
An Approach to Predicting Performance for

Component Based Systems

by

Xiuping Wu, B.CS.

A thesis submitted to the Faculty of Graduate Studies and Research in
partial fulfillment of the requirements of the degree of

Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering

Faculty of Engineering
Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, K1S 5B6

Canada

July 20th, 2003

2003, Xiuping Wu

The undersigned recommend to the Faculty of Graduate Studies
and Research the acceptance of the thesis

An Approach to Predicting Performance for

Component Based Systems

Submitted by Xiuping Wu, B.CS. in partial fulfillment of the

requirements of the degree of Master of Applied Science

 __

Dr. Rafik Goubran, Chair

Department of Systems and Computer Engineering

Dr. C. Murray Woodside, Thesis Supervisor

Carleton University
July 20th, 2003

ABSTRACT

Component Based Software Engineering has emerged as a promising paradigm for

software engineering. It brings higher efficiency and better quality by using reusable

software components. It also offers some potential advantages for performance

engineering. If a planned system involves many pre-existing components, it could be easier

to model it than a system with completely new components. In this research, each software

component is represented by a parameterized performance sub-model stored in a library.

These sub-models extract performance sensitive attributes of the software components. By

using these sub-models, system models can be built quickly for many different

configurations. As well, those configurations are tied to software configurations. An

approach is described to model component based software systems based on these sub-

models and a system assembly model. A language and a tool have been developed to help

generate system performance models. The final performance models are in the format of a

layered queuing network model. A case study illustrates the use of the tool.

 i

Acknowledgments

First of all, I would like to give my big thank you to my supervisor, Professor C.

Murray Woodside. Thank you for your invaluable guidance and advice throughout my

thesis research.

My second thank you goes to my husband, who always supports me and understands

me. Thank you for always encouraging me. Without your support, definitely, I could not

have achieved so much. For all my family, I would like to say thank you for your love and

understanding during my study.

I also want to extend my thanks to people in the RADS lab who help to create the great

working environment.

A very special thank you goes to Godfrey Lee, Jim Miller-Cushon and Bob Minns from

Cognos for their help in understanding issues of performance modeling for software

product lines.

Financial support provided by Nortel Networks Scholarship and Carleton University is

greatly appreciated.

 ii

TABLE OF CONTENTS

Abstract ... i

Acknowledgments .. .ii

Table of Contents... iii

Chapter 1 Introduction ... 1

1.1 Motivation and Objective ... 1

1.2 Thesis goals2

1.3 Contributions.. 3

1.4 Thesis Organization ... 3

Chapter 2 Background.. 5

2.1 Software Performance Engineering (SPE) ... 5

2.1.1 Introduction to SPE ... 5

2.1.2 Methods for Building Software Performance Models 7

2.2 Component Based Software Engineering (CBSE) 9

2.2.1 Overview of Component Based Software Engineering (CBSE).......... 9

2.2.2 Performance Modeling in CBSE .. 10

2.3 Layered Queuing Network (LQN) Performance Model........................... 11

2.3.1 Software Bottlenecks... 13

2.3.2 LQN Graphical Notations. .. 14

2.3.3 LQN Solvers and Input File Format ... 16

2.4 The CB-LQN Component Model.. 18

2.4.1 The Structure of CB-LQN Component Model 19

 iii

2.4.2 Protocol for Plugging the CB-LQN Component into the System

Model ... 21

2.4.3 Advantages and Limitations of the CB-LQN Component Model . 21

Chapter 3 LQML: An XML Based Language for the LQN Component Model and

Assembly Model.. 23

3.1 Overview of XML, XML Schema and XSLT .. 23

3.1.1 The eXtensible Markup Language (XML)................................... 23

3.1.2 XML Schema (XSD) Schema... 24

3.1.3 The eXtensible Stylesheet Language Transformations (XSLT). 25

3.2 Overview of the XML-Based LQML Component Model 26

3.3 Apply XML to LQN Definition .. 28

3.3.1 Why XML Applies to LQN Definition... 28

3.3.2 XML Schema for LQML Sub-model and Assembly Model Definition

.. 29

3.3.2.1 New Elements Introduced to LQML 33

3.3.2.1.1 Slot... 33

3.3.2.1.2 Phase activities.. 36

3.3.2.1.3 Task-activities ... 37

3.3.2.1.4 Service... 41

3.3.2.2 LQN Core ... 42

3.3.2.2.1 Processor in LQN Core... 43

3.3.2.2.2 Task in LQN Core... 44

3.3.2.2.3 Activities in LQN Core... 45

 iv

3.3.2.3 LQN Sub-model ... 46

3.3.2.4 LQN Assembly Model ... 48

3.4 An Example of Components Assembly .. 49

3.5 Approaches to Creating LQN Component Models................................... 54

Chapter 4 An Approach to Component Based Performance Modeling...................... 56

4.1 Design Issues.. 56

4.2 Overview of the Present Approach.. 57

4.3 LQN Assembly Model... 58

4.3.1 An Example of an LQN Assembly Model 59

4.3.2 The Reusability and Adaptability of the Assembly Model 60

4.4 Tool – LQComposer .. 61

4.4.1 Overview of Tool Design... 62

4.4.2 LQNAssemble Design.. 63

4.4.3 xml2LQN Design ... 66

4.4.3.1 Template Algorithm in xml2LQN Stylesheet....................... 72

4.5 Tool Validation .. 80

4.5.1 Validation of LQNAssemble... 80

4.5.2 Validation of xml2LQN ...84

4.5.3 Validation Against the Combined Tool –LQComposer....................94

4.5.4 Conclusions...94

Chapter 5 Industrial Case Study..96

5.1 A Conceptual Performance Model for a Management Information System

(MIS) ...96

 v

5.2 The Component Based Approach to Model the MIS99

5.2.1 The Assembly Model for the MIS ...100

5.2.2 The Application Server Component Model.......................................101

5.2.3 Resulting Model from LQComposer ...102

5.3 Performance Results for the Base Case..105

5.4 Performance Results with Multithreading..107

5.5 Performance Results with Replicated Application Nodes.......................114

5.6 Scaling Limits ...118

Chapter 6 Conclusions...122

6.1 Conclusions ..122

6.2 Limitations ..123

6.3 Future Research...123

Reference ...124

Appendix A XSD Schema for LQML ...129

A.1 XSD Schema for LQN Core (lqn-core.xsd) ...129

A.2 XSD Schema for LQN Sub-model (lqn-sub.xsd)136

A.3 XSD Schema for LQN Assembly Model (lqn.xsd)137

Appendix B Some Input and Output Documents for LQN Models...........................139

B.1 XML Document for SingleMod (SingleMod.xml)139

B.2 XML Document for NestedMod (NestedMod.xml)..................................141

B.3 XML Document for Flattened NestedMod (NestedMod_flt.xml)............143

B.4 Output of Transforming SimpleAbl (SimpleAbl.lqn)145

B.5 XML Document for a Database Model (par-db.xml).................................146

 vi

B.6 Output of Transforming par-db.xml (par-db.lqn)......................................152

B.7 XML Document for an LQN Model that Has Task Activities (task-act.xml)

..154

B.8 Output Model from Transforming task-act.xml (task-act.lqn) 156

Appendix C Source Files for LQN Models in the Case Study.................................157

C.1 XML Document for MISAssemble (MISAssemble.xml).........................157

C.2 XML Document for AppComp (AppComp.xml)......................................160

C.3 Resulting Model in LQN Language (MISAssemble.lqn)163

 vii

Chapter 1 Introduction

1.1 Motivation and objective

Early performance predictions are crucial to software system development. By building

predictive performance models at design time, it helps to identify any potential design

problems and this can be used as feedback to software system designers. It lowers the

development cost as well as the runtime risks. In order to accomplish this, building

predictive performance models is the key.

In recent years, Component Based Software Engineering (CBSE) has drawn more and

more interest in both academic and industrial communities. However, much more work is

focusing on functional aspects with relatively less reported on non-functional aspects such

as performance. One difficulty is that a software component could be deployed in different

environments. The need to consider its potential execution environments and incorporate

them into the system performance modeling makes the problem more difficult. Sherif,

Yacoub et. al. [44] proposed a way to characterize a software component, in which they

mentioned non-functional attributes, without details about how to describe them and use

them. Sitaraman et. al. [33] argued that performance specification of software components

and assemblies is a basic problem that must be solved to enable software engineers to

assemble systems from components. It would be very helpful if performance sub-models

could be built and the performance attributes of each software component could be

described in the sub-models. Then a system model can be built by assembling these sub-

models. Therefore, the system performance prediction can be done by solving these

system models. It is desirable if there are tools or methodologies that can automate these

processes. This thesis work has been motivated by this thought.

 Very often, when a system is planned, in order to predict the performance, the model

has to be built from scratch even though it may have some pre-existing components. For

large and complex systems, this is error-prone and tedious work. If the sub-models can be

reused, it should be much easier to build system-level models. By using these sub-models,

system models can be built more quickly for many different configurations which are tied

to software configurations. By solving these system models, system capacity and its delay

can then be predicted. Meanwhile, using these models, the performance sensitive attributes

 1

can be studied. By changing some values of the parameters in the model, some parameters

that system performance is sensitive to as well as those that are non-sensitive can be

identified. As a result, instead of worrying about all the parameters, maybe only a few of

them need to be studied. This obviously simplifies the system performance analysis and

helps to address the important points.

The development of component based software systems can be generalized [43] as

shown in the left side of Figure 1-1. Using the same specification as for the component-

based software, the approach in this thesis is to assemble performance sub-models for these

software components into a system-level performance model, using an automated tool for

model assembly, as illustrated on the right side of the Figure.

Application System

Customized
Component A

Customized
Component B

Infrastructure
support

Performance model of the
Application System

Customized Submodels

Component
Library

Library of
Infrastructure
Submodels

Library of
Component
Submodels

Product

and Model

Assembly

Specifications
 select select
 and with
 customize parameters

glue code glue model

Building the software from a
Component Library

Building the model from a
Component Submodel Library

Figure 1-1 Component Based Software Development

1.2 Thesis goals

The goal of this research is to take some steps towards the model building system in

Figure 1-1, concentrating on the right side of the Figure. An XML (eXtensible Markup

Language) based language called LQML has been designed for the layered queuing

models, that describes the use of components, and the component sub-models. A tool called

LQComposer has been developed to assemble the component sub-models together with a
 2

system model. This substantially extends a previous tool. In this work, the LQN models

and its sub-models will adopt XML language since XML can better express the models and

also many tools support development such as XML editors and parsers. So if an LQN

model uses XML language, then this model can be displayed in any tools that understand

XML. In order to express the constraints that the LQN model has, an XML schema for the

sub-model and system model definition will be given. Currently, LQN model solvers can

only accept the previous LQN language which is in plain text format. So the transformation

has to be done to transform XML format to the LQN previous plain text format.

1.3 Contributions

This thesis makes the following contributions:

• An XML schema for LQN model and sub-model description as well as the

language for composing performance sub-models have been proposed and

developed.

• An improved version of component sub-model has been proposed and a tool

(LQComposer) for generating system-level performance models from sub-models

automatically has been developed.

• An industrial case study has been conducted including model assembly and analysis

of some software performance problems.

1.4 Thesis Organization

This thesis is organized as follows. The first chapter gives the motivation and objective

of this research project. The second chapter gives some background of this research which

includes overview of Software Performance Engineering (SPE), Component Based

Software Engineering, Layered Queuing Network models and the CB-LQN component

model. Chapter 3 first gives some brief introductions to XML and its related tools. Then it

introduces the LQML component model. After that, it describes how XML language can be

applied to LQN definition. It then elaborates the schema of the proposed LQML language

for LQN component model and assembly model. Chapter 4 describes the present approach

 3

to model component based software systems. This chapter also describes the tool

LQComposer which generates performance models automatically from the sub-models.

Chapter 5 presents an industrial case study. In this chapter, it describes how to apply the

tool LQComposer in this study. Later, some results as well as performance analysis are

presented. Chapter 6 gives the conclusions for this thesis and it also points out some future

work.

 4

Chapter 2 Background

This chapter covers some background for Software Performance Engineering,

Component Based Software Engineering, Layered Queuing Network (LQN) performance

models, software bottlenecks and the previous CB-LQN component model. The proposed

LQML performance sub-model is based on this one. The terms component model and sub-

model are equivalent and used interchangeably in the whole thesis.

2.1 Software Performance Engineering (SPE)

This section provides some introduction to software performance engineering (SPE)

and different approaches to SPE.

2.1.1 Introduction to SPE

SPE is a systematic approach that provides quantitative assessment for the emerging

software systems so that their performance objective can be achieved [34]. Performance

usually refers to system response time seen by the end user. SPE addresses the performance

issues such as bottlenecks, system delay, system capacity as well as system scalability in

the entire life cycle of software development. The reason that performance issues are

becoming so important is that performance failures may delay the time to market and it

may result in losing customers. There are different approaches towards software

performance engineering.

• Performance Measurement. In this approach, system performance metrics are

gained based on the experiment or operational system. Although it provides more

accurate results and it may also be able to identify some performance problems

such as bottlenecks, it still has some drawbacks. For performance testing based on

experiments such as prototyping, it could be time-consuming to develop the

prototype and collect data from lots of tests. Further, it may not be able to give the

feedback to system design if the system has to meet a tight deadline. So this

probably is a “fix-it-later” approach [34]. Meanwhile, it maybe costly to set up the

experiments and do the tests. For performance evaluation based on the operational
 5

system, this really falls in the “fix-it-later” approach. The performance problems

detected at this stage are usually hard to fix if they are originated from the system

design and most often they are.

• Performance Tuning. In this approach, performance improvement is done on an

existing system. The tuning is often performed by an expert who is knowledgeable

of the system architecture and design. However, the improvement could be very

limited and it won’t be able to handle the performance problems if they are

fundamental in the software design. This is also the “fix-it-later” approach.

• Early prediction through performance models. In the above two approaches,

performance problems are detected late in the development process which may

then become very hard to fix. It is not easy as fixing coding bugs [34]. Sometimes

it may involve very intensive implementation changes. The reason for this is that

performance defects often exist in the software architecture or design which means

performance problems are introduced in the early stages. As consequences,

performance failures may delay the time to market and it may result in losing

customers. Hence, early performance prediction is very important especially for

performance-critical software systems. It provides cost-effective ways to avoid

performance failures. The ability to predict performance at very early stage when

changes can be easily made is desirable. The approach to early prediction is by

building predictive performance models. By analyzing these models, the

performance characteristics can be explored so that the emerging software system

can be evaluated to decide whether the performance objective can be met. The

results of these performance models can also be used as feedback to software

architects or designers so they make any necessary changes to the architecture or

design. On the other hand, the performance models are very helpful in that it can

predict the results of many alternatives that the system architecture and design may

have. Therefore, by studying these results, the appropriate architecture and design

can be determined.

 6

2.1.2 Methods for Building Software Performance Models

This section provides a quick overview of two main methods for building software

performance models that are not used directly in this research. They are Queuing Network

models and Stochastic Petri Nets. The following sections will describe them very briefly.

• Queuing Network Models

Queuing Network models consist of a number of servers and customers (which are

also known as tokens or jobs). Customers make requests to the servers. Depending on

the status of the server, the requests may be queued if the server is busy or get

processed if the server is idle. There is a special kind of server called delay server or

infinite server where no queue happens. Customers get serviced immediately. There are

three kinds of Queuing Network models classified as open, closed and mix. In an open

queuing network, customers can enter or leave the network. There is no fixed

population. In a closed queuing network, customers circulate the servers; therefore, the

population is fixed. In the mixed queuing network, some customers may leave or enter

the network, whereas some circulate in the network. In a queuing network model,

customers are grouped based on their statistical behavior. As a result, there may be

multiple classes of customers in one network. The main parameters for a queuing

network model are mean service time per request at per server and the visit ratio that a

customer makes to the server. However, its performance is also relevant to other

parameters such as the scheduling policy and the queue size of the server. The queuing

network models can be solved analytically or by simulation. The results of interests are

throughput and mean response time.

Although traditional Queuing Network models are powerful in solving some

performance issues, they are not able to capture software contention easily. For

software systems, Queuing Network models model the software as pure customers and

the devices as pure servers. They can not model an intermediate software server that

accepts requests from other software processes and may also send requests to other

processes. They also cannot incorporate the case where a job has phases of execution
 7

where an early reply occurs. Parallelism that involves forks and joins is hard to be

modeled in Queuing Network models, too.

A paper of Daniel A. Menasce [23] discusses a technique of two-level iterative

queuing modeling of software contention. In this paper, two queuing networks are

considered: one for software resources and the other one for hardware resources.

Although this approach is simple and straightforward, it is hard to apply to the large

and complex software systems where multiple layers of software servers may be

involved.

The Layered Queuing Network (LQN) models, which were previously called

Stochastic Rendez-Vous Networks (SRVN) models, extend the traditional queuing

network models by allowing for an arbitrary number of software layers which may act

as clients or servers at different layers [30] [40]. The LQN models have been used in

this thesis research and will be introduced in section 2.3.

• Stochastic Petri Nets

Petri nets were introduced as a model of computation for concurrent systems by

Carl Adam Petri in 1962. A detailed introduction can be found in the book [1]. A

Stochastic Petri Net model is a high-level model which generates a stochastic process.

The stochastic process is then analyzed via Markov Chain technique. The performance

measures are then obtained from the steady state probabilities. The main components in

a Petri net are places and transitions. Places represent states or resources in the system

while transitions model the activities. Places are graphically represented as circles and

transitions are graphically represented as bars. Places and transitions are connected via

a set of directed arcs. Places may contain tokens which are graphically represented as

dots inside the circle. Tokens move through the network (from place to place)

according to certain rules. In Stochastic Petri Nets, a transition is enabled if its input

places have one or more tokens. Each transition has a firing time which is an

exponentially distributed random event. An enabled transition has the probability of

firing but it can only fire after an exponentially distributed amount of time elapsed. In
 8

addition, only one enabled transition can be fired at any time. When a transition fires, a

token is removed from the input places and added to the output places. The current state

of the model is determined by the number of tokens in each place and this is also called

a marking. These markings (states) generate the underlying Markov Chain models. The

performance evaluation is achieved by solving these Markov Chain models.

Although the Stochastic Petri Net models are useful for performance modeling of

computer systems that exhibit concurrency, synchronization and randomness, they

suffer from state space explosions which make performance computation very hard.

2.2 Component Based Software Engineering (CBSE)

This section gives some background of CBSE. It also reviews some research work of

performance engineering in this area.

2.2.1 Overview of Component Based Software Engineering (CBSE)

CBSE has emerged as a promising paradigm for software engineering. It brings higher

efficiency and better quality by exploiting reusability. In the traditional approach, when a

software system is going to be developed, the implementation has to be done from scratch.

