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Abstract 

Large complex service centers such as clouds must provide many services to many 

users with different service contracts. To deploy applications with many tasks across a 

cloud infrastructure, many goals must be satisfied simultaneously, which poses a large 

and complex optimization problem. The goals include quality-of-service targets, power 

minimization, respecting limited memory and software licences, and ability to track 

changing demands. 

This thesis creates new approaches to task assignment in service centers that are QoS 

driven and fast, scalable and extensible to new objectives and classes of restrictions. The 

new approaches provide sound configurations across a large number of highly coupled 

decisions. These approaches can effectively handle online resource management in 

various difficult dynamic environments, increasing the stability of management.  

The new approaches include (i) the combination of linear optimization with an 

analytical performance model to solve a complex nonlinear optimization problem via a 

series of LP solutions, (ii) a mixed-integer linear programming (MIP) model to address 

many interacting integer constraints, (iii) a new heuristic to approximately solve large-

scale MIPs with greater efficiency, and (iv) strategies to increase robustness in the face of 

dynamic changes in demand. 
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Chapter 1 Introduction 

1.1 Motivation 

New enterprise service centers need to deliver efficient, flexible and scalable services 

that respond rapidly to shifting business requirements. The ideal service infrastructure 

can help businesses make sound decisions in real time and can create opportunities for 

businesses to respond instantaneously to evolving demands. These new enterprise service 

centers will give the advantage of flexible deployment as needs change, hide 

management details from the user and the service provider, and require payment only for 

resources used [43] [40].  

In a new enterprise service center, there are many applications comprised of many 

interacting tasks. Each task has one or several replicas deployed in the service center or 

the Cloud infrastructure, which consists of many heterogeneous machines, as shown in 

Figure 1.1. 
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Figure 1.1 Application Deployment in a Cloud 

A deployment method must scale up to thousands of services running on thousands of 

hosts, and must be cheap enough to re-run frequently as loads and requirements change. 

An integrated management viewpoint of deployment should consider numerous 

constraints, objectives and relationships between many interacting elements with higher-

order nonlinear terms, which include the performance and quality of service (QoS) goals 

of each application, resource use (CPU cycles and memory space) and available capacity, 

license availability, software and hardware queuing delays, economic and latency issues, 

robustness in dynamic conditions, number of machines in use and energy consumption 

etc. Moreover, the ideal management system must be able to account for numerous 

constraints in a virtual environment and keep the models and decisions up to date in 

response to the changing workloads and computing resources, so as to minimize the risks 

of transitions and ensure system performance during certain critical periods.  
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Problem Statement: The goal of this research is to develop an efficient heuristic to 

optimize deployment problems for these large service centers. The new approach must be 

able to: 

1. Satisfy many simultaneous goals 

2. Handle may interacting constraints, such as minimum contracted quality of 

service, many resource and economic constraints etc. 

3. Scale well to support many classes of users, many interacting tasks and many 

heterogeneous  hosts on the Cloud infrastructure 

4. Provide sound reconfiguration in response to change of loads and requirements 

5. Extend to other objectives and constraints. 

1.2 Control Approaches  

Analytical performance models and measurement based reconfigurations are two 

ways to deliver the required performance, such as QoS, for service systems [62]. 

Performance models give a way to estimate the value of performance metrics, which are 

often used for capacity planning purposes. For example, they can help find bottlenecks 

[29] or compare competing alternatives [57]. By including tracking methods to update 

performance models at runtime, an analytical model can be extended for use in dynamic 

management [70][71]. Monitoring-based reconfigurations are dynamic control 

approaches for real-time management in response to the changing workloads and 

environment. In general a dynamic controller uses monitors to collect system information 

and then applies control policies to adjust the system configurations to achieve the 

desired outputs [36] [37].  Control approaches capable of supporting performance 

management in general can be classified into a few categories, as shown below:     
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1. Threshold Control: As some important performance value reaches a certain 

threshold, controllers execute operations according to the policies [18][95][104]. 

2. Control Theories: Based on a system control model, controllers attempt to 

achieve the desired effect on the outputs by manipulating the inputs to the system. 

For example, in [1][2], the system adjusts the acceptance rate to ensure multi-

class QoS for web servers; in [25][26][27][28][35][37], control theory is used to 

manage the performance of various web servers and databases by regulating the 

thread pool size or workload distributions. In [59][102], control theory is used to 

control large-scale event-driven service systems. 

3. Optimizations: An optimizer looks for the best (or near-optimal) solution among a 

set of available alternatives in an optimization domain. Optimization includes a 

variety of approaches such as heuristic packing [109][88][16][13][21], hill-

climbing [99][113], machine learning [80][97], genetic algorithms [67][79], 

nonlinear optimization  [24], mixed integer programming [15] [66] [98] etc.   

With the emergence of new service systems, new requirements bring new challenges 

to existing solution methods. Rapid optimization of large-scale application deployments 

is one of the new control properties required by the evolution of service systems [1][43].  

1.3 Contributions 

This thesis develops an effective optimization approach that is able to rapidly solve 

large-scale deployment problems for service centers. The main contributions include: 

1. A heuristic approach that combines linear programming (or mixed-integer 

programming) and nonlinear performance analytical model to optimize 

nonlinear deployment problems. The approach is fast, scalable and extensible 
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to new objectives and can satisfy a diversity of simultaneous goals, which 

may be nonlinearly coupled. 

2. An algorithm that improves the scalability of the mixed-integer programming 

(MIPs) for task assignment in service centers. In comparison with a pure 

mixed-integer program, the new algorithm can handle larger number of 

configuration options and obtain a good quality solution with much greater 

efficiency. 

3. The application of optimization with persistence for dynamic task assignment. 

The new approach accounts for the risks and costs associated with changes 

and helps high-quality solutions to persist, and performs very well in a variety 

of dynamic environments, including varying workloads, the addition and 

removal of applications, and the failure and repair of host machines. The 

approach balances the risks of impacting running tasks against the increase of 

the share of resources subject to various requirements.  

1.4 Thesis Organization 

This thesis is organized as follows. Chapter 2 introduces the background of 

performance management for service systems, including cloud computing, MAPE, 

performance models and various optimization approaches. Chapter 3 reviews related 

works on deployment optimization. Chapter 4 provides the problem statement and gives 

an overview of the solution. Chapter 5 proposes an optimization algorithm to address 

nonlinear contentions with a heuristic loop. Chapter 6 presents a MIP model to consider 

integer constraints and new algorithms to address large scale MIPs with greater 

efficiency.  Chapter 7 proposes several approaches to provide optimization with 
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persistence for advanced deployment management in response to various dynamic 

changes. Chapter 8 evaluates the effectiveness and computational cost of the algorithms. 
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Chapter 2 Background 

2.1 Large-Scale Service Systems  

Large complex service systems, such as enterprise data centers [43], need to offer 

many services to many enterprise users with separate contracts for quality of service. 

Resource virtualization is a core technology to support resource sharing and 

consolidation, system management and environment isolations, so that computing 

environments can more quickly and reliably be dynamically created, expanded, shrunk or 

moved in response to the requests. Virtualization enhances flexibility and agility. [34]    

2.1.1 Service System Metamodel 

We view a service system as comprising UserClasses, Services, ServerTasks, 

Resources and Hosts, related as sketched in [107] and illustrated through a UML class 

diagram in Figure 2.1. A UserClass is a group of users which requests services from 

outside the system, and these services request other services inside or outside the system 

(exploiting the concepts of Service-Oriented Architecture), forming a web of inter-

service traffic. Services are implemented by Applications (ServerTasks), which run as 

system tasks or thread pools, which may have limited capacity. UserClasses have 

throughput and delay requirements expressed by their SLAs. Resources, such as 

ServerTasks and Hosts, make up the system and are shared among many running 

Applications. Hosts have constraints due to limited memory or processing capacity. 
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ServerTasks can have license constraints. Thus, an Application can run its ServerTasks 

within commercial Data Base Management Systems or in Application Servers and there 

are upper limits on how many instances of those can be deployed.      

 

« Host» 
-saturationCapacity
-executionCost 
-memoryCapacity 

 

« UserClass» 
 

-requestRate 
-classSize 

 

« Service» 
 

- hostDemand 
*

* 1

*   requester

1

1   service

« reqDirect» 
{meanRequests} 

« provides»

« executes»

 

« ServerTask» 
-memoryRequirement 
-maxLicenses 

 

« Resource» 
 

«Application»

*

*
callee 

1
caller

« reqIndirect»
  {meanCalls}

 

«Cloud» 

**« runs»

 

Figure 2.1 Service System Metamodel 

2.1.2 Cloud Computing 

Cloud computing is a term used to describe a style of computing for next generation 

service centers where massively scalable service-oriented IT-related capabilities are 

dynamically delivered to multiple external customers.  A cloud may host a variety of 

services, that include Web applications (i.e. Software as a Service (SAAS) [84]), legacy 

client-server applications, platforms (i.e. Platform as a Service (PAAS) [39]), 

infrastructure (i.e. Infrastructure as a Service (IAAS) [40]), and information services 

[41][43].  
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A strength of cloud computing is the infrastructure management. Each process (task) 

has its own virtual machine. Each application in a cloud sees a virtual environment 

dedicated to itself, such as virtual machines for its deployable processes and virtual disks 

for its storage. The cloud management allocates real resources to the virtual resources by, 

for instance, giving a share of a real processor or memory to a virtual machine, or by 

deploying several virtual machines with replicas of application processes. The application 

offers services, and also uses services offered by other applications. Cloud computing 

provides high quality management as a service, allowing users to reduce time and skill 

requirements on lower-value activities and focus on strategic activities with greater 

impact on the business [38] [41][40].  

Clouds can be classified as public and private. A public cloud is a collection of 

computers providing services at retail, where users pay for services they use (processing 

cycles, storage or higher level services), and do not worry about the mechanisms for 

providing these services. A private cloud, say within a company, may expose more 

mechanisms and provide more control to its users. Cloud management is responsible for 

all resources used by all the applications deployed in the cloud, and the opportunity for 

global resource optimization is a major driver for implementation of clouds [43]. 

2.2 QoS in Service Systems  

A service system needs to deliver ensured quality of service, including service 

availability, performance, accessibility, integrity, reliability, regulatory and security [45], 

and should be able to give scalable services to increasing volumes of requests with 

satisfied latency and throughputs. 
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2.2.1 Performance Metrics and Relationships 

Quality of Service is often stated in terms of response delay or throughput [83]. 

Response time constraints can be rewritten as equivalent throughput constraints, based on 

finite user populations, as described below. 

A finite population (closed workload) is preferable for the performance calculations 

because the results are never unstable due to overloaded hosts, which can happen when 

throughput is fixed (open workload). Suppose UserClass c has a fixed population of Nc 

users (called a closed workload situation), and has throughput fc and mean response time 

RTc, then Little’s identity [63] states that 

fc = Nc / (RTc + Zc )                        ( 1 ) 

 

where Zc is the average time the user spends between receiving one response and making 

the next request (sometimes called a “think time”). If Nc is specified in the SLA, and a 

target response time RTc,SLA is given, then the target throughput is given by: 

fc,SLA = Nc /(RTc,SLA+ Zc )            ( 2 ) 

 

When Zc is unknown the worst-case value of 0 can be taken. If both fc,SLA and RTc,SLA 

are specified, a throughput is computed from the latter using Eq. (2) and the larger 

throughput is used.  

If on the other hand the throughput is assumed fixed (called an open workload 

situation) and the SLA specifies response time, then appropriate values of Nc and Zc are 

chosen to approximate the open situation by a closed one, with Nc and Zc chosen to give 

the target fc,SLA according (2).  
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Percentile response time is another important performance metric, which indicates the 

percentage of requests that can achieve the response with a specified latency.   It can be 

estimated by queuing model analysis with the distribution of response time [32]. 

2.3 Evaluation by Performance Model 

 Analytical performance models give efficient evaluation of the performance of a 

system, and they are widely used for capacity planning [65] and configuration 

evaluations [12] [10][70][71][95]. Markov models, Petri-Nets and Queuing models are 

some of the most typical performance models for software systems. 

2.3.1 Markov Modelling 

A Markov chain is a stochastic process that consists of a number of states and some 

known rates of moving from one state to another. In a Markov chain, future states depend 

only on the present state, and are independent of past states. In other words, the 

description of the present state fully captures all the information that could influence the 

future evolution of the process.  

However, Markov models have three major problems which limit their use. First, 

some Markov models are  incapable of being scaled. The state space may explode for all 

but the smallest of models, though Markov models that have a regular structure (such as a 

birth-death Markov chain) may be handled by a closed form solution. Second, large 

differences in transition rates may cause numerical instability. Finally, Markov models 

cannot model systems correctly when a system has purely deterministic services times or 

service time distributions without a rational Laplace transform. Of the three, the state 

explosion problem is the one that most often limits the use of this technique [50]. 
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2.3.2 Petri Nets 

A Petri Net is a graphical and mathematical modeling approach used to describe 

information processing systems that are characterized as concurrent, asynchronous, 

distributed, parallel, nondeterministic and/or stochastic [78]. A Petri Net consists of 

places, transitions, and directed arcs. Each arc connects a place and a transition. 

Traditional stochastic Petri Nets are unable to describe scheduling strategies with Petri 

Net elements. Some more recently developed Petri Nets, such as Queueing Petri Nets 

(QPNs) [49], can address this problem. 

One major weakness of Petri Nets is the “complexity problem” – Petri Net models of 

even modestly-sized systems are too large for analysis. Similar to Markov models, Petri 

Nets also suffer state space explosion as the system scales up. 

2.3.3 Queue-Based Performance Model 

Queuing models rest on queuing theories (e.g., Mean Value Analysis) to provide 

mathematical analysis of many queue-based performance problems. Queue-based 

performance models have many variants, which include queueing network (QN) models 

and layered queueing network (LQN) model. A queuing model is a nonlinear function. 

Queuing models provide efficient calculations of performance measures with state 

probabilities and can easily be scaled to large systems [31].  

Queue-based performance models are widely used to analyze static performance for 

capacity planning. They can help to find optimal selection of CPU speed, device 

capacities and file assignments [93]. Lazowska et al. [52] gave a thorough discussion of 

computer system performance analysis with queueing network models. In [68] [69] 

Menascé et al. extended the use of queuing models for performance analysis of service 
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systems. Queuing models are effective in providing analysis of the performance impact 

of software and hardware resource contentions. This capability helps to find management 

policies to achieve satisfactory performances [100]. Queuing models can be used to 

predict performance metrics in nonlinear dynamic systems and help to reconfigure the 

systems [65]. Optimization techniques can be combined with a queuing model to conduct 

dynamic management. For instance, the works in [70] and [71] respectively presented a 

use of queuing models to seek optimal services in distributed systems, and in [57] a 

performance model is applied to maximize system workloads.  

However, the difficulties of determining model parameters (e.g. the CPU demands of 

particular operations) from real world systems at runtime have discouraged the use of 

queuing models in dynamic systems. Recent works on parameter estimation proposed 

some solutions to address this issue. Liu et al. inferred the service demands of queueing 

models by minimizing the estimation errors of the end-to-end response times [64]. Zhang 

et al. used regression-based approximation to estimate the service demands of different 

transactions, then used a queueing network model to predict performance metrics with 

different transaction mixes [112]. Pacifici et al. [77] leveraged multivariate linear 

regression to estimate dynamic CPU demands on the basis of the time-varying nature of 

the request traffic. In [114] Zheng and Woodside et al. showed that a Kalman filter can 

quickly estimate parameters in real time and indicate that such a filter is capable of 

tracking the changing parameters. In [106] Woodside bridged a gap between the practice 

of measurement and the practice of modeling with statistical concepts, and presented a 

framework for estimating a model by nonlinear regression. This provides a basis for 

making software performance models available in dynamic systems. 
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2.3.4 Layered Queuing Networks 

Resource contention increases delays. If software resources are ignored, then all 

waiting occurs at processors and where throughputs are fixed (open workloads) 

contention may in principle be controlled by limiting processor utilizations to some 

chosen amount such as 80%. However this does not provide an estimate of delay so one 

cannot address the SLA for delay using this solution. This is why, in e.g.[70][71], a 

performance model for the processors is introduced. However, there is increasing 

evidence that software resources are also important, and for this a more structured 

performance model is required. A layered queueing network (LQN) is an extension of 

queuing models [30][82][108] capable of addressing software contention effects [56].  

A Layered Queueing Network (LQN) model of a service system is a simplified view 

of its structure, emphasizing its use of resources. This is illustrated by a small system 

shown in Figure 2.2. The users (UserClasses) are represented in the LQN by userTasks, in 

which userTask c has population Nc. A userTask does not receive any requests, but rather 

cycles forever, waiting for a think time Zc given as their demand (e.g. [1000 ms]), and 

then making a set of requests for service shown by directed arcs to the services. The arcs 

or arrows are labelled with mean counts of requests, per operation of the requester, e.g. 

(1). Services are represented by entries, which have processing demands De and make 

requests to other entries. Where a Service is provided by a ServerTask, the entry forms 

part of a corresponding resource called a task, and is deployed on a processor. Tasks and 

processors have a multiplicity {m} (e.g. {50}, modeling multiple threads or a 

multiprocessor). As discussed in [30], other software resources such as buffer pools may 

also be modeled as tasks.  



 15   

A LQN incorporates services with nested requests for other services. Three types of 

communications are supported by LQN: synchronous call, asynchronous call, and 

forwarding call. 

Synchronous call: This is a pattern of Remote Procedure Call (RPC). Sender blocks 

when waiting for a reply from receiver.  

Asynchronous call: This is a non-blocking pattern. Senders can send new requests 

without the need to wait for replies of previous requests. 

 Forwarding call: The receiver can forward a synchronous call to a third task and the 

third task might reply or forward it further. Receiver does not block after forwarding and 

the final receiver sends a reply to the blocked sender directly.  

These communication patterns can model multiphase types of software service with 

synchronous (in-rendezvous) and asynchronous (post-rendezvous) phases. They have 

been successfully applied to many applications.  

Based on queuing analysis, an LQN solution determines throughputs at users, entries, 

tasks and processors, delays including queueing for requests, and resource utilizations. 

Number the userTasks as c = 1...C; entries as s = 1...S, tasks as t = 1...T, and host 

processors as h = 1,...H. Then throughputs at these entities are fc, fENTRY,s,  fTASK,t, and 

fHOST,h respectively. Task and processor utilizations are uTASK,t and uHOST,h respectively, 

and for a multiple resource, full utilization makes the utilization equal to the multiplicity 

m.  



 16   
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(b) The LQN performance model 

 

Figure 2.2 A Lab-Scale System with the Trade 6 Benchmark 

The more complex LQN in Figure 2.3 indicates the potential of the LQN framework, 

with the main features of a shopping service application. The two topmost user tasks 

represent the two classes of users, with 250 and 100 users. The pUsers processor 
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represents the user desktops. Arrows represent requests for services (labeled by the mean 

number of calls, e.g. (2)), with a filled arrowhead indicating a synchronous request (the 

requester waits for a reply), and an open arrowhead, an asynchronous request. There are 

databases for inventory and customer information. Entries are named beginning with “e” 

in Figure 2.3 and carry labels (e.g. [1]) for the mean execution demand D on the host in 

ms. Processors are shown as ovals, linked to tasks deployed on them; a processor entity 

may represent a multiprocessor. Processors and tasks are labeled by a resource 

multiplicity (e.g. {100}). For a user task the multiplicity is the number of users in the 

class. Pure delays without contention are represented by infinite-multiplicity tasks and 

processors. Some additional details: a device like a disk is modeled by a task with entries 

to describe its services, and a processor representing the physical resource. Delay for an 

external service not modeled in detail can be represented by a surrogate task with a pure 

delay (infinite task) and entries for its services, as for the Payment Server and Shipping 

Server.  
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Figure 2.3 An Example of a Layered Queuing Network Model of a Service System 

In practice the performance model is derived from ordinary measurements on the 

running system. The structure of tasks and entries participating in each service is found 

either from the system design or by tracing some representative requests as described in 

[114]. The parameters are determined by profiling, by regression techniques [118] or by 

using a tracking filter [106][117]. In practice these models are not perfect, because of 

statistical estimation errors, and delays in computing the parameters (during which the 

system may change). The references above discuss how this inaccuracy may itself be 

estimated and controlled.  
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2.4 Monitoring-Based Autonomic Computing  

2.4.1 MAPE-K Architecture 

Monitor, Analysis, Plan, Execute and Knowledge (MAPE-K) are the five basic parts 

to consist an autonomic manager for controlling either a system or a component, 

proposed by IBM with the following architecture [44]. 

