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ABSTRACT 

Quality of service requirements are normally given in terms of 
soft deadlines, such as “90% of responses should complete 
within one second”. To estimate the probability of meeting the 
target delay, one must estimate the distribution of response time, 
or at least its tail. Exact analytic methods based on state-space 
analysis suffer from state explosion, and simulation, which is 
also feasible, is very time consuming. Rapid approximate 
estimation would be valuable, especially for those cases which 
do not demand great precision, and which require the 
exploration of many alternative models. 

This work adapts layered queueing analysis, which is highly 
scalable and provides variance estimates as well as mean values, 
to estimate soft deadline success rates. It evaluates the use of an 
approximate Gamma distribution fitted to the mean and 
variance, and its application to examples of software systems. 
The evaluation finds that, for a definable set of situations, the 
tail probabilities over 90% are estimated well within a margin of 
1% accuracy, which is useful for practical purposes. 

Keywords 
Performance Engineering, Software performance, Soft 
deadlines, Queueing delay distributions, Layered Queuing 
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1. INTRODUCTION 
For network systems with Quality-of-Service requirements, and 
for many people specifying performance requirements, it is most 
natural to specify target response times with a minimum success 
rate, such as “90% of responses should complete within one 
second”. However practical estimation using analytic models is 
commonly forced, by limitations of the models, to give mean 
value results. This paper addresses a simple approximation to 
estimate the tail part of a distribution. 

The exact delay distribution can be found for queueing network 
models, particularly if jobs do not overtake each other during a 

response. For open models, early work was done by Wong [19], 
and fast approximation has been given by Mainkar et al in [12].  
For closed models exact solutions have been given by Harrison 
[9], McKenna [13], and others, and approximations for other 
structures were described by Salza and Lavenberg [17], 
Raatikainen [15] and others. However for software systems, 
extended queueing network models are often needed, to which 
the various approaches described above do not apply. 

For general Markov models such as Stochastic Petri nets, delay 
distribution is a classic passage time problem. Methods for 
computing it have been described by Muppala et al [14] using 
direct transient probability solution, and by Dingle et al [4] 
using Laplace transforms. This work has been extended to Semi-
Markov processes by Bradley et al [3]. The approaches based on 
Petri nets and Markov chains apply to our systems but they do 
not scale up well enough for many practical problems. Further, 
it is desirable to be able to treat systems with non-exponential 
service, which increase the state space of Markov chain models, 
or require semi-Markov models. However in semi-Markov 
models all delays must be resampled for every transition in the 
global state space. When many resources are in use 
simultaneously in a complex system, this is unrealistic, as there 
will be many transitions and resamplings during a single 
resource holding time. 

Fast methods to estimate percentiles appear to require queueing 
models (provided they can be applied), some kind of 
approximate Mean Value Analysis (MVA), and approximations 
to the distribution fitted to the moments. Approximate 
distributions fitted to moments have been described for 
transition system models, by Gautama and Gemund [7][8], and 
by Au Yeung et al [1]. These authors used four moments and the 
Generalized Lambda Distribution [11], which is a flexible 
function for empirical distributions. However mean value 
queueing analysis does not easily (if at all) provide four 
moments. As an alternative we propose the Gamma distribution, 
which has two parameters and has special cases (such as the 
exponential and Erlang distribution) which occur frequently in 
the exact analysis of queues. The layered queueing analysis has 
been adapted to provide two moments. 

This contribution of this work is to evaluate the use of the 
approximate Gamma distribution, fitted to the mean and 
variance computed by approximate MVA of the layered queues. 
It is evaluated in two ways, for accuracy of estimation of 
distributions found by simulation, and in use to compute the 
sensitivity of deadline results to many parameters.  
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2. LAYERED QUEUEING 
The Layered Queueing Network (LQN) model combines 
queueing analysis with an architectural view of a system and the 
interactions between its components. An example LQN model 
for a web server is shown in Figure 1.  The architectural aspect 
shows a set of components called “tasks” (rectangles with heavy 
borders) that offer services labeled as “entries” (rectangles with 
normal borders). Tasks are servers, and their entries define 
classes of service with parameters that define the workload for 
each class. Processors (ovals), networks and other devices are 
also servers that are included in this architectural view, and are 
treated the same way. Figure 1 shows four layers including User. 
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Figure 1 A LQN model for a web server 