While CBSE emphasize on building system by reusing high quality configurable software

components. This not only reduces its development cost and time-to-market but also

ensures higher reliability and better maintainability. The development process of CBSE is

quite different from the traditional software engineering approach. In the paper of [3], it has

been generalized as having the following steps: Component Requirement Analysis,

Component Development, Component Certification, Component Customization, System

Architecture Design, System Integration, System Testing and System Maintenance.

There are two central parts in CBSE: components and architecture. Components are the

basic building blocks while architecture describes how components are assembled into an

application system. However, there is no unified definition for software components.

Clemens Szyperski and William T. Councill gave their own definitions respectively in the

 9

books of [36] [14]. In general, the following characteristics are included in a software

component:

1) It is an independent, compositional and deployable unit.

2) It has clearly defined and documented interfaces interacting with other components.

3) It has certain functionalities.

4) It may have explicit context dependencies such as operating system or other

software components, etc.

Interests in components and architectures are now present in both academic and

industrial community. Today, a business application can become so large and complex that

some of the components must be developed separately. These components must be

adaptable to the integrated system [25]. All these interests and demands lead to defining

architecture standards as well as the development of component technologies. Among these

are 1) Common Object Request Broker Architecture (CORBA) from OMG. 2) Java Beans

and Enterprise Java Beans (EJB) from Sun Microsystems and 3) Component Object Model

(COM) and Distributed COM from Microsoft. A comparison of these technologies can be

found in [3]. The component based approach is now widely used in Software Product Line

[2] [6].

2.2.2 Performance Modeling in CBSE

Research in CBSE has mainly focused on functional aspects with relatively little

reported on non-functional aspects. Performance prediction remains as one of the key

challenges in this area. One of the difficulties is that a software component may execute in

different environments and this makes it hard to know the performance properties in

advance. On the other hand, each component technology has a different infrastructure and

implementation. As consequences, they may exhibit different performance characteristics

which makes performance predictions harder. Some existing tools such as C. U. Smith’s

SPE.ED [35] are of limited use in these situations. M. Sitaraman in his paper [33] agues
 10

that software components should have performance specifications as well as functional

specifications. Due to the fact that components have parameters, it is very hard to give its

performance specifications in general. Classical techniques and notations for performance

analysis do not work. He pinpoints that performance specifications are very basic problems

which must be solved before components can be assembled in order that the resulting

product can meet the specified performance goals. He also argues that performance

specifications are necessary so that clients can decide which components will meet their

goal. He suggests that performance specifications should include execution time and

memory capacity requirements.

In the paper [4] the authors proposed an empirical approach to predict the performance

of the assembled system by benchmarking and profiling. A model is then built based on the

observations and this model is used as a performance predictor for a class of applications

which are based on the specific component technology. Although the authors applied this

approach to predict the performance of the StockOnline which is a test application and

demonstrated the success, it is still time-consuming to make the observations from

benchmarking and profiling.

2.3 Layered Queuing Network (LQN) Performance Model

This thesis work adopts the Layered Queuing Network (LQN) modeling technique to

model component based systems. LQN models [39] extend the traditional queuing network

models by considering both software and hardware contention, and the impact of layers on

service time. The structure of an LQN model resembles the software architecture of the

system. It is expressed as a set of objects called “tasks” offering services (like methods)

called “entries”; entries of one task make requests to entries of others at lower layers. The

modeling of sequential executions, parallel executions (AND Forks and Joins), alternative

executions (OR Forks and Joins) as well as repetitive executions is accommodated by

“activities”. Activities are the smallest unit of computation. They can accept requests from

entries or send requests to entries. A task that does not receive any requests but only sends

requests to lower layers is called a “reference task”. A reference task is the load generator

of the system. Tasks are executed on processors which represent physical resources such as

CPUs and disks. There are three kinds of interactions between tasks.

 11

1. Synchronous message. In this case, sender sends the message and is blocked,

waiting for the reply.

2. Asynchronous messages. Sender sends the message and then continues doing its

work, no blocking in this case.

3. Forwarding messages. The first sender sends a synchronous message. But the

receiver does not reply directly, it does partial processing and then forwards the

messages to a third party. The third party will reply back to the original sender.

There may be multiple intermediate receivers that forward the request further. The

last receiver is expected to send the reply back to the original sender.

In synchronous type of interactions, the receiver (including the intermediate receivers

in case of forwarding) may have two phases of execution. The first phase consists of the

activities that occur between its accepting the synchronous request and replying (or

forwarding) it back. The second phase consists of the activities that occur after the reply.

The introduced second phase can release the sender from its blocking state earlier which

promotes some concurrency between the sender and the receiver. This was also termed as

an “aggressive” reply as in the paper [11].

These three kinds of interactions are illustrated in the following UML sequence

diagrams.

Second
phase

Reply()

Request()

:receiver :sender

Request()

:receiver :sender

Figure 2-1b An Asynchronous Interaction

Figure 2-1a A Synchronous Interaction

 12

Reply

:receiverB

Request()

:receiverA:sender

Figure 2-1c A Forwarding Interaction

The LQN modeling technique was formulated not only for the one level client-server

interaction systems but also those that have multiple levels [12]. Therefore, an LQN can

model the intermediate software servers which are very common in the large and

distributed systems. It enables the detection of software bottlenecks (which will be

introduced in the next section) as well as hardware bottlenecks. LQN models are suitable

for many important classes of systems, including those that use Remote Procedure Calls

(RPC) and distributed systems such as distributed database systems, telecommunication

systems and agent systems [17] [37] [31].

The performance measures obtained by solving the LQN models are detailed at

different levels which include service times of each entry, throughput and utilization per

phase of each entry and each task, the utilization and waiting time of each processor and

some values of variance and bounds. For this thesis work, the metrics of interests are

throughput and utilization of each task and each processor.

2.3.1 Software Bottlenecks

A bottleneck is a single point of contention that limits the overall system performance

[24]. In performance analysis, hardware bottlenecks are well understood in the

conventional queuing network models of computer systems (e.g. [20]). They usually occur

 13

at a CPU or a disk or other devices. However, in the systems that have multiple levels of

client-servers, performance can also be constrained by software tasks, especially those that

act as intermediate servers or “active servers” as they are called in [21]. The software task

that is fully utilized while the resources it uses are underutilized, and thus constrains the

total system performance, is termed a software bottleneck [24]. Software bottlenecking is

quite different from hardware bottlenecking in that, when a software task is highly utilized,

it will “push back” on its clients which makes them appear to be saturated, too. In those

systems that are deeply layered, software blocking spreads upwards and may affect a large

part of the system. At the same time, the resources that these tasks use are underutilized. A

detailed discussion of software bottlenecking can be found in [24].

 A typical example of software bottlenecking is the case where a single-threaded task is

waiting for the I/O operation. Another example is shown in [21] where the model has two

levels of servers. The active server, which has the roles of both client to its lower layer and

server to its upper layer, could become the software bottleneck in the system if it is not

multithreaded.

LQN models generalize the traditional queuing network models by capturing both

hardware contention and software contention and the impact of layers. They can be applied

to detect both hardware bottlenecks and software bottlenecks for performance analysis.

The guideline for eliminating software bottlenecks is by multithreading or cloning the

software task that causes performance constraints [24]. By doing so, the utilization of the

underlying resources can be enhanced and the overall system performance can be

improved.

2.3.2 LQN Graphical Notations

Some graphical notations in LQN models are shown in table 2-1 below.

 14

Table 2-1 Some Graphical Notations in LQN models

Name Graphical Notation Description

Entry

 Each entry has a unique
name in the model.

Task that has entries

The right side rectangle
represents Task. The rest
are for entries.
Task T has two entries e1
and e2.

Task that has entries
and activities

Activity a1 is the starting
activity associated with
entry e1.

 OR-Fork
OR-Join

Activity sequence

 And-Fork
And-Join

Processor

Host on which the service is
executed.

Synchronous call

 Send and wait for the reply.

Asynchronous call

 Send and continues, no
reply.

Forwarding call

 The call is forwarded to a
third party by the receiver.

e

Te1 e2

a2 a1

Te1 e2

+

&

P

An example of LQN model is shown in Figure 2-1. This example is for a Web Server

as described in the paper [9]. In this example, clients send requests to the web server. On

the web server, the listener accepts these requests and based on the types of the requests,

they are forwarded to the corresponding services in the server pool. These services need to

access the disks. After the results have been worked out, they are sent back to the clients.

The parameters such as CPU demands and number of interactions between entries are not

shown in this model.

 15

 Figure 2-1 An LQN model for a Web Server

Client
CPU

Client request

Server
CPU

Html
access

DiskOP

Cgi
access

Image
access

html ServerPool cgi image

Listener Accept

Disk

2.3.3 LQN Solvers and Input File Format

For LQN modeling analysis, performance metrics are obtained by solving the LQN

models. There are two solvers available. One is called LQNS which uses analytical mean-

value queuing approximations to solve the queues at all entries [13]. The other one is a

simulator called ParaSRVN which uses the ParaSol simulation environment [7]. There is

another tool that supports experiment instrumentation called Spex [15]. This tool can

execute parameterized experiments using LQNS or ParaSRVN.

The LQNS and ParaSRVN program accept the same input format. The input file is a

text file which provides model parameters for the solvers and has the following format in

the exact order described below.

1. G section. This is the general information section that declares some control

parameters for model solvers. It starts with a ‘G’ followed by the parameters of

convergence criterion, iteration limit, print interval and under-relaxation. It ends

with a ‘-1’.

 16

2. P section. This section describes the parameters of all the processors in the model.

It begins with a ‘P’ followed by the number of processors. For each processor, it

begins with a ‘p’ followed by its id and a flag of scheduling discipline, ‘f’ for FIFO

(First In First Out), ‘r’ for random, ‘p’ for preemptive, ‘h’ for hol (head of line) or

non-pre-emptive and ‘s’ for processor sharing. Then following this is its

multiplicity (if applicable) and number of replications (if applicable). This section

ends with a ‘-1’.

3. T section. This section describes the parameters for all the tasks in the model. It

begins with a ‘T’ followed by the number of tasks. Each task starts with a ‘t’

followed by its id, flag of reference (‘r’ for reference task and ‘n’ for non-reference

task); followed by list of entries in this task, then ‘-1’, then the processor id and its

multiplicity. This section ends with a ‘-1’.

4. E section. This section describes the parameters for all the entries in the model. It

starts with an ‘E’ followed by the number of entries. Each entry may have more

than one description. The starting letter ‘s’ denotes its service demands, while ‘c’

denotes the service coefficient variation. If it has an arrival rate, it will be declared

by an ‘a’ followed by its named and the arrival rate. If it makes requests to other

entries, it will have a description denoted by a ‘y’ (for Synchronous) or ‘z’ (for

Asynchronous) or ‘F’ (for forwarding). If it has activities, it will be declared as an

‘A’ followed by the starting activity name. This section ends with a ‘-1’.

5. A section. This is the activity section. Each task that has activities will have an

activity section. Each section begins with ‘A’ followed by the task id. For each

activity, its host demand must be declared which begins with an ‘s’ then followed

by the activity name and the demand. The declaration of the request it makes has

the same format as an entry. If the call is deterministic, it is denoted by an ‘f’

followed by the destination name and the number of calls. Then separated by a ‘:’,

the declarations of activity connections are followed. Some examples are

illustrated as follows.

 17

A1->A2 means that activity A1 is followed by activity A2 in sequence.

A1->A2&A3 This is an AND fork which means that activity A1 is followed by

both A2 and A3.

A1->(0.4)A2+(0.6)A3 This is an OR fork which means that activity A1 is

followed by either A2 or A3. The numbers in the parenthesis mean the

probability of the choice.

A1->3.2*A2, A3 This means that activity A1 is followed by the repetitive

activity of A2 which repeats 3.2 times on average. Activity A3 is executed after

this loop.

A1+A2->A3 This is an OR join which means that either A1 or A2 is followed by

A3.

A1&A2->A3 This is an AND join which means that both A1 and A2 are

followed by A3.

A3[E3] This shows the reply activity which means that activity A3 replies back

to entry E3.

Each activity section ends with a ‘-1’.

2.4 The CB-LQN Component Model

The CB-LQN component model [22] was developed by David McMullan when he

worked at Carleton University. “A component is a pre-constructed LQN sub-model that

can be plugged into another LQN model” [22]. It can be any subsystem. Its place in the

system is represented by a pseudo task. Its input interface is represented by the entries

defined in the component. The output interface is also represented by entries but these

entries are defined in the harness which will be introduced in the later section. An LQN

component is different from an LQN model in that a component has an interface section.

 18

By knowing and using the interface, a component can be used to substitute a single task in

the LQN model. This is very useful in the following case. When some details of a

component are not clear, a single task with appropriate services can be used temporarily.

When the details are obtained, a component could be constructed accordingly and the

single task can be replaced with this component. This is often the case in the early planning

and design phase.

2.4.1 The Structure of CB-LQN Component Model

A graphical example of this component model is shown in Figure 2-2 below. This is a

much simplified component model of an application server in an Information System. The

controller task interprets requests. The ReportGen task creates and edits reports on an SQL

database, and the ResultsCache task stores report data for reuse, to assist the assembly of

complex reports and the presentation of the same data from different points of view, or at

different levels of detail. The harness portion represents the services that the component

must obtain from the system in order to function.

 Figure 2-2 A graphical example of the CB-LQN component model

Component

DB

ResultsCache

ReportGen

Controller

Harness
db2db1

resultsCache

reportGen

controller

Figure 2-2 defines a class of components which can be instantiated one or more times

within a model. The concept of component class is very similar to the concept of class in
 19

Object-Oriented programming language. A component is an instance of component class

with appropriate parameters passed in. A component class can have different instantiations

in different situations with different parameters. The definition of a component class

includes the following five sections.

1. Component Declaration.

This section has only one single line which is similar to the declaration of a method

of a class. It has the component name and its associated list of variables. The variables in

the component class may have default values. These variables may involve the following

parameters: CPU service demands, service request parameters between elements in the

component and threading levels.

2. Interface

This section defines the interface of the component. It includes the service entries

that the component provides to outside elements and the request entries that the

component requires from outside as well as the processors that can be replaced by

outside processors in the system model.

3. General information

This is the same as that appears in the normal LQN definition [29]. It defines some

parameters for the LQNS solvers [13].

4. Component definition

This is the body of component. It has the same format as a normal LQN definition

which involves sections of processors, tasks and entries except that it may have variables

prefixed by ‘$’ sign.

5. Environment harness.

 20

This harness is a kind of template for the environment needed by the component,

including driver tasks to provide inputs and stub tasks to provide service. Some of these

elements may be optionally incorporated, with the component sub-model, in the model.

2.4.2 Protocol for Plugging the CB-LQN Component into the System Model

The component is plugged into the model by substituting the corresponding single task.

This is done through the binding section. This section shows how a particular component is

connected into a system. There is a separate binding section for each task that needs to be

replaced by the corresponding component. A new instance of the component class will be

created to replace it. Each binding section starts with a statement which includes the single

task that is going to be replaced, the component class name, and the list of instantiation

parameters.

2.4.3 Advantages and Limitations of the CB-LQN Component Model

The CB-LQN component model is very useful when a single task in the system model

needs to be replaced by the component. By substituting the single task with its component,

more details can be added into the system model and this brings benefits to system

performance modeling. The component models are reusable and thus make system

performance modeling easier if some components are pre-existing. Since current LQNS

solvers cannot solve a model containing binding sections, a tool has been developed by

David McMullan which is a pre-processor. This tool pre-processes an LQN system model

which contains binding sections of components. The result of this pre-processor is a

normal LQN model which can be solved by LQNS solvers. Some advantages of this tool

and the component models have been explored in the paper [41].

However, although this approach seems feasible to bind performance sub-models for

component based systems, it is very awkward to put into practical use. The assembly model

needs to add some extra tasks in order for the binding sections to work properly. The

binding sections are quite complicated due to the naming issues. Before the component is

bound, the user has to be very clear about the new names of the bound request entries,

 21

service entries and processors. The names of each element in the component instance have

been changed by prefixing the replaced single task name. The harness substitution is more

confusing and hard to use. It has to be matched in the system model; therefore, the user has

to know exactly what the harness section in the component model is, which is beyond the

component interface.

In this research, the CB-LQN component model was used to model the component

based software systems. It has been found that it is easy for substituting but hard for

composing. Therefore, in order to build performance models for component based software

systems, the component model has to be improved so that not only does it reflect the

performance attributes of software components, but also that it can be easily composed. In

the following chapter, the improved version of LQN component model will be introduced.

 22

Chapter 3 LQML: An XML Based Language for the LQN Component
Model and Assembly Model

This section first gives some overview of the XML language and its related technology.

Then it introduces the LQML which is an XML based language for LQN component model

and the assembly model. Later it gives the details of the XML schema for these models

definition.

The definition of this new version LQN component model and assembly model is in

XML format. The reason of adopting XML format is that XML language is a standard with

standard tools. XML is so flexible that any tags needed to describe the model can be added.

3.1 Overview of XML, XML Schema and XSLT

This section gives the overview of XML language, XML schema and XSLT stylesheet.

3.1.1 The eXtensible Markup Language (XML)

XML has been introduced by the World Wide Web Consortium (W3C) as a way to

describe structured data. It is a text-format based, platform-independent markup language

that is derived from SGML (Standard Generalized Markup Language). Since it is text-

format, it is human readable and editable. It is similar to HTML but unlike HTML, one can

define his/her own set of tags. The big advantage of XML documents is the separation of

syntax and semantics. The content of an XML document is independent from its rendering.

And because of this, XML is now playing an increasingly important role in data

exchanging over the web.

An XML document is mainly composed of elements which are enclosed by start tags

and end tags. Elements are nested and they can have attributes that are assigned values in

the start tags. The whole document is contained by a distinguished root element which

appears at the very beginning of the document [19].

 An example of an XML document to describe a book in a catalog would be as follows.

 23

<book>

 <title>XSLT Programmer’s Reference</title>

 <author>

 <FirstName>Michael</FirstName>

 <LastName>Kay</LastName>

 </author>

 <ISBN>0-201-70485-4</ISBN>

 <price unit=”US$”>54.99</price>

</book>

The root element in this example is book. The element price has an attribute named unit

which has the value of “US$".

An XML document is said to be well-formed if its logical structure obeys certain

formatting rules which enables a standard XML parser to parse it. For instance, a start tag

must have a matched end tag. Tags must be strictly nested if the element has sub-elements.

An XML document is said to be valid if it conforms to a pre-defined DTD (Document

Type Definition) or to an XML schema which specifies the rules governing the structure of

an XML document. In this thesis work, the validation of an XML document is performed

against the XML schema which will be introduced in the next section.