 

Figure 2.4 MAPE-K Architecture, from [44] 

 

In the control loop, monitor, analysis, plan and execute communicate and work 

together with one another and exchange appropriate knowledge and data.  

• Monitor: collects system information from sensors;  

• Analyze: correlates and models complex situations;  

• Plan: constructs the actions to achieve the desired targets;  

• Execute: performs the necessary changes to the system via the effectors. 

• Knowledge: maintains the data shared by the above four parts. 

Under the MAPE-K architecture the self-optimization loop for service systems can 

have the structure shown in Figure 2.5. Performance models are the core knowledge 

inside the loop in the approach used in this thesis. Monitors collect system information to 
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construct and update the performance models. Analysis components such as filters are 

used to estimate the parameters that cannot be observed but needed in modelling. Based 

on the performance models and the QoS goals, optimization is conducted to seek the best 

decisions in response to varying conditions. These decisions are finally executed by the 

system effectors. The optimization feedback loop gives a generic solution to support 

performance-driven self-management on autonomic systems. This loop enables the 

developer (or system administrator) to modify the code using intuitive mental models for 

performance tuning, perhaps guided by principles such as given in [86].  

 Optimize 
(Analyze,    Plan) 

Monitor 

Sensor 

Resources 

Effector 

Performance 
models 

Execute 

(observation)  y u (control) 

QoS Goals

 
  Figure 2.5 Feedback control for QoS and optimization, from [86] 

 

2.4.2 Dynamic Management Approach 

Many monitor-based control approaches have been developed for dynamic system 

management in response to runtime changes. The approaches in general can be grouped 

into threshold-based control, dynamic control theories and optimization. 

• Threshold Control 

Threshold control makes decisions based on the values of monitored variables, such 

as response time or utilization rates. When the value reaches a certain threshold, then the 
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system controller executes policies to change configurations. Threshold control is widely 

used because of its simplicity. For instance, in multi-tiered systems threshold control can 

give a straightforward way to adaptively adjust capacity provisioning in terms of 

response time [95][84] or to improve performance for overloaded systems [19]. 

Admission control and congestion control are typical examples of the use of threshold 

management. In admission control, response latency determines the acceptance or 

rejection of the new arrival requests. Welsh et al [104] demonstrated that admission 

control can be used to ensure percentile response time on such complicated systems as 

SEDA.  

A threshold controller is driven by control policies. However it is difficult to create 

good adaptive policies for complex systems under many constraints and uncertainties. 

Threshold control is limited to controlling one parameter from one measurement variable. 

In service systems, many activities and configurations interact and many decisions have 

some alternatives, and threshold control is inadequate. 

• Dynamic Control Theories 

The motivation of control theory is to manipulate the inputs to a system to achieve the 

desired effects on the outputs. Control theory views a service system as a dynamic 

system, modelled with H(s), which describes the relationships between the input 

configurations X(s) and the output performance Y(s). With the use of a transfer function 

shown in Equation 1, the desired performance Y(s) can be obtained by regulating X(s). 

H(s) could be a large matrix consisting of many interacting elements with higher-order 

nonlinear terms. The control approach seeks a configuration X(s) that provides the 

expected output Y(s). 
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Y(s) = H(s)X(s) ( 3 ) 

 

Linear and nonlinear controllers have been used to adjust configurations in a variety 

of software systems. For instances, Hellerstein and Diao et al. applied linear control 

theories such as linear-quadratic regulator (LQR) to control many multiple-input and 

multiple-output (MIMO) commercial software systems, including workload management 

on web servers [1][25][27] and memory management in databases [60][89] as well as 

connection control in communication software [28]. Abdelzaher et. al. applied 

proportional-integral (PI) control on workloads to obtain the desired response time [2]. 

Chen et al. deployed control theories to manage the replication of databases in a data 

center [17]. The current author employed feedback control to deliver quality performance 

for stage-event-driven systems [58][59]. Xu et al. used predictive control to control 

dynamic resource allocation in data centers [102]. 

The effectiveness of control theory relies on the accuracy of system modelling. The 

complexity of a service system hides many uncertainties, which make it difficult to 

explicitly describe the relationship between outputs and inputs. Controllers are driven by 

reference outputs, but the desired values of some outputs are unachievable in some 

service systems; for instance the maximum capacity of a service center is hard to estimate 

accurately in advance. A decision maker in a service system must be able to coordinate 

many decisions with numerous classes of restrictions. These requirements are beyond the 

capability of control theories. Moreover, the system models could be quite different to 

address different dynamic problems, limiting the persistence of the management. 
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• Optimization  

An optimization method in general includes an optimization model and optimization 

algorithms. Optimization can automatically seek the best (or near-optimal) solution in 

terms of diverse constraints and objectives. There are many optimization approaches 

developed for software system performance, such as bin-packing, hill-climbing, machine 

learning, genetic algorithms etc., surveyed below.  

Almost every commercial enterprise product has optimization mechanisms to give the 

required system performance. With the emergence of new styles of computing, higher 

quality optimization approaches are needed to satisfy new requirements. For example, 

rapid optimization algorithms that can address complex and scalable configuration issues 

are urgently needed by large enterprise service systems [43]. Dynamic optimization 

periodically seeks new optimal solutions to adapt to the changes. In each period, a static 

optimization is solved.     

2.5 Optimization Approaches 

Following are some of the optimization approaches used in deployment management. 

Each approach takes a particular view of the service system and this view conditions the 

approach.  

2.5.1 Bin Packing 

Bin-packing views the deployment problem as placing a set of tasks, each taking up a 

certain amount of volume, into a set of hosts, that each has a limited available capacity 

(space or time) to host tasks. Tasks and hosts are respectively regarded as items and bins 

in the algorithms. The goal of bin packing is to place these items into the smallest number 

of bins. An item must be packed into a bin without violating the space constraints. 
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Though the solution cannot be guaranteed to be optimal, bin packing algorithms are 

widely adopted in many cases because of efficiency and simplicity. 

In the simplest version of bin-packing, a set of items, each having a single dimension 

of “size” (e.g. length) is given, and the task is to pack all of the items into the smallest 

number of identical bins, each of which has a limited capacity. This problem is known to 

be NP-complete (e.g. [33]), hence it is usually solved in practice by heuristics which 

return approximate solutions. Some heuristics provide tight bounds on the optimal 

solution. 

Multi-dimensional bin-packing is an extension of bin-packing to satisfy more packing 

constraints. In multi-dimensional bin-packing, items and bins have more than one 

dimension, e.g. height, width, and depth, to account for additional requirements.  In 

online bin-packing the set of items is not known in advance: items arrive in a stream and 

must be packed upon arrival. In dynamic bin-packing the items stay in the system for 

only a certain time period and then disappear. See Coffman et al [22] for a survey of bin-

packing methods. 

Though deployment problems have some similarities to bin-packing, a significant 

difference between them is an application deployment problem allows subdividing 

processing capacity into parts of any size for allocation, which means a deployment 

would have more allocation choices than standard bin-packing problems and the problem 

is more complex.  

2.5.2 Hill Climbing 

Hill climbing views optimization as exploring decisions on a static surface where 

each response is mapped onto a set of coordinates. The strategy of hill climbing is to 
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iteratively improve the current state by varying each variable one at a time, comparing its 

function costs with its neighbours, and moving to the neighbour state with the best 

function cost value. The process terminates when the function cost value cannot be 

improved anymore [81]. The quality of hill-climbing can be improved by multi-start if 

searching for a global optimum [103]. 

Hill climbing is a simple and popular search algorithm that is used to find a local 

optimum. However, it cannot guarantee the global optimum unless the surface of the 

function cost is concave. The algorithm may encounter problems if the surface of the 

function cost has ridges or a plateau. Expensive cost function evaluation and the state 

explosion problem are the most common limitations on the application of hill climbing.  

2.5.3 Reinforcement Learning 

As a sub-area of machine learning, reinforcement algorithms attempt to derive best 

configurations for the specific system states by a trial-and-error methodology. Basic 

reinforcement learning contains system states, actions and scalar rewards. At each step, 

an action is taken to transit a state and assign rewards to update the value function. Best 

configurations to achieve maximum rewards are obtained when the objective function 

converges [90]. Reinforcement learning is a “knowledge free” approach, meaning that 

configuration parameters are mapped onto evaluation functions without the need of 

system modelling. 

A weakness of RL is that the learning phase takes a long time, and may not react to 

dynamic changes in a timely way. Furthermore, some of the machine learning algorithms 

(e.g. MDP) may suffer state explosion when handling large-scale optimization. 
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2.5.4 Flow Network Based Optimization 

Optimization with flow networks is a sub category of graph theory. A flow network 

takes a view of a service system as a network. A classic flow network includes a 

collection of nodes and directed arcs that connect pairs of nodes. Each arc is labeled with 

a triple of parameters [l, u, c]: the lower flow bound l , the upper flow bound u and the 

cost per unit of flow c. A flow in an arc must satisfy the lower and upper bound of the 

capacity. Ordinary nodes are of three types, and are shown as circles in a network 

diagram. Source nodes introduce flow into the network and sink nodes remove flow from 

the network, at rates given by the input and output arcs attached to them, called phantom 

arcs. Ordinary nodes simply balance flow between their input and output arcs (total input 

= total output) [20]. In addition, a special type of network flow model (NFM) called a 

processing network [20] has at least one processing node which has fixed ratios of the 

flows in its incident arcs. Processing nodes are shown as squares labelled with the fixed 

proportion of flow at the attachment point of each incident arc.  

The strength of the flow network model is it can model many distribution and 

assignment problems. By optimizing the distribution of flows across the network, optimal 

configurations can be achieved. Flow networks have many variants, such as circulation 

and max-flow min-cost problems etc. However the effectiveness of flow networks stands 

on the basis that the problem can be modelled with flows and there are effective 

algorithms that can solve the flow model. 

2.5.5 Mixed Integer Programming 

Mixed Integer Programming (MIP) extends linear programming to account for some 

variables that must take integer values. A special case of MIP is binary integer 
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programming, in which the integer variables are binary-valued. Some advanced 

algorithms, such as branch and bound, can be used to address MIP problems. But MIPs 

are generally NP-hard, meaning that the solution time is non-polynomial and hence slow 

to solve a problem having many integer variables. An effective bounding function can 

significantly improve the efficiency of a MIP solution, but it is a creative work subject to 

the requirements of specific problems.  
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Chapter 3 State of the Art in Optimal Deployment 

3.1 Related Work 

Optimization approaches can seek better deployment decisions to improve system 

performance. Bin-packing is probably one of the most commonly used approaches to find 

optimal deployments. It has been widely used to pack execution requirements [21], 

execution and communications requirements [109], and memory; all of which have been 

combined in multidimensional bin-packing [16]. More recently, the use of bin-packing is 

extended to optimize task allocations in virtual environments [13].   

Bin-packing motivates many new packing approaches. For example, Karve [48] and 

Steinder et al. [88] created heuristics to distribute workloads across virtual nodes in a 

virtual computing environment, and Tang et al. [91] combined max-flow algorithms and 

heuristics to manage large-scale resource allocations on Websphere XD. However these 

packing approaches oversimplify the deployment problems in that blocking delays and 

the availability of task replicas are important to system performance, but cannot be 

handled by these packing approaches. 

Hill climbing has been applied to maximizing system workloads in service systems 

[61], minimizing replicas to provide satisfied QoS [115], seeking optimal QoS 

components for distributed systems [71], and finding resource allocations for DBMS 

management [113]. Expensive evaluation costs and the state explosion issue limit the 
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application of hill-climbing on medium or large scale systems. In existing applications 

hill climbing can support only a few tens of variables. 

Reinforcement learning (RL) was first applied by Vengerov et al. [97] to seek optimal 

resource allocation decisions in terms of changing workloads. Rao et al. [80] made RL 

available to optimize configurations in virtual environments. In [87], Soror et al. 

successfully used RL to configure database workloads on virtual machines. In current 

works the RL is successfully used to support systems with a few tens of configuration 

parameters.  

Flow networks were applied as early as 1980 by Bokhari et al. [9] who discussed the 

use of flow networks to solve a partitioning problem in multicomputer systems. In [91] 

Tang et al. presented a combination of max-flow algorithms with a heuristic to allocate 

varying workloads on a large scale commercial system such as WebsphereXD. This 

approach can handle thousands of application deployments at the same time, but it 

ignores the impacts of resource contentions on QoS, and thus cannot deliver ensured QoS 

for multiclass users. Toktay and Uzsoy [92] leverage a flow model to maximize resource 

utilizations and demonstrate that a heuristic can achieve almost the same result as a mixed 

integer programming (MIP), but with much more efficiency. However, this approach ignores 

the minimum execution demands required by each task and the QoS constraints.  

Knapsack optimization can be used to address some combinatorial optimization 

problems. A multiple knapsack problem is a variant used to address general resource 

allocation problems that account for the allocation of n items into m knapsacks. Bilgin et 

al. [7] demonstrate that the Knapsack allocation problem can be modelled by a simplified 

flow network. In [48] Karve et al. present a heuristic approach for optimizing application 

allocations in terms of a knapsack model. Similarly, Zhang et al. [111] present a 
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combination of a queuing model with a nonlinear integer optimization to determine the 

number of hosts required by a multi-tier server network subject to some QoS 

requirements. However, this approach only considers the number of machines in use but 

ignores many performance issues such as how to improve the machine utilization and the 

constraints imposed by memory, and it is incapable of optimizing the allocation/creation 

of replicas. Since these algorithms cannot accommodate many optimization constraints 

and variables, they are unable to coordinate a large number of decisions at the same time. 

MIP is effective to model the allocation problems with such integer constraints as 

memory and host activity etc. In [15], MIP is applied to manage VM deployments in a 

cloud infrastructure. It optimizes VM allocations taking account of computation power, 

electric power, storage and network bandwidth, but it does not consider QoS constraints, 

service allocation and workload balance across VMs. In [98] and [66] MIP was used to 

conduct power optimization, which is applicable to handle fixed power consumption and 

execution power consumption in terms of freezing deployments.  

Nonlinear programming is applicable to address complicated deployment problems 

with nonlinear terms. It leverages an iterative process to explore the optima with methods 

like gradient descent. Many researchers used nonlinear optimization to handle complex 

deployment problems. For example, in [24] the authors proposed a combination of 

nonlinear optimization and control theory to solve a revenue problem subject to QoS 

requirements and dynamic changes. This approach optimizes allocations across a set of 

heterogeneous hosts by solving an optimization model that includes the nonlinear 

calculation for performance. This approach is effective for small scale problems with a 

few servers and hosts, but does not scale for large problems with many optimization 
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options, because search methods for a large-scale nonlinear problem are very time-

consuming. In general a nonlinear optimization model is only available for specific 

problems, but it is not a generic solution extendable to address new objectives and 

constraints. Modelling a nonlinear optimization model subject to many coupled 

relationships is complicated. 

Utility functions can be used in some autonomic computing systems [47][85][73][75]. 

Utility functions are the objective functions for optimization, mapping each possible state 

into a scalar value. A utility function can be constructed in several ways, such as by 

ranking the objective functions in importance, or using a weighted combination of the 

objectives. Optimization techniques are applied to seek solutions for the goal of the utility 

functions [101]. Menasce et al. used hill climbing [6][75][76] and beam search [5][72] 

for resource management in service systems. These approaches apply analytical 

performance models to evaluate the utility functions for decision making. However a 

utility function alone cannot guarantee the constraints are met. A returned solution may 

achieve a good utility value, but violate some constraints. And the quality of management 

with utility functions is strongly affected by the optimization techniques. 

3.2 Weaknesses of Existing Work 

The emergence of large-scale service computing results in three main challenges for 

existing optimization approaches. Increased complexity is the first, which requires the 

optimization to be able to satisfy many coupled objectives and constraints at the same 

time, scalability is the second, and the third is the dynamic changes of the requirements. 

New solutions are needed to meet these new challenges.  
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Bin-packing cannot address the complexities. A standard bin-packing algorithm seeks 

placement decisions on the basis of the available host capacity and the size of each item, 

but the algorithms cannot address packing problems that allow merging or dividing items 

into arbitrary size, and the algorithms are poor at finding an optimal packing for items 

whose volumes interact with each other. In a service system there are many resource 

issues that cannot be described by bin-packing. For instance, processing capacity can be 

subdivided into parts of arbitrary size for allocation, and this is not a standard bin-

packing problem. Another weakness of bin-packing is that it cannot ensure QoS in a 

straightforward manner. Bin-packing algorithms will terminate at some local optimal 

point, but this might be far from any global optimum.  

Hill climbing requires evaluation of every candidate decision. Expensive evaluation 

costs and the state explosion problem make hill climbing suitable for small systems only 

(see Section 2.5.2). At present hill-climbing approaches can support only one or two 

dozen configuration parameters. Such capability is far from the requirement of large-

scale service systems that need to adjust over a thousand variables at the same time. 

Machine learning is particularly suitable to long-term running systems. Nonetheless 

as the system varies significantly, the learning process may be incapable of finding good 

up-to-date configurations. And the limitation of the number of states means that the 

algorithms do not scale up. Thousands of runtime configuration parameters are beyond 

the capability of current reinforcement learning algorithms. (See Section 2.5.3)       

Pure flow networks ignore complex performance issues, such as blocking delays due 

to resource contention, which are in general nonlinear and NP-hard. Oversimplifications 

make for an optimistic flow network solution, which may be very different from reality. 
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A flow network can model resource provisioning and consumption using a flow 

representation; however, there is a gap between resource utilization and QoS. How to 

bridge this gap has not been addressed in the existing research. To solve scalable flow 

networks, rapid algorithms are required, but further research is needed to accommodate 

this requirement. 

MIP is another approach used for deployment optimization, which can be applied to 

handle more practical problems than LP. However, MIP is NP-hard. It does not scale to 

solve large problems. And MIP cannot account for nonlinearities. This limits the use of 

MIPs in problems with nonlinear coupled goals.  Current research on deployment often 

only focuses on how to model the problem in MIP, and then use general algorithms via 

solvers to seek the optimal configurations, but ignore the weakness of MIP solvers, which 

may limit the efficiency and scalability. Other algorithms could be more effective than 

the algorithms in MIP solvers to address some specific MIP problems.  

Nonlinear optimization is an approach capable of accommodating nonlinear terms in 

the optimization model. It gives greater flexibility to model the problem for optimization. 