 

Directed arcs in Figure 1 represent requests for service. A 
request from one entry to another may return a reply to the 
requester (a synchronous request), or be forwarded to another 
entry for later reply, or may not return any reply (an 
asynchronous request). All the requests in Figure 1 are 
synchronous, indicated by a solid-headed arrow and meaning 
that the requester waits for a reply. The task resource is held by 
the transaction for this time, so the blocking time becomes part 
of the service time of the entry. Requests queue to obtain the 
server, and then perform the operation defined by the entry they 
have called. 

The applied workload is modeled by a task which does not 
accept requests and which has a multiplicity equal to the number 
of users, such as the User task in Figure 1. The response time in 
this system is the time for a User request to queue and obtain 
service from the WebServer. The WebServer service time is the 
holding time of one thread until the final acknowledgement, and 
includes the lower services. A long retrievePage service time 
can produce saturation at the WebServer task if all threads are 
busy, even if the web server processor is unsaturated; this is 
called a “software bottleneck”. 

Analytic approximations have been developed to speed up the 
analysis of large systems and large sets of alternative models. 
Analytic LQN solvers, such as LQNS ([5][6][16][20]), construct 
queueing submodels for clusters of servers at different layers 
and apply a fixed-point iteration to the submodels, to find a 
steady-state solution for delays and resource utilizations. Within 
each layer submodel, LQNS applies standard MVA 
approximations such as the Schweitzer approximation (see e.g. 
Bolch et al [2]) to solve the model, with additional special 

approximations to deal with non-exponential service with 
multiclass FIFO queues, multiservers, server holding times that 
continue after the reply (so-called “second phases”), and parallel 
branches within a service [5]. 

The analytic approximations have been evaluated against 
simulation in [5] and in many applied studies. The general 
experience is that errors are less than 5% in throughputs and 
10% in most delays, which makes the approximations useful in 
practice for searching a design space with many cases to be 
tested. Simulation is still useful for checking accuracy, and for 
cases where the approximations fail.   

Most LQN servers at higher layers display markedly non-
exponential service times, depending on the demands they make 
to their lower levels. This is natural enough if a service time 
includes random numbers of requests to lower services that have 
different response times, since a mixture of distributions like 
this tends to have a high coefficient of variation CV, defined as:  

CV2 = variance/mean2 

compared to an exponential distribution (which has CV = 1). 

Variance Estimation 

In general, if we denote a service time as the random variable s, 
its variance is determined as follows. We suppose it is made up 
of random numbers of requests to n different lower level classes 
of service, plus its host processor (called class 0).   

For the ith of these service classes, let the random service delay 
be xi with mean Xi and variance VXi. The jth sample of the class-
i delay occurs in the service time sum as xij  which can be 
matched with the host service time xi0 just after it, giving a delay 
term (xij  + xi0), with j running from 1 to yi. The number yi is 
itself random with mean Yi and variance VYi. Thus: 
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If yi and xij are independent random variables, then classical 
probability theory gives 

• E{ xij  + xi0 } = Xi + X0 

• Var{( xij  + xi0 )} = (VXi + VX0 ) 
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Two special cases are considered in the current version of the 
LQNS solver. The “deterministic service” case has a constant 
(integer) number of requests to each lower service class which 
gives VYi = 0 and VS = VX0 + Σi Yi (VXi + VX0). 

The “random service” case has a geometrically distributed 
number of requests to each lower service class, which  gives the 
variance VYi in terms of the mean, as VYi = Yi(Yi + 1). Then: 
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The variance of the response time of the ith service/class 
combination includes contention at the server, so it is the sum of 
its waiting time wi and its service time si : 

xi  = wi + si 



 

The approximation used here makes two assumptions, motivated 
by gaps in the information about the joint distribution of si and 
wi . First, they are assumed to be independent, which is true of 
many single queues, but not in general of networks; second,  wi  
is assumed to be exponentially distributed, which appears to be 
a good assumption for many queues.  

