step 6

Not Feasible

Performance Data

46

Step 5. test the feasibility of the solution. If not feasible, incorporate the queueing

delays into the Optimization Model, and repeat from (2).

Step 6. If the solution is feasible, a linearized version of the entire problem is

solved to give a final solution (the Linearized End-Point Step (LEndStep)

described in Section 5.7). If this final step is ignored the solution may not be as

good as it could be.

In this research two optimization models are developed to satisfy different goals in

Step 2. The first is the Network Flow Model (NFM) of the deployment problem. NFM

uses linear programming (LP) to optimize the distribution of execution demands, but

ignores some nonlinear and integer restrictions. Because LP is solvable in polynomial

time, this optimization is scalable and fast. The second is Mixed Integer Programming

(MIP), which can accommodate such integer constraints as memory demands and

availability, power consumption due to host activity and license availability. The design

of the MIP model will be introduced in the next chapter.

The solution given by the optimization model is a deployment,

(1) allocating host reservations to tasks,

(2) dividing request traffic between multiple task replicas, where applicable, and

(3) minimizing cost.

Since the solution of either NFM or MIP by itself ignores the effects of contention for

resources, this makes the predicted performance optimistic. These are important practical

aspects of the deployment problem, which cannot be addressed by flow optimization via

NFM or MIP alone.

47

Contention introduces additional delays and reduces the actual flows, in a way that

can be estimated by a performance model (a LQN in this work). The total capacity

required to process an entry is being increased by adding the pseudo-flow; this excess

capacity is required to reduce contention (by reducing utilization of the assigned

resources). The optimization model then is adjusted by the surrogate flows to describe the

new resource requirements, and re-solved. A fixed-point iteration (Steps 2 – 5 in the

Generic Iterative Algorithm above) is used to adjust these, terminating at a converged

solution (where the delays, including contention, do not violate the QoS constraints).

5.3 Step 1: Network Flow Model for the Service System

A NFM is a graph with arcs which carry flows and nodes which operate on the flows,

as illustrated in Figure 5.3 and discussed in Section 2.5.4. Each node shown in Figure 5.3

is representative of a set of nodes, with H nodes in the Host column, T nodes in the Task

column, S nodes in the Services column, and C nodes in the Class column. The arcs show

which flows between nodes may be non-zero, and by the conventions of modeling with

the NFM they flow into the hosts, and out from the user classes. Each arc has a flow

quantity, defined as

flow quantity = demands for CPU-sec of processing, transferred per sec between nodes

and initially the CPU-sec for any operation will be assumed to be the same on all hosts

(hosts are of uniform speed); this is generalized below.

48

.

.

.

h

.

.

.

s

.

.

.

.

.

.

Hosts

Services Classes
of Users

c

t

.

.

.Server
Tasks

.

.

.

.

.

.

.

.

.
[0, Ωh, Ch]

αht

dsc

γsc

βts

1

[fc ,SLA , ∞, Pc]
fc

(processing
node
parameters)

Surrogate flow

[Δi+1

s, Δi+1
s, 0].

Figure 5.3 Network Flow Model

The deployment problem is formalized with a flow network model (NFM). We

consider the flow of execution of services of task t by host h (i.e. αht), as part of the

solution of NFM. The unknown flows αht, βts, γsc comprise the variables in the model.

Each arc is labeled with a triple of parameters [larc, uarc, carc]: the lower flow bound larc

(default 0), the upper flow bound uarc (default infinity), and the cost per unit of flow carc

(default 0). The parameters are not shown where all take the default values.

An NFM can be derived from the LQN performance model by considering the flow

of demands for CPU work implied by the request arcs in the LQN. An NFM host node h

=1...H is created for LQN processor h; a task node t=1...T is created for non-user task t; a

service node s=1...S is created for entry s. These are ordinary nodes which relate demand

flow on each host to demand flows by services. The NFM may include additional

processors which are not used but which could be used in an optimal deployment. For

each userTask c there is a processing node for user class c in the NFM, which converts a

49

flow of user requests into CPU demands by services. Table 5.1 summarizes the entities

defined for service systems in general, with their corresponding representations in the

LQN and NFM models.

Table 5.1 Corresponding Entities in Different Views

Service System Network Flow Model (NFM) Layered Queueing Network (LQN)
Processor h Host node h Processor h
UserClass c User class node c UserTask c

Service s Service node s Entry s
ServerTask t Task node t Task t

Resource ... A Task or Processor
Activity ... Activity (within an entry)

The input arcs on the left in Figure 5.3 represent the total flow fHOST,h at host h, and

are labelled with [0, Ωh, Ch] meaning that fHOST,h ≥ 0, the host capacity limit is fHOST,h ≤

Ωh, and the cost is Ch per unit of flow (meaning the cost per execution demand of the host

h). For a set of processors of equal speed, and flows given in CPU-sec/sec, the capacities

are all 1.0. There is also an arc:

• from host h to each task t which is permitted to be deployed on h, with flow

αht (the demand rate executed on host h, to satisfy the needs of task t). If

multiple replicas of a task are deployed, it will have non-zero flows from

multiple processors, which will optimally divide the execution flow between

them.

• from task t to each service s offered by task t, with flow βts (the demand rate

from the service). In the LQN each service (entry) is associated with just one

task.

50

• from service s to each user class c which causes s to be executed, with flow

γts. γts is the total CPU demand triggered at service s by requests made by class

c.

Notice that when a task is replicated on different processors, there is one task node for all

the replicas, but one host node for each replica.

These arcs relate demands at processors to demands from user requests, and express

the software structure and the constraints on deployment of tasks. Omitted arc labels

default to [0, ∞, 0].

The output arcs at the right have a flow which is the requested throughput of the user

class. The user class node c is a processing node with flow ratio parameters which

convert the class flow fc at the right in Figure 5.3, in units of user requests/sec, to demand

flows γsc for services. For each single user request by class c, a demand of dsc CPU-sec is

required for service s, giving this flow proportionality:

γsc = dsc fc

The value of dsc can be determined by profiling the system for each user class request

type, or from the LQN model. In the LQN, let Ycs be the total direct and indirect mean

requests to entry s for one request from user class c, and let yes be the mean requests made

directly from any entry e to entry s. For this purpose user class c will be defined to have

an entry numbered S + c, and yS+c,s is the mean number of requests made directly to entry

s for one user response (in Figure 5.3, there is exactly one request to a particular service

entry point, but it can be more general). Then assuming there are no request cycles, Ycs

can be computed by setting Yc,S+c = 1 for all c, and using:

51

Ycs = ∑
+

=

CS

e
esce yY

1
, s = 1..S

Using the parameter Ds from the LQN, for the CPU demand per execution of entry s, we

obtain dsc=YcsDs.

Figure 5.4 shows an example of a service system with two user classes and six

services/applications, labeled with the request rates from one service to another. Other

labels, such as the size of the user classes and the host demands of the services, are not

shown here. In the present deployment analysis, only the total host demand for each

application (task) is used. It requires the total direct and indirect requests for a service

from each user class, found by following all paths from the user class to the service. For

example, from Users1 to DB2Serv it is:

Yuser1DB2Serv = 1 x 0.3 x (0.7 + 0.3 x 1.4) = 0.336 requests/user response.

The service architecture in Figure 5.4 can be modeled in detail by a layered queueing

model (see, e.g. [30] for more information), which can be calibrated and tracked from

operating data [113].

52

«UserClass»
Users1

«Service»
AppServ

«UserClass»
Users2

«Service»
DB1Serv

«Service»
DB2Serv

«Service»
HelpServ

«Service»
WebServ

«Application»
WebServer(t1)

«Application»
Helper(t3)

«Application»
App(t2)

«Service»
FileServ

«Application»
DB2(t6)

«Application»
DB1(t5)

«Application»
FileServer(t4)

«reqIndirect»
{meanReq=0.3}

«reqIndirect»
{meanReq=1.4}

«reqIndirect»
{meanReq

=0.7}

«reqIndirect»
{meanReq=9}

«reqDirect»
{meanReq=1}

«reqIndirect»
{meanReq=0.3}

«reqDirect»
{meanReq=1}

«reqIndirect»
{meanReq=1}

«provides» «provides» «provides»

«provides»

«provides»

«provides»

«reqIndirect»
{meanReq=4}

Figure 5.4 An example of a web application

The performance of a service system is affected by contention for resources. Because

contention reduces the throughputs and increases the latency, it must be considered in

deployment configurations. Limiting processor utilizations to some chosen amount such

as 80% [3] is a common way to reserve resources to reduce the effects of contentions.

However, this does not evaluate the effects of contentions so it cannot give the ensured

performance required by the SLA.

The surrogate flows to offset contentions are indicated by the big arrows attached to

the service nodes in the NFM, shown as Figure 5.3. They represent reservations for

processing capacity needed to reduce the contention delays. The size of these surrogate

53

flows (Δi+1) is estimated using the performance model (LQN) in terms of the deployment

configurations given by the NFM-based optimization. Details will be introduced in

Section 5.6 (Step 5).

If each task provides different services, the NFM can be simplified by

Σhαht = dt,SLA + Δi+1
t

where Δi+1
t
 is the total surrogate flow of task t at iteration i calculated by adding the

virtual demands of Δi+1
s of the services that are hosted by this task.

The NFM is solved via linear programming. Details of the algorithms are introduced

in Section 5.4 below. As pointed out in Section 2.2, for a suitable closed workload

population the satisfaction of the user throughput requirement implies satisfaction of the

response time requirement.

The solution of the NFM gives the optimal flow rate in each arc, which shows how

processing demands should be distributed from hosts to services. The allocation of

demands includes computing power consolidations and isolations, the number of replicas

of each task or service and the allocation of these services onto the virtualized nodes as

well as the transaction flow rates etc. The solution can be converted from NFM to LQN.

For details please refer to Step 4 in Section 5.5.

The generalization to a set of processors of different speeds is trivially made through

the host capacities. In place of Ωh = host multiplicity, we have Ωh = host multiplicity ×

speed factor of each element. The speed factor is relative to the type of processor,

regarded as the “standard” processor, for which the CPU demands are defined. Please

note that this is a simplification, since the speed factor will actually be different for

54

different applications, depending on the processor architecture. If processor types are

such that simple speed scaling is not possible, then the linearity of the problem is lost,

and the NFM cannot be applied.

5.4 Step 2: Solve the Optimization Model

The resulting NFM model for execution demand optimization consists entirely of

linear relationships, and with a linear objective function, such as execution cost, it forms

a linear programming optimization problem. This makes the problem scalable.

Taking minimum execution cost as an example, an optimization model can be

constructed as below. In the model every class of users has QoS requirements on

response time (or throughputs) and populations; every host has constraints on the

capacity utilization.

Optimization Model I. LP Model based on NFM

Objective: minΣh,t Ch αht

Constraints: • Host computing capacity: for each h, ht h
t T

α
∈

≤ Ω∑ . If we wish to

provide a safety margin, we can specify a maximum utilization fraction

ϕ h and require that ht h h
t T

α ϕ
∈

≤ Ω∑ , for each h.

 • Operations balance at each task: for each t, ht ts
h H s S

α β
∈ ∈

=∑ ∑ .

• Operations balance at each service: for each s, i
ts sc s

t T c C s S
β γ

∈ ∈ ∈

= + Δ∑ ∑ ∑

 • Operations of service s used by user class c: sc c scf dγ = .

• Nonnegative operations: for all h, t, s, αht ≥ 0, βts ≥ 0, γsc ≥ 0.

 • Throughput for each class exceeds the minimum specified in the
service level agreement: for each c, fc ≥ fcSLA.

55

The LP solution of the NFM can find the minimum execution cost for a deployment

subject to processing capacity and user throughput constraints. It decides which tasks

need replicas, where to allocate the replicas and how many requests are placed on the

replicas.

5.5 Step 3 and Step 4: Insert Deployments and Solve the LQN

The optimal host-to-task flows in the optimization model determine the task

deployments in the LQN. Where a task t has nonzero flow from a single host, this means

it is deployed only on that host. However if it has non-zero flow from several hosts then

task t is replaced by a set of identical replica copies (with the same set of entries), with

the replica deployed on host h identified as task t_h and its replica of entry s identified as

entry s_h. Each request to an entry of task t is split among the replicas in the same ratios

as the NFM flows αht. To do this, each request arc to an entry of task t (say an arc from

entry e) is replaced by a set of request arcs. The arc from entry e to entry s, labeled with

yes requests, gives an arc to entry s_h in task replica t_h labeled with ye,s_h requests, with

ye,s_h = yes (αht /Σh αht) (4)

and this is repeated for each replica of task t. The solution is found using an LQNS

solver.

5.6 Step 5: Test for Convergence

If the NFM solution is overly optimistic after evaluation by the LQNS, then the

surrogate flows must be adjusted, and the NFM must be run again. After a number of

iterations, the NFM solution and the LQNS solution will converge to a solution that

56

satisfies all of the SLAs. This indicates that the surrogate flows have reserved enough

additional capacity to account for contention. The result is a feasible solution.

Suppose an LQN has been solved at iteration i. The throughput of user class c in the

LQN is indicated by f i
c,LQN, and the shortfall in throughput (relative to the requirements)

is ei
c:

ei
c = fc,SLA − f ic,LQN (5)

When ei

c is less than the allowed tolerance rate such as 1% of the fc,SLA, it means that

the optimal configuration for class c has been found, so the throughput and response

times have converged to their target values. Iteration stops when every class has

converged. However, convergence might be slow. Iteration can stop when the first

feasible solution is found, which we will assume to be specified originally in terms of

response times as RTc ≤ RTc,SLA; This solution may not be optimal, but it is found

relatively efficiently.

If the throughput given by the LQN solution does not meet the requirements, a new

NFM is created, denoted NFM i+1 for the next iteration i+1, adjusted to deal with the

shortfall. The shortfall in throughput is attributed proportionately to the demands for

services, with an amount

ei
sc = dsc ei

c (6)

for service s. The execution capacity provided for service s is augmented by this amount,

by new surrogate flow

δ is = Σc e isc = Σc dsc e ic. (7)

at service s. The total surrogate flow at service s is represented by a fixed rate Δi+1
s used

in the new NFM i+1.

57

Δi+1
s = Σi

j=1 δ is (8)

This is indicated by an output arc (surrogate flow) from service node s with the label

[Δi+1
s,Δi+1

s,0]. In the new NFM, the replicas of a task (if any) are treated again as a single

task node. When the new optimization model NFM i+1 is solved, the total demand rate at

the hosts will be increased by this amount. The iteration continues until enough resources

are reserved to compensate for the performance lost due to contention, and the throughput

requirement is met (or until the iteration limit).

5.7 Step 6: Linearized End-point Step (LEndStep)

The iteration of the optimization-LQN loop finds a feasible solution (RTc ≤ RTc,SLA)

quickly but may converge (i.e. ei
c≤ 1%fc,SLA) slowly and not uniformly due to jitter in

different deployment combinations. A feasible solution that has not converged tends to

have a smaller-than-specified response time and over-allocated resources; a converged

solution tends to have exactly the specified response time and less resource use. A final

linearized analysis is used to achieve this goal.

LEndStep is conducted on the basis of the LQN model returned by the optimization

loop. It freezes the deployments and linearizes the performance calculation with respect

to the request rates between tasks, and then uses LP on the entire linear model (including

linearized contention) to find a solution. In general this will save costs by reducing

execution power.

5.7.1 Sensitivity Analysis of the Performance Model

In the LEndStep process sensitivity analysis estimates the change on throughputs due

to the change of request rates. Sensitivity analysis provides a Jacobian matrix J, called a

58

sensitivity matrix, in which each element is the sensitivity of an entry throughput to a

request rate, defined as:

Jij = ∂ (entry throughput_i)/ ∂ (request rate_j) (9)

Let J be the matrix, δφ be a vector of entry throughputs and δy be a vector of all the

intertask request rate parameters. Each element δφe in the vector φ indicates the change of

the throughput of entry e, due to changes in request rates. Then

δφ= Jδy (10)

The sensitivity matrix δφ is approximated by the LQNX software (version 5.0 or

later using finite differencing [105].

5.7.2 LP Model to Seek Minor Adjustment

Based on the above linear approximation via sensitivity analysis, the following LP

model shifts request rates between replicas in order to reduce the execution costs.

Optimization Model II. LP Model in LEndStep

In the objective function, Ch is the cost per execution demand on the host h, φe is the

throughput of an entry e, and De is the mean execution demand of the entry e.

Objective: Minimize ΣeChφeDe (11)

The objective aims to minimize the execution cost by optimizing the request rates across

replicas.