Nonlinear problems are solved via an iterative process with gradient descent. Because 

this process could be time-consuming for complex problems with higher-order nonlinear 

terms, nonlinear optimization is ineffective for allocation problems with many 

simultaneous highly coupled goals. Moreover, for QoS management contention must be 

considered, but the complexity of the calculations for contention makes it hard to model 

for an optimization solution. Therefore, it is difficult to use nonlinear optimization to 

deliver QoS-ensured performance. 
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Table 3.1 summarizes the strengths and weaknesses of the above solution approaches 

for deployment management. It compares the decision quality, scalability, efficiency, and 

the effectiveness for satisfying nonlinear coupled goals, including multiclass QoS 

constraints, and the extensibility for new requirements, ease of modeling, as well as the 

performance in response to dynamic changes.  
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Table 3.1 Overview of the Existing Solutions on Deployment Management 

Approach Decision Quality Scalability Efficiency QoS 
Constraints 

Coupled goals Extendibility Ease of 
Modeling 

Dynamic 
Performance 

Bin Packing Non Optimal Yes Yes No Weak Weak Easy Weak 

Hill Climbing Local Optimal No No Probably  Good Good Easy Weak 
Control Theories Good ---- Yes Yes Probably Weak Hard Good 

Machine Learning --- ---- No --- ---- Weak --- --- 

Flow Networks Global Optimal Yes Yes No Probably Good Depends Good 

MIP Near Optimal No No No Good Good Depends ---- 
Nonlinear Optimization Local Optimal No No Probably Weak Weak Depends ---- 

 

• Decision Quality: the accuracy of the solution, measured by the results that are global optimal, near optimal or non optimal 

• Scalability: the size of the problem can be handled 

• Efficiency: the speed to solve a problem 

• QoS Constraints: capability to ensure the quality of service, such as response time, throughputs, including the account of QoS 

loss due to resource contention 

• Coupled Goals: the capability to address multiple interacting goals at the same time  

• Extendibility: good extension to accommodate new objectives and constraints.  

• Ease of Modeling: the difficulties to build up a control/optimization model  

• Dynamic Performance: the stability of management and the quality of optimization during a dynamic process.  
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Chapter 4 Problem Statement and Solution Overview 

4.1 Problem Statement  

The goal of this research is to develop algorithms that provide advanced performance 

management for large service centers, including the ability to satisfy many simultaneous 

goals. They should optimize numerous coupled configurations at the same time. These 

new algorithms must: 

1. Scale up to provide the minimum contracted quality of service (QoS) for 

many users subject to many resource and economic constraints, which 

include: 

• Multiclass performance targets described in service contracts, (e.g. 

response time, number of users, capacity given as arrival rates),   

• Constrained software and hardware queuing delays, 

• Constraints on the number of replicas of each service, 

• Constraints on the number of hosts in use, 

• Economic targets (e.g. cost budgets, power consumption, profit targets). 

2. Operate quickly enough to provide frequent adjustment as loads and 

requirements change.  
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• The new algorithms must be capable of making high quality decisions for 

possibly thousands of simultaneous configurations across a large-scale 

system within a few minutes.  

3. Give high-quality robust decisions in response to shifting circumstances. 

• Stability in various dynamic environments (e.g. varying workloads, the 

addition and removal of applications, and the failure and repair of host 

machines), 

• Control the costs/risks associated with changes, 

• Control creation of replicas.  

4. Coordinate decisions subject to numerous simultaneous constraints, objectives 

and relationships between many interacting elements with higher-order 

nonlinear terms, which include, 

• The selection of hosts,  

• Computing power consolidation,  

• Allocation of service replicas,  

• Workload balancing and distribution.  

5. Provide extensibility of the solution. 

• The solution must be extendable to satisfy new objectives and classes of 

restrictions. 

Existing approaches can give some of these control properties, but not all at once. Bin 

packing cannot address multiple goals at the same time, and optimization quality is not 

guaranteed. Hill climbing cannot respond to changes rapidly. Modelling a controlled 
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system for a large-scale service system is challenging, though control theory performs 

well for dynamic problems. Machine learning requires a great deal of history data, and is 

weak in addressing new requirements. Flow Network Optimization and MIP are effective 

for modelling some issues, but cannot address nonlinear problems. Nonlinear 

optimization is limited by the efficiency of the iterative gradient search.  

The new optimization algorithms developed in this research are required to deliver all 

these properties at the same time. They must be applicable to managing a set of 

applications to share a cloud infrastructure in an optimal manner, ensuring multiclass 

users the expected performance at low cost. They should be able to provide high quality 

solutions that persist, taking into account the risks and costs associated with changes.  

4.2 Overview of the Solution 

The solution proposed in this thesis provides dynamic management by solving a 

sequence of static deployment problems as conditions change. It includes an optimization 

approach for static deployment based on a snapshot of the system requirements and state, 

and a persistent control mechanism, giving stable/persistent management in a variety of 

dynamic environments. This solution models the problem with these goals by an 

optimization model comprised of an objective function (which addresses multiple goals 

by weights, rewards and penalties on the objectives) and a set of constraints. 

For each static deployment problem, the approach leverages an analytical 

performance model and scalable heuristics to seek near-optimal deployments which 

deliver the required performance for each class subject to the cost and quality constraints. 

The optimization process iterates between a sub-optimization problem and a layered 
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queuing network (LQN), in which the optimization uses a network flow model (NFM) or 

a mixed integer programming (MIP) problem. Rapid algorithms are developed to solve 

these optimization models either exactly (in the case of NFM) or approximately (in the 

case of MIP). The optimization solution returns high quality deployments allocating host 

reservations to tasks. The performance model (like LQN) predicts the effect of 

contentions, which reduce the throughputs. The optimization model is then adjusted by 

introducing surrogate flows at the services, which account for the additional capacity 

required to overcome contentions, and the sub-optimization problem is re-solved.  

This iteration loop provides an effective approach to seeking sound deployment 

decisions while considering the effect of resource queueing, including logical resources 

modeled by extended queueing [56], thereby satisfying constraints on multiclass average 

response times. This was extended to find a minimal change to accommodate one new 

application, in [55]. In [57] the optimization approach was extended by combining 

heuristic packing (HP) and linear programming (LP) to account for memory and license 

constraints. This approach is fast and scales well.  

The algorithm is further improved by combining heuristic packing with mixed integer 

programming (MIP), to increase the quality of optimization and satisfy more goals, 

including minimizing the energy consumption, number of hosts in use, and maximizing 

robustness in dynamic conditions and persistence of solutions subject to changing 

circumstances. In comparison with a pure MIP via the CPLEX tool, the heuristic MIP 

(HMIP) can solve much larger optimization problems and obtain a good quality solution 

with greater efficiency. Contention linearization via sensitivity analysis and linear 

programming is applied to reduce costs due to over-allocated resources. [53] 
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During a dynamic process, soft and hard constraints can be added on related variables 

in the optimization model in order to take account of the change of the environment, 

providing persistent solutions that reduce the risks/costs associated with changes. In 

addition, a new model capable of accommodating constraints to limit the scale of changes 

and control new replicas to specific tasks is described. These persistence mechanisms can 

deliver advanced robust deployment management in response to a variety of dynamic 

changes, guaranteeing system stability [54]. 

The solution is evaluated by a set of experiments in static and dynamic environments. 

The unit of time in all experiments is milliseconds, and the processor speed, memory 

space and costs considered in the optimization functions are relative to a standard host. 

These experiments assume the performance model of each application is up-to-date and 

accurate. Based on an assumption that the time interval between optimization solutions is 

long enough that the system will actually settle down to steady state, the results returned 

by the performance model LQN are steady-state and the mean-value LQN model can be 

used to predict performance on the real systems.   
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Chapter 5 Optimization Algorithms to Address Static 
Deployment (without Integer Constraints) 

This chapter presents the fundamentals of the static deployment algorithm, which 

combines network optimization and contention calculations, effectively solving a 

nonlinear optimization problem by iterative LP solutions. The returned solution allocates 

host reservations to tasks, and divides request traffic between multiple task replicas, 

where applicable. 

5.1 Optimization Architecture 

In a large-scale service system, such as a cloud, the system incorporates several 

elements in order to provide the feedback control shown in Figure 2.5; the resulting 

architecture is sketched in Figure 5.1. Monitoring of resources provides utilization 

information at the level of the physical processor, virtual machine, and other logical 

resources. Monitoring of user requests gives measures of throughput and response time. 

The performance model tool stores a model of each application and its deployment, and 

is connected to estimation tools for updating the model parameters periodically from the 

monitoring (the Model Tracker). When a new application is loaded, an initial 

performance model is supplied by the application provider, derived either from the 

application design (as described in [110]), from other knowledge of the application, or by 

tracing its behaviour (as described in [115]). Finally some deployment effector tools must 
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be included to load and initialize VM images on host processors, as indicated by the 

optimization. 

A management platform might include one or several optimizers to satisfy different 

requirements. Each optimizer has an optimization model to describe its part of the 

problem and a corresponding solver to seek the optimal solution in terms of the 

optimization model. In this research, the optimization aims to satisfy performance targets.  
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  Figure 5.1 Sketch of model-based optimization architecture 
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5.1.1 Deployment Management in a Cloud 

Based on the architecture of Figure 5.1, a scenario of the deployment management is 

shown in Figure 5.2. When initializing an application deployment, a performance model 

is constructed from the software specification or from previous operational data. 

Deployment decisions are created by the optimizer based on predictions by the 

performance model. Dynamic changes in the system synchronously update the 

performance models, which then keep the corresponding optimization models up to date. 

New optimization solutions are sought periodically by solving the optimization models in 

response to changes. 

Virtualization of processors makes it possible for separate applications with separate 

virtual machines (VMs) to safely share a physical node, and a virtual machine monitor 

can control the rate of processing provided to each VM. During the runtime deployment 

is adjusted in terms of the tracked performance model in response to the changes. 
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Figure 5.2 Application Processes in a Cloud 

5.2 Overview of the Optimization Approach 

The optimization algorithm consists of an optimization loop and a Linearized End-

point Step (LEndStep). The optimization loop seeks near-optimal feasible solutions. It 

iterates between a linear (or MIP) sub-optimization problem and a nonlinear cost 

calculation to find a near optimal solution. Then the LEndStep solves a linearization of 

the entire problem a single time, improving the quality of the final solution, constrained 

by the deployment decisions in the feasible solution. The LEndStep tunes the loading of 

different tasks to minimize cost subject to the QoS constraints. A high-level algorithm 

describing the execution of the approach is shown as Algorithm I.  
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Algorithm I. Generic High-Level Iterative Algorithm 

 

In the algorithm, the optimization loop is made up of 5 main steps and iterates until 

finding a near optimal configuration capable of achieving the required QoS. The steps 

are:  

Step 1. construct the Optimization Model  for the service system,  

Step 2. solve the Optimization Model to find the suggested deployment decisions. 

Step 3. reconfigure the Performance Model to incorporate the deployment 

decisions given by Step 2. 

Step 4. solve the Performance Model  

Performance Model (LQN)

Optimization Model

Solve the Optimization Model

LQN updated for deployment

LQN Solution

Linearized End-Point Step

Optimization Model 
updated for contention 

Step 3

Step 2

Step 1
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Step 5. test the feasibility of the solution. If not feasible, incorporate the queueing 

delays into the Optimization Model, and repeat from (2). 

Step 6. If the solution is feasible, a linearized version of the entire problem is 

solved to give a final solution (the Linearized End-Point Step (LEndStep) 

described in Section 5.7). If this final step is ignored the solution may not be as 

good as it could be.  

In this research two optimization models are developed to satisfy different goals in 

Step 2. The first is the Network Flow Model (NFM) of the deployment problem. NFM 

uses linear programming (LP) to optimize the distribution of execution demands, but 

ignores some nonlinear and integer restrictions. Because LP is solvable in polynomial 

time, this optimization is scalable and fast. The second is Mixed Integer Programming 

(MIP), which can accommodate such integer constraints as memory demands and 

availability, power consumption due to host activity and license availability. The design 

of the MIP model will be introduced in the next chapter. 

The solution given by the optimization model is a deployment,  

(1) allocating host reservations to tasks,  

(2) dividing request traffic between multiple task replicas, where applicable, and  

(3) minimizing cost. 

Since the solution of either NFM or MIP by itself ignores the effects of contention for 

resources, this makes the predicted performance optimistic. These are important practical 

aspects of the deployment problem, which cannot be addressed by flow optimization via 

NFM or MIP alone.  
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Contention introduces additional delays and reduces the actual flows, in a way that 

can be estimated by a performance model (a LQN in this work). The total capacity 

required to process an entry is being increased by adding the pseudo-flow; this excess 

capacity is required to reduce contention (by reducing utilization of the assigned 

resources). The optimization model then is adjusted by the surrogate flows to describe the 

new resource requirements, and re-solved. A fixed-point iteration (Steps 2 – 5 in the 

Generic Iterative Algorithm above) is used to adjust these, terminating at a converged 

solution (where the delays, including contention, do not violate the QoS constraints).  

5.3 Step 1: Network Flow Model for the Service System 

A NFM is a graph with arcs which carry flows and nodes which operate on the flows, 

as illustrated in Figure 5.3 and discussed in Section 2.5.4.  Each node shown in Figure 5.3 

is representative of a set of nodes, with H nodes in the Host column, T nodes in the Task 

column, S nodes in the Services column, and C nodes in the Class column. The arcs show 

which flows between nodes may be non-zero, and by the conventions of modeling with 

the NFM they flow into the hosts, and out from the user classes. Each arc has a flow 

quantity, defined as 

flow quantity = demands for CPU-sec of processing, transferred per sec between nodes 

 

and initially the CPU-sec for any operation will be assumed to be the same on all hosts 

(hosts are of uniform speed); this is generalized below.  
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Figure 5.3 Network Flow Model 

The deployment problem is formalized with a flow network model (NFM). We 

consider the flow of execution of services of task t by host h (i.e. αht), as part of the 

solution of NFM. The unknown flows αht, βts, γsc comprise the variables in the model. 

Each arc is labeled with a triple of parameters [larc, uarc, carc]: the lower flow bound larc 

(default 0), the upper flow bound uarc (default infinity), and the cost per unit of flow carc 

(default 0).  The parameters are not shown where all take the default values.  

An NFM can be derived from the LQN performance model by considering the flow 

of demands for CPU work implied by the request arcs in the LQN. An NFM host node h 

=1...H is created for LQN processor h; a task node t=1...T is created for non-user task t; a 

service node s=1...S is created for entry s. These are ordinary nodes which relate demand 

flow on each host to demand flows by services. The NFM may include additional 

processors which are not used but which could be used in an optimal deployment. For 

each userTask c there is a processing node for user class c in the NFM, which converts a 
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flow of user requests into CPU demands by services. Table 5.1 summarizes the entities 

defined for service systems in general, with their corresponding representations in the 

LQN and NFM models. 

Table 5.1 Corresponding Entities in Different Views 

Service System Network Flow Model (NFM) Layered Queueing Network (LQN)
Processor h Host node h Processor h 
UserClass c User class node c UserTask c 

Service s Service node s Entry s 
ServerTask t Task node t Task t 

Resource ... A Task or Processor 
Activity ... Activity (within an entry) 

 

The input arcs on the left in Figure 5.3 represent the total flow fHOST,h at host h, and 

are labelled with [0, Ωh, Ch] meaning that fHOST,h ≥ 0, the host capacity limit is fHOST,h ≤ 

Ωh, and the cost is Ch per unit of flow (meaning the cost per execution demand of the host 

h). For a set of processors of equal speed, and flows given in CPU-sec/sec, the capacities 

are all 1.0. There is also an arc:  

• from host h to each task t which is permitted to be deployed on h, with flow 

αht (the demand rate executed on host h, to satisfy the needs of task t). If 

multiple replicas of a task are deployed, it will have non-zero flows from 

multiple processors, which will optimally divide the execution flow between 

them. 

• from task t to each service s offered by task t, with flow βts (the demand rate 

from the service). In the LQN each service (entry) is associated with just one 

task.  
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• from service s to each user class c which causes s to be executed, with flow 

γts. γts is the total CPU demand triggered at service s by requests made by class 

c.  

Notice that when a task is replicated on different processors, there is one task node for all 

the replicas, but one host node for each replica.  

These arcs relate demands at processors to demands from user requests, and express 

the software structure and the constraints on deployment of tasks. Omitted arc labels 

default to [0, ∞, 0]. 

The output arcs at the right have a flow which is the requested throughput of the user 

class. The user class node c is a processing node with flow ratio parameters which 

convert the class flow fc at the right in Figure 5.3, in units of user requests/sec, to demand 

flows γsc for services. For each single user request by class c, a demand of dsc CPU-sec is 

required for service s, giving this flow proportionality: 

γsc = dsc fc 

The value of dsc can be determined by profiling the system for each user class request 

type, or from the LQN model. In the LQN, let Ycs be the total direct and indirect mean 

requests to entry s for one request from user class c, and let yes be the mean requests made 

directly from any entry e to entry s. For this purpose user class c will be defined to have 

an entry numbered S + c, and yS+c,s is the mean number of requests made directly to entry 

s for one user response (in Figure 5.3, there is exactly one request to a particular service 

entry point, but it can be more general). Then assuming there are no request cycles, Ycs 

can be computed by setting Yc,S+c = 1 for all c, and using: 
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Ycs = ∑
+

=

CS

e
esce yY

1
,   s = 1..S 

Using the parameter Ds from the LQN, for the CPU demand per execution of entry s, we 

obtain dsc=YcsDs. 

Figure 5.4 shows an example of a service system with two user classes and six 

services/applications, labeled with the request rates from one service to another. Other 

labels, such as the size of the user classes and the host demands of the services, are not 

shown here. In the present deployment analysis, only the total host demand for each 

application (task) is used. It requires the total direct and indirect requests for a service 

from each user class, found by following all paths from the user class to the service. For 

example, from Users1 to DB2Serv it is: 

Yuser1DB2Serv = 1 x 0.3 x (0.7 + 0.3 x 1.4) = 0.336 requests/user response. 

The service architecture in Figure 5.4 can be modeled in detail by a layered queueing 

model (see, e.g. [30] for more information), which can be calibrated and tracked from 

operating data [113].  
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Figure 5.4 An example of a web application 

 

The performance of a service system is affected by contention for resources. Because 

contention reduces the throughputs and increases the latency, it must be considered in 

deployment configurations. Limiting processor utilizations to some chosen amount such 

as 80% [3] is a common way to reserve resources to reduce the effects of contentions. 

However, this does not evaluate the effects of contentions so it cannot give the ensured 

performance required by the SLA.  

The surrogate flows to offset contentions are indicated by the big arrows attached to 

the service nodes in the NFM, shown as Figure 5.3. They represent reservations for 

processing capacity needed to reduce the contention delays. The size of these surrogate 
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flows (Δi+1) is estimated using the performance model (LQN) in terms of the deployment 

configurations given by the NFM-based optimization. Details will be introduced in 

Section 5.6 (Step 5). 

If each task provides different services, the NFM can be simplified by  

Σhαht = dt,SLA + Δi+1
t 

where Δi+1
t
 is the total surrogate flow of task t at iteration i calculated by adding the 

virtual demands of Δi+1
s  of the services that are hosted by this task. 

The NFM is solved via linear programming. Details of the algorithms are introduced 

in Section 5.4 below. As pointed out in Section 2.2, for a suitable closed workload 

population the satisfaction of the user throughput requirement implies satisfaction of the 

response time requirement.  

The solution of the NFM gives the optimal flow rate in each arc, which shows how 

processing demands should be distributed from hosts to services. The allocation of 

demands includes computing power consolidations and isolations, the number of replicas 

of each task or service and the allocation of these services onto the virtualized nodes as 

well as the transaction flow rates etc. The solution can be converted from NFM to LQN. 

For details please refer to Step 4 in Section 5.5. 

The generalization to a set of processors of different speeds is trivially made through 

the host capacities. In place of Ωh = host multiplicity, we have Ωh = host multiplicity × 

speed factor of each element. The speed factor is relative to the type of processor, 

regarded as the “standard” processor, for which the CPU demands are defined. Please 

note that this is a simplification, since the speed factor will actually be different for 
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different applications, depending on the processor architecture. If processor types are 

such that simple speed scaling is not possible, then the linearity of the problem is lost, 

and the NFM cannot be applied.  

5.4 Step 2: Solve the Optimization Model 

The resulting NFM model for execution demand optimization consists entirely of 

linear relationships, and with a linear objective function, such as execution cost, it forms 

a linear programming optimization problem. This makes the problem scalable. 