Under these two assumptions, VWi  = Wi
2  and we can use: 

VXi  = Wi
2  + VSi 

This completes the information needed to compute the variance 
of the service time of a higher-layer entry, from the queueing 
results and the mean and variance of its lower-layer server 
entries. 

3. THE APPROXIMATE DISTRIBUTION 
The Gamma distribution is a two-parameter distribution with the 
density function: 
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and the moments: 

mean = αθ ,  variance = 2αθ  

Special cases include the exponential (when CV = 1) and the 
Erlang-k, when CV2 = 1/k. 

The parameters of an approximating Gamma distribution can be 
fitted to a random variate using its mean and variance, as 

θ  = variance/mean,   α  = mean2/variance 

In layered systems the response times are frequently “hyper-
exponential” in the sense that CV2 > 1, as discussed above. 
There also exist cases, typically with a fixed numbers of requests 
to one kind of operation which itself is relatively deterministic, 
in which CV2 may be less than 1. 

3.1 The Fitted Distribution and its Accuracy 
The goodness of fit of the approximate Gamma distribution is 
demonstrated in Figure 2 for the web server system shown in 
Figure 1. Figure 2 shows the estimated cumulative probabilities 
based on a histogram with 20 cells, captured from a simulation, 
as the diamond-shaped points labeled pi.  
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Figure 2 Comparison of the Fitted and Measured 

Distributions 

The approximation is shown by two fitted curves which are 

virtually identical, one (labelled gs,i ) fitted to the mean and 

variance of the simulation results and the other (labelled ga,i ) to 
the analytic solver results.  

The former shows that the Gamma approximation gives an 
excellent fit to the measured distribution, while the latter 
includes the additional errors introduced by using the 
approximate moments from the analytic solution (which are 
negligible in this example). The goal of this work is to evaluate 
ga,i, but the simulation-based fit will help distinguish the source 
of errors, in cases where they are significant. 

Figure 3 plots the absolute errors for both approximations, 
against the value of pi. The errors are es,i = gs,i – pi (the 

diamonds) and ea,i = ga,i – pi (the squares). Sometimes the 
former are larger, and sometimes the latter. Larger errors occur 
for smaller pi, (and this appears to be commonly true). Since we 
are most concerned with the tail of the distribution and systems 
with large probabilities of achieving their target delay, we 
concentrate on errors for pi > 0.9. In both figures a line is drawn 

to indicate those cases, and the largest absolute error for pi > 0.9 
is denoted M(0.9|s) or M(0.9|a), indicated on the Figure 3. 
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Figure 3 the Magnitude of errors for different probabilities 

3.2  “Overloaded” servers 
The Gamma distribution has a density function with a single 
maximum and a long tail. It is not appropriate for approximating 
densities of bounded random variables, or densities with 
multiple peaks, such as the response time distribution in Figure 
4. This type of distribution can appear in a service system if it 
contains (at least one level down from the entry server) a 
saturated server with a large fixed population of customers, and 
one response contains a variable number of requests to this 
server. The saturated server has a long queue of nearly constant 
length (nearly all its customers), so the central limit theorem 
makes its response time roughly normally distributed 
(corresponding to one peak). Multiple visits per response give 
multiple peaks. The distribution function has a series of steps at 
the peaks, with plateaus between. It clearly cannot be 
approximated very well by a Gamma distribution. 
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Figure 4.  Response distribution including multiple requests 

to a “overloaded” server, with decreasing probability. 

The cases with a large nearly constant queue length, which are 
seen to be unsuitable for the present approximation, will be 
called “overloaded” servers in the remainder of this paper. As a 
rule of thumb, an “overloaded” server has: 

• utilization over 99%, 

• more than 15 clients, or if it is a multiserver, more 
than 15 times as many clients as servers. 

The seriousness of this limitation is reduced by the fact that a 
system with such a saturated queue is probably not a candidate 
for a “good” configuration either. 