3.1.2 XML Schema (XSD Schema)

The W3C Schema is a W3C Recommendation which intends to describe and constrain

the content of a set of similar XML documents. It constrains the allowed structure of the

XML documents with precision. It also imposes constraints on the datatypes that are

permitted at individual locations within that structure [42]. The Schema Definition

Language XSD is also in the form of an XML language. It is much more powerful than the

previous DTD (Document Type Definition) in terms of datatyping and constraining the

 24

document content. In an XML document, the content of the elements can be nested. The

XML schema specifies content models for element types which describe the frequencies

and the orders that the elements can appear in the content of the element type. It can also

specify the possible attributes and their data ranges for an element type. Elements that have

neither child elements nor possess attributes are said to have simple types, whereas

elements having child elements or attributes are said to have complex types. Some of the

elements have attributes and attributes always have simple types.

 The relationship between an XML schema and its valid XML documents is similar to

that of a class and its instances in the Object-Oriented programming language. Therefore,

an XML schema can be used to validate a set of XML documents. Having a pre-defined

schema, it enables the XSLT (eXtensible Stylesheet Language Transformations)

transformation rules to be applied to a set of XML documents. The XSLT will be

introduced in the next section.

3.1.3 The eXtensible Stylesheet Language Transformations (XSLT)

XSLT is a high-level declarative language that transforms an XML document into

other kinds of text-based document such as HTML, XML or plain text document [18]. It

manipulates the structure of the tree representation of the document. The transformation

is expressed as a set of rules for transforming a source tree into a result tree [5]. The

result tree is separate from the source tree. They can have completely different structures.

The elements from the source tree can be re-ordered and filtered into the result tree. In

addition, the result tree can add some extra structure or elements if necessary. The

transformation is achieved by using templates that are associated with patterns. A pattern

is matched against all elements in the source tree. A template is instantiated to create part

of the result tree [5].

A transformation is defined in XSLT by a “stylesheet” which consists of a set of

template rules. These rules are based on what should be generated in the result document

if certain patterns occur in the source document. Therefore, a template rule includes two

parts: a pattern and a template, which have been described in the previous paragraph. A

 25

stylesheet can be used to transform a class of documents that conform to the same

schema.

XSLT stylesheets describe the transformation rules that are associated with the

specific class of XML source documents. The XSLT processor then applies the stylesheet

to the XML document to generate the result document. This is illustrated in Figure 3-1.

Figure 3-1 XSLT Transformation

output

input

input

result
document

XSLT
Processor

XSLT
stylesheet

XML source
document

There are several free XSLT processors available.

• Xalan. This is an open source XSLT processor from the Apache organization.

This thesis uses this processor to generate text file documents. This processor can

be downloaded from http://xml.apache.org/. It has Java and C++ versions. This

thesis uses Xalan-Java. The command to invoke it is as follows:

 java org.apache.xalan.xslt.Process –in <XML source document> -xsl

<stylesheet>

• MSXML3. This processor is from Microsoft and can be downloaded at

http://msxml.com/msxml3.html. It enables a stylesheet to run within Internet

Explorer. Normally, it suits the case where the output is an HTML document.

• Saxon. This is another open source XSLT processor developed by Michael Kay as

a Java application. It is downloadable from http://saxon.sourceforge.net/.

3.2 Overview of the XML-Based LQML Component Model

The goals of this new version component model are as follows.

 26

http://xml.apache.org/
http://msxml.com/msxml3.html
http://saxon.sourceforge.net/

• Making it more flexible for instantiating multiple instances of a single component

class.

• Making it more flexible for tailoring the component with parameters.

 Figure 3-2 below shows a graphical example of the application server component

model which was presented before in Figure 2-2 in Chapter 2.

Figure 3-2 An LQML Component Model Example

Bo dy of
component

Outgoing Interface:
 DBrequest-Report

Outgoing Interface:
 Cache - DBrequest

 ReportGen

 Controller

 ResultsCache

Replaceable
Processors

P

P P

Incoming Interface:
 Control Service

 resultsCache

 reportGen

 controller

The LQML component model has removed the harness part and classified the interfaces

as incoming interfaces and outgoing interfaces. It also separates the replaceable processors

from these interfaces. A replaceable processor is a kind of service serving a request for

hosting tasks. Some processors are not replaceable and are shown inside the component

body in Figure 3-2. The most outstanding difference is that in this version, the interfaces

are separate elements other than those defined in the component body. In the CB-LQN

model, these interfaces are actually the entries of some tasks in the component or in the
 27

harness section. This is one of the reasons that make the binding section confusing and

difficult to use in the CB-LQN model. However, in an LQML model, the incoming and

outgoing interfaces are the extra and add-on parts of the component. The incoming

interfaces are connected to the service entries in the component. The outgoing interfaces

are connected from the request entries in the component. These interfaces have names

which are used for specifying composition with other components. Meanwhile, since the

definition of the component model has adopted XML format, there is an attribute for

describing the interface named ‘description’. This may be very useful when composing

several components since it helps users to understand what the specific interface means.

The syntax of the complete component definition language is described using XML

schema which is attached in Appendix A. The details of the schema are described in the

following section.

3.3 Apply XML to LQN Definition

This section describes the structure of the LQN model and the XML schema for LQN

sub-model and assembly model definition.

3.3.1 Why XML Applies to LQN Definition?

XML is useful for expressing structured data. An LQN model can be viewed as having

the following structure shown in Figure 3-3. This diagram uses UML notations.

In Figure 3-3, an LQN model is organized hierarchically, beginning with the

processors. Each processor hosts several tasks that have entries serving different requests.

A task may include activities that describe execution sequence or parallelism. Each entry

has either one to two phases of execution, or a set of activities.

A set of activities that is associated with one entry should be defined as part of the

entry. However, it is possible for a set of activities to involve two or more entries (for

instance, to join flows arriving at two entries) and such activities should be defined in the

task level. The two phases of execution in an entry can also be defined as two activities that

happen one after another.

 28

*
1

Call

1
**

1..*

1

1..*
1

1..*
1

Activity

Entry

Task

Processor

LQN model

Figure 3-3 shows th

into XML description e

them are free, it helps u

verify the syntax of the

XML schema. The to

downloadable from htt

only need to drag and d

3.3.2 XML Schema for

In this new version

Therefore, it is also ca
Figure 3-3 Structure of LQN model
at an LQN model is a well nested-structured model and can be fit

xactly. Since there are many XML tools available now and some of

sers to better understand the LQN model and have ways to edit and

model. Some tools are so powerful that they can load the tags of the

ol XMLWriter is such an example which has a trial version

p://xmlwriter.net/. Therefore, to define an LQN model a user will

rop the appropriate tags and then fill in the parameters.

 LQML Sub-model and Assembly Model Definition

, an LQN model is regarded as an assembly from sub-models.

lled LQN Assembly Model in this thesis. The syntax is described

 29

http://xmlwriter.net/

using an XML schema. The detailed schema of these can be found in Appendix A. This

section will elaborate the elements and attributes defined for the model and sub-model.

 The assembly model and the sub-model share some common components in definition

which are termed as LQN Core whose definitions include processors, tasks, entries,

activities and the connections of inner sub-models. The term of “slot” has been introduced

in order to be able to define nested models. It will be detailed in the next section.

Both assembly model and sub-model are capable of assembling components. They

share the kernel of a model in common. However, a sub-model must have interfaces and is

defined mainly for assembling in other models. The ability of assembly enables a sub-

model to be defined with inner sub-model contained. Its resulting model is still a sub-model

that has the same interfaces. Meanwhile, the assembly model must have run controls and is

defined mainly for assembling components. Its resulting model is a system model ready for

the solvers to solve.

The relationship between LQML sub-model and lqn-core is illustrated in Figure 3-4a

while LQN assembly model and lqn-core is in Figure 3-4b. The top elements in lqn-core

are illustrated in Figure 3-5.

1 0..11

1

lqn-core ParameterInterface

lqn-submodel

Figure 3-4a LQN sub-model definition structure

 30

1

solver-params

1 0..10..1

1

lqn-core Plot-controlRun-control

lqn-model

Figure 3-4b LQN assembly model definition structure

In the definitions of lqn-model and lqn-submodel, there is not an actual element of lqn-

core. But instead, all the elements that are defined in lqn-core are included in lqn-model

and lqn-submodel. The file lqn-core.xsd (for lqn-core definition) is included in both lqn-

sub.xsd (for lqn-submodel definition) and lqn-model.xsd (for lqn-model definition).

Figure 3-5 LQN Core definition structure

 31

The figures that illustrate the schema structures at different levels in this chapter are

generated by the XMLSpy Schema editor. The meanings of some graphical notations that

are present in these figures are explained in the following Table 3-1.

Table 3-1 The Graphical Notations in the Schema Diagrams Generated by

XMLSpy

Graphical Notation Description

Element lqn-model contains several child elements.

The solid rectangle means element lqn-model is a
required element.

The dashed rectangle means element slot is an optional
element.

Numbers 0..∞ represent the cardinality of the element.

Alternatives. Only one of them will appear as a child.

 The element has child elements which have not been
expanded.

The three short lines in the upper left corner means that
the element pre has neither child elements nor
attributes.

 These figures only show the elements that are defined in the schema whereas attributes

cannot be presented graphically using XMLSpy. The XML based language definition has

introduced some new elements to the models that have not appeared in the previous LQN

language. These new elements will be introduced in the next section and the other elements

in the XML schema definitions are detailed in the section that follows.

 32

3.3.2.1 New Elements Introduced to LQML

Four new elements have been introduced to the XML-based model: slot, phase

activities, task-activities and service.

3.3.2.1.1 Slot

The concept of “slot” is introduced as a sort of “middleware” that connects an inner

component to the rest of the model. A slot is actually a placeholder for an inner component

that will be plugged into it. It describes the outer interfaces to the rest of the model while its

bindings describe how its ports are connected to the interfaces of the inner component. By

using slots, a nested component model can be defined. Hence, a component could be built

from smaller ones to a larger one. An example of this is illustrated in Figure 3-6.

T3e3

T2e2T1e1

Component B

Slot S1

Component A

Figure 3-6 An example of a nested component

 33

In this example, component A is the outer component and component B is the inner one

that will be plugged into. The thick box represents a slot defined in component A. The slot

is named S1. The circles represent incoming interfaces while rectangles are for outgoing

interfaces. In this example, the inner component is actually bound to a slot. The advantages

of introducing slots are as follows.

1. Slots have ports that connect to the outer model and the inner component. In order to

build the outer model, modeler only needs to know the interfaces of the inner

component and how these interfaces are connected to the slot.

2. Each slot has a name, and this name can be used as the prefix for all the elements of

the inner component instances. Modelers do not need to worry about the naming

issues to avoid any conflict that may arise. This is simpler than the previous CB-

LQN component model.

The element slot is defined as one of the top elements of lqn-core. The elements that a

slot contains are shown in Figure 3-7.

Figure 3-7 Elements defined within a slot

 34

A slot has interfaces which are classified as in-port and out-port. Its binding is for inner

component instantiation and customization. It describes how the inner component is

connected to its ports. This includes three parts: parameter is used to give instantiation

values for the inner sub-model parameters; processor-binding is for processor re-

configuration which describes how the replaceable processors of the inner sub-model are

replaced by the model processors if applicable; port-binding describes how the ports of the

slots are connected to interfaces of the inner sub-models. The attributes of these elements

are as listed in Table 3-2.

Table 3-2 Attributes of elements defined within a slot

Name of the Element Attributes Description of Attributes

id An unique id of the slot

bind-target The name of the inner sub-model that is
bound to the slot

Slot

replic-num The number of replicated sub-models needed

name Name of the port

connect-from Which elements in the model connect to this
port in-port

description Descriptions of the port

name Name of the port

connect-to Which elements in the model that this port
connects to

out-port

description Descriptions of the port

name The name of the parameter in the inner sub-
model

parameter

value The redefined instantiation value of the
parameter

 35To be continued

Table 3-2 Attributes of elements defined within a slot (Contd.)

Name of the Element Attributes Description of Attributes

source The name of the replaceable processor in the
inner sub-model

processor-binding

target The name of the processor in the model that
will replace the inner one

source The name of the port of inner sub-model port-binding

target The name of the port of the slot that will be
connected to the inner sub-model

3.3.2.1.2 Phase activities

In the previous LQN model definition, activities and phases are defined as two separate

and different elements as detailed in section 2.3.3. Activities belong to a task while phases

are defined in an entry. Execution in the first phase is performed before a synchronous

reply while second phase execution is done after the reply. The second phase execution

introduces some concurrent operations between the sender and the receiver. As a matter of

fact, phases can also be regarded as activities that occur one after another. Phase one is

followed by phase two. The separation of activities and phase concept sometimes causes

confusion; actually, there is no real distinction between phases and activities. In this XML

based definition, the two phases are defined as Phase1 Activity and Phase2 Activity. These

two phase activities are executed in sequence. Also the activities now belong to the entry

instead of task except those that are originated from different entries join at some point, in

which case the activities will be defined in the task-activities. The task-activities will be

introduced in the following section.

 36

3.3.2.1.3 Task-activities

The element task-activities is defined as one of the top elements within a task. It is used

to describe activities that cannot be assigned to a single entry. As mentioned in section

3.3.1, there may be the case where activities originating from different entries need to

synchronize. If this is the case, then all the activities have to be defined within the element

task-activities. The elements that it contains are illustrated in Figure 3-8 below, without

showing the details of element precedence. The switch sign means alternatives.

Figure 3-8 Elements within task-activities

The top elements within the task-activities are activity, precedence, and reply-entry.

The element activity defines all the activities within this task, including the activities

parameters and calls that they have made. This element will be elaborated in detail later in

section 3.3.2.2.3.

The element reply-entry defines a set of entries that are expecting replies from the

activities. The element first-activity refers to this entry’s start activity. The element reply-

 37

activity refers to the activity that replies back to the entry. An entry may have more than

one reply activities.

The element precedence defines the precedence relationships among the activities in

this task. Its definition structure is shown in Figure 3-9.

Figure 3-9 Elements within precedence
Figure 3-9 Elements within precedence

The expression of a precedence is split into two parts. Some examples are illustrated as

follows.

Previously, A1->A2 means that activity A1 is followed by activity A2 in sequence.

Now it has the following format.

 38

<precedence>

 <pre>A1</pre>

 <post>A2</post>

 </precedence>

Previously, A1->A2&A3 is an AND fork which means that activity A1 is followed by

both A2 and A3. Now it has the following format.

<precedence>

 <pre>A1</pre>

 <post-AND>

 <activity name=”A2”/>

 <activity name=”A3”/>

 </post-AND>

</precedence>

Previously, A1->(0.4)A2+(0.6)A3 is an OR fork which means that activity A1 is

followed by either A2 or A3. The numbers in the parenthesis mean the probability of the

choice. Now it has the following format.

<precedence>

 <pre>A1</pre>

 <post-OR>

 <activity name=”A2” prob=”0.4”/>
 39

 <activity name=”A3” prob=”0.6”/>

 </post-OR>

 </precedence>

Previously, A1->3.2*A2, A3 means that activity A1 is followed by the repetitive

activity of A2 which repeats 3.2 times on average. Activity A3 is executed after this loop.

Now it has the following format.

<precedence>

 <pre-LOOP>A1</pre-LOOP>

 <post-LOOP head=”A2” count=”3.2” end=”A3”/>

</precedence>

Previously, A1+A2->A3 is an OR join which means that either A1 or A2 is followed

by A3. Now it has the following format.

<precedence>

 <pre-OR>

 <activity name=”A1”/>

 <activity name=”A2”/>

 </pre-OR>

 <post>A3</post>

</precedence>

 40

Previously, A1&A2->A3 is an AND join which means that both A1 and A2 are

followed by A3. Now it has the following format.

<precedence>

 <pre-AND>

 <activity name=”A1”/>

 <activity name=”A2”/>

 </pre-AND>

 <post>A3</post>

</precedence>

Previously, A3[E3] shows the reply activity which means that activity A3 replies back

to entry E3. Now it has the following format in task-activities definition, where activity A1

is supposed to be the start activity of entry E3.

<reply-entry name=”E3”>

 <first-activity name=”A1”/>

<reply-activity>A3</reply-activity>

</reply-entry>

3.3.2.1.4 Service

The element “service” describes a self-contained outgoing interface of a task. Currently

this feature has not been used for performance modeling. It has been introduced to support

extensions, such as fault-tolerant LQNs [8]. Calls can be directed from an entry to the

service point, which then targets the calls to different entries of servers at lower layers,

 41

depending on their failure states. To be useful, calls should be able to be defined from a

service to entries. Currently, this has not been implemented.

The element service is defined as one of the elements of task. It has an attribute of

name which is the id of the service point.

3.3.2.2 LQN Core

LQN Core is the kernel of LQN assembly models and sub-models which consists of the

definitions of all elements of the previous LQN language model, and the new elements

which have been introduced in section 3.3.2.1. The main elements that are included in LQN

Core are shown in Figure 3-10. This diagram has not been fully expanded to include all the

elements due to the space limitation. However, each of the elements will be detailed in the

rest of this section.

The LQN Core has two top elements: processor and slot. Slot has been elaborated in the

previous section 3.3.2.1.1. Therefore, the rest of this section will focus on processor

definition.

LQN Core is also described by Figure 3-3.

 42

e

3.3.2.2.1 Processor in LQ

The processor definitio

structure of entries.

A processor has an att

elements: processor-param

The element processor

were defined in the previ

speed-factor, scheduling,

attributes has been describ
Figure 3-10 Elements within LQN Cor
N Core

n encapsulates the structure of tasks which in turn contains the

ribute of name which is the id of the processor. It has two top

s and task.

-params has attributes that are used to specify the parameters that

ous LQN language. These attributes are named as multiplicity,

quantum and replication respectively. The meaning of these

ed in section 2.3.3.

 43

3.3.2.2.2 Task in LQN Core

The element task has four top elements: task-params, entry, service and task-activities.

1. task-params. It defines the parameters of a task which are the same as those in the

previous LQN language. It has those attributes that are termed as mult for

multiplicity, replication, scheduling, activity-graph, think-time and priority

respectively. The attributes of mult and replication have default values of 1. The

value of scheduling has the same meaning as for processor parameters except that

‘r’ refers to reference task and ‘n’ refers to non-reference task. The task is regarded

as a non-reference task by default. The attribute of activity-graph indicates whether

this task has activities other than phase activities. It has two values, “YES” or

“NO”. Its value is considered as “NO” by default.

2. entry. An entry has three top elements: entry-params, forwarding, and entry-

activities. These are illustrated in Figure 3-11 below.