Taking minimum execution cost as an example, an optimization model can be 

constructed as below. In the model every class of users has QoS requirements on 

response time (or throughputs) and populations; every host has constraints on the 

capacity utilization. 

Optimization Model I. LP Model based on NFM 

Objective: minΣh,t Ch αht

Constraints: • Host computing capacity: for each h, ht h
t T

α
∈

≤ Ω∑ .  If we wish to 

provide a safety margin, we can specify a maximum utilization fraction 

ϕ h and require that ht h h
t T

α ϕ
∈

≤ Ω∑ , for each h. 

 • Operations balance at each task: for each t, ht ts
h H s S

α β
∈ ∈

=∑ ∑ . 

• Operations balance at each service: for each s, i
ts sc s

t T c C s S
β γ

∈ ∈ ∈

= + Δ∑ ∑ ∑  

 • Operations of service s used by user class c: sc c scf dγ = . 

• Nonnegative operations: for all h, t, s, αht ≥ 0, βts ≥ 0, γsc ≥ 0. 

 • Throughput for each class exceeds the minimum specified in the 
service level agreement: for each c, fc ≥ fcSLA. 
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The LP solution of the NFM can find the minimum execution cost for a deployment 

subject to processing capacity and user throughput constraints. It decides which tasks 

need replicas, where to allocate the replicas and how many requests are placed on the 

replicas. 

5.5 Step 3 and Step 4: Insert Deployments and Solve the LQN 

The optimal host-to-task flows in the optimization model determine the task 

deployments in the LQN. Where a task t has nonzero flow from a single host, this means 

it is deployed only on that host. However if it has non-zero flow from several hosts then 

task t is replaced by a set of identical replica copies (with the same set of entries), with 

the replica deployed on host h identified as task t_h and its replica of entry s identified as 

entry s_h. Each request to an entry of task t is split among the replicas in the same ratios 

as the NFM flows αht. To do this, each request arc to an entry of task t (say an arc from 

entry e) is replaced by a set of request arcs. The arc from entry e to entry s, labeled with 

yes requests, gives an arc to entry s_h in task replica t_h labeled with ye,s_h requests, with 

ye,s_h = yes (αht /Σh αht) ( 4 ) 

and this is repeated for each replica of task t. The solution is found using an LQNS 

solver. 

5.6 Step 5: Test for Convergence  

If the NFM solution is overly optimistic after evaluation by the LQNS, then the 

surrogate flows must be adjusted, and the NFM must be run again.  After a number of 

iterations, the NFM solution and the LQNS solution will converge to a solution that 
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satisfies all of the SLAs.  This indicates that the surrogate flows have reserved enough 

additional capacity to account for contention.  The result is a feasible solution. 

Suppose an LQN has been solved at iteration i. The throughput of user class c in the 

LQN is indicated by f i
c,LQN, and the shortfall in throughput (relative to the requirements) 

is ei
c: 

ei
c =  fc,SLA  − f ic,LQN ( 5 ) 

 
When ei

c is less than the allowed tolerance rate such as 1% of the fc,SLA, it means that 

the optimal configuration for class c has been found, so the throughput and response 

times have converged to their target values. Iteration stops when every class has 

converged. However, convergence might be slow. Iteration can stop when the first 

feasible solution is found, which we will assume to be specified originally in terms of 

response times as RTc ≤ RTc,SLA; This solution may not be optimal, but it is found 

relatively efficiently. 

If the throughput given by the LQN solution does not meet the requirements, a new 

NFM is created, denoted NFM i+1 for the next iteration i+1, adjusted to deal with the 

shortfall. The shortfall in throughput is attributed proportionately to the demands for 

services, with an amount 

ei
sc =  dsc ei

c ( 6 ) 

for service s. The execution capacity provided for service s is augmented by this amount, 

by new surrogate flow 

δ is = Σc e isc = Σc dsc e ic. ( 7 ) 

at service s. The total surrogate flow at service s is represented by a fixed rate Δi+1
s used 

in the new NFM i+1.  
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Δi+1
s = Σi

j=1 δ is ( 8 ) 

This is indicated by an output arc (surrogate flow) from service node s with the label 

[Δi+1
s,Δi+1

s,0]. In the new NFM, the replicas of a task (if any) are treated again as a single 

task node. When the new optimization model NFM i+1 is solved, the total demand rate at 

the hosts will be increased by this amount. The iteration continues until enough resources 

are reserved to compensate for the performance lost due to contention, and the throughput 

requirement is met (or until the iteration limit). 

5.7   Step 6: Linearized End-point Step (LEndStep) 

The iteration of the optimization-LQN loop finds a feasible solution (RTc ≤ RTc,SLA) 

quickly but may converge (i.e. ei
c≤ 1%fc,SLA) slowly and not uniformly due to jitter in 

different deployment combinations. A feasible solution that has not converged tends to 

have a smaller-than-specified response time and over-allocated resources; a converged 

solution tends to have exactly the specified response time and less resource use. A final 

linearized analysis is used to achieve this goal. 

LEndStep is conducted on the basis of the LQN model returned by the optimization 

loop. It freezes the deployments and linearizes the performance calculation with respect 

to the request rates between tasks, and then uses LP on the entire linear model (including 

linearized contention) to find a solution. In general this will save costs by reducing 

execution power. 

5.7.1 Sensitivity Analysis of the Performance Model 

In the LEndStep process sensitivity analysis estimates the change on throughputs due 

to the change of request rates. Sensitivity analysis provides a Jacobian matrix J, called a 
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sensitivity matrix, in which each element is the sensitivity of an entry throughput to a 

request rate, defined as: 

Jij = ∂ (entry throughput_i)/ ∂ (request rate_j) ( 9 ) 

Let J be the matrix, δφ  be a vector of entry throughputs and δy be a vector of all the 

intertask request rate parameters. Each element δφe in the vector φ indicates the change of 

the throughput of entry e, due to changes in request rates. Then  

δφ= Jδy ( 10 ) 

The sensitivity matrix δφ  is approximated by the LQNX software (version 5.0 or 

later using finite differencing [105]. 

5.7.2 LP Model to Seek Minor Adjustment 

Based on the above linear approximation via sensitivity analysis, the following LP 

model shifts request rates between replicas in order to reduce the execution costs. 

Optimization Model II. LP Model in LEndStep 

In the objective function, Ch is the cost per execution demand on the host h, φe is the 

throughput of an entry e, and De is the mean execution demand of the entry e. 

Objective:  Minimize ΣeChφeDe ( 11 ) 

The objective aims to minimize the execution cost by optimizing the request rates across 

replicas. 

Constraints:  

1. φ =  φ  + Jδy  ( 12 ) 

2. 1Ε
Τφ ≥ φE,SLA ( 13 ) 

3. y  + δy ≥ 0 ( 14 ) 

4. 1(e1, E2)δy = 0 ( 15 ) 



    

59 

5. *

( )
0 e e h h h

e E h
Dφ σ+

∈

≤ ≤ Ω + Ω∑   ( 16 ) 

 

Constraint 1: the estimated throughput subject to the change of the request rates, 

calculated by the linear approximation with sensitivity analysis. In the constraint, φ  is a 

vector for the baseline throughputs returned from the iteration loop, Jδy is the variation 

on the throughputs (δφ) due to the change of the request rates. δy are the variables in the 

optimization, and φ is the vector of resulting throughputs. The number of elements in φ is 

indicated by Nφ. 

Constraint 2: φE,SLA is the SLA of the throughputs of entry E in the application 

template. A set of replicas initialized from the entry E is indicated by an indicator vector 

1Ε
Τ, which has a 1 for the replica of the Entry E, 0 otherwise. The constraint requires that 

the new throughputs must satisfy the SLA requirement. 

Constraint 3: limits the range of the change of request rate on each request arc.  

Constraint 4: 1(e1, E2) is an indicator matrix consisting of NEsNφ rows and y columns. 

NEs is the number of entries (Es) that send requests which are collected in the vector y. 

Each row indicates the requests from a sender e1 (where e1 ∈ Es) to the replicas e2 which 

are the replicas of E2 in the application template; the corresponding request is indicated 

by 1, otherwise 0. This constraint guarantees the change of request rates does not violate 

the request requirement in the template. 

Constraint 5: CPU capacity constraint. E(h) are the entries deployed in the host h. 

The loadings on a host cannot violate the capacity of the host. This constraint is needed 

because a change of request rate may cause new contentions, which may violate the 
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linearization constraints, resulting in the performance failing to satisfy the requirements. 

The bound σh is introduced to maintain the validity of the linearization; σh must be no 

greater than 1. A large σh may help find a solution with lower costs, but it may cause big 

changes in the resource utilization, creating new contentions which may lead to some 

performance failing to satisfy the SLAs. 

5.8 Case Study: Meet Response Time Goals at Low Execution Cost 

This example looks for an economical solution giving the required response time for 

multiple classes of users. It simplifies the problem by only considering the cost of 

execution power and the capacity constraints, excluding the integer constraints imposed 

by memory, availability of licenses and fixed costs on the hosts. LEndStep is not applied.  

For this case study we define a response time RTc,∞ as the response time that can be 

provided with infinite resources in the system, and define the target response time 

constraint as 1.02RTc,∞, saying RTc≤1.02RTc,∞. Solving the LQN with an infinite 

processor for each task estimates the value of RTc,∞ for every class. We use fc,SLA, which 

corresponds to the  RTc,∞, to update the throughput constraint in the above LP model. 

Note that, in each round of optimization, the LP may think it is feasible to achieve the 

fc,SLA with finite resources because of underestimation of actual resources required by 

contention. The iterative process then keeps adding resources, LP thinks it is feasible, but 

the LQN solution shows that it isn’t, until the response time is near to RTc,∞, with a 

difference less than the tolerance rate.  

The decision algorithm was evaluated using a case study of a moderate-sized service 

system represented by the LQN in Figure 2.3, showing two classes of users. Class 1 has 
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250 users and class 2 has 100 users. The objective is to minimize the host computing 

costs while meeting the multiclass workload response time goals. Figure 5.5 shows the 

deployment of a single application. 

The RTc,∞ is chosen to be the solution of the LQN with infinite threads and processors 

for each task, which makes RT1, ∞ = 0.146 sec and RT2, ∞ = 0.267 sec. The corresponding 

throughputs are f1,SLA = 250/(1 + 0.146) = 219.3/sec, and f2,SLA = 100/(1 + 0.267) = 

78.9/sec.  

The NFM optimization will determine the computing power needed to provide the 

best possible service on a certain set of hosts.  

 
Figure 5.5 LQN Model of a Service Center 
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Table 5.2. Host Resource Attributes in the Example 

Host h mh φh Speed Ratio Ωh Cost Ch Hostable Tasks 

Host 1 20 80% 1 20 1 1,2,4,7 

Host 2 20 80% 1.2 24 1.1 3,4,6,7 

Host 3 20 80% 0.9 18 0.9 1,4,5,6 

Host 4 20 80% 1.1 22 1.1 3,7,9,10 

Host 5 20 80% 0.8 16 0.7 1,2,8,10 

Host 6 20 80% 1.2 24 1.2 5,6,8,9 

 

There are six hosts available with constraints as to the tasks that can be assigned to 

them. Demands are defined in CPU-seconds on a reference processor type, with a relative 

speed factor for each host. The resources at each node are described in Table 5.2. The 

cost Ch is relative to the standard host. The column headed mh gives the multiplicity of 

each host. A fragment of the network flow model is shown in Figure 5.6. The thread pool 

size of each task in the LQN was set to handle 70% of the maximum possible demand 

rate at the task, a value found by experience to give good results.  

1

 
Figure 5.6 Fragment of Network Flow Model 
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The solution is found in five iterations. The performance of each class, the resource 

utilizations and the service allocation can be seen in Table 5.3 and Table 5.4.  Table 5.3 

shows the performance delivered to users in every class in each round. Table 5.4 shows 

the computing power consolidation in every node, in which the integer number indicates 

the required multiplicities of devices. Notice that a multiprocessor is fully utilized when 

its utilization equals its multiplicity.  

Table 5.3 Response Times of Classes in Each Iteration 

Class Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final RT∞ Excess

Class1 0.290 0.168 0.162 0.153 0.149 0.147 0.146 +0.68%

Class2 0.456 0.368 0.311 0.290 0.280 0.272 0.267 +1.87%

 

Table 5.4  Host Multiplicity at each Iteration, and Final Utilizations 

 Host Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final Final Utilization

1 8 5 7 8 5 5 5 × 0.72 

2 17 17 17 16 16 16 16 ×  0.66 

3 0 0 0 2 11 8 8 ×  0.80 

4 8 16 16 16 17 17 17 ×  0.68 

5 16 16 16 16 16 18 18 ×  0.79 

6 5 5 5 6 11 8 8 ×  0.70 

 

Figure 5.7 shows that tasks 6, 7, and 10 are replicated across multiple hosts, and that 

every host accommodates at least two tasks except host 5. The ratio of request flows 

divided between replicas has been determined by the relative flows, as described above.  

Feasible goals can be provided by increasing the maximum response time limit. 

Factors of 1.1, 1.2,...,1.5 were applied to the required values of 0.146 sec for Class 1 and 

0.267 sec for Class 2, to give the results in Table 5.5. The larger the response time limit, 



    

64 

the easier the problem. We can see that as the factor increases, the execution cost of the 

system required to meet the requirements decreases and the solution is found more 

quickly. 
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Figure 5.7 Near Optimal Deployment for the Service Center in Figure 5.5 

 

Table 5.5 Execution Cost and Number of Iterations Corresponding to Relaxation of the 
Goals  

Factor on Response Time 1.1 1.2 1.3 1.4 1.5 

Execution Cost 61.07 57.31 55.66 52.91 51.69 

Number of Iterations 7 4 4 3 3 
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Chapter 6 Discrete Optimization Algorithms for Static 
Deployment 

The above simple optimization with NFM is an optimistic solution, which excludes 

several practical constraints such as memory requirement and availability, license costs 

and the power consumption associated with active hosts. To include the integer 

constraints, a MIP is formulated which replaces the LP step in the iterative scheme shown 

in Algorithm I in Chapter 5. 

6.1 Optimization Model with Integer Constraints 

6.1.1 Mixed Integer Programming (MIP) Model 

Memory requirements, license availability and energy cost must be considered 

together for application deployments on a commercial service center. For example, on a 

Cloud infrastructure there is an assumption that every task has a VM to itself, and each 

VM needs a specific memory space. Each host to accommodate a VM must offer enough 

memory space to accommodate the VM. Commercial tasks have license constraints. 

Additional licenses must be purchased if the number of replicas exceeds the agreed 
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maximum number, so the availability of software licenses and the associated costs must 

be considered in a deployment decision. The Power cost (Ph) associated with the host 

activity affects the total cost of deployment. Power cost can be simplified as the total of 

execution and fixed costs. Following the literature [46], execution cost can be 

approximated as being linearly related to CPU utilization, although the power cost is 

actually a nonlinear function of load. Fixed costs are additional, representing some 

fundamental operations of the machine. Fixed costs can be defined as a cost per active 

host regardless of the size of workloads running. Because the CPU utilization is 

proportional to the capacity used (Ω*
h), reusing the NFM model, the total power cost of a 

host can be mathematically described with linear approximation, shown as below, 

Ph = Ch Ω*
h + Cfh ( 17 ) 

where Ch and Cfh are model specific constants, which can be estimated by learning 

techniques such as linear regression. Because power cost is the rate of energy use, the 

energy cost during a period of time of duration Δt is the total power consumption 

calculated by Pavg Δt, where Pavg is the average power consumption. Figure 6.1 shows an 

example of linear approximation of the power costs subject to the CPU utilization[46]. 

 

Figure 6.1 Linear Approximation of the Power Consumption against the Utilization of CPU 
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Let a binary variable Aht indicate an allocation of tasks to hosts, shown by arcs having 

positive flow. 

Aht = 1 if αht > 0, Aht = 0 otherwise        

which allows modeling the problem as a mixed integer program, as shown below. The 

model assumes that execution cost is charged per second of actual execution, including 

capacity reserved to reduce contention. The solution returned by the MIP is the optimal 

workload distribution across the system. It accounts for the workload balance and the 

effects of contentions, as well as deciding which tasks should be duplicated and where to 

place the replicas. The solution seeks the optimal configuration that has the minimum 

costs for energy and license while satisfying multiple goals. 

This model considers memory as a hard constraint and the limits on the number of 

licenses as soft constraints. This means that a task only can be deployed on a host that can 

provide sufficient memory space, but extra licenses can be added at extra cost when 

additional replicas are needed. The variables and symbols used by the MIP are defined as 

below, 

Table 6.1 Variables and Parameters used in the MIP 

Lt' Extra number of license in use, integer 

Lt The number of avialble licenses 

parc_ht 
the reward/penalty  on the arc connecting host h and task t,  
default parc_ht = 0 

Ch Execution cost of a host h, a cost factor for a unit of execution on this host 

CLt Pay-per-use cost of every extra license for task t, beyond Lt 



    

68 

Cfh Fixed cost of host h, associated with host activity 

BigC A very large number 

mt 
Memory requirement of task t, in order to execute (assumed the same for 
all nodes ) 

Mh Memory Capacity of host h, memory available for application tasks 

Δi
s 

The total surrogate flows (virtual demand) of service s at iteration i . For 
the calcualation please refer to Section 5.6 

T(h) The collection of tasks hostable by host h 

Aht Binary variable, to indicate if task t is assigned to the host h 

Sh Binary variable, to indicate host activity 

 

Optimization Model III. MIP Model 

Objective function:  

Minimize: Σht Chαht + Σht parc_ht Aht + Σt Lt' CLt+ Σh ShCfh ( 18 ) 

over Aht, Lt' Sh, α, β, γ subject to constraints: 

 

Constraints: 

1. for each host, capacity of host h: Σtαht ≤  Ωh ( 19 ) 

2. for each task, flow balance at node t: Σhαht  = Σsβts   ( 20 ) 

3. for each service, add surrogate flows at node s: Σtβts =  Σcγsc + ΣSΔi
s ( 21 ) 

4. for each class, flow proportion at node s: γsc = fcdsc ( 22 ) 

5. set Aht=1 for arcs having positive flow: αht ≤ Aht. BigC ( 23 ) 

6. memory space at h:  
( )

t h t h
t T h

m A M
∈

≤∑   ( 24 ) 

7. license constraint: Σh Aht ≤ Lt + Lt' ( 25 ) 

8. Set Sh = 1 if any tasks are assigned to this host, 

for each h 

Aht ≤ Sh. over all t ( 26 ) 
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where Δi
s  is determined by the LQN part of the iteration and is initially 0. 

 

Variables: 

1. Integer variable, licenses used in excess of L Lt' ≥ 0,  ( 27 ) 

2. binary variables Aht , Sh = 0 or 1 ( 28 ) 

3. continuous variables, all flows are non-negative αht ≥ 0, βts ≥ 0, γsc ≥ 0 ( 29 ) 

4. continuous variables, SLA flow constraint fc ≥ fc,SLA ( 30 ) 

 

In the objective, the first term stands for the execution cost, the second term 

prioritizes the use of arcs based on a reward/penalty scheme, the third term accounts for 

the license costs and the last one is for the fixed cost.  

Some constraints need further explanation: 

Constraint 3: Operations balance at each service, including surrogate flows: for each 

s. Δi
s is the amount of surrogate flow returned by the LQN model in the ith iteration, 

indicating additional capacity that should be reserved to reduce the contention delays in 

the (i+1)th MIP optimization. ΣSΔi
s is the size of the surrogate flow at the ith iteration. 

Constraint 5: Constraint to determine Aht. BigC is a very large positive constant. 

When the arc is used (αht≥ 0), Aht must be 1 to satisfy the constraint; otherwise, Aht will 

be 0. Though the constraint can be satisfied with Aht= 1 when αht = 0, this is penalized by 

the objective value, so Aht = 0 is chosen when αht = 0.   