Constraints:

1. φ = φ + Jδy (12)

2. 1Ε
Τφ ≥ φE,SLA (13)

3. y + δy ≥ 0 (14)

4. 1(e1, E2)δy = 0 (15)

59

5. *

()
0 e e h h h

e E h
Dφ σ+

∈

≤ ≤ Ω + Ω∑ (16)

Constraint 1: the estimated throughput subject to the change of the request rates,

calculated by the linear approximation with sensitivity analysis. In the constraint, φ is a

vector for the baseline throughputs returned from the iteration loop, Jδy is the variation

on the throughputs (δφ) due to the change of the request rates. δy are the variables in the

optimization, and φ is the vector of resulting throughputs. The number of elements in φ is

indicated by Nφ.

Constraint 2: φE,SLA is the SLA of the throughputs of entry E in the application

template. A set of replicas initialized from the entry E is indicated by an indicator vector

1Ε
Τ, which has a 1 for the replica of the Entry E, 0 otherwise. The constraint requires that

the new throughputs must satisfy the SLA requirement.

Constraint 3: limits the range of the change of request rate on each request arc.

Constraint 4: 1(e1, E2) is an indicator matrix consisting of NEsNφ rows and y columns.

NEs is the number of entries (Es) that send requests which are collected in the vector y.

Each row indicates the requests from a sender e1 (where e1 ∈ Es) to the replicas e2 which

are the replicas of E2 in the application template; the corresponding request is indicated

by 1, otherwise 0. This constraint guarantees the change of request rates does not violate

the request requirement in the template.

Constraint 5: CPU capacity constraint. E(h) are the entries deployed in the host h.

The loadings on a host cannot violate the capacity of the host. This constraint is needed

because a change of request rate may cause new contentions, which may violate the

60

linearization constraints, resulting in the performance failing to satisfy the requirements.

The bound σh is introduced to maintain the validity of the linearization; σh must be no

greater than 1. A large σh may help find a solution with lower costs, but it may cause big

changes in the resource utilization, creating new contentions which may lead to some

performance failing to satisfy the SLAs.

5.8 Case Study: Meet Response Time Goals at Low Execution Cost

This example looks for an economical solution giving the required response time for

multiple classes of users. It simplifies the problem by only considering the cost of

execution power and the capacity constraints, excluding the integer constraints imposed

by memory, availability of licenses and fixed costs on the hosts. LEndStep is not applied.

For this case study we define a response time RTc,∞ as the response time that can be

provided with infinite resources in the system, and define the target response time

constraint as 1.02RTc,∞, saying RTc≤1.02RTc,∞. Solving the LQN with an infinite

processor for each task estimates the value of RTc,∞ for every class. We use fc,SLA, which

corresponds to the RTc,∞, to update the throughput constraint in the above LP model.

Note that, in each round of optimization, the LP may think it is feasible to achieve the

fc,SLA with finite resources because of underestimation of actual resources required by

contention. The iterative process then keeps adding resources, LP thinks it is feasible, but

the LQN solution shows that it isn’t, until the response time is near to RTc,∞, with a

difference less than the tolerance rate.

The decision algorithm was evaluated using a case study of a moderate-sized service

system represented by the LQN in Figure 2.3, showing two classes of users. Class 1 has

61

250 users and class 2 has 100 users. The objective is to minimize the host computing

costs while meeting the multiclass workload response time goals. Figure 5.5 shows the

deployment of a single application.

The RTc,∞ is chosen to be the solution of the LQN with infinite threads and processors

for each task, which makes RT1, ∞ = 0.146 sec and RT2, ∞ = 0.267 sec. The corresponding

throughputs are f1,SLA = 250/(1 + 0.146) = 219.3/sec, and f2,SLA = 100/(1 + 0.267) =

78.9/sec.

The NFM optimization will determine the computing power needed to provide the

best possible service on a certain set of hosts.

Figure 5.5 LQN Model of a Service Center

62

Table 5.2. Host Resource Attributes in the Example

Host h mh φh Speed Ratio Ωh Cost Ch Hostable Tasks

Host 1 20 80% 1 20 1 1,2,4,7

Host 2 20 80% 1.2 24 1.1 3,4,6,7

Host 3 20 80% 0.9 18 0.9 1,4,5,6

Host 4 20 80% 1.1 22 1.1 3,7,9,10

Host 5 20 80% 0.8 16 0.7 1,2,8,10

Host 6 20 80% 1.2 24 1.2 5,6,8,9

There are six hosts available with constraints as to the tasks that can be assigned to

them. Demands are defined in CPU-seconds on a reference processor type, with a relative

speed factor for each host. The resources at each node are described in Table 5.2. The

cost Ch is relative to the standard host. The column headed mh gives the multiplicity of

each host. A fragment of the network flow model is shown in Figure 5.6. The thread pool

size of each task in the LQN was set to handle 70% of the maximum possible demand

rate at the task, a value found by experience to give good results.

1

Figure 5.6 Fragment of Network Flow Model

63

The solution is found in five iterations. The performance of each class, the resource

utilizations and the service allocation can be seen in Table 5.3 and Table 5.4. Table 5.3

shows the performance delivered to users in every class in each round. Table 5.4 shows

the computing power consolidation in every node, in which the integer number indicates

the required multiplicities of devices. Notice that a multiprocessor is fully utilized when

its utilization equals its multiplicity.

Table 5.3 Response Times of Classes in Each Iteration

Class Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final RT∞ Excess

Class1 0.290 0.168 0.162 0.153 0.149 0.147 0.146 +0.68%

Class2 0.456 0.368 0.311 0.290 0.280 0.272 0.267 +1.87%

Table 5.4 Host Multiplicity at each Iteration, and Final Utilizations

 Host Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final Final Utilization

1 8 5 7 8 5 5 5 × 0.72

2 17 17 17 16 16 16 16 × 0.66

3 0 0 0 2 11 8 8 × 0.80

4 8 16 16 16 17 17 17 × 0.68

5 16 16 16 16 16 18 18 × 0.79

6 5 5 5 6 11 8 8 × 0.70

Figure 5.7 shows that tasks 6, 7, and 10 are replicated across multiple hosts, and that

every host accommodates at least two tasks except host 5. The ratio of request flows

divided between replicas has been determined by the relative flows, as described above.

Feasible goals can be provided by increasing the maximum response time limit.

Factors of 1.1, 1.2,...,1.5 were applied to the required values of 0.146 sec for Class 1 and

0.267 sec for Class 2, to give the results in Table 5.5. The larger the response time limit,

64

the easier the problem. We can see that as the factor increases, the execution cost of the

system required to meet the requirements decreases and the solution is found more

quickly.

Class1 {250}

req1 {250} req2 {100}

Class2 {100}

T1
{175}

T6
{245

T3
{70}

Host1
{5}

T5
{245}

T9
{70}

T2E1 T2E2
T2 {245}

T4E1 T4E2
T4 {245}

T6’
{245

T6’’
{245

T10
{245}

T10’
{245}

T7’
{245}

T7
{245}

T8E1 T8E2
T8 {245}

T8E3

Host6
{8}

Host3
{9}

Host5
{18}

Host4
{17}

Host2
{16}

Host2

Figure 5.7 Near Optimal Deployment for the Service Center in Figure 5.5

Table 5.5 Execution Cost and Number of Iterations Corresponding to Relaxation of the
Goals

Factor on Response Time 1.1 1.2 1.3 1.4 1.5

Execution Cost 61.07 57.31 55.66 52.91 51.69

Number of Iterations 7 4 4 3 3

65

Chapter 6 Discrete Optimization Algorithms for Static
Deployment

The above simple optimization with NFM is an optimistic solution, which excludes

several practical constraints such as memory requirement and availability, license costs

and the power consumption associated with active hosts. To include the integer

constraints, a MIP is formulated which replaces the LP step in the iterative scheme shown

in Algorithm I in Chapter 5.

6.1 Optimization Model with Integer Constraints

6.1.1 Mixed Integer Programming (MIP) Model

Memory requirements, license availability and energy cost must be considered

together for application deployments on a commercial service center. For example, on a

Cloud infrastructure there is an assumption that every task has a VM to itself, and each

VM needs a specific memory space. Each host to accommodate a VM must offer enough

memory space to accommodate the VM. Commercial tasks have license constraints.

Additional licenses must be purchased if the number of replicas exceeds the agreed

66

maximum number, so the availability of software licenses and the associated costs must

be considered in a deployment decision. The Power cost (Ph) associated with the host

activity affects the total cost of deployment. Power cost can be simplified as the total of

execution and fixed costs. Following the literature [46], execution cost can be

approximated as being linearly related to CPU utilization, although the power cost is

actually a nonlinear function of load. Fixed costs are additional, representing some

fundamental operations of the machine. Fixed costs can be defined as a cost per active

host regardless of the size of workloads running. Because the CPU utilization is

proportional to the capacity used (Ω*
h), reusing the NFM model, the total power cost of a

host can be mathematically described with linear approximation, shown as below,

Ph = Ch Ω*
h + Cfh (17)

where Ch and Cfh are model specific constants, which can be estimated by learning

techniques such as linear regression. Because power cost is the rate of energy use, the

energy cost during a period of time of duration Δt is the total power consumption

calculated by Pavg Δt, where Pavg is the average power consumption. Figure 6.1 shows an

example of linear approximation of the power costs subject to the CPU utilization[46].

Figure 6.1 Linear Approximation of the Power Consumption against the Utilization of CPU

67

Let a binary variable Aht indicate an allocation of tasks to hosts, shown by arcs having

positive flow.

Aht = 1 if αht > 0, Aht = 0 otherwise

which allows modeling the problem as a mixed integer program, as shown below. The

model assumes that execution cost is charged per second of actual execution, including

capacity reserved to reduce contention. The solution returned by the MIP is the optimal

workload distribution across the system. It accounts for the workload balance and the

effects of contentions, as well as deciding which tasks should be duplicated and where to

place the replicas. The solution seeks the optimal configuration that has the minimum

costs for energy and license while satisfying multiple goals.

This model considers memory as a hard constraint and the limits on the number of

licenses as soft constraints. This means that a task only can be deployed on a host that can

provide sufficient memory space, but extra licenses can be added at extra cost when

additional replicas are needed. The variables and symbols used by the MIP are defined as

below,

Table 6.1 Variables and Parameters used in the MIP

Lt' Extra number of license in use, integer

Lt The number of avialble licenses

parc_ht
the reward/penalty on the arc connecting host h and task t,
default parc_ht = 0

Ch Execution cost of a host h, a cost factor for a unit of execution on this host

CLt Pay-per-use cost of every extra license for task t, beyond Lt

68

Cfh Fixed cost of host h, associated with host activity

BigC A very large number

mt
Memory requirement of task t, in order to execute (assumed the same for
all nodes)

Mh Memory Capacity of host h, memory available for application tasks

Δi
s

The total surrogate flows (virtual demand) of service s at iteration i . For
the calcualation please refer to Section 5.6

T(h) The collection of tasks hostable by host h

Aht Binary variable, to indicate if task t is assigned to the host h

Sh Binary variable, to indicate host activity

Optimization Model III. MIP Model

Objective function:

Minimize: Σht Chαht + Σht parc_ht Aht + Σt Lt' CLt+ Σh ShCfh (18)

over Aht, Lt' Sh, α, β, γ subject to constraints:

Constraints:

1. for each host, capacity of host h: Σtαht ≤ Ωh (19)

2. for each task, flow balance at node t: Σhαht = Σsβts (20)

3. for each service, add surrogate flows at node s: Σtβts = Σcγsc + ΣSΔi
s (21)

4. for each class, flow proportion at node s: γsc = fcdsc (22)

5. set Aht=1 for arcs having positive flow: αht ≤ Aht. BigC (23)

6. memory space at h:
()

t h t h
t T h

m A M
∈

≤∑ (24)

7. license constraint: Σh Aht ≤ Lt + Lt' (25)

8. Set Sh = 1 if any tasks are assigned to this host,

for each h

Aht ≤ Sh. over all t (26)

69

where Δi
s is determined by the LQN part of the iteration and is initially 0.

Variables:

1. Integer variable, licenses used in excess of L Lt' ≥ 0, (27)

2. binary variables Aht , Sh = 0 or 1 (28)

3. continuous variables, all flows are non-negative αht ≥ 0, βts ≥ 0, γsc ≥ 0 (29)

4. continuous variables, SLA flow constraint fc ≥ fc,SLA (30)

In the objective, the first term stands for the execution cost, the second term

prioritizes the use of arcs based on a reward/penalty scheme, the third term accounts for

the license costs and the last one is for the fixed cost.

Some constraints need further explanation:

Constraint 3: Operations balance at each service, including surrogate flows: for each

s. Δi
s is the amount of surrogate flow returned by the LQN model in the ith iteration,

indicating additional capacity that should be reserved to reduce the contention delays in

the (i+1)th MIP optimization. ΣSΔi
s is the size of the surrogate flow at the ith iteration.

Constraint 5: Constraint to determine Aht. BigC is a very large positive constant.

When the arc is used (αht≥ 0), Aht must be 1 to satisfy the constraint; otherwise, Aht will

be 0. Though the constraint can be satisfied with Aht= 1 when αht = 0, this is penalized by

the objective value, so Aht = 0 is chosen when αht = 0.

Constraint 7: Soft constraint on license. Lt' indicates the number of extra licenses

used.

70

Constraint 8: Constraint to decide the value of Sh. Sh is a binary variable to indicate

the activity of a host. When an allocation is used (Aht is 1), then Sh must be 1 to satisfy the

constraint and the fixed cost of the host is counted in the objective function; otherwise Sh

is 0.

In the model, parc_ht is a reward or penalty on arc ht. Rewards have negative values to

increase the priority that an arc is chosen, and penalties have positive values of parc_ht to

discourage the use of the arc. Smaller values of parc_ht imply higher priority. The value of

parc_ht is determined by how difficult it is to install a new replica. parc_ht is an effective

tool to improve robustness in the face of dynamic changes. The strategy for adjusting

parc_ht will be introduced in Section 7.1.2.

6.2 Solving the MIP

The MIP model can be solved with advanced algorithms via such MIP solvers as

CPLEX [23], which provides APIs to construct MIP models, solve the model and return

the optimal value for each variable. In the MIP described in Optimization Model III,

CPLEX looks for the optimal values for the continuous and discrete variables subject to

the goals and constraints.

However, since solving MIPs is NP-hard, it could be very time consuming to solve a

large-scale deployment problem with many tasks and hosts. To address this issue, two

heuristics are introduced to permit the solution of large models: Heuristic Packing (HP)

and Heuristic MIP (HMIP). The number of variables in the MIP model is determined by

the numbers of tasks and hosts. Assuming each task is hostable by every host, then n

hosts and m tasks creates n×m arcs, giving n×m variables representing flow rates, n×m

71

binary variables indicating the allocations, and m variables for licenses, as well as n

variables to account for power consumption. These variables allow over 2n·m allocation

options. As a result, the problem size explodes combinatorially with the increase in the

number of tasks and hosts as the model grows.

HP uses an efficient packing heuristic to assign tasks to hosts. HMIP uses an initial

loose packing to create a smaller MIP that is solved exactly; this is faster, but the

guarantee of finding the true optimum is lost.

Table 6.2 Variables used in HP and HMIP

Ω+
h

 remaining execution demand space of host h
Ω*

h
 The used capacity of host h, Ω*

h = Ωh - Ω+
h

M+
h remaining memory space of host h

M*
h The used memory space of host h, M*

h = Mh - M+
h

d+
t remaining execution demand of task t

L+
t Remaining available licesne for use

L*
t Total number of licenses in use, L*

t
 = Σh Aht

Lt' Extra number of licesnes in use, integer

6.2.1 Algorithm: Heuristic Packing (HP)

The heuristic packing (HP) algorithm is motivated by bin-packing. It includes two

steps. Step I aggregates workloads on the lowest-cost hosts if the capacity can be fully

used. But the constraints may limit the utilization of the selected hosts in Step I, making

the selection non-optimal. In order to achieve a better solution, Step II then seeks other

more suitable hosts to replace the hosts that are not fully utilized in Step I. The algorithm

is shown below.

Algorithm II. Heuristic Packing (HP):

// allocation function

72

Allocate (t, d, h)

//allocate demand d for task t to host h, and adjust the remaining demand d+
t and

available memory M+
h

1. Set αht = d,
2. Decrement Ω+

h by αht,
3. Decrement d+

t by αht,
4. Decrement M+

h by Mt
5. Increment L*

t by 1

// HP algorithm

STEP I

1. Sort the tasks in decreasing order of d+
t/L+

t, subordered by decreasing order of CLt.
//This gives priority to tasks with the most demand and fewest licenses.