Figure 3-11 Elements defined within an entry

The element entry-params defines the parameters for an entry. These

parameters are priority and open-arrival-rate.

 44

The element entry-activities defines those activities that have no

synchronization with other activities from other entries. The definition includes the

activity’s parameters, calls and activity sequence (if applicable). The element

activity will be detailed in the next section.

The calls that an entry has made are classified as forwarding calls, synchronous

calls or asynchronous calls. The attributes of synchronous and asynchronous calls

will be introduced in the next section.

The element forwarding has such attributes as dest for destination and

probability (of forwarding).

3. service. This has already been elaborated in section 3.3.2.1.4.

4. task-activities. Again, this has been elaborated in section 3.3.2.1.3.

3.3.2.2.3 Activities in LQN Core

An activity contains two top elements: activity-params and either call-list or stochastic

calls.

Since the previous phases and activities are now unified as activities, the previous

parameters of an entry such as mean host demands, coefficient of variation and think time

are now defined by activity-params within the element activity. The call-order of an

activity call is categorized as STOCHASTIC, DETERMINISTIC or LIST. This property is

defined as an attribute named call-order of activity-params.

The element synch-call refers to the synchronous calls that an entry makes to its

destination while asynch-call is for asynchronous calls. They both have such attributes as

dest for destination, calls-mean for the mean number of calls, calls-cvsq for the coefficient

variance of the mean number of calls, fanin and fanout. Fanin and fanout are special

attributes of models with replication, which will not be discussed here.

 45

The element call-list contains two elements synchronous-call and asynchronous-call

both of which have three attributes. The attribute dest refers to the call destination, fanout

for number of calls fanning out and fanin for number of fanin calls.

Activity-sequence describes the sequences of activities that all originated from the same

entry. No joining with activities originated from other entries occurs in this case. The

elements that are defined within the activity-sequence are shown in Figure 3-12.

Figure 3-12 Elements within activity-sequence in an entry

The activity-sequence within an entry has two alternatives: phase activities or other

kinds of activities. Phase activities are those executions in the two phases of an entry as

defined in the previous LQN language. These activities are called phase1 and phase2. The

other activity-sequence containing first-activity and precedence is exactly the same as the

one defined in the task-activities which has been detailed in the previous section. The

element reply-activity refers to the activity that replies back to the entry. For phase

activities, phase1 is always the replying activity.

3.3.2.3 LQN Sub-model

An LQN sub-model definition consists of Interface, Parameter and all other elements

defined in lqn-core. This section will focus on its Interface and Parameter parts.

 46

1. Interface

Figure 3-13 Elements within Interface

This is the section that exhibits information about the component sub-model to the

outside. As shown in Figure 3-13, an interface contains three elements: in-port, out-port

and Replaceable-Processor. For an in-port, it has the attributes of name, connect-to and

description. The connect-to attribute specifies the destination entries in the component

that this port is connected to. The attribute of description is for describing any other

information associated with this port. For an out-port, it has the similar attributes except

that the attribute of connect-to is replaced by connect-from. This attribute specifies the

entries in the component that connect to this port. The element of Replaceable-

Processor defines the processors in the component that could be substituted by outside

processors in the outer component or system model.

2. Parameter

This part defines the parameters that a sub-model might have. These parameters are

used to characterize its different workloads when it executes in different environments.

The parameters include execution demands, service request parameters as well as

configuration parameters such as threading levels. The parameters have default values.

When the sub-model is instantiated in the outer model which will be elaborated later,

the instantiation parameters can redefine these parameters such as execution demands

and configuration parameters, etc. The parameter has only one top element named

para. This element can present for an arbitrary number of times. It has two attributes:

 47

name and default. The attribute name specifies the variable name which begins with a

‘$’ sign. The attribute default specifies the default value.

The names of the variable parameters in the model begins with a dollar sign ‘$”

followed by a string for the name. For instance, ‘$multi’ is a variable parameter if it

appears in the sub-model.

3.3.2.4 LQN Assembly Model

An LQN assembly model consists of run-control, plot-control, solver-params and all

other elements in lqn-core. The elements of run-control and plot-control are used for

experiment instrumentation purpose. They are used in generating Spex input file format

which can be found in [15].

 Figure 3-14 Elements within run-control

The element run-c

either a loop or enum

value and the step-valu
Figure 3-15 Elements within plot-control
ontrol has two choices. The control values of the parameters can be

eration. The loop is in the format of for loop; it has start-value, end-

e.
 48

The element plot-control is used to generate reported values for the specified

parameters. It contains two elements. The element first-plot defines the parameter whose

value can vary while element plot defines those parameters that need recording the values

according to the particular value of first-plot.

The element solver-params is used to define the control parameters for LQNS or

ParaSRVN, defined in the General information section which has been described in section

2.3.3. Those parameters are defined as attributes for solver-params; they are named as

comment, conv_val for convergence value, it_limit for iteration limit, print_int for print

interval, underrelax_coeff for coefficient of under relaxation.

The other elements in lqn-core have been described in the previous section 3.3.2.2.

3.4 An Example of Components Assembly

As mentioned before, both LQN sub-model and assembly model are capable of

assembling components. The way that they compose sub-models is the same; the

composition is accomplished by bindings. The bindings are defined within the slot. Thus,

assembly is the process of defining the bindings. This section will describe an example that

shows how to define a nested sub-model. This example was originated from the report [22].

A “flat” sub-model which is called SingleMod is shown in Figure 3-16 and the nested

model which contains SingleMod called NestedMod is shown in Figure 3-17.

The XML files for these two sub-models are attached in Appendix B.1 and B.2

 49

Figure 3-16 A “flat” LQN sub-model - SingleMod

11

1

P3

P2P1

P4

SinglePr
SingleT2 SingleE3SingleE2

SingleT1 SingleE1

In Figure 3-16, task SingleT1 represents a set of user tasks that are part of the

component (e.g. administrator). It is a reference task that does not need to be called and

generates workload for the component and the rest of the system. This sub-model has two

incoming ports shown by circles and two outgoing ports shown by rectangles. The numbers

on the message arrows indicate the mean number of calls that an entry makes to its

destination. The connection from the incoming ports to the inside entries have no numbers

attached. They are determined by the outside callers. The processor SinglePr is a

replaceable processor.

The interface and parameter section for this sub-model is listed below while the full

text can be found in Appendix B.1

List 3-1 Interface of the example SingleMod

<Interface>

 <in-port name="p1" connect-to="SingleE2" description="read data from database"/>

 50

 <in-port name="p2" connect-to="SingleE3" description="update data to database"/>

 <out-port name="p3" connect-from="SingleE2" description="read request to file

sever"/>

 <out-port name="p4" connect-from="SingleE3" description="update request to file

server"/>

 <Replaceable-Processor name="SinglePr"/>

 </Interface>

 <Parameter>

 <para name="$SingleT2_mult " default="1"/>

 <para name="$SingleE2_demand" default="1"/>

 </Parameter>

 51

SimpleP1

SimpleE1 SimpleT1

 21
 service2 service1
 Slot-S1

P1 P2

SingleMod SimplePr1

P3 P4

 request2 request1

SimpleE3 SimpleT3 SimpleE4 SimpleT4 SimplePr2
2

1

SimpleP2 SimpleP3

 Figure 3-17 A nested LQN sub-model - NestedMod

In Figure 3-17, the thick box represents a slot defined in the sub-model which will plug

sub-model SingleMod into NestedMod. This slot, which is named S1 has four ports which

are connected to the interfaces of SingleMod as shown in the figure. These ports are named

service1, service2, request1 and request2 respectively. The slot definition is listed below.

The bold lines are the binding section. In this example, the processor SinglePr in the inner

component SingleMod will be replaced by SimplePr1 in the sub-model of NestedMod. The

tags that start with <!-- and end with --> are used for comments in XML file.

List 3-2 The Slot in NestedMod

<slot id="S1" bind-target="SingleMod">

 <Interface>

 <in-port name="service1" connect-from="SimpleE1"/>

 <in-port name="service2" connect-from="SimpleE1"/>

 <out-port name="request1" connect-to="SimpleE3"/>

 <out-port name="request2" connect-to="SimpleE4"/>

 </Interface>

 <binding>

 <!--parameter assignment here for SingleMod-->

 <parameter name="$SingleT2_mult" value="4"/>

 <!--the rest parameters are defined as parameters for NestedMod -->

 <processor-binding source="SinglePr" target="SimplePr1"/>

 <!--source refers to elements in the inner component -->

 <!--target refers to elements in the slot -->

 <port-binding source="p1" target="service1"/>

 <port-binding source="p2" target="service2"/>

 <port-binding source="p3" target="request1"/>

 <port-binding source="p4" target="request2"/>

 </binding>

 </slot>

 52

After binding, the resulting sub-model is shown in Figure 3-18 below.

11

1

S1_SingleT2 S1_SingleE3S1_SingleE2

S1_SingleE1 S1_SingleT1

SimplePr2

2
1

SimpleT4 SimpleE4
2

1

SimpleP2

SimpleP1

SimpleP3

SimplePr1

SimpleT3 SimpleE3

SimpleT1 SimpleE1

Figure 3-18 The Resulting Sub-model of NestedMod

 53

As indicated in Figure 3-18, the slot and the interfaces have now disappeared. The

names of the tasks in SingleMod are now prefixed by the slot name S1. They are now

executed in processor SimplePr1 of the NestedMod. The interactions between the tasks are

now overwritten by the specified values in sub-model SingleMod. For instance, now the

mean number of calls from S1_SingleE3 to SimpleE4 is 1, which is specified in SingleMod

from SingleE3 to its outgoing port P4 that directs the calls to SimpleE4.

The resulting model of LQN assembly model that contains sub-models is very similar

to those out of LQN sub-models except that there are no interfaces in the resulting model; it

has run control and other solver parameters.

This assembly process has been automated by a tool LQComposer which will be

introduced in detail in Chapter 4.

3.5 Approaches to Creating LQN Component Models

An LQN component that corresponds to a software component or subsystem can be

derived in several ways. Basically, the approach to derive an LQN component model or an

LQN model is the same. It can be derived from analysis of scenarios, or design

specifications [27] [28], or from traces [16], or from requirement analysis [26].

An example of deriving LQN models from scenario analysis is shown in Figure 3-19.

From the UML sequence diagram on the left, an LQN model can be derived as shown on

the right.

LQN model

Server

App

User

UML Sequence diagram

Reply()
Reply()

AppReq()

Request()

Server App User

 Figure 3-19 Deriving LQN Models from Scenario Analysis

The execution demands can be obtained from experience, or from budgeted values

[32]. The performance attributes of the software component can be verified using a testbed

 54

which provides drivers, load generator and operational stubs as described in the Layered

System Generator (LSG) [38].

 55

Chapter 4 An Approach to Component Based Performance Modeling

This chapter first gives some brief overview of the design issues about the component

based performance modeling. Then it presents the present approach and describes the

process and tools for assembling component sub-models into a system model, as on the

right side of Figure 1-1. The assembly model specifies how to compose the sub-models for

software components, and their parameters. The assembly can occur at both system-level

model and sub-model as mentioned in Chapter 3. The prediction of the planned system is

achieved by solving the system-level model. The results from these models can be used as

feedback to the software architect or designers. This chapter will focus on system-level

assembly.

4.1 Design Issues

For performance modeling of component based software systems, one difficulty is that

components may run in different environments. The need to “describe” performance

attributes of the software components incorporating its runtime environments presents a big

challenge to performance prediction of the component based systems. This thesis work has

considered this issue by using parameterized performance sub-models. The

parameterization reflects the different behavior of the component in different runtime

environments. Meanwhile, software components are configurable and this is described by

sub-model parameters and replaceable processors. This thesis proposes an XML based

language to describe the performance sub-models for software components. The system

model is obtained by composing the sub-models. The language has been designed to enable

sub-model composition. It also takes into account the fact that a software component may

be built nestedly. Therefore, the language supports nested definition in the component sub-

models. It also specifies how the component sub-models can be bound to different servers

and processors.

The XML language is suitable to describe structured data. For LQN models, this

research has taken a different view, containment relationships between processors, tasks,

entries and activities as described in section 3.3 in Chapter 3. This containment relationship

 56

better describes the structured data in LQN models compared to the previous LQN

language. It treats the previous activities and phases as both activities in entries which

eliminates the confusion between activities and phases.

The sub-model parameters can be passed through outer sub-model to the inner sub-

model.

4.2 Overview of the Present Approach

The present approach is illustrated in the following diagram Figure 4-1. From the

documentation of the planned system, such as product specification, software architecture

or any high-level designs, the performance sub-models are selected from the library. Based

on these, a system assembly model is derived which consists of the customization and

binding information of the sub-models. This assembly model along with the appropriate

information of the sub-models is then input to the tool LQComposer. This tool generates

the normal LQN models which can be solved by existing solvers such as LQNS and

ParaSRVN. The results from LQN models can then be fed into the design documentation.

Therefore, the design can be evaluated.

In this work, a tool called LQComposer has been developed to automate the process of

sub-models assembly. This tool can generate system-level models from sub-models

automatically.

 57

Feedback

Performance
Predictions

LQN Solvers

LQComposer

LQN
Model

Assembly
Model

Performance
sub-model
library

Product
specification,
plans, design
…

Performance
sub-model
selection

Figure 4-1 The Present Approach to Component Based Performance Prediction

4.3 LQN Assembly Model

This assembly model defines the system-level model as an assembly of components

plus “glue” that defines the context and behavior. It adopts XML representation of LQN

models that describes the LQN elements such as tasks, entries and activities. It differs from

a normal LQN model in that it has slots that identify which components can be “glued”.

 58

4.3.1 An Example of an LQN Assembly Model

The system assembly model can be derived from the software architecture of the

planned system. An example of this is shown in Figure 4-2 which is an LQN assembly

model for a three-tier E-business application system.

Figure 4-2 An Assembly Model for an E-Business Application System

solver-params plot-control

DBServer

Client

run-control

DBOperation

AppServer

AppS

WebServer

WebS

request

In this model, clients send requests to the web server which does some computing and

then makes requests to the application server. The application server does some processing

and accesses some operations from the database server. The web server and the application

server are modeled as replaceable subsystems. They will be substituted with the suitable

sub-models from a component model library. In this assembly model, the two boxes with

thick lines represent slots. Slot WebS is the placeholder for the web server component and

AppS is for the application server component. These component models could have very

 59

complex internals and may have nested component models inside. The bindings that will

glue the components are described within the slots. As mentioned in Chapter 3, the

bindings contain the information about how the interfaces of the slots are connected to the

interfaces of the components that will be plugged in. The circles in this diagram represent

the incoming interfaces of the slots and the components. The squares stand for the outgoing

interfaces. The client and database server in this assembly model are modeled as one single

task although they may be sub-models too. This assembly model also contains a section of

runs control parameters which are divided into run-control, plot-control and solver-params

that have been described in Chapter 3.

4.3.2 The Reusability and Adaptability of the Assembly Model

Having an assembly model is useful in the case of developing similar products as is the

case in product lines. A software product line is a set of software intensive systems that

shares a set of common features and satisfies the specific needs of a certain market segment

or mission. These software systems are developed from a set of core assets in a prescribed

way [6]. The core assets include the software architecture, the reusable software

components, documentation of requirement analysis, specifications, performance model,

test plans and etc. Software product lines are a form of component-based development.

Each product is generated by selecting applicable components from the base of the core

assets and these components are then tailored according to the specific needs through the

mechanisms such as parameterization or inheritance. The assembly model of the product is

a performance model in this case. By taking appropriate parameterized component sub-

models, the particular system model for one product can be then generated. Since the

architecture of the product line is reusable and configurable, the assembly model derived

from the architecture is therefore reusable for the family of the products.

On the other hand, the assembly model is adaptable. Figure 4-2 shows an example of

assembly model for an E-business application. In this system, the application server has

only one outgoing interface which directs requests to the database server. In the case that

the application server needs to have two or more outgoing interfaces, this model can be

 60

adapted by making a little change to the slot AppS and the bindings for AppS. Meanwhile,

the database server task can serve two or more requests by having two or more entries.

4.4 Tool – LQComposer

This section describes the design and the implementation of the tool LQComposer

which assembles sub-models to system-level models. The resulting model is in the

previous text format LQN language and ready for LQN solvers to solve. This tool is also

capable of expanding a sub-model which contains nested sub-models to a “flat” sub-model.

But the resulting model is still in XML language and contains elements that are specific for

a sub-model (e.g. interfaces).

The workflow of this tool is shown in the following picture Figure 4-3.

library

LQ-
Composer

Model in text
format LQN
language Location of

sub-model
library

LQN
Assembly
Model

Figure 4-3 Workflow of LQComposer

The input to this tool is the LQN assembly model and the location of the sub-model

library. The output is a model in the previous LQN language. This tool will generate task

instances and their parameters guided by the binding sections in the assembly model. After

running this tool, the interfaces of each component sub-model will disappear in the system

model. And the connections of components will be overwritten by the actual interactions

that are specified by parameterization or by the sub-model definition itself.

 61

4.4.1 Overview of Tool Design

The representation of component models and assembly models are now all in an XML

language, but the model solvers that exist in RADS lab such as LQNS and ParaSRVN only

take the previous text format LQN language. Therefore, the transformation must be done

between the XML language and the previous LQN language. This is divided into two steps.

The first step is to transform the assembly model which contains slots and sub-model

interfaces to a “flat” model that has no interfaces or slots but is still in XML language. This

output XML document is still valid against the LQML schema. The second step is to

transform this “flat” model in XML language to a model in the previous LQN language.

The first step is accomplished by taking advantage of JAXP (Java API for XML

Processing) and DOM (Document Object Model) which will be introduced in the next

section. The second step is done through XSLT transformations. The first one is a Java

program named LQNAssemble. The second one is a XSLT stylesheet named xml2LQN.

These two programs form the tool LQComposer. The LQNAssemble can work for either

system-level assembly or a sub-model level assembly. However, xml2LQN can only work

for a system level model that has no interfaces and no undefined components. This is

because there are no equivalent elements for sub-model interface or variable parameters in

the previous LQN language.

These two programs can be invoked separately. The command to invoke the first

program is as follows (which is a batch command):

LQNAssemble [-lib <the library directory>] <assembly file>

The command to invoke the second one is as follows (which is also a batch command

that invokes the XSLT engine and xml2LQN stylesheet):

xml2LQN <XML model> [output model]

 62

4.4.2 LQNAssemble Design

This Java program transforms an LQN assembly model in XML language, which

contains slots which embed component models, to a “flat” LQN model that has not only

removed the interfaces and slots but also incorporated elements in the body of component

models and directed calls to the appropriate destination. The output model is still in XML

representation. The transformation is illustrated in section 3.4 in Chapter 3 as an example

of component assembly in which a sub-model contains a nested sub-model and the result

model is a flat sub-model. The input to this program is an assembly model in XML

language and an optional directory for searching for sub-models. The output is the flattened

XML model named as the assembly model file suffixed by “_flt”.