Constraint 7: Soft constraint on license. Lt' indicates the number of extra licenses 

used. 
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Constraint 8: Constraint to decide the value of Sh.  Sh is a binary variable to indicate 

the activity of a host. When an allocation is used (Aht is 1), then Sh must be 1 to satisfy the 

constraint and the fixed cost of the host is counted in the objective function; otherwise Sh 

is 0. 

In the model, parc_ht is a reward or penalty on arc ht. Rewards have negative values to 

increase the priority that an arc is chosen, and penalties have positive values of parc_ht to 

discourage the use of the arc. Smaller values of parc_ht imply higher priority. The value of 

parc_ht is determined by how difficult it is to install a new replica. parc_ht is an effective 

tool to improve robustness in the face of dynamic changes. The strategy for adjusting 

parc_ht will be introduced in Section 7.1.2. 

6.2 Solving the MIP 

The MIP model can be solved with advanced algorithms via such MIP solvers as 

CPLEX [23], which provides APIs to construct MIP models, solve the model and return 

the optimal value for each variable. In the MIP described in Optimization Model III, 

CPLEX looks for the optimal values for the continuous and discrete variables subject to 

the goals and constraints. 

However, since solving MIPs is NP-hard, it could be very time consuming to solve a 

large-scale deployment problem with many tasks and hosts. To address this issue, two 

heuristics are introduced to permit the solution of large models: Heuristic Packing (HP) 

and Heuristic MIP (HMIP). The number of variables in the MIP model is determined by 

the numbers of tasks and hosts. Assuming each task is hostable by every host, then n 

hosts and m tasks creates n×m arcs, giving n×m variables representing flow rates, n×m 
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binary variables indicating the allocations, and m variables for licenses, as well as n 

variables to account for power consumption. These variables allow over 2n·m allocation 

options. As a result, the problem size explodes combinatorially with the increase in the 

number of tasks and hosts as the model grows. 

HP uses an efficient packing heuristic to assign tasks to hosts. HMIP uses an initial 

loose packing to create a smaller MIP that is solved exactly; this is faster, but the 

guarantee of finding the true optimum is lost. 

Table 6.2 Variables used in HP and HMIP 

Ω+
h

 remaining execution demand space of host h 
Ω*

h
 The used capacity of host h, Ω*

h = Ωh - Ω+
h 

M+
h remaining memory space of host h 

M*
h The used memory space of host h, M*

h = Mh - M+
h 

d+
t remaining execution demand of task t 

L+
t Remaining available licesne for use 

L*
t  Total number of licenses in use, L*

t
 = Σh Aht 

Lt' Extra number of licesnes in use, integer 

6.2.1 Algorithm: Heuristic Packing (HP)  

The heuristic packing (HP) algorithm is motivated by bin-packing. It includes two 

steps. Step I aggregates workloads on the lowest-cost hosts if the capacity can be fully 

used. But the constraints may limit the utilization of the selected hosts in Step I, making 

the selection non-optimal. In order to achieve a better solution, Step II then seeks other 

more suitable hosts to replace the hosts that are not fully utilized in Step I. The algorithm 

is shown below. 

Algorithm II.  Heuristic Packing (HP): 

// allocation function 
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Allocate (t, d, h )  

//allocate demand d for task t to host h, and adjust the remaining demand d+
t and 

available memory M+
h 

1. Set αht = d,  
2. Decrement Ω+

h by αht,  
3. Decrement d+

t by αht, 
4. Decrement M+

h by Mt 
5. Increment L*

t by 1 

// HP algorithm 

STEP I 

1. Sort the tasks in decreasing order of d+
t/L+

t, subordered by decreasing order of CLt. 
//This gives priority to tasks with the most demand and fewest licenses.  

2. For each task t in order: 
a. Sort the hosts with M+

h greater than Mt, by their CPU execution demand 
space Ω+

h (largest first) and designate h(i) as the ith host in order, break tie 
by the total cost. Define these sorted hosts as I. 

b. Set i = 1    (allocate first to host h(1)) 
c. if d+

t  > 0 
i. execute allocate (t, min(d+

t , Ω+
h(i) ), h(i)) // maximize the use of 

host i.   
ii. If d+

t  > 0 and there are available hosts remaining in I, then 
increment i, repeat from Step 2.c, else, exit and return error 
message “not enough available hosts” 

d. if d+
t  = 0 
i. Sort the hosts with αht >0 by αht (largest first), and designate h(j) 

as the jth host in this order. Define these sorted hosts as J 
1. d = min(αh(j)t , Ω+

h(i) ) 
2. Ch(j)t = max(Mt/M h(j) , d /Ωh(j)) Cfh(j) +  d·Ch(j)      
3. Ch(i)t = max(Mt/M h(i) , d / Ωh(j)) Cfh(i) +  d·Ch(i)      

ii. If Ch(j) > Ch(i)  or (Ch(j)t = Ch(i)t and host i is hosting at least one task 
but has spare capacity): 

1. If  d = αh(j)t    // allow migration                             
a. Then move task t from host j to i. increment j if 

there are hosts remaining in J,  repeat from 2.d // 
move the task to the low cost host 

2. If d = Ω+
h(i) then: 

a. If L+
t >0  or  αh(i)t > 0  or  Ch(j)t - Ch(i)t > CLt 
i. Then allocate (t, Ω+

h(i), h(i)), increment i if 
there are available hosts remaining in I. 
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// add a replica of t on the host i, if spare 
license.  

iii. Else 
increment j if there are hosts remaining in J, repeat from 
2.d 

e. increment i  if there are available hosts remaining in I // the new selected 
host has less cost than the ones in use 

STEP II 

1. For each host i which is not selected in STEP I 
a. For each host j which has been selected to host tasks: 

i. If   Ω+
h(i) > Ω*

h(j) and M+
h(i) > M*

h(j) and Cfh(i) + Ch(i) Ω*
h(j) < Cfh(j) + 

Ch(j) Ω*
h(j) then: 

Move all tasks from host j to host i. 
 

In HP, Step I includes a set of operations of migration, aggregation and replication. 

This step takes account of the fixed cost, execution cost and license availabilities. It 

approximates the share of fixed costs at a host h (Cfh) by tasks proportional to the share of 

the resource utilization, estimated with max(Mt/Mh, d/Ωh)Cfh, though fixed cost (Cfh) is 

independent of the size of the load. Let Cht be the costs due to task t on host h, consisting 

of the share of fixed costs (Cfh) and the execution costs (d·Ch), in which Ch means the cost 

per demand in host h, shown as below. The goal of Step I then is to minimize Σht Cht, 

where: 

Cht = max( ,t h hM M d Ω ) Cfh+  d·Ch ( 31 ) 

 
The packing in Step I assumes each selected host will be fully utilized in the solution. 

However, this assumption is optimistic.  

Step II considers hosts that have large spare capacity remaining after Step I. Other 

hosts may be able to handle their tasks with lower cost consumption. Step II addresses 

this issue by moving tasks from the under-utilized hosts to other hosts that can 
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accommodate the operations with lower costs. Step II assumes that all tasks currently 

deployed on a high-cost host are hostable in a low-cost host, so the new host can replace 

the old host. 

6.2.2 Algorithm: Heuristic MIP (HMIP) 

Heuristic Packing is efficient in finding a feasible solution, and in some cases, the 

quality of optimization is similar to that obtained using exact MIP solvers. However, the 

quality is not guaranteed. So the two are combined in a new algorithm called HMIP, 

shown as Algorithm III. HMIP simplifies the MIP problem by reducing the optimization 

options with HP first, gaining the ability to handle larger problems, and then using a MIP 

solver to optimize based on the subset of selected hosts.  

Algorithm III. HMIP 

1. Heuristic Packing (HP) performed as described in Algorithm II.  

2. Construct and solve a MIP as in Optimization Model III, using only the hosts 

selected in Step 1, and allowing any task potentially to use any host in the 

selected subset.   

The feasible solution returned by HP (CHP) can be used as an incumbent in the MIP 

solution to reduce the optimization time. This extra information is added as a constraint 

in the MIP: 

Σht Chαht + Σt Lt'CLt+ Σh ShCfh ≤  CHP ( 32 ) 
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6.2.3 Evaluation of HP and HMIP 

A set of experiments was conducted to compare the performance of the pure MIP via 

an exact MIP solver with HMIP and HP. The test bed simulates a system with 1 to 50 

applications to be deployed on a host pool that consists of 5 types of hosts, as shown in 

Table 6.4. The ratios between the Ch and Cfh are approximated based on the experimental 

results given in [96][24][42][46], ranging between 0.15 to 1; the fixed cost is about 

40~60% of the total energy cost when a host is fully utilized. The value of the cost is 

relative to a standard host. Each application has 10 independent tasks, each of which has 

different randomly chosen CPU demand, memory requirement, license availability and 

cost. Each type of host in the pool has 1000 fully identical hosts, which can host arbitrary 

tasks. The branch-and-bound solver CPLEX is used to solve the MIP problems. 

Aggressive probing and strong branching are deployed to improve the efficiency and give 

good solutions for large and difficult MIP problems. The optimization solver CPLEX in 

the experiments in this thesis uses the default configurations except the following 

parameters. 

Table 6.3 CPLEX Configurations 

Aggressive probing enable 
Strong branching enable 
Relative MIP gap tolerance 0.01 

  

The MIP terminates at the convergence rate of 1%, meaning the MIP optimization 

stops as soon as it has found a feasible solution proved to be within one percent of the 

optimal, or it terminates at 350 seconds if a solution cannot be found.  
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Table 6.4 Host Information 

Type 
Relative 

Speed 

Relative 

Memory 

cost per execution demand 

(Ch) 
Fixed cost (Cfh) 

A 1.8 2 0.5 0.6 

B 2.4 4 0.45 0.81 

C 2.8 8 0.4 1.12 

D 3.2 12 0.35 1.4 

E 3.6 16 0.3 1.62 

 

The quality and effort of optimization depend on how easy it is to fit the applications 

into the available processing resources. We will call a situation with just enough 

resources (or not quite enough) a “high-stress” situation, and one with plenty of 

resources, low stress. The stress rate indicates the ratio of the demands to the available 

total capacity for execution:  

Stress Rate = Σt dt,SLA / ΣhΩh ( 33 ) 
 

Four values of the stress rate are used, from 0.25 to 0.9; in each case the number of 

hosts is adjusted to give a stress rate within 0.05 of the nominal shown. At each stress 

rate, there is the same number of hosts of each type.  

The goal is to evaluate the scalability of the algorithms so we only use a single 

scenario. The evaluation in each case uses the same set of applications and hosts. 

Optimization quality and efficiency are the two measured metrics. 
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Table 6.5 Pure MIP, Heuristic and HMIP Comparison (Without Contentions) 
Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05) 

 HP MIP HMIP HP MIP HMIP HP MIP HMIP HP MIP HMIP 

1 app 
Host Pool Size: 8 

Number of Tasks: 10 

Host Pool Size: 10 

Number of Tasks: 10 

Host Pool Size: 14 

Number of Tasks: 10 

Host Pool Size: 25 

Number of Tasks: 10 
objective 11.9 11.48 11.9 11.6 11.48 11.6 11.6 11.41 11.6 11.24 11.24 11.24 

Solution time (sec) 0.016 0.11 0.125 0.016 0.172 0.188 0.015 0.25 0.109 0.016 0.125 0.093 
# of variables in MIP - 127 97 - 157 97 - 217 97 - 382 82 

5 app 
Host Pool Size: 12 

Number of Tasks: 50 

Host Pool Size:16 

Number of Tasks: 50 

Host Pool Size: 22 

Number of Tasks: 50 

Host Pool Size: 39 

Number of Tasks: 50 
objective 23.89 22.88 22.88 23.92 22.87 22.72 23.2 22.75 22.57 22.3 22.3 22.3 

Solution time(sec) 0.015 0.375 0.25 0.015 3.735 0.766 0.016 0.703 0.328 0.015 0.453 0.203 
# of variables in MIP - 887 887 - 1171 816 - 1597 816 - 2804 674 

10 app 
Host Pool Size: 17 

Number of Tasks: 100 

Host Pool Size: 23 

Number of Tasks: 100 

Host Pool Size: 32 

Number of Tasks: 100 

Host Pool Size: 57 

Number of Tasks: 100 
objective 34.04 33.15 33.13 34.38 32.82 33.14 46.79 32.65 32.85 35.2 32.2 32.2 

Solution time(sec) 0.015 0.39 0.562 0.016 6.969 0.422 0.015 6.344 1.734 0.031 0.891 0.422 
# of variables in MIP - 2467 2467 - 3313 2326 - 4582 2326 - 8107 2044 

20 app 
Host Pool Size: 25 

Number of Tasks: 200 

Host Pool Size: 33 

Number of Tasks: 200 

Host Pool Size: 46 

Number of Tasks: 200 

Host Pool Size: 86 

Number of Tasks: 200 
objective 52.73 52 51.94 56.52 52 51.99 68.69 51.34 51.28 52.35 50.98 50.88 

Solution time(sec) 0.016 1.641 2.219 0.031 4.281 3.203 0.031 25.953 7.735 0.062 68.657 2.562 
# of variables in MIP - 7165 7165 - 9413 6884 - 13066 7165 - 24306 6322 

30 app 
Host Pool Size: 41 

Number of Tasks: 300 

Host Pool Size: 53 

Number of Tasks: 300 

Host Pool Size: 75 

Number of Tasks: 300 

Host Pool Size: 139 

Number of Tasks: 300 
objective 85.57 84.43 85.15 106.41 84.11 84.06 86.1 83.42 83.33 84.51 81.95 81.95 

Solution time(sec) 0.031 4.031 5.469 0.046 6.266 7.625 0.078 51.687 9.672 0.109 21.422 4.328 
# of variables in MIP - 17471 17471 - 22523 16629 - 31785 16629 - 58729 14945 

40 app 
Host Pool Size: 50 

Number of Tasks: 400 

Host Pool Size: 64 

Number of Tasks: 400 

Host Pool Size: 89 

Number of Tasks: 400 

Host Pool Size: 169 

Number of Tasks: 400 
objective 105.48 102.75 102.75 107.12 101.71 102.66 104.72 100.76 100.75 102.13 101.01 

Solution time(sec) 0.047 8.125 18.953 0.063 100.81 13.688 0.094 165.83 27.093 0.141 
Out of 

Memory 9.047 

# of variables in MIP - 28330 28330 - 36184 26647 - 50209 26647 - 95205 23842 

50 app 
Host Pool Size: 63 

Number of Tasks: 500 

Host Pool Size: 81 

Number of Tasks: 500 

Host Pool Size: 113 

Number of Tasks: 500 

Host Pool Size: 216 

Number of Tasks: 500 
objective 133.94 130.77 132.2 134.86 130.91 130.77 135.21 130.28 130.32 130.58 128.56 

Solution time(sec) 0.062 42.578 28.296 0.062 Time out (350) 54.547 0.094 Time out (350) 57.343 0.187 
Out of 

Memory 19.359 

# of variables in MIP - 44513 44513 - 57131 41709 - 79563 42410 - 152103 37503 
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Results are given in Table 6.5 for the objective cost, solution time and the number of 

all MIP variables (MIPvar, including continues and discrete variables) comparison. The 

best numbers for each model are shown in boldface (lowest objective value, lowest 

solution time). 

• The evaluation shows that all problems with less than 10,000 MIP variables 

can be solved by CPLEX in less than 10 seconds. This many variables 

corresponds to an HMIP formulations with about 20 applications on 100 hosts 

or a pure MIP formulations with 20 applications on 35 hosts. 

• Most MIP problems that have 10,000~20,000 variables can be addressed in 10 

seconds. In HMIP all problems with about 35 applications on 150 hosts are at 

this size.  In pure MIP it corresponds to a problem with 30 applications on 50 

hosts or 20 applications on 80 hosts. 

• For the larger MIP problems with over 20,000 variables, the effort is highly 

variable. 

• Low stress cases gave larger MIPs than high stress, and also have a bigger 

reduction in MIP size between the pure MIP and the HMIP. Roughly speaking 

there was little or no reduction in MIPvar at stress rate 0.9. A reduction of one 

third at 0.7, half at 0.5 and three quarters at stress rate 0.25, up to the point 

where the problem is too large for CPLEX. 
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• In most cases, the pure MIP gives the best objective function value, but it 

takes more solution time. When the size of the problem increases to extremely 

large, pure MIP either reaches the limit on memory or cannot find a solution 

within an acceptable time. Moreover, the increase in the number of hosts may 

result in an explosion in the size of the MIP problem, giving a longer solution 

time. 

• HP is very fast, but it cannot ensure the quality of the optimization. In some 

cases it is within a few percent of the optimum, but with medium stress (0.5) 

and 10 or 20 applications, it is much worse.  

• Looking at different problem sizes, the solution time for HP increases with 

decreasing stress (since there are more alternatives). For MIP and HMIP the 

solution time tends to be largest for intermediate stress cases (stress rate = 

0.5). 

• HMIP can give a solution with almost the same quality as pure MIP in all 

cases (less than 2% difference), and in most cases, it is much faster, especially 

when the stress rate is low.  It can handle much larger problems than pure 

MIP, but the quality of HMIP is affected by the solution given by the initial 

Heuristic Packing step. When a large-scale deployment needs to have a high 

quality solution in a limited amount of time, HMIP is the best algorithm to 

use. 

Note that in some cases the results given by HMIP are slightly better than pure MIP. 

This results from the termination criteria, which stops the optimization at a solution close 
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to the optimum, though better solutions may exist. The quality of the optimization is thus 

determined by the first solution that satisfies termination criterion, so HMIP may perform 

better than MIP in some cases.   

Please also note that the pure MIP is faster than HMIP in a few cases, though the 

problem size in HMIP is much smaller. The number of variables and constraints is one of 

the factors affecting the solution speed. Reducing the number of possible solutions 

(indicated by the number of variables) can help to improve the efficiency, but not always, 

since MIP is NP-hard. The search strategy chosen by the optimization solver has a great 

impact on the optimization quality and efficiency. A search strategy that is efficient in 

addressing a pure MIP model might be slow for the corresponding HMIP model 

simplified from the original MIP problem. Though the current optimization mechanisms 

in CPLEX try to give the best strategy in terms of the MIP model, it cannot guarantee that 

the strategy chosen is the most suitable. 

Comparing the objective costs shows that in all cases HMIP is able to give a high-

quality optimization competitive to that returned by a pure MIP via CPLEX. Results 

show that the solution time of both algorithms may exponentially increase with the 

growth of the number of applications, but the solution time for the pure MIP increases 

faster than HMIP, which corresponds to the increase in the number of variables in MIP 

and HMIP. For high stress models, MIP starts to show an obvious latency for problems 

with 40 applications, while HMIP shows latency for problems with 50 applications. For 

problems with medium or low stress rates, the algorithms start to show different solution 

times when the number of applications scales beyond 20. The smaller MIPs solved by 
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HMIP allow it to solve problems with over 40 applications at 0.25 stress rate, but pure 

MIP reaches the memory limitations on these problems.  

These results demonstrate that HMIP is able to give high quality decisions, nearly as 

good as pure MIP, but with much greater efficiency in most of the problems, especially 

those having medium or low stress rates or a large number of applications. 

6.3 Revenue Model Supported by the Optimization 

The approach presented above gives an approach to minimizing the total costs 

associated with deployments, and accounts for several goals, including execution 

demands, contentions, energy consumption, memory, and license availability. This model 

can be extended to support other optimization problems such as the revenue model. 

In the revenue model, assuming: 

• Each service class c offered to users has a price per response of Pc, 

• Each application App to provide services has execution and fixed costs on 

hosts, as well as costs on extra licenses, described as 

CostApp = Σht Chαht + Σht parc_ht Aht + Σt Lt
 'CLt+ Σh ShCfh ( 34 ) 

  The t in the equation represents the tasks used by the application. 