2. For each task t in order:
a. Sort the hosts with M+

h greater than Mt, by their CPU execution demand
space Ω+

h (largest first) and designate h(i) as the ith host in order, break tie
by the total cost. Define these sorted hosts as I.

b. Set i = 1 (allocate first to host h(1))
c. if d+

t > 0
i. execute allocate (t, min(d+

t , Ω+
h(i)), h(i)) // maximize the use of

host i.
ii. If d+

t > 0 and there are available hosts remaining in I, then
increment i, repeat from Step 2.c, else, exit and return error
message “not enough available hosts”

d. if d+
t = 0
i. Sort the hosts with αht >0 by αht (largest first), and designate h(j)

as the jth host in this order. Define these sorted hosts as J
1. d = min(αh(j)t , Ω+

h(i))
2. Ch(j)t = max(Mt/M h(j) , d /Ωh(j)) Cfh(j) + d·Ch(j)
3. Ch(i)t = max(Mt/M h(i) , d / Ωh(j)) Cfh(i) + d·Ch(i)

ii. If Ch(j) > Ch(i) or (Ch(j)t = Ch(i)t and host i is hosting at least one task
but has spare capacity):

1. If d = αh(j)t // allow migration
a. Then move task t from host j to i. increment j if

there are hosts remaining in J, repeat from 2.d //
move the task to the low cost host

2. If d = Ω+
h(i) then:

a. If L+
t >0 or αh(i)t > 0 or Ch(j)t - Ch(i)t > CLt
i. Then allocate (t, Ω+

h(i), h(i)), increment i if
there are available hosts remaining in I.

73

// add a replica of t on the host i, if spare
license.

iii. Else
increment j if there are hosts remaining in J, repeat from
2.d

e. increment i if there are available hosts remaining in I // the new selected
host has less cost than the ones in use

STEP II

1. For each host i which is not selected in STEP I
a. For each host j which has been selected to host tasks:

i. If Ω+
h(i) > Ω*

h(j) and M+
h(i) > M*

h(j) and Cfh(i) + Ch(i) Ω*
h(j) < Cfh(j) +

Ch(j) Ω*
h(j) then:

Move all tasks from host j to host i.

In HP, Step I includes a set of operations of migration, aggregation and replication.

This step takes account of the fixed cost, execution cost and license availabilities. It

approximates the share of fixed costs at a host h (Cfh) by tasks proportional to the share of

the resource utilization, estimated with max(Mt/Mh, d/Ωh)Cfh, though fixed cost (Cfh) is

independent of the size of the load. Let Cht be the costs due to task t on host h, consisting

of the share of fixed costs (Cfh) and the execution costs (d·Ch), in which Ch means the cost

per demand in host h, shown as below. The goal of Step I then is to minimize Σht Cht,

where:

Cht = max(,t h hM M d Ω) Cfh+ d·Ch (31)

The packing in Step I assumes each selected host will be fully utilized in the solution.

However, this assumption is optimistic.

Step II considers hosts that have large spare capacity remaining after Step I. Other

hosts may be able to handle their tasks with lower cost consumption. Step II addresses

this issue by moving tasks from the under-utilized hosts to other hosts that can

74

accommodate the operations with lower costs. Step II assumes that all tasks currently

deployed on a high-cost host are hostable in a low-cost host, so the new host can replace

the old host.

6.2.2 Algorithm: Heuristic MIP (HMIP)

Heuristic Packing is efficient in finding a feasible solution, and in some cases, the

quality of optimization is similar to that obtained using exact MIP solvers. However, the

quality is not guaranteed. So the two are combined in a new algorithm called HMIP,

shown as Algorithm III. HMIP simplifies the MIP problem by reducing the optimization

options with HP first, gaining the ability to handle larger problems, and then using a MIP

solver to optimize based on the subset of selected hosts.

Algorithm III. HMIP

1. Heuristic Packing (HP) performed as described in Algorithm II.

2. Construct and solve a MIP as in Optimization Model III, using only the hosts

selected in Step 1, and allowing any task potentially to use any host in the

selected subset.

The feasible solution returned by HP (CHP) can be used as an incumbent in the MIP

solution to reduce the optimization time. This extra information is added as a constraint

in the MIP:

Σht Chαht + Σt Lt'CLt+ Σh ShCfh ≤ CHP (32)

75

6.2.3 Evaluation of HP and HMIP

A set of experiments was conducted to compare the performance of the pure MIP via

an exact MIP solver with HMIP and HP. The test bed simulates a system with 1 to 50

applications to be deployed on a host pool that consists of 5 types of hosts, as shown in

Table 6.4. The ratios between the Ch and Cfh are approximated based on the experimental

results given in [96][24][42][46], ranging between 0.15 to 1; the fixed cost is about

40~60% of the total energy cost when a host is fully utilized. The value of the cost is

relative to a standard host. Each application has 10 independent tasks, each of which has

different randomly chosen CPU demand, memory requirement, license availability and

cost. Each type of host in the pool has 1000 fully identical hosts, which can host arbitrary

tasks. The branch-and-bound solver CPLEX is used to solve the MIP problems.

Aggressive probing and strong branching are deployed to improve the efficiency and give

good solutions for large and difficult MIP problems. The optimization solver CPLEX in

the experiments in this thesis uses the default configurations except the following

parameters.

Table 6.3 CPLEX Configurations

Aggressive probing enable
Strong branching enable
Relative MIP gap tolerance 0.01

The MIP terminates at the convergence rate of 1%, meaning the MIP optimization

stops as soon as it has found a feasible solution proved to be within one percent of the

optimal, or it terminates at 350 seconds if a solution cannot be found.

76

Table 6.4 Host Information

Type
Relative

Speed

Relative

Memory

cost per execution demand

(Ch)
Fixed cost (Cfh)

A 1.8 2 0.5 0.6

B 2.4 4 0.45 0.81

C 2.8 8 0.4 1.12

D 3.2 12 0.35 1.4

E 3.6 16 0.3 1.62

The quality and effort of optimization depend on how easy it is to fit the applications

into the available processing resources. We will call a situation with just enough

resources (or not quite enough) a “high-stress” situation, and one with plenty of

resources, low stress. The stress rate indicates the ratio of the demands to the available

total capacity for execution:

Stress Rate = Σt dt,SLA / ΣhΩh (33)

Four values of the stress rate are used, from 0.25 to 0.9; in each case the number of

hosts is adjusted to give a stress rate within 0.05 of the nominal shown. At each stress

rate, there is the same number of hosts of each type.

The goal is to evaluate the scalability of the algorithms so we only use a single

scenario. The evaluation in each case uses the same set of applications and hosts.

Optimization quality and efficiency are the two measured metrics.

77

Table 6.5 Pure MIP, Heuristic and HMIP Comparison (Without Contentions)
Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05)

 HP MIP HMIP HP MIP HMIP HP MIP HMIP HP MIP HMIP

1 app
Host Pool Size: 8

Number of Tasks: 10

Host Pool Size: 10

Number of Tasks: 10

Host Pool Size: 14

Number of Tasks: 10

Host Pool Size: 25

Number of Tasks: 10
objective 11.9 11.48 11.9 11.6 11.48 11.6 11.6 11.41 11.6 11.24 11.24 11.24

Solution time (sec) 0.016 0.11 0.125 0.016 0.172 0.188 0.015 0.25 0.109 0.016 0.125 0.093
of variables in MIP - 127 97 - 157 97 - 217 97 - 382 82

5 app
Host Pool Size: 12

Number of Tasks: 50

Host Pool Size:16

Number of Tasks: 50

Host Pool Size: 22

Number of Tasks: 50

Host Pool Size: 39

Number of Tasks: 50
objective 23.89 22.88 22.88 23.92 22.87 22.72 23.2 22.75 22.57 22.3 22.3 22.3

Solution time(sec) 0.015 0.375 0.25 0.015 3.735 0.766 0.016 0.703 0.328 0.015 0.453 0.203
of variables in MIP - 887 887 - 1171 816 - 1597 816 - 2804 674

10 app
Host Pool Size: 17

Number of Tasks: 100

Host Pool Size: 23

Number of Tasks: 100

Host Pool Size: 32

Number of Tasks: 100

Host Pool Size: 57

Number of Tasks: 100
objective 34.04 33.15 33.13 34.38 32.82 33.14 46.79 32.65 32.85 35.2 32.2 32.2

Solution time(sec) 0.015 0.39 0.562 0.016 6.969 0.422 0.015 6.344 1.734 0.031 0.891 0.422
of variables in MIP - 2467 2467 - 3313 2326 - 4582 2326 - 8107 2044

20 app
Host Pool Size: 25

Number of Tasks: 200

Host Pool Size: 33

Number of Tasks: 200

Host Pool Size: 46

Number of Tasks: 200

Host Pool Size: 86

Number of Tasks: 200
objective 52.73 52 51.94 56.52 52 51.99 68.69 51.34 51.28 52.35 50.98 50.88

Solution time(sec) 0.016 1.641 2.219 0.031 4.281 3.203 0.031 25.953 7.735 0.062 68.657 2.562
of variables in MIP - 7165 7165 - 9413 6884 - 13066 7165 - 24306 6322

30 app
Host Pool Size: 41

Number of Tasks: 300

Host Pool Size: 53

Number of Tasks: 300

Host Pool Size: 75

Number of Tasks: 300

Host Pool Size: 139

Number of Tasks: 300
objective 85.57 84.43 85.15 106.41 84.11 84.06 86.1 83.42 83.33 84.51 81.95 81.95

Solution time(sec) 0.031 4.031 5.469 0.046 6.266 7.625 0.078 51.687 9.672 0.109 21.422 4.328
of variables in MIP - 17471 17471 - 22523 16629 - 31785 16629 - 58729 14945

40 app
Host Pool Size: 50

Number of Tasks: 400

Host Pool Size: 64

Number of Tasks: 400

Host Pool Size: 89

Number of Tasks: 400

Host Pool Size: 169

Number of Tasks: 400
objective 105.48 102.75 102.75 107.12 101.71 102.66 104.72 100.76 100.75 102.13 101.01

Solution time(sec) 0.047 8.125 18.953 0.063 100.81 13.688 0.094 165.83 27.093 0.141
Out of

Memory 9.047

of variables in MIP - 28330 28330 - 36184 26647 - 50209 26647 - 95205 23842

50 app
Host Pool Size: 63

Number of Tasks: 500

Host Pool Size: 81

Number of Tasks: 500

Host Pool Size: 113

Number of Tasks: 500

Host Pool Size: 216

Number of Tasks: 500
objective 133.94 130.77 132.2 134.86 130.91 130.77 135.21 130.28 130.32 130.58 128.56

Solution time(sec) 0.062 42.578 28.296 0.062 Time out (350) 54.547 0.094 Time out (350) 57.343 0.187
Out of

Memory 19.359

of variables in MIP - 44513 44513 - 57131 41709 - 79563 42410 - 152103 37503

78

Results are given in Table 6.5 for the objective cost, solution time and the number of

all MIP variables (MIPvar, including continues and discrete variables) comparison. The

best numbers for each model are shown in boldface (lowest objective value, lowest

solution time).

• The evaluation shows that all problems with less than 10,000 MIP variables

can be solved by CPLEX in less than 10 seconds. This many variables

corresponds to an HMIP formulations with about 20 applications on 100 hosts

or a pure MIP formulations with 20 applications on 35 hosts.

• Most MIP problems that have 10,000~20,000 variables can be addressed in 10

seconds. In HMIP all problems with about 35 applications on 150 hosts are at

this size. In pure MIP it corresponds to a problem with 30 applications on 50

hosts or 20 applications on 80 hosts.

• For the larger MIP problems with over 20,000 variables, the effort is highly

variable.

• Low stress cases gave larger MIPs than high stress, and also have a bigger

reduction in MIP size between the pure MIP and the HMIP. Roughly speaking

there was little or no reduction in MIPvar at stress rate 0.9. A reduction of one

third at 0.7, half at 0.5 and three quarters at stress rate 0.25, up to the point

where the problem is too large for CPLEX.

79

• In most cases, the pure MIP gives the best objective function value, but it

takes more solution time. When the size of the problem increases to extremely

large, pure MIP either reaches the limit on memory or cannot find a solution

within an acceptable time. Moreover, the increase in the number of hosts may

result in an explosion in the size of the MIP problem, giving a longer solution

time.

• HP is very fast, but it cannot ensure the quality of the optimization. In some

cases it is within a few percent of the optimum, but with medium stress (0.5)

and 10 or 20 applications, it is much worse.

• Looking at different problem sizes, the solution time for HP increases with

decreasing stress (since there are more alternatives). For MIP and HMIP the

solution time tends to be largest for intermediate stress cases (stress rate =

0.5).

• HMIP can give a solution with almost the same quality as pure MIP in all

cases (less than 2% difference), and in most cases, it is much faster, especially

when the stress rate is low. It can handle much larger problems than pure

MIP, but the quality of HMIP is affected by the solution given by the initial

Heuristic Packing step. When a large-scale deployment needs to have a high

quality solution in a limited amount of time, HMIP is the best algorithm to

use.

Note that in some cases the results given by HMIP are slightly better than pure MIP.

This results from the termination criteria, which stops the optimization at a solution close

80

to the optimum, though better solutions may exist. The quality of the optimization is thus

determined by the first solution that satisfies termination criterion, so HMIP may perform

better than MIP in some cases.

Please also note that the pure MIP is faster than HMIP in a few cases, though the

problem size in HMIP is much smaller. The number of variables and constraints is one of

the factors affecting the solution speed. Reducing the number of possible solutions

(indicated by the number of variables) can help to improve the efficiency, but not always,

since MIP is NP-hard. The search strategy chosen by the optimization solver has a great

impact on the optimization quality and efficiency. A search strategy that is efficient in

addressing a pure MIP model might be slow for the corresponding HMIP model

simplified from the original MIP problem. Though the current optimization mechanisms

in CPLEX try to give the best strategy in terms of the MIP model, it cannot guarantee that

the strategy chosen is the most suitable.

Comparing the objective costs shows that in all cases HMIP is able to give a high-

quality optimization competitive to that returned by a pure MIP via CPLEX. Results

show that the solution time of both algorithms may exponentially increase with the

growth of the number of applications, but the solution time for the pure MIP increases

faster than HMIP, which corresponds to the increase in the number of variables in MIP

and HMIP. For high stress models, MIP starts to show an obvious latency for problems

with 40 applications, while HMIP shows latency for problems with 50 applications. For

problems with medium or low stress rates, the algorithms start to show different solution

times when the number of applications scales beyond 20. The smaller MIPs solved by

81

HMIP allow it to solve problems with over 40 applications at 0.25 stress rate, but pure

MIP reaches the memory limitations on these problems.

These results demonstrate that HMIP is able to give high quality decisions, nearly as

good as pure MIP, but with much greater efficiency in most of the problems, especially

those having medium or low stress rates or a large number of applications.

6.3 Revenue Model Supported by the Optimization

The approach presented above gives an approach to minimizing the total costs

associated with deployments, and accounts for several goals, including execution

demands, contentions, energy consumption, memory, and license availability. This model

can be extended to support other optimization problems such as the revenue model.

In the revenue model, assuming:

• Each service class c offered to users has a price per response of Pc,

• Each application App to provide services has execution and fixed costs on

hosts, as well as costs on extra licenses, described as

CostApp = Σht Chαht + Σht parc_ht Aht + Σt Lt
 'CLt+ Σh ShCfh (34)

 The t in the equation represents the tasks used by the application.

Then an application App has a profit

PROFITApp = Σc in CApp Pcfc − CostApp (35)

The optimization for a host provider is to maximize the total profits

TOTAL = ΣApp PROFITApp

82

subject to constraints described in Optimization Model III. When the total profit to the

application providers is maximized, presumably the host provider share of this is also

maximized, although the mechanism for sharing this is not considered here.

An objective function can be described as:

 Max ΣApp PROFITApp (36)

Moreover, because some classes may have a constraint on the maximum throughput

resulting from the limit on the number of users, an upper bound on the throughput fc may

be needed for these classes.

6.4 Case Study: Deployment with Multiple Goals with Contentions

This example leverages a small application shown in Figure 6.2 to conduct an

evolution to test the feasibility of the approach subject to a diversity of constraints. The

application has 287 users, and is required to give an average response time described in

the SLA of 28.98ms. The values of these QoS requirements are randomly generated for

the testing. This test accounts for the goals of:

• Average response time in SLA

• Resource availability and requirements (CPU and Memory)

• License availability and license cost (the number of free licenses for each task

is different, as shown in Table 6.7.)