This program is developed using Java API (application programming interface) for

XML Processing (JAXP) and the Document Object Model (DOM). The DOM is an API

that defines the logical structure of objects contained in the document and the way the

document is accessed and manipulated. Thus, it enables programmers to add, remove or

change the elements or create a document. In DOM, a document has a logical structure that

is very much like a hierarchical tree which consists of nodes that can be manipulated. The

DOM level 2 core specification has a Java language binding. The JAXP provides an API

specifically for processing XML documents. Its reference implementation uses Crimson

which is available from http://xml.apache.org/crimson/ as its default XML parser and

Xalan (available from http://xml.apache.org/xalan-j/index.html) as its default XSLT

engine. These are the implementations of the specified APIs. By using these two APIs, an

XML document can be parsed and transformed.

The algorithm of this program is as follows.

1. Read in an XML assembly file from the command line and the optional library

directory.

2. Parse this XML file into a DOM document.

3. Check if the document contains any elements of type “slot”.

 63

http://xml.apache.org/crimson/
http://xml.apache.org/xalan-j/index.html

3.1 If it does not, exit the program.

3.2 If it does, record all slots’ information into a Java vector in which each element

represents one slot. (A Java class of Slot is developed to record the attributes

and elements contained in a slot.)

3.3 For each slot that is an element in a Java vector, repeat the following.

3.3.1 Locate the XML file that contains the sub-model. Parse this file

into another document. Obtain the slot id which will be the prefix

for the names of processors, tasks and entries in the sub-model.

Obtain the replaceable processors in the sub-model.

3.3.2 Rename each entry in the sub-model by prefixing the slot id.

3.3.3 Rename each task in the sub-model by prefixing the slot id.

3.3.4 Instantiate parameters for the sub-model. Locate the elements

whose attributes’ values start with ‘$’s. For each located

parameter, substitute its value with the specified value that is stored

in the object Slot recorded in the vector in step 3.2.

3.3.5 Direct all calls in the sub-model to the proper destination. If the

original call destination is within the sub-model then prefix the

destination by the slot id. Otherwise, the calls should be directed to

the system model (or the outer model). This is done by checking

the out-port that is bound to a slot. Check the attributes “connect-

to” of the slot which record where the calls should be directed.

Direct the calls to the proper destination in the system model.

3.3.6 Direct calls made in the system model that are connected to the in-

port of the slot. The destination should be within the sub-model.

Direct the calls to the proper destination by checking the attributes

 64

of the slot and the attributes of the in-port of the sub-model. The

destination should be prefixed by the slot id.

3.3.7 Obtain all the processors in the sub-model. Rename those that are

not replaceable by prefixing the slot id. For each non-replaceable

processor, do the following.

3.3.7.1 Make a deep clone of this processor node. (The deep

clone will clone all of its descendants too.) Import this

cloned processor node to the assembly document. Make

this cloned node as one of the children of the root node in

the assembly document. Remove this processor node along

with its descendants from the sub-model document.

3.3.8 For each replaceable processor, do the following.

3.3.8.1 Obtain the processor name in the system model that will

replace this sub-model processor. This can be achieved by

checking the binding elements that are recorded in the slot.

3.3.8.2 If this replaceable processor has children, for each child,

do the following.

3.3.8.2.1 If the child is not named as “processor-

params”, make a deep clone of this child node.

Import this cloned child to the assembly

document. Make it as a child of the target

processor that will replace the sub-model

processor.

3.3.8.3 Remove this replaceable processor node along with its

descendants from the sub-model document.

 65

3.4 Remove each slot node along with its descendants from the assembly model.

4.4.3 xml2LQN Design

This is a XSLT stylesheet that transforms a “flat” LQN model in XML language to the

previous LQN language which is in plain text format. The details of the previous language

have been described in section 2.3.3. It includes five sections: General information section

which is denoted by a letter ‘G’, Processor section which is denoted by a letter ‘P’, Task

section which is denoted by a letter ‘T’, Entry section which is denoted by a letter ‘E’ and

possibly several Activity sections which are denoted by a letter ‘A’. Activity sections only

appear when tasks have activities. There is one activity section for each task that has

activities executions. An example of an LQN model in the previous language is listed

below. This example has no activities. The # tag denotes comments which are used to

summarize the syntax. These comments are excerpted from the documentation which is

available online from http://www.sce.carleton.ca/rads/lqn/lqn-documentation/reserv-

templ.lqn. The figure 4-5 is the corresponding graphical representation.

List 4-1 An LQN model in previous language

Figure 4-5 The LQN graphical model

4

2 3

20 5

P3

P2

P1

T4 e3

T3 ex

T2 e2 e1

UIF user
G #General information section

"This is a test case" #comments of the model

0.00001 #convergence criterion

50 #iteration limit

1 #print interval

0.8 #under-relaxation

-1 #end of General section

Processor Information

#(the zero is necessary;

#it may also give the number of processors)

P 0

#SYNTAX:

p ProcessorName SchedDiscipline [multiplicity, default = 1]
 66

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/reserv-templ.lqn
http://www.sce.carleton.ca/rads/lqn/lqn-documentation/reserv-templ.lqn

#SchedDiscipline = f fifo|r random|p premptive|h hol or non-pre-empt|s proc-sharing

#multiplicity = m value (multiprocessor)|i (infinite)

p P1 f #Processor P1 (FIFO)

p P2 f #Processor P2 (FIFO)

p P3 f #Processor P3 (FIFO)

-1 #end of Processor section

Task Information: (the zero is necessary; it may also give the number of tasks)

T 0

#SYNTAX: t TaskName RefFlag EntryList -1 ProcessorName [multiplicity]

#TaskName is any string, globally unique among tasks

#RefFlag = r (reference or user task)|n (other)

#multiplicity = m value (multithreaded)|i (infinite)

t UIF r user -1 P1 m 10

t T2 n e1 e2 -1 P2

t T3 n ex -1 P2

t T4 n e3 -1 P3 m 10

-1

#Entry Information: (the zero is necessary; it may also give the total number of entries)

E 0

SYNTAX-FORM-A: Token EntryName Value1 [Value2] [Value3] -1

EntryName is a string, globally unique over all entries

Values are for phase 1and 2 (phase 1 is before the reply)

Tokens indicate the significance of the Value:

s HostServiceDemand for EntryName

c HostServiceCoefficientofVariation

f PhaseTypeFlag

SYNTAX-FORM-B: Token FromEntry ToEntry Value1 [Value2] [Value3] -1

Tokens indicate the Value Definitions:

y SynchronousCalls (no. of rendezvous)

F ProbForwarding (forward to ToEntry rather than replying)

 67
z AsynchronousCalls (no. of send-no-reply messages)

o Fanout (for replicated servers)

i FanIn (for replicated servers)

This example only shows use of host demands and synchronous requests

s user 1.0 -1

y user e1 5 -1

y user e2 20 -1

s e1 0.04 -1

y e1 ex 3 -1

s e2 0.2 -1

y e2 ex 2 -1

s ex 0.9 -1

y ex e3 4 -1

s e3 0.05 -1

-1

An XML language for this model is listed below in List 4-2.

List 4-2 An XML representation for the LQN model in List 4-1

<lqn-model name="test" description="a LQN model in xml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="lqn.xsd">

 <solver-params comment="This is a test case" conv_val="0.00001"

it_limit="50" print_int="1" underrelax_coeff="0.8"/>

 <processor name="P1">

 <processor-params multiplicity="1" replication="1"/>

 <task name="UIF">

 <task-params mult="10" scheduling="ref"/>

 <entry name="user">

 <entry-activities>

 <activity name="user_ph1">

 <activity-params host-demand-mean="1.0"/>

 <synch-call dest="e1" calls-mean="5"/>

 <synch-call dest="e2" calls-mean="20"/>

 </activity>

 68

 <activity-sequence type="PH1PH2">

 <phase1>user_ph1</phase1>

 </activity-sequence>

 </entry-activities>

 </entry>

 </task>

 </processor>

 <processor name="P2">

 <processor-params multiplicity="1" scheduling="fcfs" replication="1"/>

 <task name="T2">

 <task-params mult="1" activity-graph="NO"/>

 <entry name="e1">

 <entry-activities>

 <activity name="e1_ph1">

 <activity-params host-demand-mean="0.04"/>

 <synch-call dest="ex" calls-mean="3"/>

 </activity>

 <activity-sequence type="PH1PH2">

 <phase1>e1_ph1</phase1>

 </activity-sequence>

 </entry-activities>

 </entry>

 <entry name="e2">

 <entry-activities>

 <activity name="e2_ph1">

 <activity-params host-demand-mean="0.2"/>

 <synch-call dest="ex" calls-mean="2"/>

 </activity>

 <activity-sequence type="PH1PH2">

 <phase1>e2_ph1</phase1>

 </activity-sequence>

 </entry-activities>

 </entry>

 </task>

 <task name="T3">

 <task-params mult="1" activity-graph="NO"/>

 <entry name="ex">

 69

 <entry-activities>

 <activity name="ex_ph1">

 <activity-params host-demand-mean="0.9"/>

 <synch-call dest="e3" calls-mean="4"/>

 </activity>

 <activity-sequence type="PH1PH2">

 <phase1>ex_ph1</phase1>

 </activity-sequence>

 </entry-activities>

 </entry>

 </task>

 </processor>

 <processor name="P3">

 <processor-params multiplicity="1" scheduling="fcfs" replication="1"/>

 <task name="T4">

 <task-params mult="10" activity-graph="NO"/>

 <entry name="e3">

 <entry-activities>

 <activity name="e3_ph1">

 <activity-params host-demand-mean="0.05"/>

 </activity>

 <activity-sequence type="PH1PH2">

 <phase1>e3_ph1</phase1>

 </activity-sequence>

 </entry-activities>

 </entry>

 </task>

 </processor>

</lqn-model>

The model in XML language has the structure as detailed in Chapter 3. The stylesheet

xml2LQN.xsl will take the XML document listed in List 4-2 as input, and transform it to

the file as listed in List 4-1. The main flow of transformation is explained in Figure 4-6.

The transformation involves six templates and five of them will generate the five sections

in the previous text format LQN language. There is a main template that controls the order

of invoking the five other templates that generate the elements for each section. For

 70

generating each section except the activity section, it works in the following order:

outputting starting tags (e.g. ‘G’ for general information section), invoking the particular

template that will generate the particular section, and outputting the ending tags (‘-1’) for

the section. The procedure of generating the activity sections is exceptional in that not

every LQN model has activity executions. The ActivityTemplate will check if there are any

activities involved in the model. Depending on this, it may or may not generate an activity

section for the particular task. The transformation algorithm in each template will be

described in the next section.
Input model in
XML language

Choose Output
format as Text

 Output ‘G’
Call GeneralTemplate
Output ‘-1’

Main
Template

Output ‘P 0’
Call ProcessorTemplate
Output ‘-1’

Output ‘T 0’
Call TaskTemplate
Output ‘-1’

Output ‘E 0’
Call EntryTemplate
Output ‘-1’

 Call
ActivityTemplate

end
71

Figure 4-6 The workflow of xml2LQN

4.4.3.1 Template Algorithm in xml2LQN Stylesheet

In the descriptions of the transformation rules below, a space character is used to

separate the adjacent elements in one line of the output.

• GeneralTemplate. This template generates the General information section. It checks

the attribute node of /lqn-model/solver-params which is supposed to contain all the

solver parameters that are presented in the General information section in the previous

LQN language. These parameters are now given as attributes of the element solver-

params which is the one of the top elements of lqn-model. The transformation

algorithm is as follows.

1 Locate the node of /lqn-model/solver-params/.

2 Output a double quotation mark (‘”’)

3 Output the value of attribute comment.

4 Output another double quotation mark (‘”’).

5 Output the value of attribute conv_val plus a new line symbol.

6 Output the value of attribute it_limit plus a new line symbol.

7 Output the value of attribute print_int plus a new line symbol.

8 Output the value of attribute underrelax_coeff plus a new line symbol.

• ProcessorTemplate. This template generates the previous Processor information

section. The transformation algorithm is as follows.

 For each processor node

1 Retrieve the value of the attribute name. Output ‘p’ plus the name.

 72
2 Retrieve the value of scheduling policy.

2.1 If the value equals ‘fcfs’ then output ‘f’.

2.2 If the value equals ‘ps’ then output ‘s’.

2.3 If the value equals ‘pp’ then output ‘p’.

2.4 If the value equals ‘r’ then output ‘r’.

2.5 If the value equals ‘h’ then output ‘h’.

2.6 If none of these is satisfied, output ‘f’.

3 Retrieve the value of quantum. If it is greater than zero, then output that value.

4 Retrieve the value of multiplicity.

4.1 If the value is greater than 1, then output ‘m’ plus the value.

4.2 If the value is ‘i’, then output ‘i’.

5 Retrieve the value of replication. If the value is greater than 1, then output ‘r’ plus

the value.

6 Retrieve the value of Speed-factor. If it is greater than 0, then output ‘R’ plus the

value.

7 Output a new line symbol.

• TaskTemplate. This template generates task information section. The transformation

algorithm is as follows.

For each task node

1 Retrieve the value of attribute name. Output ‘t’ plus the name.

2 Retrieve the value of attribute scheduling of element task-params.
 73

2.1 If the value equals ‘ref’, output ‘r’.

2.2 If the value equals ‘fcfs’, output ‘f’.

2.3 Otherwise, output that value. Output ‘n’ by default.

3 For each entry inside this node,

3.1 Retrieve the value of attribute name. Output the name.

4 Output ‘-1’

5 Retrieve the name of the processor which is the parent node of the task. Output the

name.

6 Retrieve the value of attribute priority. If it is greater than zero, output that value.

7 Retrieve the value of attribute think-time. If it is greater than zero, output ‘z’ plus

that value.

8 Retrieve the values of attributes of task-params which is the child node of task.

8.1 Retrieve the value of attribute mult.

8.1.1 If it is greater than 1, output ‘m’ plus the value.

8.1.2 If it equals ‘i’, output ‘i’.

8.2 Retrieve the value of attribute replication. If it is greater than 1, output ‘r’ plus

the value.

9 Output a new line symbol.

• EntryTemplate. This template generates the Entry information section. Its

transformation algorithm is as follows.

 74

For each Entry node

1 Check the node of entry-params which is the child of entry node.

1.1 Retrieve the value of attribute open-arrival-rate. If it is greater than 0, then

retrieve the name of the entry and output ‘a’ plus the name plus the arrival rate.

1.2 Retrieve the value of attribute priority. If it is greater than 0, then retrieve the

name of the entry and output ‘P’ plus the name plus the priority value.

2 For each forwarding node which is the child of entry (if it has forwarding calls),

retrieve the destination and the probability. Output ‘F’ plus the entry name plus the

destination plus the probability and ‘–1’.

3 Locate the node of entry-activities which is the child of entry.

3.1 Retrieve the value of attribute type of element activity-sequence which is the

child of entry-activities node. If the value equals ‘PH1PH2’,

3.1.1 Retrieve service demands for both phases, output ‘s’ plus the entry name

plus the demands plus ‘ -1’.

3.1.2 Retrieve think time of the entry. If it is greater than 0, output ‘Z ’ plus

entry name plus the think time plus ‘ -1’.

3.1.3 Retrieve the host demand coefficient of variation, if it is greater than 0,

output ‘c’ plus the entry name plus the value plus ‘-1’.

3.1.4 Retrieve the max-service-time, if it is greater than 0, output ‘M’ plus the

entry name plus the value plus ‘-1’.

3.1.5 Retrieve call-order, if it equals ‘DETERMINISTIC’, output ‘f’ plus the

entry name plus ‘1’ for deterministic phase plus ‘–1’.

 75

3.2 For each node of synch-call which is the child of activity node that is the child

of entry-activities node.

3.2.1 Retrieve the value of call destination and mean number of calls, output

‘y’ plus the entry name plus the destination plus the mean number of

calls plus ‘-1’.

3.2.2 Retrieve the value of fanout, if it is greater than 1, output ‘o’ plus the

entry name plus the destination plus the value plus ‘-1’.

3.2.3 Retrieve the value of fanin, if it is greater than 1, output ‘i’ plus the entry

name plus the destination plus the value plus ‘-1’.

3.3 For each node of asynch-call which is the child of activity node that is the child

of entry-activities node.

3.3.1 Retrieve the value of call destination and mean number of calls, output

‘z’ plus the entry name plus the destination plus the mean number of

calls plus ‘-1’.

3.3.2 Retrieve the value of fanout, if it is greater than 1, output ‘o’ plus the

entry name plus the destination plus the value plus ‘-1’.

3.3.3 Retrieve the value of fanin, if it is greater than 1, output ‘i’ plus the entry

name plus the destination plus the value plus ‘-1’.

3.4 Retrieve the value of attribute type of element activity-sequence which is the

child of entry-activitites node. If the value equals ‘GRAPH’, retrieve the name

of the first activity and output ‘A’ plus the entry name plus the activity name.

4 Output a new line symbol.

 76

5 For each node of /lqn-model/processor/task/task-activities/reply-entry (if they do

exist, which refers to the case where activities from different entries in a task

synchronize at some point).

5.1 Retrive the entry name of reply-entry. Output ‘A’ plus the entry name plus the

name of first-activity which is the child of reply-entry.

5.2 Output a new line symbol.

• ActivityTemplate. This template generates one activity section for each task. The

transformation algorithm is as follows.

For each task, retrieve the value of attribute Activity-Graph. If the value equals ‘YES’.

1 Output ‘A’ plus the task name

2 For each activity node which is the child of entry-activities node that is the child

of entry,

2.1 Retrieve the value of attribute call-order of element activity-params which is

the child of activity node. If it equals ‘DETERMINISTIC’, output ‘f’ plus the

activity name plus ‘1’.

2.2 Retrieve the value of host-demand-mean of activity-params, output ‘s’ plus the

activity name plus the value.

2.3 Retrieve the value of host-demand-cvsq of activity-params, output ‘c’ plus the

activity name plus the value.

2.4 For each synch-call which is the child of activity node, retrieve the value of

the attributes calls-mean and dest, then output ‘y’ plus the activity name plus

the destination name plus the value of calls-mean.

 77

2.5 For each asynch-call which is the child of activity node, retrieve the value of

the attributes calls-mean and dest, then output ‘z’ plus the activity name plus

the destination name plus the value of calls-mean.