Then an application App has a profit 

PROFITApp = Σc in CApp Pcfc  − CostApp ( 35 ) 

The optimization for a host provider is to maximize the total profits 

TOTAL = ΣApp PROFITApp 
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subject to constraints described in Optimization Model III. When the total profit to the 

application providers is maximized, presumably the host provider share of this is also 

maximized, although the mechanism for sharing this is not considered here. 

An objective function can be described as: 

 Max ΣApp PROFITApp ( 36 ) 
 

Moreover, because some classes may have a constraint on the maximum throughput 

resulting from the limit on the number of users, an upper bound on the throughput  fc may 

be needed for these classes.  

6.4 Case Study: Deployment with Multiple Goals with Contentions 

This example leverages a small application shown in Figure 6.2 to conduct an 

evolution to test the feasibility of the approach subject to a diversity of constraints. The 

application has 287 users, and is required to give an average response time described in 

the SLA of 28.98ms. The values of these QoS requirements are randomly generated for 

the testing. This test accounts for the goals of: 

• Average response time in SLA  

• Resource availability and requirements (CPU and Memory) 

• License availability and license cost (the number of free licenses for each task 

is different, as shown in Table 6.7.) 

• Power Consumption (execution and fixed costs) 

• Effects of contentions 
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The evaluation is conducted on the host pool shown in Table 6.4 with a stress rate of 

0.7.  

 

Figure 6.2 the LQN Model of an Application to be Deployed with Multiple Goals 

Based on the LQN and the available hosts in the pool, an optimization model can be 

constructed as a MIP in the form of Optimization Model III, solved with HMIP. The MIP 

solver and the LQN solver are employed in the iterative loop described in Chapter 5. This 

process takes QoS as a goal of the optimization while accounting for contention.  

The optimization results given below show that the optimization loop achieves a 

feasible solution in three iterations, giving a response time of 27.21ms. Adjustment of 

request rates with LEndStep tunes the loadings between replicas, achieving the final 
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response time of 28.74ms and saving 0.02 execution cost. This final result deviates from 

the goal by -0.83%. The total optimization process takes 8.5 seconds, in which 6.63 

seconds are used by the sensitivity analysis. 

Table 6.6 Response Time and the Associated Cost in Each Iteration 

 Iteration 1 Iteration 2 Iteration 3 Sensitivity with LP Goal Error 

Response Time 34.80ms 32.47ms 27.21ms 28.74ms 28.98ms -0.83% 

Execution Cost 4.93 4.83 5.07 5.05 - - 

Fixed Cost 6.58 6.86 6.88 6.88 - - 

Total Energy and 

License Cost 
11.51 11.69 11.95 11.93 - - 

Solution Time 0.734 0.547 0.594 6.63 - - 

 
Table 6.7 shows the use of licenses for each task and the original license availability. 

Resource sharing based on power consolidation means that 13 replicas can be processed 

with 6 physical hosts. Figure 6.3 gives the utilization of memory and processors, showing 

that the resource utilizations are balanced between the hosts. 

Table 6.7 the Use of License of Each Task (HMIP) 

Task Name Number of license used Number of free license 

TWebServer 1 3 

TImgDisk 2 3 

TInvDB 3 5 

TFS 3 6 

TCustDB 1 2 

TCart 2 4 

TStoreApp 1 6 
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Figure 6.3 the Use of CPU and Memory in Hosts (HMIP) 

 
This simple case study demonstrates that the approach can satisfy multiple goals at 

the same time. The optimization creates replicas for tasks, balances workloads, and 

optimizes allocations, achieving the required performance with an economical solution. 

6.4.1 Comparison with Other Approaches  

Many existing systems use packing approaches to handle task deployments. 

Experiments are conducted to compare the effectiveness of HMIP, the Power-minimizing 

Placement Algorithm (mPP) introduced in [96] and the simple greedy approach shown 

below,  

Simple Greedy Approach: 

 T: a collection of tasks to be deployed.  

  I: the number of hosts 

1. Sort hosts in increasing order by the maximum power consumption calculated as 
Cfh+ ΩhCh.  

2. Set i = 1,  
3. For each t in T 

3.1. If i ≤ I then: 
3.1.1. Execute Allocate (t, min(d+

t , Ωh(i) ), h(i)) // allocation function is 
the same as the one used in Algorithm II 
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3.1.2. If t has remaining execution demand (d+
t > 0) then increment i and 

repeat from Step 3. 
3.2. Else (i > I) return error “out of hosts” 
3.3. Next t and increment i 

 
Table 6.8 compares the effectiveness of HMIP, Simple Packing and mPP with the 

same case studied above. 

Table 6.8 Comparison of the HMIP and Simple Packing 

 HMIP Simple Greedy Approach mPP 

Response Time (Goal: 28.98ms) 28.74ms 34.10ms 41.78ms 

Number of Hosts Used 6 13 10 

Total Execution and Fixed Cost 11.93 14.28 12.34 

Execution Cost 5.05 6.48 6.34 

Fixed Cost 6.88 7.80 5.99 

Average CPU Utilization Per Host 0.76 0.55 0.70 

 

Because the simple greedy approach and mPP do not account for the QoS 

requirement, it is not surprising that the solutions violate the QoS constraint. In the 

simple greedy approach one task per host increases the number of hosts used and reduces 

the host utilization. As a result, the solution has higher energy costs and requires more 

hosts than HMIP.  mPP allows resource sharing, thus fewer hosts are used than in the 

solution returned by the simple greedy approach. However, mPP cannot guarantee the 

solution is near the global optima because of the limitation of the packing strategy. 

Moreover, both the simple greedy approach and mPP do not consider the memory and 

license constraints, but this limitation is not shown in this simple example. 
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Chapter 7 Management in Dynamic Environments 

The discussion so far has been in terms of static conditions for the applications and 

the cloud: a constant set of applications and user workload intensities, fixed application 

demands, and a fixed set of hosts. One goal of management of a cloud is to respond to a 

change in these conditions, with a new deployment if necessary. A host may fail, a new 

application may need to be deployed, and the parameters of existing applications may 

change. A new optimization may simply repeat the effort of the first one, but it is better 

to take into account the existing deployment and try to minimize the changes to be made. 

This makes the changes quicker and cheaper to install. 

A common way to guarantee the performance subject to variations is to reserve 

specified resources and provision resources as long as the applications demand them. A 

critical downside of reserving resources is that the application only can use the particular 

resources, which limits resource sharing. In addition, it does not consider the effects of 

contention. Moreover, the deployment of new tasks into a Cloud can impact the 

performance of tasks already running on the machine. Optimization with persistence [11] 

is an effective way to provide online adaptive resource provisioning in terms of dynamic 

requirements, increasing resource utilization, limiting the impact on existing 

configurations, and providing dynamic robustness.   
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Figure 7.1 shows two deployment scenarios: (a) new application deployment (shown 

by the dark dashed arrow), and (b) redeployment (shown by the light dashed arrow) 

where all applications are optimally redeployed to adapt to changing conditions. The 

deployment optimization module computes the deployment plans and forwards them to a 

deployment engine (such as IBM Tivoli Provisioning Manager) which executes them. 

The optimization decisions are based on the state of the cloud which includes information 

about the applications and resources already allocated.  

 

Figure 7.1 Deployment Scenarios 

To enhance sharing, one node may host more than one application. In both the 

deployment and redeployment scenarios, (a) and (b) in Figure 7.1, the cloud uses a 

flexible licensing model. It owns a number of concurrent licenses (which means the 

owner can run a specified number of application instances at the same time) for each type 

of application. When that number is exceeded the cloud acquires additional pay-per-use 

licenses.  
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7.1 Re-Optimization with Persistence 

A good re-optimization approach should increase resource sharing with persistence of 

existing placements, limiting the cost of changes.  Brown et al. [11] stated that 

persistence can be achieved by using hard constraints to limit deviations from previous 

preferred values, or soft constraints to penalize the deviations. This implies that 

persistence in the optimization of task placement can be achieved by adding constraints 

on the flow rates or giving rewards/penalties on the arcs. This will help to control the 

changes to running applications when delivering new decisions in response to changing 

requirements.  

7.1.1 Constraints on the Flow Rates 

If an application arrives or parameters in the performance model are changed, some 

of the existing configurations to be preserved can be constrained with flow bounds, 

limiting the deviation of flow rates.  

Constraint I. Constraints on the Flow Rates 

Flow rates can be constrained with lower and upper bounds, which respectively 

guarantee the minimum and maximum execution demands to be assigned to the task from 

the host. When the upper and lower bounds are the same, this specifies the exact amount 

of the execution demands given to the task.  

Constraints on the flow rates can be employed in the following ways: 
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o Disable specific allocations 

 If an allocation is not allowed, the arc can be disabled in the optimization by setting 

the upper bound of the flow rate at 0, At 0 (or equivalently, by removing the arc from the 

model).   

o Preserve existing configurations without changes 

If a running task must perform stably without any changes, its upper and lower flow 

bound are constrained at the current flow rate. 

o Reuse the allocation and allow the addition of extra workloads 

If a running task is needed to perform stably and to handle extra workloads, the upper 

bound can be set at infinity while the lower bound is set at the current flow rate. 

o Reuse the allocation but limit the resource utilization 

If an allocation can be reused but no more new workloads can be added, the lower 

bound can be set at 0 and the upper bound set at the current flow rate. 

o Reuse the allocation but limit the deviation of the performance  

If a running task can be performed with certain deviations, the upper and lower 

bounds are constrained with the maximum and minimum flow rates that describe the 

acceptable varying range. 

Note that constraints on the flow rates are hard constraints, guaranteeing the size of 

the execution demands delivered to the allocation. 

7.1.2 Reward/Penalize the Allocations  

Another approach is to use the weights parc defined in Optimization Model III to 

apply a reward or penalty on the arcs. These control the priority of use of the allocation. 
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This approach can help to minimize the changes in the placements and preserve good 

configurations. For example, in order to drive the re-optimization to reuse the existing 

allocations, the arcs currently having no flows can be penalized, and the arcs that are in 

use can be rewarded. The value of the penalty and rewards can be determined by the cost 

of a new installation, risk of migration, and the importance of preserving some replicas. 

Unlike the hard constraints on flow rates, a reward or penalty is a soft constraint. 

7.1.3 Constrain New Replicas for Some Specific Tasks 

In dynamic environments, adding new replicas can help to give sound performance in 

response to the variation of conditions, but installing new deployments is associated with 

risks, increased operating costs and provisioning delays, and may change the system 

structure and parameters. In some cases, it is better to limit the creation of new replicas 

for some specific tasks in order to reduce the associated risks and costs. 

The optimization approach provides this property by considering the requirements as 

constraints, shown as follows: 

Constraint II. Constraints on Creating New Replicas for Specific Tasks 

1. indicate each arc currently in use by setting a parameter old_archt = 1, otherwise 

0. 

2. for each task, the number of new replicas is    

Σh (1- old_archt) Aht ( 37 ) 

The new replicas here refer to the replicas to be installed, which include the new 

replicas created from duplication and migration and also newly arrival tasks. 
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3. when the number of new replicas of a task t is not allowed to exceed a limit (Rt), 

this condition can be described with  

Σh (1- old_archt) Aht ≤  Rt ( 38 ) 

This constraint builds up a relationship that has the following characteristics. 

• When the arc is already in use, old_archt = 1, the reuse of this allocation is not 

counted as a new replica. (1- old_archt) Aht = 0 

• When the arc is not in use, old_archt = 0, if Aht = 1, which means it is a new 

replica. (1- old_archt) Aht = 1 

• When the arc is not in use old_archt = 0, if Aht = 0, which means this 

allocation is not selected. (1- old_archt) Aht = 0 

For each task t, there is a cost C_Rt associated with each new replica. The value is 

determined by the cost of installation and maintenance of the new replica and the 

possible revenue lost due to the process of installation. This cost can be 

considered in the objective function described as below, in order to minimize the 

cost of changes. 

C_Rt(1- old_archt) Aht ( 39 ) 

4. In some cases, for the task, the number of new replicas is expected to be below a 

certain limit, but this is not a hard constraint. The limit can be described with a 

slack (S_Rt), indicating that the extra changes are allowed if they are necessary. 

Σh (1- old_archt) Aht ≤  Rt + S_Rt ( 40 ) 

There is a penalty P_Rt associated with each extra replica. For each task, the total 

penalty can be calculated as below. This calculation can be considered in the 

objective function for minimizing the costs of extra replicas. 
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P_Rt ·S_Rt ( 41 ) 

7.1.4 Limit New Replicas to a Small Number 

In order to improve the stability of the system in dynamic deployment management, 

changes on some running applications should be limited to a small range. For example, in 

each re-optimization update, a possible constraint is that at most 10% of running tasks 

may be migrated or given new replicas. To achieve this goal, a constraint can be included 

in the optimization as developed as below. 

Constraint III. Constraints to Limit New Replicas to a Small Number 

1. Reuse Σh (1- old_archt) Aht to indicate the number of new replicas of a task t, in the 

same manner as above. 

2. Let ptgT be the percentage of running tasks that could be changed, where T represents 

a set of running replicas. Assuming there are N elements in T, then the number of 

tasks allowed to be changed is the largest integer value that is no greater than 

(ptgT/100)N, indicated by floor((ptgT/100),N). Let Slack_T be the extra number of 

changes if needed, but these are not expected, since extra change violates the 

available range.  

3.  A constraint then can be created:  

ΣT Σh (1- old_archt) Aht ≤  (ptgT./100)N + Slack_T ( 42 ) 

4. Slack_T is included in the objective function where it is minimized.  

This is still a MIP problem. The constraint guides the optimization to limit the scale of 

changes, offering system stability subject to dynamic changes. 
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7.1.5 Reduce the Number of New Hosts 

Using a new host is associated with a start-up cost (Rh) to boot the computer. In some 

cases this cost should be taken into account in order to provide a more efficient 

adjustment in the face of dynamic changes. The optimization approach can provide this 

property by reducing the use of new hosts, as follows: 

1. Indicate each host currently being used by setting a parameter old_Sh = 1, 

otherwise 0. 

2. Account for the Total Start-up Costs calculated as below in the min-cost objective 

function. 

Total Start-up Costs = Σh (1- old_Sh) Sh Rh ( 43 ) 

In the Optimization Model III, when a host is used, Sh is constrained to be 1, 

otherwise 0. If the host is newly used (old_Sh = 0 and Sh =1), then the associated 

start-up cost Rh is added to the total costs. This guides the min-cost optimization 

to find a solution with a smaller number of new hosts. 

7.2 Three Re-Optimization Strategies in Dynamic Environments 

Three re-optimization strategies will be compared, one using full optimization in 

every period, and the other two using optimization with persistence: 

• Full re-optimization: attempts to find the solution with the least cost, using the 

MIP model shown in Optimization Model III.  

• Re-optimization with persistence: allows a new application to share resources 

with existing applications, but attempts to reduce the changes to existing 
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deployments.  This strategy rewards the flows that are in use and penalizes the 

potential new flows.  

The model for Re-Optimization with Persistence can be described as: 

1. Reward the arcs that represent deployed tasks that are running. Set a 

penalty parameter parc_ht with a negative value, which indicates how 

important it is that the allocation should be preserved. A smaller parc_ht 

indicates that it is more important to preserve this allocation. 

2. Penalize the arcs representing potential new deployments. parc_ht is 

assigned a positive value. The value of parc_ht is determined by the costs to 

install the new allocation. A greater penalty means larger costs. 

3. The value of parc_ht is updated periodically to guide the re-optimization to 

choose new solutions. 

• Simple Rule (re-optimization without sharing): This is a simple strategy used in 

practice. New deployments only can be added onto new hosts that are not being 

used. This strategy has no impact on existing deployments. This strategy imposes 

several constraints on the optimization model: 

1. It imposes a lower bound on each output arc that is in use equal to the 

current flow rate, labelled as [current flow rate, ∞, cost per flow rate]. 

This allows increasing loadings of the running tasks, but cannot reduce 

the loads, or terminate, or move the tasks. 

2. It places an upper flow bound of zero on the idle arcs ongoing from the 

running hosts, labelled as [0,0,0].    
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7.3 Experiments: Controlling the Scale of Changes  

These experiments are conducted on the host pool described in Table 6.4. Each 

application has the structure shown in Figure 6.2, but with different parameters and 

requirements (chosen randomly). These ecommerce systems are to share a cloud. A 0.25 

stress rate is used, and at most 80% of the CPU capacity can be used to avoid 

overloading. HMIP is used as the optimization algorithm and takes into account: 

• Average response time in SLA  

• Resource availability and requirements (CPU and Memory) 

• License availability and license cost 

• Power Consumption (execution and fixed costs) 

• Effects of contentions 

This experiment uses LQNS V5.1 as the performance model to conduct performance 

and sensitivity analysis and uses CPLEX v12.1 as the MIP optimization solver. 

Three applications are running, which respectively are labelled as APP 17, APP 89 

and APP 91. The information on the costs and resource utilizations of the running system 

is shown in Table 7.1, in which energy cost is the total of fixed and execution costs. A 

new application labelled APP 97 is added, which can share resources with the running 

applications. The “number of new replicas” stands for the replicas just installed in the re-

optimization. 
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Table 7.1 Running Applications in the Cloud Infrastructure 

# of applications # of allocations
Total # of 

hosts 

Total energy 

and license cost
Execution cost Fixed cost

3 25 7 15.693 5.894 9.72 

 

The evaluation measures the energy and license cost, the number of new allocations 

(including the allocations of new tasks and the migration of the old allocations), and the 

number of hosts in use.  

The first experiment attempts to limit the number of replicas of some specific tasks 

(using the approach given in Section 7.1.3), and the next experiment tries to limit the 

changes to a small number (using the approach given in Section 0). These experiments 

will evaluate the feasibility of the approach and study the impact of the stress of the 

constraints.  

7.3.1 Case Study on Controlling the Costs of New Replicas for Specific Tasks 

This example is a simulation to evaluate the effectiveness of the re-optimization in 

terms of the number changes required relative to the cost of the changes. The number of 

new replicas (the replicas to be installed) per task is controlled in each re-optimization. 

One test is to let each task have at most one more free replica in the re-optimization 

(indicated by 1 rep per task), and the other allows each task to have two new free replicas 

(indicated by 2 rep per task). Each extra replica above the limitation is associated with an 

extra cost (set C_Rt=0, P_Rt = 1). These results are compared against full optimization 

without persistence constraints, shown in Table 7.2 and Figure 7.2.  
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Table 7.2  Re-Optimization with Limitations on the New Replicas per Task 

4 applications 
full 

optimization 
2 rep per task 1 rep per task 

Total energy and license cost 19.278 19.590 19.606 

Execution costs 7.558 7.440 7.456 

Fixed costs 11.72 12.15 12.15 

Total number of replicas 36 36 34 

number of new replicas 

(including newly arrived tasks) 
34 29 25 

Total # of hosts 9 9 9 

# of new hosts used in the re-

optimization 
6 4 3 

 
This comparison shows that the solution given by the full optimization has the 

smallest costs; the costs of the 2 rep per task and the 1 rep per task are similar, but 2 rep 

per task costs slightly less. The number of new replicas and the number of new active 

hosts used in the full optimization is larger than the other two. Because it has the most 

limiting constraints, the 1 rep per task has the smallest changes. 

Figure 7.2 shows the number of new replicas per task required by each algorithm, 

when handling re-optimization to accommodate the newly arrived application APP 97. 
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Figure 7.2 the number of new replicas of each task created in re-optimization (constraint on 
new replicas per task) 

 
The results show that the optimization with persistence is effective in controlling the 

number of new replicas of each task in the re-optimization. In 1 rep per task and 2 rep per 

task, the number of new replicas per task can be effectively controlled below one and two 

respectively. Without this control, for some tasks, such as APP 89_TFS, the number of 

new replicas reaches three. 