3.3 Approximation Errors 
If the distribution is to be approximated, we should consider 
what is a reasonable and useful accuracy of the approximation, 
in the most interesting range of probabilities from 0.9 – 1.0.  

Our target for this work was to achieve errors that are usually 
less than ± 0.01 in the success or miss probability. We have 
evaluated errors across many cases as RMS (root-mean-square) 
errors, which we compare to 0.01. The comparison is very 
system-dependent. 

The accuracy of the error estimate also depends on the accuracy 
of the estimates of pi. The 95% confidence intervals for an 
estimated probability value p, based on a binomial distribution 
for the counts below the cell boundary, are 

Npp /)1(96.1 −± [10]. The simulations for this system had 

more than 2 million responses, giving confidence intervals on all 
the estimated probabilities of less than ± 0.0007, and for 
probabilities over 0.9, less than ± 0.0004. 

4. EVALUATION OF ACCURACY OF 
THE GAMMA APPROXIMATION  
To evaluate the approximation accuracy on a wide range of 
cases, several sample system topologies were set up, and a large 
set of parameter variations were constructed using systematic 
variations and random choices of some parameters. 

4.1 Web Server Example 
The first example is the web server model in Figure 1. It 
represents a class of network service systems for which QoS 

specifications with soft deadlines are becoming increasingly 
important. 

216 combinations of 3 parameters (the number of users, the 
threading level of WebServer and the squared coefficient of 
variation of the CPU execution) were evaluated by simulation 
and by the analytic approximations.  

As we are most interested in the tail of the distribution, errors 
were found for probability values above 0.9. The RMS and 
maximum errors across the 216 cases are shown in Table 1, 
denoted as RMS(0.9|s), RMS(0.9|a) , M(0.9|s) and M(0.9|a). 

For cases in which the server utilization is less than 99% (that is, 
not “overloaded” in the sense defined above), the Gamma 
approximation was very good. Ignoring the “overloaded” cases, 
the maximum error in the tail is less than 0.005, and the RMS 
errors are less than 0.002 from solver-based data. The errors of 
the simulation-based data are even smaller. 

Table 1  Summary of the WebServer case results for 
different server utilizations, over 216 cases 

WebServer 
Utilization  cases 

RMS 
(0.9|s) 

RMS 
(0.9|a)  M(0.9|s)  M(0.9|a) 

0.0 --0.6 162 2.31E-4 2.61E-4 7.0E-4 0.0012 

0.6 --0.9 24 2.84E-4 7.24E-4 8.0E-4 0.0043 

0.9 --0.95 6 3.75E-4 0.0015 6.0E-4 0.0043 

0.95--0.99 6 6.54E-4 0.0016 0.0010 0.0042 
0.99--1.00 
(overloaded) 

18 
 

0.0037 
 

0.0573 
 

0.0075 
 

0.105 
 

 

4.2 Large “interconnected” example  
This example represents a complex web of relationships among 
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Figure  5 Large “interconnected” example 

 

16 single-threaded tasks in four layers, shown in Figure 5, with 
randomly generated parameters. Delays for each task are made 
up of complex combinations of lower-layer delays. The single-
threaded tasks do not impose enough workload on lower layers 
to create any single bottleneck, and utilizations are moderate. 



 

The structure of this example is similar to that used in an 
example in [21], but here it has all blocking interactions.  

210 cases were generated, with various parameters including a 
range of the squared coefficients of variation of the processor-
execution demand of the tasks, ranging from 0.5 to 2.0. 

The approximation errors for the Gamma distribution are shown 
in Table 2. The fit to the moments found by simulation is 
excellent, which again indicates that the approximation is 
appropriate for these distributions. The fit to the analytic 
moments is less good, and the larger errors are due to the errors 
in approximating the variance in the analytic solver. However, 
the analytic RMS(0.9) errors are better than 0.01, and the 
maximum errors are less than 0.03 for the tail of the distribution. 
 