3 For each precedence that is the child of activity-sequence that is the child of entry-

activities node,

3.1 If it has child pre or pre-Loop, output the activity name plus ‘->’.

3.2 If it has child pre-AND,

3.2.1 For each activity that is the child of pre-AND,

3.2.1.1 If current node is not the last child of pre-AND, output the activity

name plus ‘&’

3.2.1.2 If current node is the last one, output the activity name plus ‘->’.

3.3 If it has the child of pre-OR,

3.3.1 For each activity that is the child of pre-OR,

3.3.1.1 If current node is not the last child of pre-OR, output the activity

name plus ‘+’

3.3.1.2 If current node is the last one, output the activity name plus ‘->’.

3.4 If it has the child of post, output the activity name plus ‘;’

3.5 If it has the child of post-AND,

3.5.1 For each activity that is the child of post-AND,

3.5.1.1 If current node is not the last child of post-AND, output the activity

name plus ‘&’.

 78

3.5.2 If current node is the last one, output the activity name plus ‘;’.

3.6 If it has the child of post-OR,

3.6.1 For each activity that is the child of post-OR,

3.6.1.1 If current node is not the last child of post-OR, retrieve the value of

prob, then output ‘(‘ plus the value plus the ‘)’ plus the activity

name plus ‘+’.

3.6.1.2 If current node is not the last child of post-OR, retrieve the value of

prob, then output ‘(‘plus the value plus the ‘)’ plus the activity

name plus ‘;’.

3.7 If it has the child of post-LOOP, retrieve the value of loop count, the value of

loop head and the value of the ending activity. Output the loop count plus ‘*’

plus the loop head plus ‘,’ plus the ending activity plus ‘;’

4 Output a new line symbol.

5 For each reply-activity which is the child of activity-sequence which is the child of

entry-activities node,

5.1 Retrieve the reply-activity, output the reply-activity plus ‘[‘ plus the entry

name plus ‘]’.

5.2 If current node is the last child, output ‘-1’. Otherwise, output ‘;’.

6 If the node of task-activities exists,

6.1 For each activity that is the child of task-activities, obtain the parameters and

calls similar to the steps 1.1.2.1 to 1.1.2.5 listed above. Obtain the precedence

relationships among activities similar to the steps 1.1.3.1 to 1.1.3.7 listed

above.

 79

6.2 Output each reply activity that is the child of reply-entry which is the child of

task-activities. This is similar to the steps 1.3.1 and 1.3.2 listed above.

4.5 Tool Validation

The validation of the tool LQComposer was again divided into two steps: validation

against LQNAssemble and xml2LQN.

4.5.1 Validation of LQNAssemble

The validation of LQNAssemble was done against two cases. One case is that a system-

level assembly model is taken as input. The other case is that a subsystem-level assembly

model is taken as input. In the first case, the output should be a system model in XML

language and ready for xml2LQN to transform into LQN language. In the second case, the

output is still a component model but with the inner components embedded and extended.

In both cases, the slots will disappear as well as the interfaces of the sub-models that are

bound to the slot.

The first case adopts a system model that is very similar to Figure 3-17 except that

there are no interfaces of the outer model and the task SimpleT1 is now a user task that

generates load to the system. The sub-model is the same as shown in Figure 3-16 with its

interface listed in List 3-1. The XML document for this assembly model named

SimpleAbl.xml is listed in List 4-3 below. The slot and bindings are in bold font.

List 4-3 SimpleAbl.xml- an example of assembly model in XML language

<lqn-model name="SimpleAbl" description="an xml version of a Simple
Assembly model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn.xsd">
 <solver-params comment="This is a test case" conv_val="0.00001"
it_limit="50" print_int="1" underrelax_coeff="0.8"/>
 <processor name="SimplePr1">
 <processor-params multiplicity="1"/>
 <task name="SimpleT1">
 <task-params mult="3" scheduling="ref"/>
 <entry name="SimpleE1">
 <entry-activities>
 <activity name="SimpleE1_ph1">

 80

 <activity-params host-demand-mean="1"/>
 <synch-call dest="S1.service1" calls-mean="1"/>

 <synch-call dest="S1.service2" calls-mean="2"/>
 <synch-call dest="SimpleE3" calls-mean="1"/>

 </activity>
 <activity-sequence type="PH1PH2">

 <phase1>SimpleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>

 </entry>
 </task>
 <task name="SimpleT3">
 <task-params mult="2" activity-graph="NO"/>
 <entry name="SimpleE3">
 <entry-activities>
 <activity name="SimpleE3_ph1">
 <activity-params host-demand-mean="1.5"/>
 </activity>

 <activity-sequence type="PH1PH2">
 <phase1>SimpleE3_ph1</phase1>

 </activity-sequence>
 </entry-activities>

 </entry>
 </task>
 </processor>
 <processor name="SimplePr2">
 <task name="SimpleT4">
 <task-params activity-graph="NO"/>
 <entry name="SimpleE4">
 <entry-activities>
 <activity name="SimpleE4_ph1">

 <activity-params host-demand-mean="5.0"/>
 </activity>
 <activity-sequence type="PH1PH2">

 <phase1>SimpleE4_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <slot id="S1" bind-target="SingleMod">
 <Interface>
 <in-port name="service1" connect-from="SimpleE1"/>
 <in-port name="service2" connect-from="SimpleE1"/>
 <out-port name="request1" connect-to="SimpleE3"/>
 <out-port name="request2" connect-to="SimpleE4"/>
 </Interface>
 <binding>
 <!--parameter assignment here for SingleMod-->
 <parameter name="$SingleT2_mult" value="4"/>
 <parameter name="$SingleE2_demand" value="5.5"/>
 <processor-binding source="SinglePr" target="SimplePr1"/>
 <!--source refers to elements in the inner component -->
 <!--target refers to elements in the slot -->
 <port-binding source="p1" target="service1"/>

 81
 <port-binding source="p2" target="service2"/>

 <port-binding source="p3" target="request1"/>
 <port-binding source="p4" target="request2"/>
 </binding>
 </slot>
</lqn-model>

Invoke the assembly tool from the command line:

LQNAssemble SimpleAbl

The input file extension name (.xml) is not needed in the command line. The output file

is SimpleAbl_flt.xml and its content is displayed in List 4-4 below.

List 4-4 The output SimpleAbl_flt.xml from SimpleAbl.xml

<?xml version="1.0" encoding="UTF-8"?>
<lqn-model name="SimpleAbl" description="an xml version of a Simple
Assembly model" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn.xsd">
 <solver-params comment="This is a test case" conv_val="0.00001"
it_limit="50" print_int="1" underrelax_coeff="0.8"/>
 <processor name="SimplePr1">
 <processor-params multiplicity="1"/>
 <task name="SimpleT1">
 <task-params mult="3" scheduling="ref"/>
 <entry name="SimpleE1">
 <entry-activities>
 <activity name="SimpleE1_ph1">
 <activity-params host-demand-mean="1"/>
 <synch-call dest="S1_SingleE2" calls-mean="1"/>
 <synch-call dest="S1_SingleE3" calls-mean="2"/>
 <synch-call dest="SimpleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SimpleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="SimpleT3">
 <task-params mult="2" activity-graph="NO"/>
 <entry name="SimpleE3">
 <entry-activities>
 <activity name="SimpleE3_ph1">
 <activity-params host-demand-mean="1.5"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SimpleE3_ph1</phase1>
 </activity-sequence>
 </entry-activities>

 82

 </entry>
 </task>

 <task name="S1_SingleT1">
 <task-params mult="1" activity-graph="NO" scheduling="ref"/>
 <entry name="S1_SingleE1">
 <entry-activities>
 <activity name="SingleE1_ph1">
 <activity-params host-demand-mean="1.0"/>
 <synch-call dest="S1_SingleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="S1_SingleT2">
 <task-params mult="4" activity-graph="NO"/>
 <entry name="S1_SingleE2">
 <entry-activities>
 <activity name="SingleE2_ph1">
 <activity-params host-demand-mean="5.5"/>
 <synch-call dest="SimpleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE2_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="S1_SingleE3">
 <entry-activities>
 <activity name="SingleE3_ph1">
 <activity-params host-demand-mean="1"/>
 <synch-call dest="SimpleE4" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE3_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="SimplePr2">
 <task name="SimpleT4">
 <task-params activity-graph="NO"/>
 <entry name="SimpleE4">
 <entry-activities>
 <activity name="SimpleE4_ph1">
 <activity-params host-demand-mean="5.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SimpleE4_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>

 83

 </task>
 </processor>

</lqn-model>

In the output, there are no slots or interfaces. The elements of the sub-model have been

plugged into the system model. The tasks and entries have been renamed by prefixing the

slot id “S1” in this case (e.g. S1_SingleT1). The calls in the system model and sub-model

have been correctly directed. (e.g. the calls that are in italic font have been directed.

SimpleE1 is connected to S1_SingleE2 and S1_SingleE3 instead of to S1.service1 and

S2.service2) The output model is very similar to the graphical one in Figure 3-18 except for

no interfaces.

The following test case is adopted from the example in Figure 3-17 and the inner sub-

model shown in Figure 3-16. The XML document is very similar to the previous assembly

model except that it has interfaces. The slot and bindings are listed in List 3-2. The input

and output document are listed in Appendix B.2 and B.3 Again, after running the

assembling tool, the interfaces of the inner component have disappeared. The slot has also

disappeared.

These output XML models were validated against the schema lqn.xsd and lqn-sub.xsd

and the results indicate they are all valid.

All the output files were compared to those that were created manually from the sub-

models and assembly models. The comparison indicates they are the same.

4.5.2 Validation of xml2LQN

The validation of this tool involves all the syntactic elements that are defined in the

LQN model in XML language. These elements include:

• Solver parameters: comment on the model, convergence value, maximum number of

iterations, print interval and under-relaxation coefficient.

 84

• Processor parameters: scheduling type, multiplicity, quantum, speed factor and

replication number.

• Task parameters: task scheduling type, think time, priority, multiplicity and replication

number.

• Entry parameters: arrival rate, priority, coefficient of variation, max-service-time, phase

type (Deterministic or Stochastic), fan-in, fan-out, service time, synchronous calls,

asynchronous calls, forwarding calls, think time and possible starting activity.

• Activity parameters: service time, coefficient of variation, phase type, think time,

synchronous calls and asynchronous calls.

• Activity Precedence relationship: sequential, OR-fork, OR-join, And-fork, And-join

and loop.

The command to invoke this tool is as follows:

xml2LQN <xml document> [output model]

If there is no specified output model name, the default one will have the same file name

as the XML file except that the extension name is different. The output model has a default

extension name lqn.

The output models in LQN language were compared to those that were manually

created. The comparisons indicate that they are exactly the same. Below some examples are

given that demonstrate this.

The first case adopts the example with the graphical representation shown in Figure 4-5

and the source document is in List 4-2. The source document is named as list4-2.xml. In

this example there are no activities involved. Run the following command.

xml2LQN List4-2

 85

 The output is List4-2.lqn which is listed below. The output is exactly the same as in

List 4-1 except that the comments are removed because they are ignored in the XML

document list4-2.xml.

List 4-5 Output model List4-2.lqn from transforming List4-2.xml

#This is the output from xml2LQN
G
"This is a test case"
0.00001
50
1
0.8
-1
P 0
p P1 f
p P2 f
p P3 f
-1
T 0
t UIF r user -1 P1 m 10
t T2 n e1 e2 -1 P2
t T3 n ex -1 P2
t T4 n e3 -1 P3 m 10
-1
E 0
s user 1.0 -1
y user e1 5 -1
y user e2 20 -1
s e1 0.04 -1
y e1 ex 3 -1
s e2 0.2 -1
y e2 ex 2 -1
s ex 0.9 -1
y ex e3 4 -1
s e3 0.05 -1
-1

The second test case has involved lots of activities: sequential, OR-fork, AND-fork,

AND-join and looping activities. The original model in LQN language is listed in the

following List 4-6 below, which can also be found at

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/. The model in XML language is

listed in List 4-7 and the file is named activity-test.xml. Run the following command.

xml2LQN activity-test activity

 86

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/

 The output activity.lqn is listed in List 4-8.

List 4-6 The original LQN model activity-test in LQN language

#This template documents the use of activities in depth
G "Activity template" 1e-06 50 5 0.9 -1

P 0
 p UserP f i
 p ServerP s #processor sharing at the server
 p Disk1P f
 p Disk2P f
-1

T 0
 t User r user -1 UserP z 50 m 50
 t Server n server -1 ServerP m 4 #4 threads with activities
 t BigLoop n bigLoop -1 ServerP i
 #pseudo-task for a complex loop pattern
 t Disk1 n disk1read disk1write -1 Disk1P
 t Disk2 n disk2read disk2write -1 Disk2P
-1

E 0
 s user 1.0 -1
 f user 1 -1
 y user server 1 -1 #one request to the server per cycle
 A server serverStart #entry server is defined by
 #activities, with the first one being serverStart
 A bigLoop bigLoopStart
 s disk1read 0.04 -1 #operation time of this entry
 s disk1write 0.04 -1
 s disk2read 0.03 -1
 s disk2write 0.03 -1
-1

#Optional sections for definition of activities
One section for each task that has activities, beginning A TaskName
list of activity parameters, using the syntax for entry parameters,
but with just one value and no terminator -1
: (separator), then a section for precedence among activities
Syntax for precedence:
a1 -> a2 for sequence
a1 -> a2 & a3 ... AND-fork (any number)
a1 & a2 ... -> a3 AND join
a1 & a2 ... -> a3 & a4 ... AND join followed by AND fork
a1 -> (prob2)a2 + (prob3)a3 ... OR fork (any number, with
#probabilities)
a1 -> meanCount*a2,a3....for a repeated activity a2, followed by a3
(notice that activities that follow a2 are inside the loop)
a6[entryName] indicates that after a6, a reply will be sent
to entryName

 87

A Server
 s serverStart 0.0
 #every activity that is used must have a host demand
 s seqInit 0.3
 s parInit 0.1
 s parA 0.05
 y parA disk1read 1.3 #average of 1.3 read operations
 s parB 0.08
 y parB disk2read 2.1
 s parReply 0.01
 s loopOperation 0.1
 y loopOperation disk1read 0.7
 s loop2 0
 f bigLoopDriver 1 #exactly one call operation (deterministic)
 y bigLoopDriver bigLoop 1
 #trigger the pseudo-task for the complex loop
 s seqReply 0.005
 s loopEnd 0
:
 serverStart -> (0.4)seqInit + (0.6)parInit;
 parInit -> parA & parB;
 parA & parB -> parReply;
 parReply[server]; #reply for the parallel branch
 seqInit -> 3.5* loopOperation, loopEnd;
 loopOperation -> loop2; #this activity is also in the loop
 loopEnd -> 1.2* bigLoopDriver, seqReply;
 #big loop is executed avge 1.2times
 seqReply[server] #reply for the sequential branch
-1
A BigLoop #activities for the loop pseudo-task
(a loop pseudo-task is needed if there is a fork-join within a loop)
s first 0.01 #execute
f second 1 #deterministic sequence in this activity
y second disk1write 1 #exactly one file write on this branch
y third disk2write 1 #average of one write on this branch
s fourth 0.13 #execute only
:
bigLoopStart -> first;
first -> second & third;
second & third -> fourth;
fourth[bigLoop]
#generate the reply from the pseudo task, ending the loop op
-1

List 4-7 The LQN model activity-test in XML language

<lqn-model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn.xsd">
 <solver-params comment="Test case of activity-templ"
conv_val="0.000001" it_limit="50" print_int="5" underrelax_coeff="0.9"/>
 <processor name="UserP">
 <processor-params multiplicity="i"/>

 88

 <task name="User">
 <task-params mult="50" scheduling="ref" activity-graph="NO" think-
time="50"/>
 <entry name="user">
 <entry-activities>
 <activity name="user_ph1">
 <activity-params host-demand-mean="1.0"

call-order="DETERMINISTIC"/>
 <synch-call dest="server" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>user_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="ServerP">
 <processor-params scheduling="ps"/>
 <task name="Server">
 <task-params mult="4" activity-graph="YES"/>
 <entry name="server">
 <entry-activities>
 <activity name="serverStart">
 <activity-params host-demand-mean="0.0"/>
 </activity>
 <activity name="seqInit">
 <activity-params host-demand-mean="0.3"/>
 </activity>
 <activity name="parInit">
 <activity-params host-demand-mean="0.1"/>
 </activity>
 <activity name="parA">
 <activity-params host-demand-mean="0.05"/>
 <synch-call dest="disk1read" calls-mean="1.3"/>
 </activity>
 <activity name="parB">
 <activity-params host-demand-mean="0.08"/>
 <synch-call dest="disk2read" calls-mean="2.1"/>
 </activity>
 <activity name="parReply">
 <activity-params host-demand-mean="0.01"/>
 </activity>
 <activity name="loopOperation">
 <activity-params host-demand-mean="0.1"/>
 <synch-call dest="disk1read" calls-mean="0.7"/>
 </activity>
 <activity name="loop2">
 <activity-params host-demand-mean="0"/>
 </activity>
 <activity name="bigLoopDriver">
 <activity-params host-demand-mean="0.0"

call-order="DETERMINISTIC"/>
 <synch-call dest="bigLoop" calls-mean="1"/>
 </activity>
 <activity name="seqReply">

 89

 <activity-params host-demand-mean="0.005"/>
 </activity>
 <activity name="loopEnd">
 <activity-params host-demand-mean="0"/>
 </activity>
 <activity-sequence type="GRAPH">
 <first-activity name="serverStart"/>
 <precedence>
 <pre>serverStart</pre>
 <post-OR>
 <activity name="seqInit" prob="0.4"/>
 <activity name="parInit" prob="0.6"/>
 </post-OR>
 </precedence>
 <precedence>
 <pre>parInit</pre>
 <post-AND>
 <activity name="parA"/>
 <activity name="parB"/>
 </post-AND>
 </precedence>
 <precedence>
 <pre-AND>
 <activity name="parA"/>
 <activity name="parB"/>
 </pre-AND>
 <post>parReply</post>
 </precedence>
 <precedence>
 <pre-LOOP>seqInit</pre-LOOP>
 <post-LOOP head="loopOperation" count="3.5" end="loopEnd"/>
 </precedence>
 <precedence>
 <pre>loopOperation</pre>
 <post>loop2</post>
 </precedence>
 <precedence>
 <pre-LOOP>loopEnd</pre-LOOP>
 <post-LOOP head="bigLoopDriver" count="1.2" end="seqReply"/>
 </precedence>
 <reply-activity>seqReply</reply-activity>
 <reply-activity>parReply</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="BigLoop">
 <task-params mult="i" activity-graph="YES"/>
 <entry name="bigLoop">
 <entry-activities>
 <activity name="first">
 <activity-params host-demand-mean="0.01"/>
 </activity>
 <activity name="second">
 <activity-params host-demand-mean="0.0"