7.3.2 Case Study of Limiting New Replicas to a Small Value 

This experiment is conducted on the same prototype as in the previous experiment 

which controls the replications per task. The constraint on the re-optimization to ensure 

persistence is changed. This experiment evaluates the effectiveness of limiting the 

number of running tasks that are changed to below 5% (indicated by ptg 5% ), 10% 

(indicated by ptg 10% ) and 20% (indicated by ptg 20%). Note that changes count the 

number of new replicas of running tasks, including the new replicas and migrated tasks; 

newly arrived tasks and loading changes are excluded from the count.  
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According to the results given in Table 7.1, limiting changes to 5% means that at 

most one new replica of a running task can be added, two for 10%, and five for 20%. 

 
Table 7.3  Re-Optimization with Limitations on the Percentage of Changes 

4 applications 
full 

optimization 
Ptg 20% Ptg 10% Ptg 5% 

Total energy and license cost 19.278 19.607 20.132 20.358 

Execution costs 7.558 7.457 7.172 7.398 

Fixed costs 11.72 12.150 12.96 12.96 

Total number of replicas 36 36 34 33 

number of new replicas 

(including newly arrived tasks) 
34 15 10 8 

Total # of hosts 9 9 9 9 

# of new hosts used in the re-optimization 6 2 2 2 

 

The results in Table 7.3 show the effects of limiting the percentage of changes.  

Figure 7.3 shows the effects of controlling the percentage of changes. At 5%, the number 

of replicas of the running tasks is controlled at 1 (APP89_TWebServer), and in 10% the 

number of new replicas is successfully controlled within 2 (which are respectively 

APP89_TFS and APP89_InvDB). The number of new replicas at 20% is controlled at 5, 

meeting the constraint.    
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Figure 7.3 the number of new replicas of each task created in re-optimization (Ptg Control) 

7.4 Summary of Optimization with Persistence 

The experimental results demonstrate the effectiveness of imposing persistence in re-

optimization, limiting changes to specific tasks and the scale of changes. These 

approaches can satisfy many dynamic requirements while accounting for the costs/risks 

of changes, and are effective in offering high-quality solutions with persistence. 

These approaches can be combined to address complex problems with multiple 

simultaneous goals. For example, they could consider the scale of changes and the 

changes per task at the same time. In addition, constraints on the flow rates can be added 

to limit the loading of some specific tasks, while using penalty/rewards to guide the re-

optimization.  
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Chapter 8 Case Study 

A set of simulations was used to evaluate the scalability of the optimization 

approaches and the stability of management in responding to various dynamic changes.  

The algorithms HP, Pure MIP and HMIP were evaluated on 12 deployment problems, 

the number of applications scaling from 1 to 10, and the stress rate ranging from 0.25 to 

0.9. The algorithms in these tests account for contention in the response time calculation. 

 The case study of the stability of management includes control in several difficult 

dynamic environments, which include 

• Varying Workloads 

• Addition and removal of applications  

• Failure and repair of host machines 

8.1 Experimental Environment 

The cloud environment in which the test applications are deployed is the host pool 

described in Table 6.4. Each application has the structure shown in Figure 6.2, each with 

different performance parameters and requirements (chosen randomly). The costs 

considered in the optimization include the execution cost, fixed cost and license cost. 

All experiments expect to use at most 80% of the CPU capacity in order to avoid 

overloading. These experiments take into account: 
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• Average response time in SLA  

• Resource availability and requirements (CPU and Memory) 

• License availability and license cost 

• Power Consumption (execution and fixed costs) 

• Effects of contention 

The experiments use LQNS V5.1 as the performance model solver to conduct 

performance and sensitivity analysis and CPLEX v12.1 as the MIP optimization solver. 

The implementation of the algorithm is coded with Java, running on JRE 1.6 on an Intel 

2.4GHz Dual machine with 3GB of RAM. Since it is a MIP problem, the LP solver is not 

used here. 

8.2 Evaluate the Scalability of the Three Algorithms 

A cloud can host many applications with separate service contracts. This necessitates 

an approach that offers global management for large scale systems. This experiment 

demonstrates the scalability of the approaches developed here, and evaluates the 

performance of Pure MIP, HMIP and Heuristic Packing in a realistic deployment that 

considers the effects of contention. 

The algorithms will be evaluated with practical deployment problems including 

consideration of contention issues. A system with 1 to 10 versions of the application 

template model in Figure 6.2 (each with different performance parameters and 

requirements) is used for deployment. The number of services increases from 10 to 110, 
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and the number of original tasks (without replicas) increases from 7 to 70. The results of 

the optimization are shown in Table 8.1. 
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Table 8.1 Evaluation of Pure MIP, HP and HMIP with Contention  
 

Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05) 

1 app HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP

# of iterations 1 2 1 2 1 1 1 1 1 2 2 1 

Time on MIP(sec) 0.01 0.22 0.11 0.01 0.16 0.125 0.01 0.282 0.11 0.01 0.25 0.109

Time on LQNS(sec) 0.537 0.77 0.578 1.11 0.5 0.531 0.531 0.406 0.56 0.719 0.672 0.391

Time on LEndStep(sec) 7.438 5.94 6.766 11.84 6.3 7.922 7.469 4.344 7.08 4.234 4.39 4.578

Total Solution Time(sec) 7.969 6.92 7.545 12.95 6.95 8.578 8 5.032 7.83 4.953 5.328 5.078

Total Solution Time without LEndStep 0.547 0.99 0.688 1.12 0.66 0.656 0.541 0.688 0.67 0.729 0.922 0.5 

Total Energy and License Cost 11.94 11.53 11.92 12.03 11.53 11.63 11.65 11.43 11.64 11.41 11.39 11.28

# of replicas (task) 13 12 13 14 12 13 13 12 13 13 12 12 

# of services 20 19 21 22 19 21 20 19 20 20 19 19 

Costs saved by sensitivity 0.001 5.00E-04 0.004 0.04 0.01 0.01 0.004 0.01 0.003 0.02 0.005 0.003

# of variables in MIP - 127 97 - 157 97 - 217 97 - 382 82 

# of hosts 6 6 6 6 6 6 6 6 6 6 6 6 
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Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05) 

5 app HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP

# of iterations 3 8 2 6 6 4 8 3 1 7 1 4 

Time on MIP(sec) 0.016 11.54 0.468 0.016 4.39 0.923 0.047 2 0.39 0.142 0.375 0.672

Time on LQNS(sec) 15.797 29.41 8.048 23.156 21.751 14.123 31.37 11.266 4.375 24.671 2.703 11.874

Time on LEndStep(sec) 131.53 124.8 151.03 171.76 99.794 147.7 180.7 104.95 119.61 139.7 56.7 109.41

Total Solution Time(sec) 157.15 165.9 159.56 194.94 125.86 162.78 212.1 118.25 124.38 164.62 59.7 122.02

Total Solution Time without LEndStep 15.813 40.95 8.516 23.172 26.141 15.046 31.417 13.266 4.765 24.813 3.078 12.546

Total Energy and License Cost 23.96 23.47 23.479 23.64 23.91 23.14 24.54 23.16 22.98 23.93 22.34 23.137

# of replicas (task) 42 45 45 47 44 45 48 44 44 45 43 45 

# of services 67 71 73 76 71 72 77 69 71 71 69 72 

Costs saved by sensitivity 0.06 0.08 0.022 0.1 0.04 0.03 0.11 0.018 0.006 0.04 0.008 0.0145

# of variables in MIP - 887 887 - 1171 887 - 1597 816 - 2804 674 

# of hosts 12 11 11 11 11 11 12 11 11 12 11 11 
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Stress rate Very High (0.9±0.05) High (0.7±0.05) Medium (0.5±0.05) Low (0.25±0.05) 

10 app HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP HP Pure MIP HMIP

# of iterations 4 11 14 6 11 12 9 3 6 14 6 4 

Time on MIP(sec) 0.077 4.468 6.921 0.046 4.531 5.175 0.076 4.063 3.204 0.234 7.5 1.609

Time on LQNS(sec) 56.86 154.5 200.25 94.718 129.91 156.05 139.89 43.09 81.859 198.69 73.048 42.406

Time on LEndStep(sec) 652.44 861.7 689.72 1084.4 494.67 482.27 933.52 540.6 494.39 946.2 525.31 401.02

Total Solution Time(sec) 709.52 1020 896.97 1179.2 629.16 643.58 1073.5 587.8 579.5 1145.2 605.9 445.09

Total Solution Time without LEndStep 56.937 158.968 207.171 94.764 134.441 161.225 139.966 47.153 85.063 198.924 80.548 44.015

Total Energy and License Cost 34.09 33.94 33.92 35.379 33.26 33.299 34.91 33.51 33.34 35.34 33.24 33.23

# of replicas (task) 67 85 83 86 83 83 86 81 81 84 84 80 

# of services 105 137 133 137 131 131 135 129 130 135 134 128 

Costs saved by sensitivity 0.036 0.07 0.027 0.008 0.019 0.026 0.03 0.04 0.019 0.003 0.032 0.012

# of variables in MIP - 2467 2467 - 3313 2608 - 4582 2749 - 8107 2326

# of hosts 16 16 16 17 16 15 17 16 16 16 14 14 
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This evaluation shows that: 

• The solution is very similar across low and high-stress problems, in the objective 

function value, the number of hosts used, and the number of replicas of tasks and 

services deployed. There does not seem to be any advantage in beginning with a 

lot of excess resources, in terms of being able to find a better solution. 

• The LEndStep takes most of the time and gives only a small improvement in all 

the cases shown here, so it probably is not worthwhile in practice. In LEndStep, 

the calculation of LP is very fast, but the sensitivity analysis is time consuming 

because of a problem in LQNS, expected to be repaired soon. Nonetheless it is 

useful for comparing small differences between cases, since without it, there is a 

small effectively random jitter on the solution cost, of a few percent.  

• There is no consistent trend in solution time, between low and high stress cases. If 

we adopt two minutes as a “maximum practical optimization time”, then the 

approach without LEndStep is “practical” up 10 apps in most cases. 

• Increasing the size of the host pool (to give a low stress rate) does not increase the 

total solution time. On the contrary, because a low stress rate allows for providing 

the required performance with fewer replicas, reducing the complexity of the 

performance model, the performance model can be solved with greater efficiency.  
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• For a small scale problem that has tens of tasks, the solution time is in a practical 

range for computing a deployment, as changes to deployment take on the order of 

minutes even for just a few machines. When a system scales up, the computation 

time is increased. In a whole optimization process, about 75~90% of the solution 

time is used on sensitivity analysis. And in the optimization loop over 70% of the 

solution time is used by the performance model for computing the contention 

delays at different layers and components. Over 85% of the total solution time is 

used by LQNS, which is the bottleneck of this approach.  

• The efficiency of solving a MIP problem is not a critical issue in the optimization 

accounting for contentions.  Though Bin-Packing can solve a MIP heuristically 

with the greatest efficiency, this had a limited effect on the overall solution 

efficiency, because the contention calculation in the performance model is much 

more time-consuming. Moreover, the costs of the solutions returned by the 

heuristic packing algorithm in most cases are the highest, since it cannot ensure 

the quality of optimization, 

• Comparison of HMIP and Pure MIP: The objective costs given by both 

algorithms are close. MIP appears to be more effective for the deployment 

problem with 5 or fewer applications, while HMIP is faster for problems with 10 

applications. 

Based on these experimental results, our approach currently is able to handle the 

deployment problem for service systems with about 50 heterogeneous tasks. The 

complexity of the performance model has a significant impact on the optimization 



    

110 

efficiency. The LQNS developers expect to increase the speed of the software 

substantially in the near future. 

8.3   Evaluation of the Stability of Management in Dynamic 

Environments 

This section evaluates the effect of management in dynamic environments. The 

algorithms are used to handle several dynamic scenarios, including adaptive regulation of 

dynamic workloads, re-optimization for addition and removal of applications, and the 

failure and repair of host machines. 

In the test, we define a “step” as a time interval for re-optimization (which could be 

global optimization, simple rules, or optimization with persistence) to update decisions, 

and define a “period” as a series of steps with one global optimization and possibly some 

non-global optimizations. A period may include one or several steps. For the algorithms 

of full optimization, optimization with persistence and simple rules please refer to 

Section 7.2.  

In this test, the optimization with persistence sets parc_ht = -αht, rewarding existing 

deployments on the basis of the loads of replicas. A replica with larger execution 

demands gains a greater reward, driving the re-optimization to reserve the replica with a 

priority. 

The experiments study the quality of full optimization, optimization with persistence, 

and optimization with simple rules by measuring the energy and license cost of the 

solutions, the degree of change and the number of replicas and hosts used, and study the 

effects of varying the period for full optimization.  
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In the figures below, we use this notation to represent the algorithms: 

• Full opt: full optimization 

• Px: take full optimization every x steps, for example p3 means full 

optimization will be conducted every 3 steps. 

• Pers: use optimization with persistence in between full optimizations 

• Rules: use simple rule in between optimizations, ensuring current replicas are 

unaffected by changes. 

Let “new replicas” represent the replicas newly installed, and “new hosts” represent 

the hosts activated for use. The “percentage of new hosts” or the “percentage of new 

replicas” in the figures correspondingly mean the fraction of new hosts among all active 

hosts (including the new active hosts) and the fraction of the new replicas in all replicas 

in use (including new replicas just created), calculated as,  

Percentage of New Hosts =#hnew_t / #htotal_t ×100 ( 44 ) 

Percentage of New Replicas =#Rnew_t / #Rtotal_t ×100 ( 45 ) 

# hnew_t is the number of the new hosts, i.e. that are used in period t but not used in 

period t-1, 

#htotal_t is the total number of hosts used in period t, 

#Rnew_t  is the number of new replicas created in period t,  

#Rtotal_t is the total number of replicas used in period t. 

To evaluate the quality of the persistence in this experiment, two types of costs are 

measured. One is the energy (Section 6.1) and license cost, and the other is the “start-up 

costs” which measures the costs of using new hosts or new replicas. We define 1 unit 
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start-up cost for a new host (boot the computer) and 3 units start-up cost for a new replica 

(install VM and image) to quantify how much start-up costs are totally used.  

In the tests arbitrary changes are permitted. Constraints as described Section 7.1.3 and 

Section 0 to limit the change with global optimization are not used here. 

8.3.1 Dynamic Case I: Varying Workloads 

With a change in the number of users, the resource requirement of each task is 

changed. This experiment applies optimization to find the minimum energy and license 

cost to ensure the maximum latency is not exceeded. 

We assume that the request arrivals exhibit time-of-day variations typical of 

enterprise workloads, so the number of arrivals may change quite significantly during a 

one day period. The workload used in our experiments loosely resembles the behaviour 

found in the log files from the Soccer World Cup 1998 Web site [4] and is shown by the 

bars in the figures below.  We use this workload pattern because it has significant 

workload variations with large dynamic spikes. In the performance model used in this 

experiment, the number of users (Nc) varies between 80~650 and the average think time 

(Zc) is set at 1400ms. Optimization with persistence was applied at 20-minute intervals, 

with a response time specification (ignoring network delay) of RTSLA = 35ms. 

1. Response Time 

Figure 8.1 shows that throughout the test all control approaches are able to maintain 

the response time below the required value. Full optimization gives a stable response 

time, controlling the variation within 20%. In certain steps, some response times, 

especially some of those that are given by optimization with persistence (Pers) or with 
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simple rules (Rule), are much shorter than needed (with a cost penalty), since the 

persistence mechanism requires the optimizer to reuse existing configurations, resulting 

in resource over allocation. A short period between full optimizations can help to bring 

the configuration up to date, giving a response time closer to the SLA.  

 

Figure 8.1 Response Time of the Application with Varying Workloads  

Table 8.2 Average Response Time per Step (Varying Workloads) 
 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule SLA 
Average RT 32.002  30.33 30.39 26.67 25.30 34.98 

 

2. Capital and Start-up Costs 

Figure 8.2 shows that the total energy and license cost returned by the full 

optimization are proportional to the change of workloads, and are the lowest. This cost 

returned by the simple rules is larger than other control approaches because sharing is not 
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allowed in the solution. Simple rules can isolate the environment, but they require more 

resources to handle the newly arrived workloads. Table 8.3 shows that the solution 

returned by the full optimization is with the largest start-up costs, about 2.5~3 times 

higher than the other approaches. 

 

Figure 8.2 Total Energy and License Cost Subject to Varying Workloads 

Table 8.3 Average Cost per 
Step (Varying Workloads) Full opt P3 Pers P5 Pers P3 Rule P5 Rule 

Total Energy and License Cost 9.70 9.88 9.93 10.41 10.95 
Start-up costs on New Hosts 2.25 0.95 0.79 1.25 0.98 

Start-up costs on new replicas 25.71 10.25 8.17 11.63 8.13 
Start-up costs on new hosts 

and new replicas 27.96 11.19 8.96 12.88 9.11 

 

3. Hosts in Use and the Percentage of New Hosts 

Figure 8.3 and Figure 8.4 respectively illustrate the total number of hosts returned by 

the algorithms and the percentage of new hosts being activated to perform tasks. Figure 

8.3 shows the resulting time-variation of hosts used, ranging from 2 to 13 subject to the 

Varying Workloads. It demonstrates that the algorithms are effective for providing 
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adaptive management for varying workloads with dynamic resource provisioning. The 

variation of the number of active hosts corresponds to the variation of costs shown above. 

A higher frequency of full optimization can give a more up-to-date adjustment.  

However, the economical solution sought by full optimization is associated with great 

variation in the selection of hosts. In Figure 8.4 the percentage of new hosts used by full 

optimization ranges from 20% to 100%. For optimization with persistence (Pers), the 

number of new hosts can be controlled below 20% most of the time; and using simple 

rules, the percentage is further reduced and could be 0 most of the time.  

 

Figure 8.3 Total Number of Hosts subject to Varying Workloads 

Table 8.4 Average Active Hosts per Step (Varying Workloads) 
 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Active Hosts 4.63 4.76 4.83 4.94 5.32 
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Figure 8.4 the Percentage of New Hosts in Use subject to Varying Workloads 

Table 8.5 Average Percentage of New Hosts per Step (Varying Workloads) 
 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Ptg of New Hosts 62.09% 25.15% 19.29% 26.14% 19.35% 

 

4. Replicas in the System and the Percentage of New Replicas 

Figure 8.5 and Figure 8.6 respectively illustrate the number of replicas in use and the 

degree of change at each step. Full optimization returns solutions using the smallest 

number of replicas; optimization with persistence (Pers) requires a few more, and the 

simple rules require the most. Simple rules use more replicas than other solutions because 

they are not allowed to create new replicas to offer workload aggregation, which 

combines the running and existing workloads, replacing the existing placements. In 

simple rules existing placements must be preserved and newly arrived workloads only 
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can be placed in new replicas on new machines. The number of replicas thus is increased, 

more than other approaches that are allowed to create large-size replicas to take the place 

of the existing placements. 

To provide the most economical solution, the full optimization solution consists of 

60% new replicas, and in some cases consists entirely of new replicas. A large number of 

changes of replicas increases the risk of instability and the operating costs for changes. In 

the same problem, optimization with persistence (Pers) and simple rules can keep the 

percentage of new replicas below 30 %.  

 
Figure 8.5 the Total Number of Replicas in Use subject to Varying Workloads 

Table 8.6 Average Number of Replicas per Step (Varying Workloads) 
 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Number of Replicas 10.28 10.36 10.36 12.25 12.99 
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Figure 8.6 the Percentage of New Replicas subject to Varying Workloads 

Table 8.7 Average Percentage of New Replicas per Step (Varying Workloads) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Ptg of New Replicas 84.68% 33.70% 26.28% 34.96% 24.31% 

 

5. Summary : Management of Varying Workloads 

As a summary for this evaluation, full optimization gives the most stable response 

time, and the solution is the most economical among these approaches, but in each step 

full optimization creates many new replicas, which increases the risks associated with 

changes, cost of operations and provisioning delays (which are not considered here). 