• Power Consumption (execution and fixed costs)

• Effects of contentions

83

The evaluation is conducted on the host pool shown in Table 6.4 with a stress rate of

0.7.

Figure 6.2 the LQN Model of an Application to be Deployed with Multiple Goals

Based on the LQN and the available hosts in the pool, an optimization model can be

constructed as a MIP in the form of Optimization Model III, solved with HMIP. The MIP

solver and the LQN solver are employed in the iterative loop described in Chapter 5. This

process takes QoS as a goal of the optimization while accounting for contention.

The optimization results given below show that the optimization loop achieves a

feasible solution in three iterations, giving a response time of 27.21ms. Adjustment of

request rates with LEndStep tunes the loadings between replicas, achieving the final

eUserBehav

[171]

UserClass

{287}

eStoreAccess

[2]

WebServer

{90}

eReadImage

[1]

ImageDisk

{1}
eOrder

[2.04]

StoreApp

{90}

eBrowse

[3]

eBuy

[30]

ShoppingCart

{10}

eUpdate

[1,10]

InventoryDB

{7}

eRead

[14.3]
eCustUp

[1.2]

CustomerDB

{1}

eCustRd

[3]

eFWrite

[1,3]

FileServer

{10}

eFRead

[3]

(1)

(0.913)
(2.5) (0.0873)

(2.1)
(3)

(1)
(1.2) (1)

(1.8)
(1) (2.5)

(4) (1)

(1)

(1)

84

response time of 28.74ms and saving 0.02 execution cost. This final result deviates from

the goal by -0.83%. The total optimization process takes 8.5 seconds, in which 6.63

seconds are used by the sensitivity analysis.

Table 6.6 Response Time and the Associated Cost in Each Iteration

 Iteration 1 Iteration 2 Iteration 3 Sensitivity with LP Goal Error

Response Time 34.80ms 32.47ms 27.21ms 28.74ms 28.98ms -0.83%

Execution Cost 4.93 4.83 5.07 5.05 - -

Fixed Cost 6.58 6.86 6.88 6.88 - -

Total Energy and

License Cost
11.51 11.69 11.95 11.93 - -

Solution Time 0.734 0.547 0.594 6.63 - -

Table 6.7 shows the use of licenses for each task and the original license availability.

Resource sharing based on power consolidation means that 13 replicas can be processed

with 6 physical hosts. Figure 6.3 gives the utilization of memory and processors, showing

that the resource utilizations are balanced between the hosts.

Table 6.7 the Use of License of Each Task (HMIP)

Task Name Number of license used Number of free license

TWebServer 1 3

TImgDisk 2 3

TInvDB 3 5

TFS 3 6

TCustDB 1 2

TCart 2 4

TStoreApp 1 6

85

Figure 6.3 the Use of CPU and Memory in Hosts (HMIP)

This simple case study demonstrates that the approach can satisfy multiple goals at

the same time. The optimization creates replicas for tasks, balances workloads, and

optimizes allocations, achieving the required performance with an economical solution.

6.4.1 Comparison with Other Approaches

Many existing systems use packing approaches to handle task deployments.

Experiments are conducted to compare the effectiveness of HMIP, the Power-minimizing

Placement Algorithm (mPP) introduced in [96] and the simple greedy approach shown

below,

Simple Greedy Approach:

 T: a collection of tasks to be deployed.

 I: the number of hosts

1. Sort hosts in increasing order by the maximum power consumption calculated as
Cfh+ ΩhCh.

2. Set i = 1,
3. For each t in T

3.1. If i ≤ I then:
3.1.1. Execute Allocate (t, min(d+

t , Ωh(i)), h(i)) // allocation function is
the same as the one used in Algorithm II

86

3.1.2. If t has remaining execution demand (d+
t > 0) then increment i and

repeat from Step 3.
3.2. Else (i > I) return error “out of hosts”
3.3. Next t and increment i

Table 6.8 compares the effectiveness of HMIP, Simple Packing and mPP with the

same case studied above.

Table 6.8 Comparison of the HMIP and Simple Packing

 HMIP Simple Greedy Approach mPP

Response Time (Goal: 28.98ms) 28.74ms 34.10ms 41.78ms

Number of Hosts Used 6 13 10

Total Execution and Fixed Cost 11.93 14.28 12.34

Execution Cost 5.05 6.48 6.34

Fixed Cost 6.88 7.80 5.99

Average CPU Utilization Per Host 0.76 0.55 0.70

Because the simple greedy approach and mPP do not account for the QoS

requirement, it is not surprising that the solutions violate the QoS constraint. In the

simple greedy approach one task per host increases the number of hosts used and reduces

the host utilization. As a result, the solution has higher energy costs and requires more

hosts than HMIP. mPP allows resource sharing, thus fewer hosts are used than in the

solution returned by the simple greedy approach. However, mPP cannot guarantee the

solution is near the global optima because of the limitation of the packing strategy.

Moreover, both the simple greedy approach and mPP do not consider the memory and

license constraints, but this limitation is not shown in this simple example.

87

Chapter 7 Management in Dynamic Environments

The discussion so far has been in terms of static conditions for the applications and

the cloud: a constant set of applications and user workload intensities, fixed application

demands, and a fixed set of hosts. One goal of management of a cloud is to respond to a

change in these conditions, with a new deployment if necessary. A host may fail, a new

application may need to be deployed, and the parameters of existing applications may

change. A new optimization may simply repeat the effort of the first one, but it is better

to take into account the existing deployment and try to minimize the changes to be made.

This makes the changes quicker and cheaper to install.

A common way to guarantee the performance subject to variations is to reserve

specified resources and provision resources as long as the applications demand them. A

critical downside of reserving resources is that the application only can use the particular

resources, which limits resource sharing. In addition, it does not consider the effects of

contention. Moreover, the deployment of new tasks into a Cloud can impact the

performance of tasks already running on the machine. Optimization with persistence [11]

is an effective way to provide online adaptive resource provisioning in terms of dynamic

requirements, increasing resource utilization, limiting the impact on existing

configurations, and providing dynamic robustness.

88

Figure 7.1 shows two deployment scenarios: (a) new application deployment (shown

by the dark dashed arrow), and (b) redeployment (shown by the light dashed arrow)

where all applications are optimally redeployed to adapt to changing conditions. The

deployment optimization module computes the deployment plans and forwards them to a

deployment engine (such as IBM Tivoli Provisioning Manager) which executes them.

The optimization decisions are based on the state of the cloud which includes information

about the applications and resources already allocated.

Figure 7.1 Deployment Scenarios

To enhance sharing, one node may host more than one application. In both the

deployment and redeployment scenarios, (a) and (b) in Figure 7.1, the cloud uses a

flexible licensing model. It owns a number of concurrent licenses (which means the

owner can run a specified number of application instances at the same time) for each type

of application. When that number is exceeded the cloud acquires additional pay-per-use

licenses.

89

7.1 Re-Optimization with Persistence

A good re-optimization approach should increase resource sharing with persistence of

existing placements, limiting the cost of changes. Brown et al. [11] stated that

persistence can be achieved by using hard constraints to limit deviations from previous

preferred values, or soft constraints to penalize the deviations. This implies that

persistence in the optimization of task placement can be achieved by adding constraints

on the flow rates or giving rewards/penalties on the arcs. This will help to control the

changes to running applications when delivering new decisions in response to changing

requirements.

7.1.1 Constraints on the Flow Rates

If an application arrives or parameters in the performance model are changed, some

of the existing configurations to be preserved can be constrained with flow bounds,

limiting the deviation of flow rates.

Constraint I. Constraints on the Flow Rates

Flow rates can be constrained with lower and upper bounds, which respectively

guarantee the minimum and maximum execution demands to be assigned to the task from

the host. When the upper and lower bounds are the same, this specifies the exact amount

of the execution demands given to the task.

Constraints on the flow rates can be employed in the following ways:

90

o Disable specific allocations

 If an allocation is not allowed, the arc can be disabled in the optimization by setting

the upper bound of the flow rate at 0, At 0 (or equivalently, by removing the arc from the

model).

o Preserve existing configurations without changes

If a running task must perform stably without any changes, its upper and lower flow

bound are constrained at the current flow rate.

o Reuse the allocation and allow the addition of extra workloads

If a running task is needed to perform stably and to handle extra workloads, the upper

bound can be set at infinity while the lower bound is set at the current flow rate.

o Reuse the allocation but limit the resource utilization

If an allocation can be reused but no more new workloads can be added, the lower

bound can be set at 0 and the upper bound set at the current flow rate.

o Reuse the allocation but limit the deviation of the performance

If a running task can be performed with certain deviations, the upper and lower

bounds are constrained with the maximum and minimum flow rates that describe the

acceptable varying range.

Note that constraints on the flow rates are hard constraints, guaranteeing the size of

the execution demands delivered to the allocation.

7.1.2 Reward/Penalize the Allocations

Another approach is to use the weights parc defined in Optimization Model III to

apply a reward or penalty on the arcs. These control the priority of use of the allocation.

91

This approach can help to minimize the changes in the placements and preserve good

configurations. For example, in order to drive the re-optimization to reuse the existing

allocations, the arcs currently having no flows can be penalized, and the arcs that are in

use can be rewarded. The value of the penalty and rewards can be determined by the cost

of a new installation, risk of migration, and the importance of preserving some replicas.

Unlike the hard constraints on flow rates, a reward or penalty is a soft constraint.

7.1.3 Constrain New Replicas for Some Specific Tasks

In dynamic environments, adding new replicas can help to give sound performance in

response to the variation of conditions, but installing new deployments is associated with

risks, increased operating costs and provisioning delays, and may change the system

structure and parameters. In some cases, it is better to limit the creation of new replicas

for some specific tasks in order to reduce the associated risks and costs.

The optimization approach provides this property by considering the requirements as

constraints, shown as follows:

Constraint II. Constraints on Creating New Replicas for Specific Tasks

1. indicate each arc currently in use by setting a parameter old_archt = 1, otherwise

0.

2. for each task, the number of new replicas is

Σh (1- old_archt) Aht (37)

The new replicas here refer to the replicas to be installed, which include the new

replicas created from duplication and migration and also newly arrival tasks.

92

3. when the number of new replicas of a task t is not allowed to exceed a limit (Rt),

this condition can be described with

Σh (1- old_archt) Aht ≤ Rt (38)

This constraint builds up a relationship that has the following characteristics.

• When the arc is already in use, old_archt = 1, the reuse of this allocation is not

counted as a new replica. (1- old_archt) Aht = 0

• When the arc is not in use, old_archt = 0, if Aht = 1, which means it is a new

replica. (1- old_archt) Aht = 1

• When the arc is not in use old_archt = 0, if Aht = 0, which means this

allocation is not selected. (1- old_archt) Aht = 0

For each task t, there is a cost C_Rt associated with each new replica. The value is

determined by the cost of installation and maintenance of the new replica and the

possible revenue lost due to the process of installation. This cost can be

considered in the objective function described as below, in order to minimize the

cost of changes.

C_Rt(1- old_archt) Aht (39)

4. In some cases, for the task, the number of new replicas is expected to be below a

certain limit, but this is not a hard constraint. The limit can be described with a

slack (S_Rt), indicating that the extra changes are allowed if they are necessary.

Σh (1- old_archt) Aht ≤ Rt + S_Rt (40)

There is a penalty P_Rt associated with each extra replica. For each task, the total

penalty can be calculated as below. This calculation can be considered in the

objective function for minimizing the costs of extra replicas.

93

P_Rt ·S_Rt (41)

7.1.4 Limit New Replicas to a Small Number

In order to improve the stability of the system in dynamic deployment management,

changes on some running applications should be limited to a small range. For example, in

each re-optimization update, a possible constraint is that at most 10% of running tasks

may be migrated or given new replicas. To achieve this goal, a constraint can be included

in the optimization as developed as below.

Constraint III. Constraints to Limit New Replicas to a Small Number

1. Reuse Σh (1- old_archt) Aht to indicate the number of new replicas of a task t, in the

same manner as above.

2. Let ptgT be the percentage of running tasks that could be changed, where T represents

a set of running replicas. Assuming there are N elements in T, then the number of

tasks allowed to be changed is the largest integer value that is no greater than

(ptgT/100)N, indicated by floor((ptgT/100),N). Let Slack_T be the extra number of

changes if needed, but these are not expected, since extra change violates the

available range.

3. A constraint then can be created:

ΣT Σh (1- old_archt) Aht ≤ (ptgT./100)N + Slack_T (42)

4. Slack_T is included in the objective function where it is minimized.

This is still a MIP problem. The constraint guides the optimization to limit the scale of

changes, offering system stability subject to dynamic changes.

94

7.1.5 Reduce the Number of New Hosts

Using a new host is associated with a start-up cost (Rh) to boot the computer. In some

cases this cost should be taken into account in order to provide a more efficient

adjustment in the face of dynamic changes. The optimization approach can provide this

property by reducing the use of new hosts, as follows:

1. Indicate each host currently being used by setting a parameter old_Sh = 1,

otherwise 0.

2. Account for the Total Start-up Costs calculated as below in the min-cost objective

function.

Total Start-up Costs = Σh (1- old_Sh) Sh Rh (43)

In the Optimization Model III, when a host is used, Sh is constrained to be 1,

otherwise 0. If the host is newly used (old_Sh = 0 and Sh =1), then the associated

start-up cost Rh is added to the total costs. This guides the min-cost optimization

to find a solution with a smaller number of new hosts.

7.2 Three Re-Optimization Strategies in Dynamic Environments

Three re-optimization strategies will be compared, one using full optimization in

every period, and the other two using optimization with persistence:

• Full re-optimization: attempts to find the solution with the least cost, using the

MIP model shown in Optimization Model III.

• Re-optimization with persistence: allows a new application to share resources

with existing applications, but attempts to reduce the changes to existing

95

deployments. This strategy rewards the flows that are in use and penalizes the

potential new flows.

The model for Re-Optimization with Persistence can be described as:

1. Reward the arcs that represent deployed tasks that are running. Set a

penalty parameter parc_ht with a negative value, which indicates how

important it is that the allocation should be preserved. A smaller parc_ht

indicates that it is more important to preserve this allocation.

2. Penalize the arcs representing potential new deployments. parc_ht is

assigned a positive value. The value of parc_ht is determined by the costs to

install the new allocation. A greater penalty means larger costs.

3. The value of parc_ht is updated periodically to guide the re-optimization to

choose new solutions.

• Simple Rule (re-optimization without sharing): This is a simple strategy used in

practice. New deployments only can be added onto new hosts that are not being

used. This strategy has no impact on existing deployments. This strategy imposes

several constraints on the optimization model:

1. It imposes a lower bound on each output arc that is in use equal to the

current flow rate, labelled as [current flow rate, ∞, cost per flow rate].

This allows increasing loadings of the running tasks, but cannot reduce

the loads, or terminate, or move the tasks.

2. It places an upper flow bound of zero on the idle arcs ongoing from the

running hosts, labelled as [0,0,0].

96

7.3 Experiments: Controlling the Scale of Changes

These experiments are conducted on the host pool described in Table 6.4. Each

application has the structure shown in Figure 6.2, but with different parameters and

requirements (chosen randomly). These ecommerce systems are to share a cloud. A 0.25

stress rate is used, and at most 80% of the CPU capacity can be used to avoid

overloading. HMIP is used as the optimization algorithm and takes into account:

• Average response time in SLA

• Resource availability and requirements (CPU and Memory)

• License availability and license cost

• Power Consumption (execution and fixed costs)

• Effects of contentions

This experiment uses LQNS V5.1 as the performance model to conduct performance

and sensitivity analysis and uses CPLEX v12.1 as the MIP optimization solver.

Three applications are running, which respectively are labelled as APP 17, APP 89

and APP 91. The information on the costs and resource utilizations of the running system

is shown in Table 7.1, in which energy cost is the total of fixed and execution costs. A

new application labelled APP 97 is added, which can share resources with the running

applications. The “number of new replicas” stands for the replicas just installed in the re-

optimization.

97

Table 7.1 Running Applications in the Cloud Infrastructure

of applications # of allocations
Total # of

hosts

Total energy

and license cost
Execution cost Fixed cost

3 25 7 15.693 5.894 9.72

The evaluation measures the energy and license cost, the number of new allocations

(including the allocations of new tasks and the migration of the old allocations), and the

number of hosts in use.

The first experiment attempts to limit the number of replicas of some specific tasks

(using the approach given in Section 7.1.3), and the next experiment tries to limit the

changes to a small number (using the approach given in Section 0). These experiments

will evaluate the feasibility of the approach and study the impact of the stress of the

constraints.