 90
call-order="DETERMINISTIC"/>

 <synch-call dest="disk1write" calls-mean="1"/>
 </activity>
 <activity name="third">
 <activity-params host-demand-mean="0.0"/>
 <synch-call dest="disk2write" calls-mean="1"/>
 </activity>
 <activity name="fourth">
 <activity-params host-demand-mean="0.13"/>
 </activity>
 <activity-sequence type="GRAPH">
 <first-activity name="bigLoopStart"/>
 <precedence>
 <pre>bigLoopStart</pre>
 <post>first</post>
 </precedence>
 <precedence>
 <pre>first</pre>
 <post-AND>
 <activity name="second"/>
 <activity name="third"/>
 </post-AND>
 </precedence>
 <precedence>
 <pre-AND>
 <activity name="second"/>
 <activity name="third"/>
 </pre-AND>
 <post>fourth</post>
 </precedence>
 <reply-activity>fourth</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Disk1P">
 <task name="Disk1">
 <task-params activity-graph="NO"/>
 <entry name="disk1read">
 <entry-activities>
 <activity name="disk1read_ph1">
 <activity-params host-demand-mean="0.04"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>disk1read_ph1</phase1>
 <reply-activity>disk1read_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="disk1write">
 <entry-activities>
 <activity name="disk1write_ph1">
 <activity-params host-demand-mean="0.04"/>
 </activity>
 <activity-sequence type="PH1PH2">

 91
 <phase1>disk1write_ph1</phase1>

 <reply-activity>disk1write_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Disk2P">
 <task name="Disk2">
 <task-params activity-graph="NO"/>
 <entry name="disk2read">
 <entry-activities>
 <activity name="disk2read_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>disk2read_ph1</phase1>
 <reply-activity>disk2read_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="disk2write">
 <entry-activities>
 <activity name="disk2write_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>disk2write_ph1</phase1>
 <reply-activity>disk2write_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
</lqn-model>

List 4-8 The output model activity.lqn

#This is the output from xml2LQN
G
"Test case of activity-templ"
0.000001
50
5
0.9
-1
P 0
p UserP f i
p ServerP s
p Disk1P f
p Disk2P f
-1
T 0
t User r user -1 UserP z 50 m 50
t Server n server -1 ServerP m 4

 92

t BigLoop n bigLoop -1 ServerP i
t Disk1 n disk1read disk1write -1 Disk1P
t Disk2 n disk2read disk2write -1 Disk2P
-1
E 0
s user 1.0 -1
f user 1 -1
y user server 1 -1
A server serverStart
A bigLoop bigLoopStart
s disk1read 0.04 -1
s disk1write 0.04 -1
s disk2read 0.03 -1
s disk2write 0.03 -1
-1
A Server
s serverStart 0.0
s seqInit 0.3
s parInit 0.1
s parA 0.05
y parA disk1read 1.3
s parB 0.08
y parB disk2read 2.1
s parReply 0.01
s loopOperation 0.1
y loopOperation disk1read 0.7
s loop2 0
f bigLoopDriver 1
s bigLoopDriver 0.0
y bigLoopDriver bigLoop 1
s seqReply 0.005
s loopEnd 0
:
serverStart -> (0.4)seqInit+(0.6)parInit;
parInit -> parA&parB;
parA&parB->parReply;
seqInit -> 3.5*loopOperation,loopEnd;
loopOperation -> loop2;
loopEnd -> 1.2*bigLoopDriver,seqReply;
seqReply[server];
parReply[server]
-1
A BigLoop
s first 0.01
f second 1
s second 0.0
y second disk1write 1
s third 0.0
y third disk2write 1
s fourth 0.13
:
bigLoopStart -> first;
first -> second&third;
second&third->fourth;
fourth[bigLoop]
-1

 93

Again, the output in List 4-8 is exactly the same as in List 4-6 except the comments are

removed in List 4-8. There are two other test cases that were experimented but not listed

here. One case that involves OR-fork and OR-Join is listed in par-db.xml in Appendix B.5.

The output is named par-db.lqn in Appendix B.6. The other test case involves task

activities where activities from different entries in a task join at a point. The model in XML

language named as task-act.xml is attached in Appendix B.7. The output model is named

task-act.lqn listed in Appendix B.8. Both examples were originated from those in Greg

Franks’s Ph.D. thesis [10].

4.5.3 Validation Against the Combined Tool –LQComposer

The LQComposer is composed of the LQNAssemble and xml2LQN. It takes the

assembly model in XML language as the input and the output is a model in the previous

LQN language. This output model is ready to be solved by LQN solvers provided that the

XML documents are all correct in syntax and semantics.

 The validation here takes the assembly model in List 4-3. The command to invoke this

is as follows.

LQComposer SimpleAbl

There will be an intermediate file called SimpleAbl_flt.xml which is the output from

the LQNAssemble.

The final output file is SimpleAbl.lqn which is attached in Appendix B.4. It is the same

as the one that was created manually.

4.5.4 Conclusions

The tools have been tested against many cases and the results show that they work

properly. The second tool xml2LQN has been tested against all the syntactic elements in

the XML schema and the output models were compared to the original ones. They are

exactly the same. Currently, the output model can be solved by LQNS and ParaSRVN. The

 94

features of run-control and plot-control which are used in SPEX have not been

implemented in this thesis work.

 95

Chapter 5 Industrial Case Study

This section presents a case study of a Management Information System, based loosely

on a commercial software product. A conceptual model is introduced and the component-

based approach is applied. The performance results and analysis are presented later in this

chapter.

5.1 A Conceptual Performance Model for a Management Information System (MIS)

The purpose of this study is to examine feasibility and scalability issues for a

component based Management Information System (MIS). This system is mainly used to

manage and monitor data that are collected and stored in an organization. It presents many

kinds of reports and analysis for many different purposes. This system is a typical three-

tiered E-Business system. Clients send requests to the web server. The web server does

some processing and then sends requests to the application server. The application server is

responsible for executing the specific business logic and it needs to access data from a

database back-end. After the results have been computed, they are sent back to the clients

through the web server. In this system, there may be several application nodes. Therefore,

there is a scheduler which schedules and dispatches the requests using round-robin policy.

An application node includes a variable number of report servers. Each report server has 2

separate processes. There are two main types of requests in this system, namely reporting

request and viewing request respectively.

Based on the preliminary architecture of the software system, a conceptual model has

been built. This model is shown in Figure 5-1 below. In this model, there is one set of users

sending two types of requests, Reporting Service requests and Viewing Service requests.

The scenario paths of these two services have been separated, using different entries in the

tasks, labeled RS and VS within the entry names. Task DSP is for dispatching requests.

Entry DispRS dispatches reporting service requests while DispVS dispatches viewing

requests. There are two types of threads serving the reporting service. One of them serves

small reporting requests and the other one serves big reporting requests. Tasks RSClient

and VSClient are pseudo tasks. They do not represent any processing, delay or system

 96

functions. They are only used to capture and report the service times of Reporting requests

and Viewing requests respectively.

There are 6 kinds of processors in the model as explained below.

• ClientP represents the processor on which Client tasks (Client, RSClient and

VSClient) are executed.

• ScheduP refers to the processor that hosts the task of Scheduler.

• WebP is the processor that hosts the task of WebS (Web Server).

• AsP is the processor on which application server tasks are executed. (DSP is the

dispatching task. SmallReport1 and SmallReport2 are two tasks processing small

reporting requests. BigReport1 and BigReport2 are tasks processing big reporting

requests. Big reports are segregated so they can be scheduled separately. ViewData is

the task serving viewing requests. ReportGen is for generating reports.)

• CachP is the processor that hosts the task of CacheInfo which is the cache server for

caching reusable data.

• DBP refers to the processor on which database server tasks are running. It serves big

report data request, small report data request and caching data request. Caching data

means those reusable results data that are stored for caching server task CacheInfo to

access.

 97

DBServer CachOP

5 15

Request Client

VSRequest VSClient RSRequest RSClient

0.10.40.1
0.4

2

ReportGen GenReport

ViewDataView

DSP DispVS DispRS

BigRep2 Big-
Report2

SmallR2 Small-
Report2

BigRep1 Big-
Report1

SmallR1 Small-
Report1

1

Scheduler SchedVS SchedRS

Figure 5-1 A Conceptual Model for the MIS

AsP ScheduP

1

WebSAcceptVSAcceptRS

1

WebP

DBP SmallOP BigOP

cache CacheInfo

ClientP

CachP

 98

This study was conducted when the system was planned. This application system needs

to meet some performance goals as listed below.

• The mean response time for a viewing request that a user perceives should be less

than 10 seconds. For a reporting request, it should be less than 1 minute.

• It must be able to scale up to accept 300 concurrent users.

• Cost is important; it can be measured by the number of application nodes.

Therefore, this case study is carried out regarding the following performance issues.

1. System capacity and scalability. What will the system response time be for different

number of concurrent users?

2. The limiting factors of performance. What’s the bottleneck in the system?

3. Configuration.

• What’s the impact of multi-threading levels? Which one should be multi-

threaded?

• What’s the impact of adding more hardware or more powerful hardware?

Which processor has the strongest impact on system performance?

• What about replication?

To avoid revealing confidential data, the values of the workload and traffic parameters

of the model described have been invented.

5.2 The Component Based Approach to Model the MIS

This section describes a component based approach to model the MIS system. This

approach is based on a system assembly model and a library of sub-models. In this case

study, since the main concern is on the application server, the web server and the database

server are simply modeled as single tasks. However, if necessary, the web server and the

database server can also be modeled in detail. For instance, the web server component

might be modeled as shown in Figure 2-1 in Chapter 2. In paper [9], the authors have

described an approach to derive the model parameters from measurement for the layered

 99

queuing model of the web server. In paper [31], a method has been elaborated on modeling

a distributed database system using layered queuing network modeling technique.

The MIS case in the thesis has involved one major sub-model for the application server.

The rest are represented as single tasks.

Instead of this single sub-model, there could be a collection of sub-models for different

products in a software product line. For instance, there may be no caching involved. Or it

may need to access some additional databases. Other possible options may be that it needs

to access additional servers for specific analysis (e.g. for data mining or optimization). By

taking different parameters, it can also model the application node whose internals may

have different software but still accomplish the similar functionalities with different

performance attributes.

5.2.1 The Assembly Model for the MIS

The assembly model shown in Figure 4-2 has been adapted to this MIS as shown below

in Figure 5-2. The label AppS is the slot id for the application server component. The

DBServer now has three entries serving three different kinds of requests, big report request,

small report request and caching data request. The slot for application server has two

incoming interfaces for processing reporting request and viewing request respectively. It

has three outgoing interfaces that send three kinds of requests which are named as bigReq

for big report request, smallReq for small report request and cachReq for caching data

request. These interfaces bind the corresponding interfaces of the application server sub-

model.

The XML document for this assembly model is listed in Appendix C.1 with the name

of MISAssemble.xml. Some of the parameters in this model presented in Appendix C are

made up in order to keep the model anonymous.

 100

DBP

CachP

WebP

ClientP

cache Cache-
Info

5 15

Request Client

VSRequestVSClient RSRequest RSClient

bigReq smallReq cachReq

cachReq
smallReqbigReq

CompuRS CompuVS

VSCtl

CachOPSmallOP DBServer BigOP

AcceptVS WebServerAcceptRS

solver-params plot-control run-control

AppServer

AppS
RSCtl

Figure 5-2 The Assembly Model for the MIS

5.2.2 The Application Server Component Model

The internals of the application server component model for the MIS are shown in

Figure 5-3 below. The internal processor ScheduP is not replaceable, while processor AsP

is replaceable. The XML document for this component model is listed in Appendix C.2

with the name of AppComp.xml.

 101

cachReq bigReq smallReq

VSctl RSctl

Figure 5-3 The Component Model for the Application Server

0.10.40.1
0.4

2

ReportGen GenReport

ViewDataView

DSP DispVS DispRS

BigRep2 Big-
Report2

SmallR2 Small-
Report2

BigRep1 Big-
Report1

SmallR1 Small-
Report1

1

AsP

ScheduP
Scheduler SchedVS SchedRS

5.2.3 Resulting Model from LQComposer

Invoke the tool by running the following command from the DOS environment.

LQComposer MISAssemble

The final resulting model is in the file named MISAssemble.lqn. This file is attached in

Appendix C.3. There is an intermediate file named MISAssemble_flt.xml which is the

output from LQNAssemble, the first part of the LQComposer. This final model is

compared to a model that was built manually and they are the same except that, now the
 102

tasks that are within the Application Server have prefix of ‘AppS’. The final model can be

displayed by Jlqndef (which is an editing tool for LQN models) and is shown in Figure 5-4.

The performance results obtained from this model are the same as those from the manually

created model.

This tool has also created a model in which the replaceable processors are replaced by

the system processor CachP. In other words, in this model, all the tasks hosted by AsP and

the task hosted by CachP share one system processor. This is one of the system deployment

options. It is also convenient to create models that have multiple replicated application

nodes.

 103

 Figure 5-4 Graphical Representation of MISAssemble.lqn

 104

5.3 Performance Results for the Base Case

This section first describes the performance results of the base case. From the results, it

identifies some performance problems. Then a series of tests have been devised to see how

the system performance could be affected by different changes such as multithreading,

adding more processors as well as different configurations. These will be described in the

following sections.

The base case is as follows:

• A user session includes an average of 20 requests, divided between 5 Reporting

service requests and 15 Viewing service requests.

• The Viewing service, on average, needs to access the cache server CacheInfo just

once.

• For the Reporting service, its report generating service, on average, needs to access

the cache server CacheInfo twice.

• There are 2 report servers in the system.

• Web Server, Scheduler, Dispatcher, Viewing Service and Database latency are

modeled as infinite threaded, pure delays. Some of these are infinite threaded but

have a single processor. So they may have processor contentions.

• The caching task CacheInfo is single threaded while AsP (the processor of

Application Server) has 2 processors.

The results of system response time (in seconds) for the two types of requests are

shown in Figure 5-5 below. The results of system throughput (responses per second) are

shown in Figure 5-6.

 105

Response time for RS &VS

0
50

100
150
200
250
300
350

0 20 40 60 80 100 120 140 160

No. of users

R
es

po
ns

e
tim

e
(s

ec
)

Response time of RS Response time of VS

Figure 5-5 Response time of the Base Case

System throughput

0.05

0.1

0 20 40 60 80 100 120 140 160

No. of users

th
ro

ug
hp

ut
(/s

ec
)

Throughput

Figure 5-6 System throughput of the Base Case

The response times are quite long for the Reporting service. However, this includes

creating quite large reports, possibly hundreds of pages, so some reports will take a long

time. The results also show that, in the base case, the system is saturated at CacheInfo

(Cache Server) even when it is lightly loaded. Since each viewing service needs access to

CacheInfo, its response time is a little larger than Reporting service due to the fact that

 106

only 20% of the Reporting requests need access to CacheInfo. However, when the

number of users increases, Report Server is also saturated which causes long delay to the

Reporting requests. Report Server becomes saturated because it has to wait longer for

CacheInfo. So CacheInfo is the real bottleneck which “pushes back” to its upper layer,

the Report Server. When Report Server becomes saturated, viewing service is much

quicker than reporting service.

In order to see how the performance can be improved, a series of changes have been

made to the Base Case. These changes can be divided into three groups.

• Group I. Changes involving multithreading and/or adding processors.

• Group II. Changes involving replications and multithreading.

• Group III. Study of the limiting factors on the system performance.

The results and analysis of these changes are presented in the following sections.

5.4 Performance Results with Multithreading

In the Base Case, there are software bottlenecks in the system. Hardware devices are

not constraining. In order to demonstrate this, the following test case has been designed in

which the computing power of AsP has been increased.

Case I-1 The number of processors of AsP increases to 4

In this case, the rest of the model remains the same as in the Base Case. The results are

shown below in Figure 5-7 and Figure 5-8.

 107

Response time for RS & VS

0
50

100
150
200
250
300
350
400

0 20 40 60 80 100 120 140 160

No. of users

R
es

po
ns

e
tim

e(
se

c)

Response time for RS Response time for VS

Figure 5-7 System response time for Case I-1

System throughput

0.05

0.1

0 20 40 60 80 100 120 140 160

No. of users

th
ro

ug
hp

ut
(/s

ec
)

Figure 5-8 System throughput for Case I-1

Results of Case I-1 are almost the same as the previous Base Case. CacheInfo is still a

Software Bottleneck. The most effective way to eliminate this kind of performance

problem is to make the software bottleneck task multithreaded. Therefore the next case

has been conducted in which CacheInfo is multithreaded.

 108

Case I-2 CacheInfo is multithreaded to 10.

In this case, the rest of the model remains the same as in the Base Case. The results of

this case are shown in Figure 5-9 and Figure 5-10 below.

System response time for RS & VS

0

10

20

30

40

50

60

0 20 40 60 80 100 120 140 160

No. of users

R
es

po
ns

e
tim

e(
se

c)

Response time for RS Response time for VS

Figure 5-9 System response times of RS & VS for Case I-2

System throughput

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160

No. of users

th
ro

ug
hp

ut
(/s

ec
)

throughput

Figure 5-10 System throughput for Case I-2

 109

The results in this case are very encouraging. The response time of both reporting

request and viewing request has improved significantly. System throughput is nearly 10

times higher. In addition, Viewing service is always much quicker than Reporting Service.

In this case, the bottleneck has moved to Report Server, especially at SmallR1 and

SmallR2 threads. Since this system bottleneck occurs on software tasks, not on hardware

processors, increasing the number of processors won’t improve the system. This test was

done but not listed here.

The results show that the utilization of CachP (CacheInfo processor) reaches 70%

when the number of users increases to 150. This is the highest processor utilization in the

system.

In order to see if more threads of CacheInfo can bring better response time for the

system, the following case is experimented.

Case I-3 CacheInfo is multithreaded to 20.

In this case, the rest of the model remains the same as in the base case. The results of

this case are shown in Figure 5-11 and Figure 5-12 below.

System response time for RS and VS

0
10
20
30
40
50
60
70

0 20 40 60 80 100 120 140 160

No. of users

re
sp

on
se

 ti
m

e(
se

c)

Response time of RS Response time of VS

Figure 5-11 System response time of RS and VS for Case I-3

 110

System throughput

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 20 40 60 80 100 120 140 160

No. of users

th
ro

ug
hp

ut
(/s

ec
)

Figure 5-12 System throughput for Case I-3

The results of this case have not shown much difference compared to the previous Case

I-2. This is because the system is now saturated at Report Server which cannot be solved by

increasing the number of threads of CacheInfo. The results of this case indicate that on

average, only 9 threads of CacheInfo have been utilized. In this case, it also shows that

CacheInfo processor can become a future hardware bottleneck since it is now the most

heavily utilized processor in the system. Its utilization reaches 74% under 150 concurrent

users.