Simple rules give the fewest changes, but require the use of more hosts than other 

approaches, since simple rules do not allow new workloads to share hosts with the 

running tasks. Optimization with persistence (Pers) helps to constrain the number of 

changes, giving the required persistence of existing placements, and it allows some 

changes to the running tasks, allowing increased resource sharing. 



    

119 

This evaluation shows that a short period between full optimizations can help to 

quickly regulate the configurations, reducing costs due to over-allocated resources; 

however, a short period means an increase in the cost of changes. 

8.3.2 Dynamic Case II: Host Failures and Repairs 

This test evaluates the performance of the algorithms in handling host failures and 

repairs. In this test the initial stress rate is 0.25. Five applications with static workloads 

require guaranteed multi-class response time; 25% of running hosts fail and are removed 

in each step. This is a ridiculously high failure rate, but serves to underline the properties 

of the adaptive decision algorithm. New hosts are added into the host pool when the 

stress rate reaches 0.75. Figure 8.7 shows the variation of the size of the host pool. 

Because the hosts selected by each algorithm in a step might be different, the failed and 

remaining hosts may not be the same for each evaluation. 

 

Figure 8.7 the Variation of the Size of the Host Pool in Host Failures and Repairs 
Environments 
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1. Costs Given By Different Control Approaches 

Figure 8.8 illustrates the total energy and license cost given by different algorithms. It 

shows that full optimization gives the solution with the least cost, in most steps. For each 

algorithm, the periodic run of the full optimization reduces costs significantly, so full 

optimization is effective for reducing the costs subject to hosts failures and repairs and 

can save about 10~20% of the cost in comparison to other approaches. Because at each 

step the available hosts in the pool are not identical for each algorithm, the results given 

by the full optimization may not always be the best.  

 In most steps, optimization with persistence (Pers) performs better than simple rules 

when they are running with the same periods. This shows that allowing resource sharing 

helps to improve the quality of optimization. For either optimization with persistence 

(Pers) or simple rules, a short period returns lower costs than a long period most of the 

time.  

 

Figure 8.8 the Total Energy and License Cost Required by Each Approaches subject to 
Host Failures and Repairs  
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Table 8.8 Average Costs per Step (Host Failures and Repairs) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Total Energy and License Cost 23.44 24.10 24.56 24.57 24.74 

Start-up costs on new hosts 4.76 4.16 3.84 4.32 3.68 
Start-up costs on new replicas 118.56 71.4 55.56 71.28 58.92 

Start-up costs on new hosts and 
new replicas 123.32 75.56 59.4 75.6 62.6 

 

2.  Replicas Required and Persistence 

Figure 8.9 evaluates solution persistence by measuring the change in the number of 

replicas. It shows that most of the time the number of replicas returned by simple rules is 

slightly larger than returned by full optimization and optimization with persistence (Pers). 

This is again because of the constraints in simple rules, which preserve the remaining 

replicas and create new replicas to accommodate the affected workloads in the failed 

hosts; in the other solutions unaffected replicas can be aggregated with the affected tasks 

as a new replica is deployed in another machine.  

In the comparison between the percentages of new replicas (Figure 8.10), it can be 

seen that in every step around 90% of the replicas are newly created by full optimization. 

Because of the effects of the persistence mechanisms, in each step the percentages of new 

replicas created are in the range of 20~40% for the simple rules or for the optimization 

with persistence (Pers). According to the average percentage of new replicas shown in 

Table 8.10, it can be seen that a long period gives fewer changes than a short period 

(about 8~10%). This is the same for both optimization with persistence (Pers) and simple 

rules.  Though a short period helps to keep the configurations up-to-date, large scale 

changes may destroy the system stability. The effects of Pers in offering persistence is 
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similar to simple rules, with only 1~2% difference. The period has more impact on 

persistence than the algorithms. 

This study implies that optimization with mechanisms to offer persistence are 

effective in providing robust management subject to hosts failing and being repaired. In 

particular the optimization with persistence (Pers) has the ability to limit changes to 

existing replicas, stabilizing the system structure. However the percentage of new 

replicas is quite high in all cases. Full optimization can reduce costs for execution, but it 

is associated with increased changes, increasing the associated risks and costs. 

 

Figure 8.9 the Total Number of Replicas in the Host Failures and Repairs Environment 

Table 8.9 Average Number of Replicas per Step (Host Failures and Repairs) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Number of Replicas  43.4 44.32 44.12 46.32 45.24 

 



    

123 

 

Figure 8.10 the Percentage of New Replicas in the Host Failures and Repairs Environments 
 

Table 8.10 Average Percentage of New Replicas per Step (Host Failures and Repairs) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Percentage of New Replicas 91.05% 53.87% 42.38% 51.97% 43.98% 

 

3. Active Hosts and Persistence 

Figure 8.11 gives the number of hosts in use subject to the hosts failing or being 

repaired. Full optimization uses the smallest number of hosts to provide the required 

performance. Optimization with persistence (Pers) is more effective than simple rules in 

reducing the active hosts most of the time, but not always, since in the same control 

period the available hosts remaining in the pool are not the same for each algorithm.  

Figure 8.12 gives the percentage of new hosts in use. In most steps, the percentage of 

new hosts in full optimization is larger than the others. When the stress rate reaches 0.7 

and new hosts are added into the pool, full optimization introduces more changes because 

of the increase of optimization options.  
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Figure 8.11 Active Hosts in the Host Failures and Repairs Environment 

Table 8.11 Average Number of Hosts per Step (Host Failures and Repairs) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Number of Hosts  11.36 11.96 12.32 12.48 12.4 

 

 

Figure 8.12 Active Hosts in the Host Failures and Repairs Environment 
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Table 8.12 Average Percentage of New Hosts per Step (Host Failures and Repairs) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Percentage of 

New Hosts 42.67% 36.57% 32.20% 35.58% 30.32% 

 

4. Summary: Management for the Host Failures and Repairs Environment 

The above study evaluated the effectiveness of algorithms in host failed/repaired 

environments. Full optimization gives the most economical solution (saving 10~20% 

energy and license cost), but it is associated with many changes in each step. In 

comparison to simple rules, optimization with persistence (Pers) can reduce the energy 

costs, reduce the number of replicas used, and give solution persistence, with results that 

are nearly as good as simple rules. A short period is more effective than a long period in 

keeping the configurations up-to-date; however, it correspondingly requires many 

changes, which are associated with increased costs and risks. 

8.3.3 Case III: Management for Applications Addition/Removal 

In this test, applications are deployed on a private cloud consisting of 29 hosts. 

Applications are increased from 2 to 11 and then removed until 3 applications remain. 

The process is repeated. It is a highly dynamic environment. There are applications to be 

deployed or removed at each step. 

This test studies the effectiveness of the algorithms in handling application 

addition/removal. The management system is required to adaptively adjust resource 

provisioning in response to the change of the applications and must ensure that each 

application does not exceed the maximum response time.  
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1. Costs associated with the Application Addition/removal 

This first measurement of the capital and start-up costs (Figure 8.13, Table 8.13) shows 

that the algorithms in this test perform similarly as to when handling varying workloads 

or when hosts fail and are repaired. Full optimization gives the most economical solution; 

control with persistence is better than simple rules. A short period between full 

optimizations is more helpful to reduce the energy and license cost than a long period. 

Simple rules have higher energy costs than the other methods because more hosts are 

used. However, full optimization is associated with high start-up cost, which is over 

double of other approaches. And a shorter period between successive full optimizations 

increases the start-up cost of both hosts and new replicas. 

 

Figure 8.13 the Total Energy and License Cost subject to Application Addition/removal 

Table 8.13 Average Costs per Step (Application Addition/removal) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Total Energy and License Cost 19.34 20.07 20.33 20.81 23.08 

Start-up costs on new hosts 2.68 1.84 1.28 2.04 1.76 
Start-up costs on new replicas 143.88 75.72 61.56 59.16 46.2 

Start-up costs on new hosts 
and new replicas 146.56 77.56 62.84 61.2 47.96 
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2. Active Hosts subject to the Application Addition/removal 

Figure 8.14 shows the variation of active hosts in response to the change of 

applications. It shows that simple rules need an extra 20~30% additional hosts vs. other 

solutions, since running applications cannot be changed. When newly arrived 

applications are to be deployed, simple rules seek unused hosts to accommodate the new 

applications; when some applications are to be removed, the remaining unrelated tasks 

keep running without changes, so there is no significant reduction in the number of the 

active hosts. Therefore, the number of hosts in use is more than in the other approaches in 

either adding newly arrived applications or removing terminated applications. 

Figure 8.15 shows that without the requirement of persistence the percentage of new 

hosts used by full optimization is around 20~50% most of the time, and sometimes 

reaches 100%. In the other approaches, the percentages of new hosts are controlled below 

30%, and in some steps, the percentage of changes required by simple rules is 0. 
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Figure 8.14 the Total Number of Hosts in Use subject to Application Addition/removal 

Table 8.14 Average Number of Active Hosts per Step  (Application Addition/removal) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Number of Hosts in Use 9.24 9.8 9.88 10.24 12.24 

 

 

Figure 8.15 the Percentage of New Hosts subject to Application Addition/removal 

Table 8.15 Average Percentage of New Hosts per Step (Application Addition/removal) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Percentage of New Hosts 34.15% 22.55% 14.60% 23.03% 16.99% 

 

3. Replicas in Use and Persistence 

The numbers of replicas required by each approach are very similar except for the P5 

Rule that takes slightly fewer replicas. This is different than the results in the previous 

experiments on varying workloads and host failures and repairs. The number of replicas 

is affected by two operations: workload aggregation, which can reduce the number of 

replicas, and workload distribution, which may increase the number of replicas. In 
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workload variation or host failures and repairs, changes have direct impacts on the 

running applications. Such operation as workload aggregation, placing the existing and 

newly arrived (or affected) loadings into a new replica, can be conducted by the full 

optimization or the optimization with persistence (Pers). However this is not allowed in 

simple rules because of changes to the running tasks. Other approaches thus can use 

fewer replicas to accommodate the load than simple rules (which need to use extra 

replicas to accommodate the new loadings) in these cases. 

 In the current case of application addition/removal, newly arrived applications are 

independent of the running applications. This means that the new workloads to be 

deployed cannot be aggregated with the existing workloads. So no workload aggregation 

is used. And since the full optimization or the optimization with persistence (Pers) allows 

splitting arrival loading into several small-size replicas in order to reduce costs by sharing 

resources with running tasks, the number of replicas could be increased in comparison to 

the simple rules, which only place new loadings onto new hosts. 

Figure 8.17 shows that the percentage of new replicas in full optimization is over 

80%; optimization with persistence (Pers) is around 20%~40% and the simple rules limit 

changes in the range of 0~20%. This shows that simple rules need to install the fewest 

replicas, and optimization with persistence (Pers) needs a bit more. To guarantee stability 

for management, the simple rules are good candidates. Optimization with persistence 

(Pers) is a sound algorithm, as long as the costs associated with resource utilization are 

taken into account. If it is only required to reduce the execution costs, full optimization 

performs the best.   



    

130 

We see again that a short period can deliver a solution with lower costs in response to 

shifts in the environments, but is associated with great changes to the configurations. 

Optimization with persistence (Pers) in a dynamic process is not only capable of 

achieving the expected performance at low cost, but it can effectively reduce the number 

of changes, thereby significantly increasing management satiability.  

 

Figure 8.16 the Total Number of Replicas subject to App Addition/removal 

Table 8.16 Average Number of Replicas per Step (Application Addition/removal) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Number of Replicas 53.52 54 53.64 53.36 52.28 
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Figure 8.17 the Percentage of New Replicas subject to the App Addition/removal 

Table 8.17 Average Percentage of New Replicas per Step (Application Addition/removal) 

 Full opt P3 Pers P5 Pers P3 Rule P5 Rule 
Average Percentage of New Replicas 89.32% 49.28% 39.53% 39.25% 29.73% 

 

4. Summary: Management of Application Addition/removal  

The evaluation demonstrates that full optimization gives the smallest energy and 

license cost in response to changing applications, but is associated with a large number of 

changes to replicas, increasing the potential risks to the system stability and high costs 

due to operations for changes.  

Simple rules give good persistence; however, they cannot keep the configurations up-

to-date, resulting in many resources being over allocated. These wasted resources 

increase the energy costs. 
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Optimization with persistence (Pers) achieves a level of persistence similar to that of 

simple rules (about 10% difference), with costs that are within 25% of those for full 

optimization.  

A short period helps keep the configurations up-to-date, reducing the energy and 

license cost due to wasted resources, but it also causes more frequent changes in the 

assignments.  Therefore, if it is important to maintain a stable performance, a long period 

performs better than short period.  

8.3.4 Summary of the Effectiveness of the Algorithms in Dynamic Environments 

The above evaluations under conditions of varying workloads, application 

addition/removal and host failure/repair show the effectiveness of the algorithms in 

response to changes, and the effects of period variation. The experimental environment 

was highly dynamic, but the algorithms provide effective responses to the changing 

conditions.  

The experimental results show that all approaches are capable of managing 

application performance subject to changes. Full optimization is able to achieve the most 

economical solutions among the algorithms. Optimization with persistence (Pers) gives a 

solution with lower energy and license cost than using simple rules. This is because 

optimization with persistence (Pers) has greater flexibility to regulate the resource 

provisioning in adapting to the changing resource requirements. Allowing resource 

sharing with running replicas helps to reduce the resource cost. 

Optimization with persistence (Pers) mechanisms control changes subject to dynamic 

variations. In the above experiments, both optimization with persistence (Pers) and 
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simple rules control the number of new replicas below 40%, while the percentage of new 

replicas required by the full optimization is around 90%.  

In these experiments, full optimization saves about 5~10% costs in comparison with 

optimization with persistence (Pers), but an update is associated with many changes. 

Simple rules give stable management; however its solutions are associated with high 

costs. Optimization with persistence (Pers) returns solutions with similar cost to full 

optimization, and is able to limit the changes on a system while maintaining the quality of 

the solution. These experimental results show that optimization with persistence (Pers) is 

more suitable for dynamic environments than either full optimization or simple rules. A 

short period between full optimizations helps to achieve an economical solution, but is 

associated with big changes. 
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Chapter 9 Conclusions 

New algorithms have been described for deployment management of large scale 

service systems deployed in clouds. Test cases demonstrated the ability to handle 

numerous applications simultaneously, on many hosts, to accommodate multiple 

constraints, and to provide stable solutions over time in a dynamically changing 

environment. 

9.1 Achievements 

This thesis presents several new approaches that are effective for deployment 

optimization.  

Algorithm I (Chapter 5) is a creative approach to seek near-optimal solutions, giving 

sound allocations of host reservations to tasks, and optimizing request traffic between 

multiple task replicas, where applicable. A key contribution of the combination of NFM 

with an analytical model (LQN) is its effectiveness in solving a non-linear constrained 

optimization problem by a series of LP solutions. The experiment in Section 5.8 shows 

that this approach can address very difficult problems, such as minimizing multi-class 

response time with low cost in very large systems. An early version has been 

demonstrated on a small real system comprised of the Tivoli Intelligent Orchestrator, 

Websphere and DB2. 
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The LEndStep algorithm (Section 5.7) gives a new tool to optimize loadings across 

allocated replicas. Experimental results in Section 6.4 and Section 8.2 demonstrate that 

linear programming based on sensitivity analysis can save execution power and reduce 

resource consumption.   

An effective MIP model extends the NFM to address integer constraints. This model 

(model II, Section 6.1) accounts for the QoS in SLAs, execution power and available 

capacity, allocation of memory to tasks, license availability and costs, and power costs 

associated with host activity at the same time. A new algorithm, named HMIP 

(Algorithm III in Section 6.2), provides a scalable heuristic solution for the MIP models. 

Experimental results demonstrate that HMIP is an effective tool that provides high 

quality decisions, nearly as good as using an exact MIP solver. HMIP can handle 

extremely large scale problems consisting of over 80,000 variables, corresponding to 

over 100 hosts and 500 tasks, which is beyond the capability of such MIP solvers as 

CPLEX v12.1.  

Providing high-quality adaptive resource provisioning is another key contribution of 

this thesis. Several new approaches have been developed in this research, which are 

effective in providing ensured QoS subject to dynamic changes. The approaches for re-

optimization with persistence (in Chapter 7) perform very well in the face of dynamic 

changes in demand. Hard constraints on the flow bounds, soft constraints to guide 

selection, and precise control on the scale of changes improve the stability of the 

management system. These approaches can be combined to satisfy many difficult goals. 

The experiments in Section 7.3 show the effectiveness of the methods in controlling the 
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number of new installations in order to limit the associated costs/risks. The experimental 

results (in Section 8.3) demonstrate that the persistence mechanism is able to deliver high 

quality solutions with limited changes on running applications. 

Experiments demonstrate that this deployment approach is able to scale up to 

hundreds of applications across hundreds of machines. With the improvement of the  

speed of the analytical performance model calculations and the optimization algorithms 

for MIPs in the future, this approach has great potential to handle much larger numbers of 

applications for real clouds. 

9.2 Limitations and Assumptions 

A prerequisite of applying the algorithms in management is that the performance 

model must be available for the service system to be controlled. In dynamic 

environments, model parameter predictions are needed to update the performance model 

in advance, to allow control without delays. Many performance researchers have 

proposed effective solutions to construct the performance model (from scenarios defined 

in UML or from operational data), estimate the system parameters (using tracking filters 

or statistical data analysis), and update the performance with prediction algorithms [51]. 

So this is not a critical limitation. In practice, there may be some delay in delivering the 

data for the performance model update, which may result in some errors of prediction. 

This issue can be addressed by giving the estimated parameters some margin, such as 

increasing the estimated value by 10%. 

As the experimental results demonstrate, over 85% of the solution time is used on the 

performance model calculations. In comparison with the scalability and efficiency of 
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solving LP or MIP, the scalability of the performance model currently is the bottleneck of 

this approach. If the efficiency of the performance model can be improved in the future, 

this approach has great potential to handle much larger scale applications. Improving the 

calculation capability of the performance model can help to increase the scalability of 

LEndStep and extend its applicable areas. 

9.3 Future Work 

This thesis addresses the optimization of deployment decisions for performance on 

the basis of software architecture. Now that the effectiveness of the optimization 

algorithms has been demonstrated, more comprehensive extensions might be possible. 

Multi-tier caching is commonly use nowadays and has a significant impact on 

performance. But the performance of caching is related to disk/memory operations and 

data structure. How to model the cache performance with a performance model and how 

to describe these issues with effective optimization models are not covered in this thesis, 

but these might be worthwhile future research topics. 

Co-allocation is another problem not addressed so far. A good co-allocation can 

reduce the overhead for communications. Some constraints on the allocations may help to 

guide the optimization. However, the calculation of costs is nonlinear, since 

communication costs are associated with the allocations of tasks (determined by At) and 

the workloads (determined by αht) in transmission. Though an optimization model to 

minimize the communication costs can be constructed, new algorithms will be needed to 

efficiently address these problems with good scalability.  
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This thesis demonstrates the feasibility of combining an optimization model and 

LQN. The current version of LQN is the bottleneck of this approach, limiting the 

scalability and efficiency. Optimizing the LQN system architecture to give efficient 

analysis could be a research topic in the future. The real cloud system might have 

thousands of hosts and applications. The scalability and efficiency of the approach should 

be further improved in the future work. 

Solving a MIP problem is NP-hard. Reducing the optimization options is an effective 

way to improve the solution speed in most cases, but does not guarantee optimality. 

Developing model specific search strategies (such as decomposition methods) for these 

large-scale MIPs might improve the solution efficiency in conjunction with the current 

HMIP heuristic. How to further improve the efficiency is a problem to be answered in the 

future. 
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