7.3.1 Case Study on Controlling the Costs of New Replicas for Specific Tasks

This example is a simulation to evaluate the effectiveness of the re-optimization in

terms of the number changes required relative to the cost of the changes. The number of

new replicas (the replicas to be installed) per task is controlled in each re-optimization.

One test is to let each task have at most one more free replica in the re-optimization

(indicated by 1 rep per task), and the other allows each task to have two new free replicas

(indicated by 2 rep per task). Each extra replica above the limitation is associated with an

extra cost (set C_Rt=0, P_Rt = 1). These results are compared against full optimization

without persistence constraints, shown in Table 7.2 and Figure 7.2.

98

Table 7.2 Re-Optimization with Limitations on the New Replicas per Task

4 applications
full

optimization
2 rep per task 1 rep per task

Total energy and license cost 19.278 19.590 19.606

Execution costs 7.558 7.440 7.456

Fixed costs 11.72 12.15 12.15

Total number of replicas 36 36 34

number of new replicas

(including newly arrived tasks)
34 29 25

Total # of hosts 9 9 9

of new hosts used in the re-

optimization
6 4 3

This comparison shows that the solution given by the full optimization has the

smallest costs; the costs of the 2 rep per task and the 1 rep per task are similar, but 2 rep

per task costs slightly less. The number of new replicas and the number of new active

hosts used in the full optimization is larger than the other two. Because it has the most

limiting constraints, the 1 rep per task has the smallest changes.

Figure 7.2 shows the number of new replicas per task required by each algorithm,

when handling re-optimization to accommodate the newly arrived application APP 97.

99

Figure 7.2 the number of new replicas of each task created in re-optimization (constraint on
new replicas per task)

The results show that the optimization with persistence is effective in controlling the

number of new replicas of each task in the re-optimization. In 1 rep per task and 2 rep per

task, the number of new replicas per task can be effectively controlled below one and two

respectively. Without this control, for some tasks, such as APP 89_TFS, the number of

new replicas reaches three.

7.3.2 Case Study of Limiting New Replicas to a Small Value

This experiment is conducted on the same prototype as in the previous experiment

which controls the replications per task. The constraint on the re-optimization to ensure

persistence is changed. This experiment evaluates the effectiveness of limiting the

number of running tasks that are changed to below 5% (indicated by ptg 5%), 10%

(indicated by ptg 10%) and 20% (indicated by ptg 20%). Note that changes count the

number of new replicas of running tasks, including the new replicas and migrated tasks;

newly arrived tasks and loading changes are excluded from the count.

100

According to the results given in Table 7.1, limiting changes to 5% means that at

most one new replica of a running task can be added, two for 10%, and five for 20%.

Table 7.3 Re-Optimization with Limitations on the Percentage of Changes

4 applications
full

optimization
Ptg 20% Ptg 10% Ptg 5%

Total energy and license cost 19.278 19.607 20.132 20.358

Execution costs 7.558 7.457 7.172 7.398

Fixed costs 11.72 12.150 12.96 12.96

Total number of replicas 36 36 34 33

number of new replicas

(including newly arrived tasks)
34 15 10 8

Total # of hosts 9 9 9 9

of new hosts used in the re-optimization 6 2 2 2

The results in Table 7.3 show the effects of limiting the percentage of changes.

Figure 7.3 shows the effects of controlling the percentage of changes. At 5%, the number

of replicas of the running tasks is controlled at 1 (APP89_TWebServer), and in 10% the

number of new replicas is successfully controlled within 2 (which are respectively

APP89_TFS and APP89_InvDB). The number of new replicas at 20% is controlled at 5,

meeting the constraint.

101

Figure 7.3 the number of new replicas of each task created in re-optimization (Ptg Control)

7.4 Summary of Optimization with Persistence

The experimental results demonstrate the effectiveness of imposing persistence in re-

optimization, limiting changes to specific tasks and the scale of changes. These

approaches can satisfy many dynamic requirements while accounting for the costs/risks

of changes, and are effective in offering high-quality solutions with persistence.

These approaches can be combined to address complex problems with multiple

simultaneous goals. For example, they could consider the scale of changes and the

changes per task at the same time. In addition, constraints on the flow rates can be added

to limit the loading of some specific tasks, while using penalty/rewards to guide the re-

optimization.

102

Chapter 8 Case Study

A set of simulations was used to evaluate the scalability of the optimization

approaches and the stability of management in responding to various dynamic changes.

The algorithms HP, Pure MIP and HMIP were evaluated on 12 deployment problems,

the number of applications scaling from 1 to 10, and the stress rate ranging from 0.25 to

0.9. The algorithms in these tests account for contention in the response time calculation.

 The case study of the stability of management includes control in several difficult

dynamic environments, which include

• Varying Workloads

• Addition and removal of applications

• Failure and repair of host machines

8.1 Experimental Environment

The cloud environment in which the test applications are deployed is the host pool

described in Table 6.4. Each application has the structure shown in Figure 6.2, each with

different performance parameters and requirements (chosen randomly). The costs

considered in the optimization include the execution cost, fixed cost and license cost.

All experiments expect to use at most 80% of the CPU capacity in order to avoid

overloading. These experiments take into account:

103

• Average response time in SLA

• Resource availability and requirements (CPU and Memory)

• License availability and license cost

• Power Consumption (execution and fixed costs)

• Effects of contention

The experiments use LQNS V5.1 as the performance model solver to conduct

performance and sensitivity analysis and CPLEX v12.1 as the MIP optimization solver.

The implementation of the algorithm is coded with Java, running on JRE 1.6 on an Intel

2.4GHz Dual machine with 3GB of RAM. Since it is a MIP problem, the LP solver is not

used here.

8.2 Evaluate the Scalability of the Three Algorithms

A cloud can host many applications with separate service contracts. This necessitates

an approach that offers global management for large scale systems. This experiment

demonstrates the scalability of the approaches developed here, and evaluates the

performance of Pure MIP, HMIP and Heuristic Packing in a realistic deployment that

considers the effects of contention.

The algorithms will be evaluated with practical deployment problems including

consideration of contention issues. A system with 1 to 10 versions of the application

template model in Figure 6.2 (each with different performance parameters and

requirements) is used for deployment. The number of services increases from 10 to 110,

104

and the number of original tasks (without replicas) increases from 7 to 70. The results of

the optimization are shown in Table 8.1.

105

Table 8.1 Evaluation of Pure MIP, HP and HMIP with Contention

Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05)

1 app HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP

of iterations 1 2 1 2 1 1 1 1 1 2 2 1

Time on MIP(sec) 0.01 0.22 0.11 0.01 0.16 0.125 0.01 0.282 0.11 0.01 0.25 0.109

Time on LQNS(sec) 0.537 0.77 0.578 1.11 0.5 0.531 0.531 0.406 0.56 0.719 0.672 0.391

Time on LEndStep(sec) 7.438 5.94 6.766 11.84 6.3 7.922 7.469 4.344 7.08 4.234 4.39 4.578

Total Solution Time(sec) 7.969 6.92 7.545 12.95 6.95 8.578 8 5.032 7.83 4.953 5.328 5.078

Total Solution Time without LEndStep 0.547 0.99 0.688 1.12 0.66 0.656 0.541 0.688 0.67 0.729 0.922 0.5

Total Energy and License Cost 11.94 11.53 11.92 12.03 11.53 11.63 11.65 11.43 11.64 11.41 11.39 11.28

of replicas (task) 13 12 13 14 12 13 13 12 13 13 12 12

of services 20 19 21 22 19 21 20 19 20 20 19 19

Costs saved by sensitivity 0.001 5.00E-04 0.004 0.04 0.01 0.01 0.004 0.01 0.003 0.02 0.005 0.003

of variables in MIP - 127 97 - 157 97 - 217 97 - 382 82

of hosts 6 6 6 6 6 6 6 6 6 6 6 6

106

Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05)

5 app HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP

of iterations 3 8 2 6 6 4 8 3 1 7 1 4

Time on MIP(sec) 0.016 11.54 0.468 0.016 4.39 0.923 0.047 2 0.39 0.142 0.375 0.672

Time on LQNS(sec) 15.797 29.41 8.048 23.156 21.751 14.123 31.37 11.266 4.375 24.671 2.703 11.874

Time on LEndStep(sec) 131.53 124.8 151.03 171.76 99.794 147.7 180.7 104.95 119.61 139.7 56.7 109.41

Total Solution Time(sec) 157.15 165.9 159.56 194.94 125.86 162.78 212.1 118.25 124.38 164.62 59.7 122.02

Total Solution Time without LEndStep 15.813 40.95 8.516 23.172 26.141 15.046 31.417 13.266 4.765 24.813 3.078 12.546

Total Energy and License Cost 23.96 23.47 23.479 23.64 23.91 23.14 24.54 23.16 22.98 23.93 22.34 23.137

of replicas (task) 42 45 45 47 44 45 48 44 44 45 43 45

of services 67 71 73 76 71 72 77 69 71 71 69 72

Costs saved by sensitivity 0.06 0.08 0.022 0.1 0.04 0.03 0.11 0.018 0.006 0.04 0.008 0.0145

of variables in MIP - 887 887 - 1171 887 - 1597 816 - 2804 674

of hosts 12 11 11 11 11 11 12 11 11 12 11 11

107

Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05)

10 app HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP

of iterations 4 11 14 6 11 12 9 3 6 14 6 4

Time on MIP(sec) 0.077 4.468 6.921 0.046 4.531 5.175 0.076 4.063 3.204 0.234 7.5 1.609

Time on LQNS(sec) 56.86 154.5 200.25 94.718 129.91 156.05 139.89 43.09 81.859 198.69 73.048 42.406

Time on LEndStep(sec) 652.44 861.7 689.72 1084.4 494.67 482.27 933.52 540.6 494.39 946.2 525.31 401.02

Total Solution Time(sec) 709.52 1020 896.97 1179.2 629.16 643.58 1073.5 587.8 579.5 1145.2 605.9 445.09

Total Solution Time without LEndStep 56.937 158.968 207.171 94.764 134.441 161.225 139.966 47.153 85.063 198.924 80.548 44.015

Total Energy and License Cost 34.09 33.94 33.92 35.379 33.26 33.299 34.91 33.51 33.34 35.34 33.24 33.23

of replicas (task) 67 85 83 86 83 83 86 81 81 84 84 80

of services 105 137 133 137 131 131 135 129 130 135 134 128

Costs saved by sensitivity 0.036 0.07 0.027 0.008 0.019 0.026 0.03 0.04 0.019 0.003 0.032 0.012

of variables in MIP - 2467 2467 - 3313 2608 - 4582 2749 - 8107 2326

of hosts 16 16 16 17 16 15 17 16 16 16 14 14

108

This evaluation shows that:

• The solution is very similar across low and high-stress problems, in the objective

function value, the number of hosts used, and the number of replicas of tasks and

services deployed. There does not seem to be any advantage in beginning with a

lot of excess resources, in terms of being able to find a better solution.

• The LEndStep takes most of the time and gives only a small improvement in all

the cases shown here, so it probably is not worthwhile in practice. In LEndStep,

the calculation of LP is very fast, but the sensitivity analysis is time consuming

because of a problem in LQNS, expected to be repaired soon. Nonetheless it is

useful for comparing small differences between cases, since without it, there is a

small effectively random jitter on the solution cost, of a few percent.

• There is no consistent trend in solution time, between low and high stress cases. If

we adopt two minutes as a “maximum practical optimization time”, then the

approach without LEndStep is “practical” up 10 apps in most cases.

• Increasing the size of the host pool (to give a low stress rate) does not increase the

total solution time. On the contrary, because a low stress rate allows for providing

the required performance with fewer replicas, reducing the complexity of the

performance model, the performance model can be solved with greater efficiency.

109

• For a small scale problem that has tens of tasks, the solution time is in a practical

range for computing a deployment, as changes to deployment take on the order of

minutes even for just a few machines. When a system scales up, the computation

time is increased. In a whole optimization process, about 75~90% of the solution

time is used on sensitivity analysis. And in the optimization loop over 70% of the

solution time is used by the performance model for computing the contention

delays at different layers and components. Over 85% of the total solution time is

used by LQNS, which is the bottleneck of this approach.

• The efficiency of solving a MIP problem is not a critical issue in the optimization

accounting for contentions. Though Bin-Packing can solve a MIP heuristically

with the greatest efficiency, this had a limited effect on the overall solution

efficiency, because the contention calculation in the performance model is much

more time-consuming. Moreover, the costs of the solutions returned by the

heuristic packing algorithm in most cases are the highest, since it cannot ensure

the quality of optimization,

• Comparison of HMIP and Pure MIP: The objective costs given by both

algorithms are close. MIP appears to be more effective for the deployment

problem with 5 or fewer applications, while HMIP is faster for problems with 10

applications.

Based on these experimental results, our approach currently is able to handle the

deployment problem for service systems with about 50 heterogeneous tasks. The

complexity of the performance model has a significant impact on the optimization

110

efficiency. The LQNS developers expect to increase the speed of the software

substantially in the near future.

8.3 Evaluation of the Stability of Management in Dynamic

Environments

This section evaluates the effect of management in dynamic environments. The

algorithms are used to handle several dynamic scenarios, including adaptive regulation of

dynamic workloads, re-optimization for addition and removal of applications, and the

failure and repair of host machines.

In the test, we define a “step” as a time interval for re-optimization (which could be

global optimization, simple rules, or optimization with persistence) to update decisions,

and define a “period” as a series of steps with one global optimization and possibly some

non-global optimizations. A period may include one or several steps. For the algorithms

of full optimization, optimization with persistence and simple rules please refer to

Section 7.2.

In this test, the optimization with persistence sets parc_ht = -αht, rewarding existing

deployments on the basis of the loads of replicas. A replica with larger execution

demands gains a greater reward, driving the re-optimization to reserve the replica with a

priority.

The experiments study the quality of full optimization, optimization with persistence,

and optimization with simple rules by measuring the energy and license cost of the

solutions, the degree of change and the number of replicas and hosts used, and study the

effects of varying the period for full optimization.

111

In the figures below, we use this notation to represent the algorithms:

• Full opt: full optimization

• Px: take full optimization every x steps, for example p3 means full

optimization will be conducted every 3 steps.

• Pers: use optimization with persistence in between full optimizations

• Rules: use simple rule in between optimizations, ensuring current replicas are

unaffected by changes.

Let “new replicas” represent the replicas newly installed, and “new hosts” represent

the hosts activated for use. The “percentage of new hosts” or the “percentage of new

replicas” in the figures correspondingly mean the fraction of new hosts among all active

hosts (including the new active hosts) and the fraction of the new replicas in all replicas

in use (including new replicas just created), calculated as,

Percentage of New Hosts =#hnew_t / #htotal_t ×100 (44)

Percentage of New Replicas =#Rnew_t / #Rtotal_t ×100 (45)

hnew_t is the number of the new hosts, i.e. that are used in period t but not used in

period t-1,

#htotal_t is the total number of hosts used in period t,

#Rnew_t is the number of new replicas created in period t,

#Rtotal_t is the total number of replicas used in period t.

To evaluate the quality of the persistence in this experiment, two types of costs are

measured. One is the energy (Section 6.1) and license cost, and the other is the “start-up

costs” which measures the costs of using new hosts or new replicas. We define 1 unit

112

start-up cost for a new host (boot the computer) and 3 units start-up cost for a new replica

(install VM and image) to quantify how much start-up costs are totally used.

In the tests arbitrary changes are permitted. Constraints as described Section 7.1.3 and

Section 0 to limit the change with global optimization are not used here.

8.3.1 Dynamic Case I: Varying Workloads

With a change in the number of users, the resource requirement of each task is

changed. This experiment applies optimization to find the minimum energy and license

cost to ensure the maximum latency is not exceeded.

We assume that the request arrivals exhibit time-of-day variations typical of

enterprise workloads, so the number of arrivals may change quite significantly during a

one day period. The workload used in our experiments loosely resembles the behaviour

found in the log files from the Soccer World Cup 1998 Web site [4] and is shown by the

bars in the figures below. We use this workload pattern because it has significant

workload variations with large dynamic spikes. In the performance model used in this

experiment, the number of users (Nc) varies between 80~650 and the average think time

(Zc) is set at 1400ms. Optimization with persistence was applied at 20-minute intervals,

with a response time specification (ignoring network delay) of RTSLA = 35ms.