Table 2 Summarized results of the “complex web” example  

Maximum 
Utilization cases 

RMS 
(0.9|s) 

RMS 
(0.9|a) M(0.9|s) M(0.9|a) 

0.0 --0.6 164 0.0019 0.0086 0.0088 0.0292 

0.6 --0.9 46 0.0022 0.0101 0.007 0.0263 
 
In summary, the Gamma distribution fits the distributions well 
enough, but the analytic approximation to the variance is barely 
good enough. This is a challenge to improve the calculation of 
the variance. 

5. EXPERIENCE FOR EXPLORATION 
OF SYSTEM PROPERTIES 
An important use of a model is for optimization or to explore the 
sensitivity of performance measures to parameters. Important 
parameters include the CPU demand of operations, processor 
speed and multiplicity, number of storage operations, process 
replication or threading parameters, and network latencies. A 
straightforward way to find a sensitivity value is to change a 
parameter by a small amount, solve the model again, and 
observe the change in the performance measures (in the present 
work, in the target delay miss rate). In a large system this may 
require hundreds of solution runs. 

Here we consider the sensitivity of the deadline miss probability 
to a range of parameters in a substantial model of a trunk-to-
trunk telephone switch [18].  

The model was used in [18] to investigate the effectiveness of  
analytic modeling for rapid solution of large models, using mean 
response times. The LQN is summarized in Figure 6, showing 
23 tasks representing a voice-over-packet switch which connects 
lower level switches together. There is a Call Connection agent 
for an originating switch, a gateway for it, a core switch 
(represented very abstractly), and a terminal gateway.  

When a soft deadline measure of call connection within 15 sec. 
was applied to the model, the base case had a success rate of 
82%. The sensitivity of this success rate to the model parameters 
was sought, in order to find the most promising way to improve 
the success rate. 

 

Figure 6 A LQN for a Trunking Gateway Voice-over-Packet 
Switch 

The execution demands and threading levels of the tasks were 
perturbed for 66 model parameters, giving a total of 67 model 
solutions. The normalized sensitivities to the parameters were 
calculated, being the ratio of fractional change in performance, 
divided by fractional perturbation in the parameter. Thus for a 
parameter value Y that gave a base success probability P, the 
sensitivity of P to Y is defined as:   

SPY = ( ∆P/P ) /( ∆Y/Y ) 

From the 67 model solutions, the sensitivities were found and 
then ordered by value, to give a sensitivity map of the parameter 
space. The most sensitive parameters are the ones that give the 
greatest promise for performance improvement, so this is a 
valuable tool for discovering performance opportunities, and for 
evaluating some kinds of changes before making an effort to 
implement them.  

Space prevents a full description, but among the 66 SPY values, 
the sensitivity to the threading level of the COCO 
(ConnectionControl) task had the largest value, of 0.27. This 
predicts that an additional thread (over the initial 10 threads) 
will improve the success probability by about 2.7%. Other 
threading sensitivities and execution demand sensitivities are 
much smaller.  

This is consistent with the analysis in the thesis [18] which 
identified the thread pool size of the COCO task as a bottleneck, 
and confirmed it by adding threads. This demonstrates the use of 
sensitivity analysis for diagnosis.  

The value of the analytic solver (compared to simulation), for 
this evaluation, is indicated by the time taken to find the 
solutions. Simulation to give a 1% accuracy in the mean 
response time required more than 5 minutes per run, while the 
entire 67 analytic solutions required about 5 minutes in total, a 
60 – to – 1 advantage. 

6. CONCLUSIONS 
This paper has described a simple approximation to the tail part 
of the probability distribution of delay in a type of Extended 
Queueing Network model called Layered Queueing Networks 
(LQNs). It found that the approximation is usable (giving errors 
less than 0.01) for systems structured like network service 
systems, which are not “overloaded”. This approximation opens 
the door to the use of fast MVA approximations for distributed 



 

software systems that have delay requirements on soft deadlines, 
rather than mean values. 

This work shows that more accurate variance approximations for 
MVA could give immediate gains in QoS calculations, as the 
most important source of error in the approximate distribution 
appears to be the variance calculation. This points a direction for 
research on iterative MVA solution algorithms, such as a 
Schweitzer algorithm for variance. 
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