1. Response Time

Figure 8.1 shows that throughout the test all control approaches are able to maintain

the response time below the required value. Full optimization gives a stable response

time, controlling the variation within 20%. In certain steps, some response times,

especially some of those that are given by optimization with persistence (Pers) or with

113

simple rules (Rule), are much shorter than needed (with a cost penalty), since the

persistence mechanism requires the optimizer to reuse existing configurations, resulting

in resource over allocation. A short period between full optimizations can help to bring

the configuration up to date, giving a response time closer to the SLA.

Figure 8.1 Response Time of the Application with Varying Workloads

Table 8.2 Average Response Time per Step (Varying Workloads)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule SLA
Average RT 32.002 30.33 30.39 26.67 25.30 34.98

2. Capital and Start-up Costs

Figure 8.2 shows that the total energy and license cost returned by the full

optimization are proportional to the change of workloads, and are the lowest. This cost

returned by the simple rules is larger than other control approaches because sharing is not

114

allowed in the solution. Simple rules can isolate the environment, but they require more

resources to handle the newly arrived workloads. Table 8.3 shows that the solution

returned by the full optimization is with the largest start-up costs, about 2.5~3 times

higher than the other approaches.

Figure 8.2 Total Energy and License Cost Subject to Varying Workloads

Table 8.3 Average Cost per
Step (Varying Workloads) Full opt P3 Pers P5 Pers P3 Rule P5 Rule

Total Energy and License Cost 9.70 9.88 9.93 10.41 10.95
Start-up costs on New Hosts 2.25 0.95 0.79 1.25 0.98

Start-up costs on new replicas 25.71 10.25 8.17 11.63 8.13
Start-up costs on new hosts

and new replicas 27.96 11.19 8.96 12.88 9.11

3. Hosts in Use and the Percentage of New Hosts

Figure 8.3 and Figure 8.4 respectively illustrate the total number of hosts returned by

the algorithms and the percentage of new hosts being activated to perform tasks. Figure

8.3 shows the resulting time-variation of hosts used, ranging from 2 to 13 subject to the

Varying Workloads. It demonstrates that the algorithms are effective for providing

115

adaptive management for varying workloads with dynamic resource provisioning. The

variation of the number of active hosts corresponds to the variation of costs shown above.

A higher frequency of full optimization can give a more up-to-date adjustment.

However, the economical solution sought by full optimization is associated with great

variation in the selection of hosts. In Figure 8.4 the percentage of new hosts used by full

optimization ranges from 20% to 100%. For optimization with persistence (Pers), the

number of new hosts can be controlled below 20% most of the time; and using simple

rules, the percentage is further reduced and could be 0 most of the time.

Figure 8.3 Total Number of Hosts subject to Varying Workloads

Table 8.4 Average Active Hosts per Step (Varying Workloads)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Active Hosts 4.63 4.76 4.83 4.94 5.32

116

Figure 8.4 the Percentage of New Hosts in Use subject to Varying Workloads

Table 8.5 Average Percentage of New Hosts per Step (Varying Workloads)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Ptg of New Hosts 62.09% 25.15% 19.29% 26.14% 19.35%

4. Replicas in the System and the Percentage of New Replicas

Figure 8.5 and Figure 8.6 respectively illustrate the number of replicas in use and the

degree of change at each step. Full optimization returns solutions using the smallest

number of replicas; optimization with persistence (Pers) requires a few more, and the

simple rules require the most. Simple rules use more replicas than other solutions because

they are not allowed to create new replicas to offer workload aggregation, which

combines the running and existing workloads, replacing the existing placements. In

simple rules existing placements must be preserved and newly arrived workloads only

117

can be placed in new replicas on new machines. The number of replicas thus is increased,

more than other approaches that are allowed to create large-size replicas to take the place

of the existing placements.

To provide the most economical solution, the full optimization solution consists of

60% new replicas, and in some cases consists entirely of new replicas. A large number of

changes of replicas increases the risk of instability and the operating costs for changes. In

the same problem, optimization with persistence (Pers) and simple rules can keep the

percentage of new replicas below 30 %.

Figure 8.5 the Total Number of Replicas in Use subject to Varying Workloads

Table 8.6 Average Number of Replicas per Step (Varying Workloads)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Number of Replicas 10.28 10.36 10.36 12.25 12.99

118

Figure 8.6 the Percentage of New Replicas subject to Varying Workloads

Table 8.7 Average Percentage of New Replicas per Step (Varying Workloads)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Ptg of New Replicas 84.68% 33.70% 26.28% 34.96% 24.31%

5. Summary : Management of Varying Workloads

As a summary for this evaluation, full optimization gives the most stable response

time, and the solution is the most economical among these approaches, but in each step

full optimization creates many new replicas, which increases the risks associated with

changes, cost of operations and provisioning delays (which are not considered here).

Simple rules give the fewest changes, but require the use of more hosts than other

approaches, since simple rules do not allow new workloads to share hosts with the

running tasks. Optimization with persistence (Pers) helps to constrain the number of

changes, giving the required persistence of existing placements, and it allows some

changes to the running tasks, allowing increased resource sharing.

119

This evaluation shows that a short period between full optimizations can help to

quickly regulate the configurations, reducing costs due to over-allocated resources;

however, a short period means an increase in the cost of changes.

8.3.2 Dynamic Case II: Host Failures and Repairs

This test evaluates the performance of the algorithms in handling host failures and

repairs. In this test the initial stress rate is 0.25. Five applications with static workloads

require guaranteed multi-class response time; 25% of running hosts fail and are removed

in each step. This is a ridiculously high failure rate, but serves to underline the properties

of the adaptive decision algorithm. New hosts are added into the host pool when the

stress rate reaches 0.75. Figure 8.7 shows the variation of the size of the host pool.

Because the hosts selected by each algorithm in a step might be different, the failed and

remaining hosts may not be the same for each evaluation.

Figure 8.7 the Variation of the Size of the Host Pool in Host Failures and Repairs
Environments

120

1. Costs Given By Different Control Approaches

Figure 8.8 illustrates the total energy and license cost given by different algorithms. It

shows that full optimization gives the solution with the least cost, in most steps. For each

algorithm, the periodic run of the full optimization reduces costs significantly, so full

optimization is effective for reducing the costs subject to hosts failures and repairs and

can save about 10~20% of the cost in comparison to other approaches. Because at each

step the available hosts in the pool are not identical for each algorithm, the results given

by the full optimization may not always be the best.

 In most steps, optimization with persistence (Pers) performs better than simple rules

when they are running with the same periods. This shows that allowing resource sharing

helps to improve the quality of optimization. For either optimization with persistence

(Pers) or simple rules, a short period returns lower costs than a long period most of the

time.

Figure 8.8 the Total Energy and License Cost Required by Each Approaches subject to
Host Failures and Repairs

121

Table 8.8 Average Costs per Step (Host Failures and Repairs)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Total Energy and License Cost 23.44 24.10 24.56 24.57 24.74

Start-up costs on new hosts 4.76 4.16 3.84 4.32 3.68
Start-up costs on new replicas 118.56 71.4 55.56 71.28 58.92

Start-up costs on new hosts and
new replicas 123.32 75.56 59.4 75.6 62.6

2. Replicas Required and Persistence

Figure 8.9 evaluates solution persistence by measuring the change in the number of

replicas. It shows that most of the time the number of replicas returned by simple rules is

slightly larger than returned by full optimization and optimization with persistence (Pers).

This is again because of the constraints in simple rules, which preserve the remaining

replicas and create new replicas to accommodate the affected workloads in the failed

hosts; in the other solutions unaffected replicas can be aggregated with the affected tasks

as a new replica is deployed in another machine.

In the comparison between the percentages of new replicas (Figure 8.10), it can be

seen that in every step around 90% of the replicas are newly created by full optimization.

Because of the effects of the persistence mechanisms, in each step the percentages of new

replicas created are in the range of 20~40% for the simple rules or for the optimization

with persistence (Pers). According to the average percentage of new replicas shown in

Table 8.10, it can be seen that a long period gives fewer changes than a short period

(about 8~10%). This is the same for both optimization with persistence (Pers) and simple

rules. Though a short period helps to keep the configurations up-to-date, large scale

changes may destroy the system stability. The effects of Pers in offering persistence is

122

similar to simple rules, with only 1~2% difference. The period has more impact on

persistence than the algorithms.

This study implies that optimization with mechanisms to offer persistence are

effective in providing robust management subject to hosts failing and being repaired. In

particular the optimization with persistence (Pers) has the ability to limit changes to

existing replicas, stabilizing the system structure. However the percentage of new

replicas is quite high in all cases. Full optimization can reduce costs for execution, but it

is associated with increased changes, increasing the associated risks and costs.

Figure 8.9 the Total Number of Replicas in the Host Failures and Repairs Environment

Table 8.9 Average Number of Replicas per Step (Host Failures and Repairs)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Number of Replicas 43.4 44.32 44.12 46.32 45.24

123

Figure 8.10 the Percentage of New Replicas in the Host Failures and Repairs Environments

Table 8.10 Average Percentage of New Replicas per Step (Host Failures and Repairs)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Percentage of New Replicas 91.05% 53.87% 42.38% 51.97% 43.98%

3. Active Hosts and Persistence

Figure 8.11 gives the number of hosts in use subject to the hosts failing or being

repaired. Full optimization uses the smallest number of hosts to provide the required

performance. Optimization with persistence (Pers) is more effective than simple rules in

reducing the active hosts most of the time, but not always, since in the same control

period the available hosts remaining in the pool are not the same for each algorithm.

Figure 8.12 gives the percentage of new hosts in use. In most steps, the percentage of

new hosts in full optimization is larger than the others. When the stress rate reaches 0.7

and new hosts are added into the pool, full optimization introduces more changes because

of the increase of optimization options.

124

Figure 8.11 Active Hosts in the Host Failures and Repairs Environment

Table 8.11 Average Number of Hosts per Step (Host Failures and Repairs)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Number of Hosts 11.36 11.96 12.32 12.48 12.4

Figure 8.12 Active Hosts in the Host Failures and Repairs Environment

125

Table 8.12 Average Percentage of New Hosts per Step (Host Failures and Repairs)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Percentage of

New Hosts 42.67% 36.57% 32.20% 35.58% 30.32%

4. Summary: Management for the Host Failures and Repairs Environment

The above study evaluated the effectiveness of algorithms in host failed/repaired

environments. Full optimization gives the most economical solution (saving 10~20%

energy and license cost), but it is associated with many changes in each step. In

comparison to simple rules, optimization with persistence (Pers) can reduce the energy

costs, reduce the number of replicas used, and give solution persistence, with results that

are nearly as good as simple rules. A short period is more effective than a long period in

keeping the configurations up-to-date; however, it correspondingly requires many

changes, which are associated with increased costs and risks.

8.3.3 Case III: Management for Applications Addition/Removal

In this test, applications are deployed on a private cloud consisting of 29 hosts.

Applications are increased from 2 to 11 and then removed until 3 applications remain.

The process is repeated. It is a highly dynamic environment. There are applications to be

deployed or removed at each step.

This test studies the effectiveness of the algorithms in handling application

addition/removal. The management system is required to adaptively adjust resource

provisioning in response to the change of the applications and must ensure that each

application does not exceed the maximum response time.

126

1. Costs associated with the Application Addition/removal

This first measurement of the capital and start-up costs (Figure 8.13, Table 8.13) shows

that the algorithms in this test perform similarly as to when handling varying workloads

or when hosts fail and are repaired. Full optimization gives the most economical solution;

control with persistence is better than simple rules. A short period between full

optimizations is more helpful to reduce the energy and license cost than a long period.

Simple rules have higher energy costs than the other methods because more hosts are

used. However, full optimization is associated with high start-up cost, which is over

double of other approaches. And a shorter period between successive full optimizations

increases the start-up cost of both hosts and new replicas.

Figure 8.13 the Total Energy and License Cost subject to Application Addition/removal

Table 8.13 Average Costs per Step (Application Addition/removal)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Total Energy and License Cost 19.34 20.07 20.33 20.81 23.08

Start-up costs on new hosts 2.68 1.84 1.28 2.04 1.76
Start-up costs on new replicas 143.88 75.72 61.56 59.16 46.2

Start-up costs on new hosts
and new replicas 146.56 77.56 62.84 61.2 47.96

127

2. Active Hosts subject to the Application Addition/removal

Figure 8.14 shows the variation of active hosts in response to the change of

applications. It shows that simple rules need an extra 20~30% additional hosts vs. other

solutions, since running applications cannot be changed. When newly arrived

applications are to be deployed, simple rules seek unused hosts to accommodate the new

applications; when some applications are to be removed, the remaining unrelated tasks

keep running without changes, so there is no significant reduction in the number of the

active hosts. Therefore, the number of hosts in use is more than in the other approaches in

either adding newly arrived applications or removing terminated applications.

Figure 8.15 shows that without the requirement of persistence the percentage of new

hosts used by full optimization is around 20~50% most of the time, and sometimes

reaches 100%. In the other approaches, the percentages of new hosts are controlled below

30%, and in some steps, the percentage of changes required by simple rules is 0.

128

Figure 8.14 the Total Number of Hosts in Use subject to Application Addition/removal

Table 8.14 Average Number of Active Hosts per Step (Application Addition/removal)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Number of Hosts in Use 9.24 9.8 9.88 10.24 12.24

Figure 8.15 the Percentage of New Hosts subject to Application Addition/removal

Table 8.15 Average Percentage of New Hosts per Step (Application Addition/removal)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Percentage of New Hosts 34.15% 22.55% 14.60% 23.03% 16.99%

3. Replicas in Use and Persistence

The numbers of replicas required by each approach are very similar except for the P5

Rule that takes slightly fewer replicas. This is different than the results in the previous

experiments on varying workloads and host failures and repairs. The number of replicas

is affected by two operations: workload aggregation, which can reduce the number of

replicas, and workload distribution, which may increase the number of replicas. In

129

workload variation or host failures and repairs, changes have direct impacts on the

running applications. Such operation as workload aggregation, placing the existing and

newly arrived (or affected) loadings into a new replica, can be conducted by the full

optimization or the optimization with persistence (Pers). However this is not allowed in

simple rules because of changes to the running tasks. Other approaches thus can use

fewer replicas to accommodate the load than simple rules (which need to use extra

replicas to accommodate the new loadings) in these cases.

 In the current case of application addition/removal, newly arrived applications are

independent of the running applications. This means that the new workloads to be

deployed cannot be aggregated with the existing workloads. So no workload aggregation

is used. And since the full optimization or the optimization with persistence (Pers) allows

splitting arrival loading into several small-size replicas in order to reduce costs by sharing

resources with running tasks, the number of replicas could be increased in comparison to

the simple rules, which only place new loadings onto new hosts.

Figure 8.17 shows that the percentage of new replicas in full optimization is over

80%; optimization with persistence (Pers) is around 20%~40% and the simple rules limit

changes in the range of 0~20%. This shows that simple rules need to install the fewest

replicas, and optimization with persistence (Pers) needs a bit more. To guarantee stability

for management, the simple rules are good candidates. Optimization with persistence

(Pers) is a sound algorithm, as long as the costs associated with resource utilization are

taken into account. If it is only required to reduce the execution costs, full optimization

performs the best.

130

We see again that a short period can deliver a solution with lower costs in response to

shifts in the environments, but is associated with great changes to the configurations.

Optimization with persistence (Pers) in a dynamic process is not only capable of

achieving the expected performance at low cost, but it can effectively reduce the number

of changes, thereby significantly increasing management satiability.

Figure 8.16 the Total Number of Replicas subject to App Addition/removal

Table 8.16 Average Number of Replicas per Step (Application Addition/removal)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Number of Replicas 53.52 54 53.64 53.36 52.28

131

Figure 8.17 the Percentage of New Replicas subject to the App Addition/removal

Table 8.17 Average Percentage of New Replicas per Step (Application Addition/removal)

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule
Average Percentage of New Replicas 89.32% 49.28% 39.53% 39.25% 29.73%

4. Summary: Management of Application Addition/removal

The evaluation demonstrates that full optimization gives the smallest energy and

license cost in response to changing applications, but is associated with a large number of

changes to replicas, increasing the potential risks to the system stability and high costs

due to operations for changes.

Simple rules give good persistence; however, they cannot keep the configurations up-

to-date, resulting in many resources being over allocated. These wasted resources

increase the energy costs.

132

Optimization with persistence (Pers) achieves a level of persistence similar to that of

simple rules (about 10% difference), with costs that are within 25% of those for full

optimization.

A short period helps keep the configurations up-to-date, reducing the energy and

license cost due to wasted resources, but it also causes more frequent changes in the

assignments. Therefore, if it is important to maintain a stable performance, a long period

performs better than short period.

8.3.4 Summary of the Effectiveness of the Algorithms in Dynamic Environments

The above evaluations under conditions of varying workloads, application

addition/removal and host failure/repair show the effectiveness of the algorithms in

response to changes, and the effects of period variation. The experimental environment

was highly dynamic, but the algorithms provide effective responses to the changing

conditions.

The experimental results show that all approaches are capable of managing

application performance subject to changes. Full optimization is able to achieve the most

economical solutions among the algorithms. Optimization with persistence (Pers) gives a

solution with lower energy and license cost than using simple rules. This is because

optimization with persistence (Pers) has greater flexibility to regulate the resource

provisioning in adapting to the changing resource requirements. Allowing resource

sharing with running replicas helps to reduce the resource cost.

Optimization with persistence (Pers) mechanisms control changes subject to dynamic

variations. In the above experiments, both optimization with persistence (Pers) and

133

simple rules control the number of new replicas below 40%, while the percentage of new

replicas required by the full optimization is around 90%.

In these experiments, full optimization saves about 5~10% costs in comparison with

optimization with persistence (Pers), but an update is associated with many changes.

Simple rules give stable management; however its solutions are associated with high

costs. Optimization with persistence (Pers) returns solutions with similar cost to full

optimization, and is able to limit the changes on a system while maintaining the quality of

the solution. These experimental results show that optimization with persistence (Pers) is

more suitable for dynamic environments than either full optimization or simple rules. A

short period between full optimizations helps to achieve an economical solution, but is

associated with big changes.

134

Chapter 9 Conclusions

New algorithms have been described for deployment management of large scale

service systems deployed in clouds. Test cases demonstrated the ability to handle

numerous applications simultaneously, on many hosts, to accommodate multiple

constraints, and to provide stable solutions over time in a dynamically changing

environment.

9.1 Achievements

This thesis presents several new approaches that are effective for deployment

optimization.

Algorithm I (Chapter 5) is a creative approach to seek near-optimal solutions, giving

sound allocations of host reservations to tasks, and optimizing request traffic between

multiple task replicas, where applicable. A key contribution of the combination of NFM

with an analytical model (LQN) is its effectiveness in solving a non-linear constrained

optimization problem by a series of LP solutions. The experiment in Section 5.8 shows

that this approach can address very difficult problems, such as minimizing multi-class

response time with low cost in very large systems. An early version has been

demonstrated on a small real system comprised of the Tivoli Intelligent Orchestrator,

Websphere and DB2.

135

The LEndStep algorithm (Section 5.7) gives a new tool to optimize loadings across

allocated replicas. Experimental results in Section 6.4 and Section 8.2 demonstrate that

linear programming based on sensitivity analysis can save execution power and reduce

resource consumption.

An effective MIP model extends the NFM to address integer constraints. This model

(model II, Section 6.1) accounts for the QoS in SLAs, execution power and available

capacity, allocation of memory to tasks, license availability and costs, and power costs

associated with host activity at the same time. A new algorithm, named HMIP

(Algorithm III in Section 6.2), provides a scalable heuristic solution for the MIP models.

Experimental results demonstrate that HMIP is an effective tool that provides high

quality decisions, nearly as good as using an exact MIP solver. HMIP can handle

extremely large scale problems consisting of over 80,000 variables, corresponding to

over 100 hosts and 500 tasks, which is beyond the capability of such MIP solvers as

CPLEX v12.1.

Providing high-quality adaptive resource provisioning is another key contribution of

this thesis. Several new approaches have been developed in this research, which are

effective in providing ensured QoS subject to dynamic changes. The approaches for re-

optimization with persistence (in Chapter 7) perform very well in the face of dynamic

changes in demand. Hard constraints on the flow bounds, soft constraints to guide

selection, and precise control on the scale of changes improve the stability of the

management system. These approaches can be combined to satisfy many difficult goals.

The experiments in Section 7.3 show the effectiveness of the methods in controlling the

136

number of new installations in order to limit the associated costs/risks. The experimental

results (in Section 8.3) demonstrate that the persistence mechanism is able to deliver high

quality solutions with limited changes on running applications.

Experiments demonstrate that this deployment approach is able to scale up to

hundreds of applications across hundreds of machines. With the improvement of the

speed of the analytical performance model calculations and the optimization algorithms

for MIPs in the future, this approach has great potential to handle much larger numbers of

applications for real clouds.

9.2 Limitations and Assumptions

A prerequisite of applying the algorithms in management is that the performance

model must be available for the service system to be controlled. In dynamic

environments, model parameter predictions are needed to update the performance model

in advance, to allow control without delays. Many performance researchers have

proposed effective solutions to construct the performance model (from scenarios defined

in UML or from operational data), estimate the system parameters (using tracking filters

or statistical data analysis), and update the performance with prediction algorithms [51].

So this is not a critical limitation. In practice, there may be some delay in delivering the

data for the performance model update, which may result in some errors of prediction.

This issue can be addressed by giving the estimated parameters some margin, such as

increasing the estimated value by 10%.

As the experimental results demonstrate, over 85% of the solution time is used on the

performance model calculations. In comparison with the scalability and efficiency of

137

solving LP or MIP, the scalability of the performance model currently is the bottleneck of

this approach. If the efficiency of the performance model can be improved in the future,

this approach has great potential to handle much larger scale applications. Improving the

calculation capability of the performance model can help to increase the scalability of

LEndStep and extend its applicable areas.

9.3 Future Work

This thesis addresses the optimization of deployment decisions for performance on

the basis of software architecture. Now that the effectiveness of the optimization

algorithms has been demonstrated, more comprehensive extensions might be possible.

Multi-tier caching is commonly use nowadays and has a significant impact on

performance. But the performance of caching is related to disk/memory operations and

data structure. How to model the cache performance with a performance model and how

to describe these issues with effective optimization models are not covered in this thesis,

but these might be worthwhile future research topics.

Co-allocation is another problem not addressed so far. A good co-allocation can

reduce the overhead for communications. Some constraints on the allocations may help to

guide the optimization. However, the calculation of costs is nonlinear, since

communication costs are associated with the allocations of tasks (determined by At) and

the workloads (determined by αht) in transmission. Though an optimization model to

minimize the communication costs can be constructed, new algorithms will be needed to

efficiently address these problems with good scalability.

138

This thesis demonstrates the feasibility of combining an optimization model and

LQN. The current version of LQN is the bottleneck of this approach, limiting the

scalability and efficiency. Optimizing the LQN system architecture to give efficient

analysis could be a research topic in the future. The real cloud system might have

thousands of hosts and applications. The scalability and efficiency of the approach should

be further improved in the future work.

Solving a MIP problem is NP-hard. Reducing the optimization options is an effective

way to improve the solution speed in most cases, but does not guarantee optimality.

Developing model specific search strategies (such as decomposition methods) for these

large-scale MIPs might improve the solution efficiency in conjunction with the current

HMIP heuristic. How to further improve the efficiency is a problem to be answered in the

future.

139

Reference

[1] Abdelzaher, T. F. and Bhatti, N., "Web Server Qos Management By Adaptive

Content Delivery", in Proceedings of International Workshop on Quality of Service,

London, UK, Jun 1999.

[2] Abdelzaher, T., Shin, K. G., and Bhatti, N., "Performance Guarantees for Web Server

End-Systems: A Control-Theoretical Approach", IEEE Transactions on Parallel and

Distributed Systems, Vol. 13, No. 1, pp. 80-96, Jan 2002.

[3] Amazon Corp. "Auto Scaling Developer Guide",

http://aws.amazon.com/documentation/autoscaling/ accessed Nov. 23, 2010

[4] Arlitt, M. and Jin, T., "Workload Characterization Of The 1998 World Cup Web

Site", Hewlett-Packard Labs, Technical Report HPL-99-35R1, Sept. 1999.

[5] Bennani, M.N., and Menascé, D. A., "Resource Allocation for Autonomic Data

Centers Using Analytic Performance Models", in Proceedings of IEEE International

Conference on Autonomic Computing, Seattle, WA, June 13-16, 2005.

[6] Bennani, M.N., and Menascé, D. A., "Assessing the Robustness of Self-Managing

Computer Systems under Highly Variable Workloads", in Proceedings of

International Conference on Autonomic Computing,New York, NY, May 17-18,

2004.

[7] Bilgin, S. and Azizoğlu, M.,"Operation Assignment And Capacity Allocation

Problem In Automated Manufacturing Systems", Journal of Computers and

Industrial Engineering, Vol. 56, Issue. 2, pp. 662-676, Mar 2009.

[8] Bazaraa, M.S., Jarvis, J.J., Sherali, H.D., "Linear Programming and Network Flows",

John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.

140

[9] Bokhari, S. H. "Partitioning Problems in Parallel, Pipeline, and Distributed

Computing", IEEE Transactions on Computers. Vol.37, Issue. 1, pp. 48-57, Jan 1988.

[10] Bobroff, N. , Kochut, A., and Beatty, K. "Dynamic Placement Of Virtual Machines

For Managing SLA Violations", in Proceedings of Integrated Management, pp 119-

128, Munich, Germany, May 2007.

[11] Brown, G., Dell, R., Wood, K., "Optimization and Persistence", Interfaces 1997.

[12] Calinescu, R. and Kwiatkowska, M. 2009. "Using Quantitative Analysis To

Implement Autonomic IT Systems", in Proceedings of the IEEE 31st international

Conference on Software Engineering , Vancouver, Canada, May 16 - 24, 2009.

[13] Carrera, D., "Adaptive Execution Environments for Application Servers", PhD

dissertation, Technical University of Catalonia, 2008.

[14] CERAS (Centre of Excellence for Research in Adaptive Systems)

https://www.cs.uwaterloo.ca/twiki/view/CERAS accessed April 2011.

[15] Chaisiri, S.; Bu-Sung Lee; Niyato, D., "Optimal Virtual Machine Placement Across

Multiple Cloud Providers", in Proceedings of IEEE Asia-Pacific Services Computing

Conference, pp. 103 – 110, Singapore, December 2009.

[16] Chao, S., Chinneck, J.W., Goubran, R.A., "Assigning Service Requests in Voice-

over-Internet Gateway Multiprocessors", Computers and Operations Research, Vol.

31, pp. 2419-2437, 2004.

[17] Chen, J., Soundararajan, G., and Amza, C. 2006. "Autonomic Provisioning of

Backend Databases in Dynamic Content Web Servers", in Proceedings of the 3rd

IEEE International Conference on Autonomic Computing , Dublin, Ireland, June 12 -

16, 2006.

[18] Chen, Y., Iyer, S., Liu, X., Milojicic, D., and Sahai, A. 2007. "SLA Decomposition:

Translating Service Level Objectives to System Level Thresholds", in Proceedings of

the 4th IEEE International Conference on Autonomic Computing, Florida, USA, June

11 - 15, 2007.

141

[19] Cherkasova, L., and Phaal, P., "Session Based Admission Control: A Mechanism

For Improving The Performance Of An Overloaded Web Server", Technical Report

HPL-98-119, HP Labs, June 1998.

[20] Chinneck, J.W., "Processing Network Models of Energy/Environment Systems",

Computers and Industrial Engineering, vol. 28, no. 1, pp. 179-189, 1995.

[21] Coffman, E.G, Garey, M.R., Johnson, D.S., "An Application Of Bin-Packing To

Multiprocessor Scheduling", SIAM Journal on Computing, vol. 7, pp. 1-17, Feb.

1978.

[22] Coffman, E.G, Garey, M.R., Johnson, D.S., "Approximation Algorithms for Bin

Packing: a Survey", in Approximation Algorithms For NP-Hard Problems, D. S.

Hochbaum, Ed. PWS Publishing Co., Boston, MA, pp 46-93, 1997.

[23] CPLEX,http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

accessed Dec. 2010.

[24] Kusic, D., Kephart, J., Hanson, J., Kandasamy, N., and Jiang, G., "Power And

Performance Management Of Virtualized Computing Environments Via Lookahead

Control". Transaction of Cluster Computing , Vol.12, Issue.1, pp.1-15, March 2009.

[25] Diao, Y., Hellerstein J. L., Parekh S., Bigus, J. P., "Managing Web server

performance with AutoTune agents", IBM Systems Journal, Vol.42, No.1, pp.136-

149, January 2003.

[26] Diao, Y., Hellerstein, J. L., and Parekh, S. 2002. "Optimizing Quality of Service

Using Fuzzy Control", in Proceedings of IFIP/IEEE international Workshop on

Distributed Systems: Operations and Management: Management Technologies For

E-Commerce and E-Business Applications , October 21 - 23, 2002.

[27] Diao, Y , Gandhi N., et al.: "Using MIMO Feedback Control To Enforce Policies

For Interrelated Metrics With Application To The Apache Web Server", in

Procceding of the Network Operations and Management Symposium, Florence, Italy.

2002.

142

[28] Diao, Y., Hu, X., Tantawi, A., and Wu, H. 2009. "An Adaptive Feedback Controller

For SIP Server Memory Overload Protection", in Proceedings of the 6th international

Conference on Autonomic Computing, Barcelona, Spain, June 15 - 19, 2009.

[29] Franks, G., Petriu, D., Woodside, M., Xu, J., and Tregunno, P. "Layered Bottlenecks

and Their Mitigation", in Proceedings of the 3rd international Conference on the

Quantitative Evaluation of Systems ,Riverside, California, September 11 - 14, 2006.

[30] Franks, G., Al-Omari, T., Woodside, M., Das, O., and Derisavi, S. 2009. "Enhanced

Modeling and Solution of Layered Queueing Networks", IEEE Transaction of

Software Engineering, Vol.35, Issue. 2, pp.148-161, Mar. 2009.

[31] Franks, G., "Performance Analysis of Distributed Server Systems", Report OCIEE-

00-01, PhD. thesis, Carleton University, Jan. 2000.

[32] Gelenbe, E., Bagchi, K., Zobrist, G, "Network Systems Design", CRC 1 edition

April 23 1999.

[33] Garey, M.R. , Johnson. D.S.. "Computers And Intractability: A Guide To The

Theory Of NP-Completeness". W.H. Freeman and Company; 1979.

[34] Gartner "Cloud Computing Will Be As Influential As E-business" , Special Report

Examines the Realities and Risks of Cloud Computing, STAMFORD, Conn., June 26,

2008

[35] Gmach, D., Krompass, S., Scholz, A., Wimmer, M., and Kemper, A., "Adaptive

Quality Of Service Management For Enterprise Services". ACM Transaction of Web,

Vol.2, No.1, pp.1-46, Feb. 2008.

[36] Hellerstein, J. L., Diao, Y., Parekh, S., and Tilbury, D. M. "Feedback Control of

Computing Systems". John Wiley & Sons., 2004

[37] Hellerstein, J. L,"Engineering Autonomic Systems ". Keynote Talk, ICAC 2009.

[38] IBM Corp., "From Cloud Computing to the New Enterprise Data Center", 2011.

[39] IBM Corp., "Cloud Computing",

http://www.ibm.com/ibm/cloud/ibm_cloud/, accessed Dec 2009.

143

[40] IBM Corp., "Dynamic Infrastructure",

http://www03.ibm.com/systems/dynamicinfrastructure/, accssed Dec. 2009

[41] IBM Corp., "Seeding the Clouds: Key Infrastructure Elements for Cloud

Computing" , http://www.ibm.com/grid/, accssed Dec.2009

[42] IBM Corp., "IBM EnergyScale for POWER7 Processor-Based Systems",

http://www-03.ibm.com/systems/power/hardware/whitepapers/energyscale7.html

accessed April 2010

[43] IBM Corp., "The New Enterprise Data Center Technical White Paper", http://www-

935.ibm.com/services/in/gts/pdf/ibm_nedc_whitepaper_07_15.pdf, accessed April,

2011

[44] IBM Corp., "An Architectural Blueprint For Autonomic Computing",

http://www01.ibm.com/software/tivoli/autonomic/pdfs/AC_Blueprint_White_Paper_

4th.pdf accessed April 2010.

[45] IBM Corp., "Understanding Quality Of Service For Web Services",

http://www.ibm.com/developerworks/library/ws-quality.html, accessed Jun 2010.

[46] Kansal, A., Zhao, F., Liu, J., Kothari, N., and Bhattacharya, A. ,"Virtual Machine

Power Metering And Provisioning", in Proceedings of the 1st ACM symposium on

Cloud computing (SoCC '10). ACM, New York, NY, USA, 2010.

[47] Kephart,J.O., and Das, R.,"Achieving Self-Management via Utility Functions",

IEEE Internet Computing, Vol. 11, No. 1, pp. 40-48, Jan./Feb. 2007.

[48] Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M., Sviridenko, M., and

Tantawi, A., "Dynamic Placement For Clustered Web Applications", in Proceedings

of the 15th international Conference on World Wide Web, Edinburgh, Scotland, May

23 - 26, 2006.

[49] Kounev, S. and Buchmann, A., "Simqpn: A Tool And Methodology For Analyzing

Queueing Petri Net Models By Means Of Simulation", Performance.

Evauationl, Vol.63, Issue. 4, pp.364-394, May 2006.

144

[50] Krishna B. Misra, (Ed.) "Handbook of Performability Engineering", Springer,

August 27, 2008.

[51] Kumar. D, Tantawi. D, and Zhang. L., "Real-Time Performance Modeling For

Adaptive Software Systems", in Proceedings of the Fourth International ICST

Conference on Performance Evaluation Methodologies and Tools, Brussels, Belgium,

2009.

[52] Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C., "Quantitative

System Performance: Computer System Analysis Using Queueing Network Models",

Prentice-Hall, Inc. Feb, 1984.

[53] Li, J, " CLoudOpt: Multi-Goal Optimization of Application Deployments Across a

Cloud ", Techniqual Report, Setp -15 2010.

[54] Li, J, “Optimization with Persistence for Deployment Management in Cloud

Computing”, Techniqual Report. Nov 2010

[55] Li, J., Chinneck, J., Woodside, M., Litoiu, M., and Iszlai, G, "Performance Model

Driven QoS Guarantees and Optimization in Clouds", in Proceedings of Workshop on

Software Engineering Challenges in Cloud Computing @ ICSE 2009, Vancouver,

May 2009.

[56] Li, J., Chinneck, J., Woodside, M., Litoiu, M, "Fast Scalable Optimization to

Configure Service Systems having Cost and Quality of Service Constraints", in

Proceedings of 6th Interational Conference on Autonomic Computing, Barcelona,

Spain, June 2009.

[57] Li, J., Chinneck, J., Woodside, M., Litoiu, M, “Deployment of Services in a Cloud

Subject to Memory and License Constraints", in Proceedings of 2nd IEEE

International Conference on Cloud Computing , Bangalore, India, September 21-25,

2009.

[58] Li, J., Levy, D., Chen, S., and Zic, J., "Auto-Tune Design And Evaluation On Staged

Event-Driven Architecture", in Proceedings of the 1st Workshop on Model Driven

145

Development For Middleware (MODDM '06) @ Middleware 2006, Melbourne,

Australia, November 27 - December 01, 2006.

[59] Li, J., Levy, D., Chen, S., and Zic, J., "Explicitly Controlling the Fair Service for

Busy Web Servers", in Proceedings of the 2007 Australian Software Engineering

Conference , Melbourne, Australia, April 10 - 13, 2007.

[60] Lightstone, S. S., Surendra, M., Diao, Y., Parekh, S., Hellerstein, J. L., Rose, K.,

Storm, A. J., and Garcia-Arellano, C., "Control Theory: a Foundational Technique for

Self Managing Databases", in Proceedings of the 2007 IEEE 23rd international

Conference on Data Engineering Workshop, Istanbul, Turkey, April 17 - 20, 2007.

[61] Litoiu, M., Rolia, J., and Serazzi, G, "Designing Process Replication and Activation:

A Quantitative Approach", IEEE Transactions on Software Engineering, Vol. 26, No.

12, pp. 1168-1178, Dec. 2000.

[62] Litoiu M., Woodside M., Zheng T., "Hierarchical Model Based Autonomic Control

Of Software Systems", in Proceedings of Design and Evolution of Autonomic

Software (DEAS’05) Workshop, St. Louis, USA, May 2005.

[63] Little, J. D. C. “A Proof of the Queueing Formula L = λ W,” Operations Research,

9, 383-387 ,1961.

[64] Liu Z., Wynter L., Xia C. H., Zhang F., "Parameter Inference Of Queueing Models

For IT Systems Using End-To-End Measurements”, Performance Evaluation, Vol.

63, Issue 1 , pp36-60, Jan. 2006.

[65] Liu, Y., Fekete, A., Gorton, I., "Design Level Performance Prediction

of Component-Based Applications", IEEE Transactions on Software Engineering,

Vol. 31, No.11, pp. 928-941, November, 2005.

[66] Luciano Bertini, Julius C. B. Leite, and Daniel Moss, "Power Optimization For

Dynamic Configuration In Heterogeneous Web Server Clusters", Journal of System

and Software. Vol. 83, Issue. 4, pp. 585-598, April 2010.

[67] Martens, A., Brosch, F., and Reussner, R., "Optimising Multiple Quality Criteria Of

Service-Oriented Software Architectures", in Proceedings of the 1st international

146

Workshop on Quality of Service-Oriented Software Systems, Amsterdam,

Netherlands, August 25 - 25, 2009.

[68] Menasce, D. A. and Almeida, V., “Capacity Planning for Web Services: Metrics,

Models, and Methods,” Prentice Hall; Rev Sub edition, 2001.

[69] Menascé, D. A., “Automatic QoS Control”. IEEE Internet Computing, Vol.7, No.1

,pp.92-95, Jan 2003.

[70] Menascé, D. A., Ruan, H., and Gomaa, H., "A Framework For Qos-Aware Software

Components ", in Proceedings of 3rd ACM International Workshop on Software and

Performance, Redwood Shores, California, Jan 2004.

[71] Menascé, D. A., Casalicchio, E., and Dubey, V., "A Heuristic Approach To Optimal

Service Selection In Service Oriented Architectures", in Proceedings of 7th

International Workshop on Software and Performance, Princeton, USA, Jun 2008.

[72] Menascé, D. A., and Bennani, M.N., "Autonomic Virtualized Environments", in

Proceedings of IEEE International Conference on Autonomic and Autonomous

Systems, Silicon Valley, CA, USA, July 19-21, 2006.

[73] Menascé, D. A., and Bennani, M.N., "Dynamic Server Allocation for Autonomic

Service Centers in the Presence of Failures". in the book Autonomic Computing:

Concepts, Infrastructure, and Applications, eds. S. Hariri and M. Parashar, ISBN 0-

8493-9367-1, CRC Press, 2006.

[74] Menascé, D. A., Bennani, M.N. and Ruan, H., "On the Use of Online Analytic

Performance Models in Self-Managing and Self-Organizing Computer Systems". in

the book Self-Star Properties in Complex Information Systems, O. Babaoglu, M.

Jelasity, A. Montresor, C. Fetzer , S. Leonardi, A. van Moorsel, and M. van Steen,

eds., Lecture Notes in Computer Science, Vol. 3460, Springer Verlag, 2005.

[75] Menascé, D. A., and Bennani, M.N., "On the Use of Performance Models to Design

Self-Managing Computer Systems", in Proceedings of Computer Measurement

Group Conference, Dallas, TX, Dec. 7-12, 2003.

147

[76] Menasce , D.A., Barbara, D., and Dodge, R.,"Preserving QoS of E-commerce Sites

Through Self-Tuning: A Performance Model Approach", in Proceedings of 2001

ACM Conference on E-commerce, Tampa, FL, October 14-17, 2001.

[77] Pacifici, G., Segmuller, W., Spreitzer, M., Tantawi. A., "CPU Demand For Web

Serving: Measurement Analysis And Dynamic Estimation", Performance Evaluation,

Vol.65, Issues 6-7, December 2007.

[78] Petri, Carl A. “Kommunikation Mit Automaten”. Ph. D. Thesis (1962).University of

Bonn.

[79] Ramirez, A. J., Knoester, D. B., Cheng, B. H., and McKinley, P. K, "Applying

Genetic Algorithms To Decision Making In Autonomic Computing Systems",

in Proceedings of the 6th international Conference on Autonomic Computing,

Barcelona, Spain, June 15 - 19, 2009.

[80] Rao, J., Bu, X., Xu, C., Wang, L., and Yin, G., "VCONF: A Reinforcement Learning

Approach To Virtual Machines Auto-Configuration", in Proceedings of the 6th

international Conference on Autonomic Computing, Barcelona, Spain, June 15 - 19,

2009.

[81] Rayward-Smith, V. J., Osman, I. H., Reeves, C. R., "Modern Heuristic Search

Methods", John Wiley. December 1996.

[82] Rolia, J. A. and Sevcik, K. C., "The Method of Layers", IEEE Transaction of

Software Engineering, Vol. 21, No.8,pp. 689-700, Aug 1995.

[83] Salesforce.com, Quality of Services, http://trust.salesforce.com/trust/status/,

accessed May 31, 2009.

[84] Salesforce.com, SAAS, http://www.salesforce.com/saas/ accessed May 2009.

[85] Salehie. M., and Tahvildari. L., "Self-Adaptive Software: Landscape And Research

Challenges", ACM Transaction on Autonomous and Adaptive Systems (TAAS), Vol. 4,

No. 2, pp. 1-42, 2009.

[86] Smith, CU., Williams,LG. "Performance Solutions", Addison-Wesley, 2002.

148

[87] Soror, A. A., Minhas, U. F., Aboulnaga, A., Salem, K., Kokosielis, P., and Kamath,

S, "Automatic Virtual Machine Configuration For Database Workloads", in

Proceedings of the 2008 ACM SIGMOD international Conference on Management of

Data , Vancouver, Canada, June 09 - 12, 2008.

[88] Steinder, M., Whalley, I., Carrera, D., and Chess, D, "Server Virtualization In

Autonomic Management Of Heterogeneous Workloads", Proc. in Proceedings of

Integrated Management , Munich, May 2007.

[89] Storm, A. J., Garcia-Arellano, C., Lightstone, S. S., Diao, Y., and Surendra, M.,

"Adaptive Self-Tuning Memory In DB2", in Proceedings of the 32nd international

Conference on Very Large Data Bases, Seoul, Korea, September 12 - 15, 2006.

[90] Sutton, R.S, Barto, A.G. "Reinforcement Learning: an Introduction, Cambridge",

MIT Press, 1998.

[91] Tang, C., Steinder, M., Spreitzer, M., and Pacifici, G, "A Scalable Application

Placement Controller For Enterprise Data Centers", in Proceedings of 16th

International Conference on the World Wide Web, Banff, Alberta, Canada, 2007.

[92] Toktay and Uzsoy, "A Capacity Allocation Problem With Integer Side Constraints",

European Journal of Operational Research, Vol.109, Issue.1, pp.170-182, 1998.

[93] Trivedi, K. S. and Sigmon, T. M. 1981. "Optimal Design of Linear Storage

Hierarchies", Journal of the ACM , Vol. 28, Issue. 2, pp. 270-288, April 1981.

[94] Tsai C., Shin K. G. and Reumann J. and Singhal S., "Online Web Cluster Capacity

Estimation and Its Application to Energy Conservation", IEEE Transaction of

Parallel Distributed Systems, Vol.18, Issue.7, pp.932-945, July 2007.

[95] Urgaonkar, B. and Chandra, A, "Dynamic Provisioning of Multi-tier Internet

Applications", in Proceedings of the Second international Conference on Automatic

Computing , June 13 - 16, 2005.

[96] Verma, A., and Neogi, A., “Pmapper: Power And Migration Cost Aware

Application Placement In Virtualized Systems”, in Proceedings of the 9th

149

ACM/IFIP/USENIX International Conference on Middleware,Leuven, Belgium,

2008.

[97] Vengerov, D., "A Reinforcement Learning Approach To Dynamic Resource

Allocation", Journal of Engineering Applications of Artificial Intelligence, Vol.20,

No.3, pp.383-390, April 2007.

[98] Petrucci, V., Loques, O., and Moss, D., "A Dynamic Optimization Model For Power

And Performance Management Of Virtualized Clusters", in Proceedings of the 1st

International Conference on Energy-Efficient Computing and Networking (e-Energy

'10), University of Passau, Germany, April 13-15,2010.

[99] Xi, B., Liu, Z., Raghavachari, M., Xia, C. H., and Zhang, L., "A Smart Hill-

Climbing Algorithm For Application Server Configuration", in Proceedings of the

13th international Conference on World Wide Web, New York, NY, USA, May 17 -

20, 2004.

[100] Xu, J., "Rule-based Automatic Software Performance Diagnosis and

Improvement", in Proceedings of ACM WOSP 08, Princeton, June 2008.

[101] Walsh, W.E., Tesauro, G., Kephart, J.O., and Das, R., "Utility Functions In

Autonomic Systems", in Proceedings of Internation Conference on Autonomic

Computing, New York , USA, May, 2004.

[102] Wei Xu, Xiaoyun Zhu, Sharad Singhal, Zhikui Wang: "Predictive Control for

Dynamic Resource Allocation in Enterprise Data Centers", in Proceedings of 10th

IEEE/IFIP Network Operations and Management Symposium, 2006.

[103] Weise, T., "Global Optimization Algorithms– Theory and Application, 2nd edition",

Version: 2009-06-26, http://www.it-weise.de/projects/book.pdf, accessed April 2011

[104] Welsh M. and Culler D.: "Adaptive Overload Control for Busy Internet Servers", in

Proceedings of the 5th USENIX Symposium on Internet Technologies and Systems,

2003

150

[105] Woodside, C.M., "Sensitivity Analysis with LQNX/LQX",

http://www.sce.carleton.ca/rads/lqns/lqn-documentation/sensitivity-howto.pdf,

accessed Mar 10, 2010.

[106] Woodside, C.M., "The Relationship of Performance Models to Data", Keynote talk

in SPEC Internation Workshop on Performance Evaluation (SIPEW), Darmstadt,

Lecture Notes In Computer Science, Vol. 5119, pp 9 - 28, June 2008.

[107] Woodside, C. M., "A Composable Performance Model for Service/Resource

Systems", in Proceedings of the 7th Workshop on Performability Modelling of

Computer and Communications Systems (PMCCS7), Torino, Italy, pp. 89-92, Sept

2005.

[108] Woodside, C.M., Neilson, J. E., Petriu, D. C., and Majumdar, S., "The Stochastic

Rendezvous Network Model for Performance of Synchronous Client-Server-like

Distributed Software", in IEEE Transation of Computers. 44, 1, pp.20-34, Jan. 1995.

[109] Woodside, C.M., Monforton, G.G., "Fast Allocation of Processes in Distributed

and Parallel Systems", IEEE Transaction. on Parallel and Distributed Systems, Vol.

4, No. 2, pp. 164-174, 1993.

[110] Woodside, M., Petriu, D. C., Petriu, D. B., Shen, H., Israr, T., and Merseguer, J.,

"Performance By Unified Model Analysis (PUMA)", in Proceedings of the 5th

International Workshop on Software and Performance, Palma, Illes Balears, Spain,

July 12 - 14, 2005.

[111] Zhang A., Santos A., Beyer D., Tang H.K., "Optimal Server Resource Allocation

Using An Open Queueing Network Model Of Response Time", HP Technical Report

HPL-2002-301, 2002.

[112] Zhang, Q., Cherkasova, L., Mi, N., and Smirni, E., "A Regression-Based Analytic

Model For Capacity Planning Of Multi-Tier Applications", Jouncal of Cluster

Computing, Vol. 11,No.3, Sep. 2008.

[113] Zhang, M., Martin, P., Powley, W., and Bird, P., "Using Economic Models To

Allocate Resources In Database Management Systems", in Proceedings of the 2008

151

Conference of the Center For Advanced Studies on Collaborative Research: Meeting

of Minds , Toronto, Canada, October 27 - 30, 2008.

[114] Zhang, Z., Cheng, R., Papadias, D., and Tung, A. K., "Minimizing The

Communication Cost For Continuous Skyline Maintenance", in Proceedings of the

35th SIGMOD International Conference on Management of Data, Providence, Rhode

Island, USA, June 29 - July 02, 2009.

[115] Zheng, T., "Model-based Dynamic Resource Management for Multi Tier

Information Systems", PhD thesis, Carleton Universtiy, August 2007.

[116] Zheng, T., "Optimization of Distributed Real-Time Systems with Scenario

Deadlines", M. Eng thesis, Carleton Universtiy, Aug 2002.

[117] Zheng, T., Yang, J., Woodside, M., Litoiu, M., and Iszlai, G., "Tracking Time-

Varying Parameters In Software Systems With Extended Kalman Filters",

in Proceedings of the 2005 Conference of the Centre For Advanced Studies on

Collaborative Research , Toranto, Ontario, Canada, October 17 - 20, 2005.

[118] Zheng, T.,Woodside, C. M. and Litoiu, M., "Performance Model Estimation And

Tracking Using Optimal Filters", IEEE Transaction of Software Engineering, Vol.

34 , No. 3, pp. 391-406, 2008.