In order to see how much can be gained if CacheInfo, SmallReport1 and SmallReport2

are all multithreaded, the following case is conducted.

Case I-4 CacheInfo is multithreaded to 20. SmallReport1 and SmallReport2 are

multithreaded to 2.

The rest are the same as in base case. The results of this case are shown in Figure 5-13

and Figure 5-14 below.

 111

System response time of RS and VS

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160

No. of users

re
sp

on
se

 ti
m

e(
se

c)

Response time of RS Response time of VS

Figure 5-13 System response time of RS and VS for Case I-4

System throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140 160

No. of users

th
ro

ug
hp

ut
(/s

ec
)

Figure 5-14 System throughput for Case I-4

The results of this case indicate that:

• Now the bottleneck has moved to the threads of BigReport1 and BigReport2 in

Report Servers.

• In this case, when the number of users increases to 50, CachP Processor has

become the hardware bottleneck in the system since its utilization reaches 90%.

 112

• If AsP has only one processor, it is also a hardware bottleneck since its utilization

approaches 90%.

Conclusions from the Base Case to Group I

By analyzing the results of these tests, the following observations can be made.

1. There are actually two software bottlenecks in the system as shown in Figure 5-

15 below. The open rectangles above the tasks represent queues of the task. The

shaded areas represent the potential bottlenecks. The bottlenecks are moving

back and forth between two parts in the system. The CacheInfo process is the

first software bottleneck and Report Server is the second one. By multithreading

these software processes, it improves the system a lot. System response time

decreases significantly and higher throughput can be obtained.

2. There could be a hardware bottleneck in the system, too. The CacheInfo

processor CachP could become a hardware bottleneck if more threads of

CacheInfo are available. To solve this, use a multiprocessor CachP.

Figure 5-15 Bottlenecks in the system

3

2

1

III CachP

AsP

BigReport

BigRep

CacheInfo

Cache

SmallReport

SmallR

(Circled numbers indicate the orders that the task or processor may become a bottleneck in the system)
 113

The Figure 5-15 indicates that if the thread is increased on one side, then the software

bottleneck moves to the other side. Both can be increased together and this is examined

later in Group III in Section 5.6.

5.5 Performance Results with Replicated Application Nodes

This group of experiments is concerned with replication issues using multiple

processors. There are two possible ways to deploy this application system. One deployment

could be that the Application Server is deployed on one single node that has powerful

computing capabilities such as having multi-processors. The other one could be that the

Application Server is replicated on several nodes with each node less powerful, having

single processor.

This group of tests replicated the processor of AsP and the tasks within the dotted box

as shown in Figure 5-1. Each replicated application node has one processor. The results are

compared with those in the Base Case and Group I.

Case II-1 Two Replicated Nodes

The parameters for this model are the same as the base case except that the tasks hosted

by the processor of AsP are replicated to 2. No multithreading has been introduced in this

case. The results are then compared with the Base Case as shown in Figure 5-16, Figure 5-

17 and Figure 5-18.

 114

System response time of RS for
Case II-1 and the Base Case

0
100
200
300
400

0 50 100 150 200

No. of users

re
sp

on
se

 ti
m

e(
se

c)

response time of RS in Case II-1 response time of RS in the Base Case

Figure 5-16 System response time of RS in Case II-1 and the Base Case

System response time of VS in Case II-1
and Base Case

0

50

100

150

200

0 20 40 60 80 100 120 140 160

No. of users

re
sp

on
se

 ti
m

e(
se

c)

 response time of VS in Case II-1 response time of VS in Base Case

Figure 5-17 System response time of VS in Case II-1 and the Base Case

 115

System throughput in Case II-1 and Base Case

0.04

0.06

0 20 40 60 80 100 120 140 160

No. of users

th
ro

ug
hp

ut
(/s

ec
)

throughput in Case II-1 throughput in Base Case

Figure 5-18 System throughput in Case II-1 and Base Case

By analyzing these results, the following observations can be made.

• Under light loads, this replicated Case II-1 has slightly lower throughput and

almost the same response time as those in the Base Case.

• Under heavy loads, replication gives more throughput and much smaller response

time for reporting requests, but have somewhat longer response time for viewing

service requests. This is because viewing requests are being flooded out by

reporting requests when they contend for the CacheInfo.

This shows that response times of two types of requests are sensitive to this kind of

configuration. It takes longer for a Viewing request while shorter for a Reporting request

and this is contrary to the Base Case. It also shows that Report Server saturates a little

more slowly than in the Base Case. The different behavior in saturation is due to the

heavier loads on CacheInfo, which affects viewing service requests more. In order to

make the task CacheInfo more capable of handling more requests, multithreading is

introduced in the next test case.

Case II-2 Two Replicated Nodes and 10 Threads of CacheInfo.

In this case, there are again two replicas of the processor of AsP and the corresponding

tasks on that processor. Now the CacheInfo task is multithreaded to 10 threads. Figure 5-19

and Figure 5-20 show the results.
 116

S y s te m re s p o n s e t im e o f R S & V S

0
5

1 0
1 5
2 0
2 5

0 5 0 1 0 0 1 5 0 2 0 0
N o . o f u s e rs

re
sp

on
se

 ti
m

e(
se

c)

re s p o n s e t im e o f R S re s p o n s e t im e o f V S

Figure 5-19 System response time of RS and VS for Case II-2

System throughput

0
0.1
0.2
0.3
0.4
0.5
0.6

0 50 100 150 200
No. of users

th
ro
u
gh
pu
t(
/s
ec

Figure 5-20 System throughput for Case II-2

These results indicate that the process of CacheInfo is still the software bottleneck in

the system. It can also be predicted that the next software bottleneck is Report Server,

specifically, the BigReport threads and the hardware bottleneck will be the CachP

processor. Compared to Case I-2 in which CacheInfo is multithreaded to 10 and AsP has

2 processors, the task of CacheInfo is saturated faster in this case while Report Server is

 117

saturated more slowly. The response time of Reporting request is much shorter while the

time of Viewing request is a little longer. System throughput has improved quite a bit in

this case.

Conclusions from Groups II

By analyzing the results from Group II and comparing them with the Base Case and

Group I, the following conclusions can be drawn.

Replication of AsP makes very little difference to the overall throughput. CacheInfo is

still the software bottleneck. However, it does shift the response time between two classes

of requests; improving the RS (Reporting Service) response time to less than half (which

makes little use of CacheInfo) and making the VS (Viewing Service) a little bit longer.

These changes are substantial.

5.6 Scaling Limits

It may be that more threads of the Report Server and CacheInfo could be usefully

provided. To examine how many would be utilized, if they were there, some studies were

done that assumed infinite numbers of threads at the CacheInfo and at two Report Servers,

each with SmallReport and BigReport thread pools. The number of AsP processors was

varied, while an infinite processor pool was provided for CachP.

The results are shown in Figure 5-21, Figure 5-22 and Figure 5-23 respectively.

 118

System Potential Capacity(*)

0

100

200

300

400

0 2 4 6 8 10

No. of AsP available

N
o.

 o
f C

on
cu

rr
en

t U
se

rs

Figure 5-21 System Potential Capacity (*)

The results in figure indicate that the system can accept around 300 concurrent users

and meet the performance goals of delays for two types of requests provided that it has

enough resources. These resources include 8 AsP processors, about 100 threads of

CachInfo, 10 threads of SmallReport, 30 threads of BigReport and 6 CachP processors.

These required resouces are illustrated in Figure 5-23.

System Potential Throughput(**)

0

2

4

6

0 2 4 6 8

No. of AsP available

Th
ro

ug
hp

ut
 (/

se
c)

10

 Figure 5-22 System Potential Throughput (**) 119

System Resources Needed (***)

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3 4 5 6 7 8 9

No. of AsP available

R
es

ou
rc

es
 N

ee
de

d

CachP needed SmallReport threads needed
BigReport threads needed CacheInfo threads needed

Figure 5-23 System Resources Needed (***)

(*) System capacity refers to the maximum number of concurrent users that the system can
handle. The assumptions here are that the number of processors of AsP are available as
well as the required resources shown in Figure 5-23 are also provided.

(**)The maximum throughputs that can be obtained provided the number of processors of
AsP available and the required resources shown in Figure 5-23 are also provided.

 (***) System Resources Needed means those resources that are required in order to obtain
the maximum throughput and capacity provided that the number of processors of AsP are
available.

The results show that

• As more processors become available, more threads of Reporting services and

CacheInfo are required in order to obtain the maximum throughput of the system.

Otherwise, these will become the software bottleneck in the system.

• The capacity scales up smoothly, with additional threads of Reporting Service and

CacheInfo. It is quite interesting that the number of threads of CacheInfo required is

proportional to the number of AsP processors.

 120

 121

• The number of CachP processors required is the same as the number of AsP

processors. This shows that CachP processors could become the hardware

bottleneck if otherwise.

• More AsP processors will bring significant benefits to the system capacity only if

the CachP processors, and the numbers of threads of reporting service and

CacheInfo are scaled at the same time. In addition, many more threads of the

CacheInfo are required than that of reporting services.

• The results also indicate that considerably more Report Server and CacheInfo

threads are indicated, than are used in the previous experiments presented in this

chapter.

• Overall the design appears to be scalable if sufficient threads are provided.

 122

Chapter 6 Conclusions

This section draws the conclusions of the thesis work. It also points out some future

work.

6.1 Conclusions

In this thesis, an XML based language for describing performance sub-models and

assembly models have been developed which has been elaborated in Chapter 3. The

parameterized sub-model reflects the performance attributes of the software component in

different environments. Component sub-models are reusable, just as software components

themselves. The nesting component sub-model definition allows building sub-models

nestedly which is the case that a software component might consist of other components.

Since the model definition is based on XML language, it can present the model in a more

portable and understandable way. It also matches the structured LQN model in nature. As

many tools are now available supporting XML documentation, it makes applying LQN

models in a wider range of performance modeling.

An assembler tool and a methodology to automatically generate performance models

for component-based systems have been introduced and presented in this thesis. The design

and testing of the tools were described in Chapter 4. The assembly model derived from the

software architecture is reusable and adaptable. The assembly model for a generic E-

business application system can be applied to different applications that have their own

application servers. By changing the interfaces of the slot of application server and its

related bindings, a system model for the specific application can be obtained.

Finally, an industrial case study has been carried out and some substantial results have

been obtained. The case study was presented in Chapter 5. The tool has also been applied

to this case and it has demonstrated the automated process to create system models. The

analysis of the model was carried through to show how bottlenecks and sensitivity can be

investigated, and scalability plans can be evaluated.

 123

6.2 Limitations

Although the XML language can characterize structured data in a more understandable

way, it has the disadvantages of verbosity. Editing an LQN model in XML language needs

tool support. Otherwise, it could be a pain to write the lengthy document.

 Currently, the sub-model parameterization does not support the case where a slot can

be bound to a variable component. In other words, a component model cannot be passed in

as an argument to the slot. At current stage, the tool LQComposer cannot directly flatten a

nested model that involves multiple levels of nesting. It has to go through multiple steps to

accomplish this.

Although a sub-model can have a variable parameter of the task replication number, the

assembly tool has not calculated the corresponding values of fanin and fanout.

The output system model from the tool can be solved by LQNS and ParaSRVN. The

features of run-control and plot-control that are used in SPEX have not been implemented.

The tool and the methodology have not been applied to many different cases.

6.3 Future Research

The future work should improve the LQML to allow variable component bindings.

Improve the tool to be able to process multiple levels of recursions in the sub-model

definition, and to be able to generate models that incorporate run-control and plot-control

so that the output model can be solved by SPEX. Apply LQML to performance modeling,

especially to model product lines. Develop practical libraries of component sub-models.

 124

References

[1] F. Bause and P. S. Kritzinger. “Stochastic Petri nets: an introduction to the theory”,

Wiesbaden, Vieweg Verlag, Germany, 2002

[2] J. Bosch. “Design and use of software architectures; Adopting and evolving a product-

line approach”, Addison-Wesley, 2000

[3] X. Cai, M. R. Lyu, K. F. Wong, R. Ko, “Component-based software engineering:

technologies, development frameworks, and quality assurance schemes”, Proceedings

of APSEC 2000: Software Engineering Conference, 2000. Seventh Asia-Pacific, 5-8

Dec. 2000, pp 372 –379

[4] S. Chen, I. Gorton, A. Liu, Y. Liu, “Performance Prediction of COTS Component-

based Enterprise Applications”, Proceedings of 5th ICSE Workshop on Component-

Based Software Engineering: Benchmarks for Predictable Assembly,

http://www.sei.cmu.edu/pacc/CBSE5/liu-cbse5-29.pdf, Orlando, Florida USA, May

19-20, 2002

[5] J. Clark, “XSL Transformations (XSLT) Version 1.0”,

http://www.w3c.org/TR/xslt.html#section-Introduction, November, 1999

[6] P. Clements and L. Northrop. “Software Product Lines; Practices and Patterns”,

Addison-Wesley, 2000

[7] E. Connell, F. Knop and V. Rego, “ParaSol: A Multithreaded System for Parallel

Simulation Based on Mobile Threads”,

http://www.cs.purdue.edu/research/PaCS/ps/pswsc95.pdf, 1995 Winter Simulation

Conference

[8] O. Das, M. Woodside, "Evaluating Layered Distributed Software Systems

with Fault Tolerant Features", Performance Evaluation, v 45, issue 1, May 2001, pp

57 - 76.

[9] J. Dilley, R. Friedrich, T. Jin and J. Rolia. “Web server performance measurement and

modeling techniques.” Performance Evaluation, vol. 33, pp. 5-26. 1998

[10] G. Franks, "Performance Analysis of Distributed Server Systems", Report OCIEE-00-

01, Jan. 2000, PhD. thesis, Carleton University, Ottawa

http://www.sei.cmu.edu/pacc/CBSE5/liu-cbse5-29.pdf
http://www.w3c.org/TR/xslt.html
http://www.cs.purdue.edu/research/PaCS/ps/pswsc95.pdf

 125

[11] R. G. Franks, C. M. Woodside, "Effectiveness of Early Replies in Client-Server

Systems", Performance Evaluation, v 36-37, pp 165 - 184, 1999

[12] G. Franks, M. Woodside, "Performance of Multi-level Client-Server Systems with

Parallel Service Operations", Proc. First Int. Workshop on Software and Performance

(WOSP98), pp. 120-130, Santa Fe, October 1998

[13] G. Franks, A. Hubbard, S. Majumdar, J. Neilson, D.C. Petriu, J.A. Rolia and C.M.

Woodside, "A Toolset for Performance Engineering and Software Design of Client-

Server Systems", Performance Evaluation, vol. 24, pp117-136, 1995.

[14] G. T. Heineman, W. T. Councill, “Component-Based Software Engineering; Putting

the Pieces Together ”, Addison-Wesley, 2001

[15] A. Hubbard, “SPEX: Software Performance Experiment Driver”,

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/spex.txt, August 1997

[16] T. Israr “A Lightweight Technique for Extracting Software Architecture and

Performance Models from Traces", thesis,

ftp://ftp.sce.carleton.ca/pub/cmw/israr_thesis.pdf, April 2001

[17] P. Jogalekar and C.M. Woodside, "Evaluating the Scalability of Distributed Systems",

Proc. of Hawaii Int. Conference on System Sciences, January 1998

[18] M. Kay, “XSLT Programmer’s Reference, 2nd Edition”, Wrox Press, Birmingham.

2001

[19] M. Kempa & V. Linnemann. “XML-Based Applications Using XML Schema”, XML-

Based Data Management and Multimedia Engineering-EDBT 2002 Workshops,

Springer, Lecture Notes in Computer Science, pp67-90

[20] J. Luthi. “ Interval matrices for the bottleneck analysis of queueing network models

with histogram-based parameters”, Proceedings of IPDS '98 (International Computer

Performance and Dependability Symposium, 7-9 Sept. 1998). pp142-151

[21] S. Majumdar and T. Phillips. “Performance of scheduling strategies for client-server

systems”, Proceedings of International Conference on Parallel and Distributed

Systems, 3-6 June 1996. pp 448 –455

[22] D. McMullan, “Components In Layered Queuing Networks”,

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/component3.pdf, October 2,

2001

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/spex.txt
http://www.sce.carleton.ca/rads/lqn/lqn-documentation/component3.pdf

 126

[23] D. A. Menasce. “Two-Level Iterative Queuing Modeling of Software Contention”,

Proceedings of MASCOTS 2002, October, Fort Worth, Texas, USA. pp267-280

[24] J.E. Neilson, C.M. Woodside, D.C Petriu and S. Majumdar, “Software Bottlnecking in

Client-Server Systems and Rendezvous Networks”, IEEE Trans. On Software

Engineering, Vol. 21, No. 9, pp. 776-782, September 1995

[25] J.Q. Ning, “Component-based software engineering (CBSE)”, Proceedings of the Fifth

International Symposium on Assessment of Software Tools and Technologies, 1997,

2-5 June 1997 pp 34 -43

[26] D. Petriu, M. Woodside, "Analysing Software Requirements Specifications for

Performance", Proc. Third Int. Workshop on Software and Performance, Rome, July

2002

[27] D. Petriu and C. M. Woodside, "Software Performance Models from System

Scenarios in Use Case Maps", Proc. 12 Int. Conf. on Modelling Tools and Techniques

for Computer and Communication System Performance Evaluation (Performance

TOOLS 2002), London, April 2002

[28] D.B. Petriu, D. Amyot, C. M. Woodside, "Scenario-Based Performance Engineering

with UCMNav", report SCE-03-07, Dept. of Systems and Computer Engineering,

Carleton University, Feb. 2003

[29] D.C. Petriu, R.G. Franks and A. Hubbard. “SRVN Input File Format”,

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/format.pdf, November

24,1998

[30] J.A. Rolia and K.C. Sevcik, “The Method of Layers”, IEEE Transactions on Software

Engineering, Vol. 21, No. 8 , Aug. 1995, pp 689 -700

[31] F. Sheikh and C.M. Woodside, "Layered Analytic Performance Modelling of a

Distributed Database System", Proc. 1997 International Conf. on Distributed

Computing Systems, May 1997, pp. 482-490

[32] K. H. Siddiqui and C.M. Woodside “Performance aware software development

(PASD) using resource demand budgets” In the Proceedings of the third international

workshop on Software and performance, pp.275 – 285, July 2003

http://www.sce.carleton.ca/rads/lqn/lqn-documentation/format.pdf

 127

[33] M. Sitaraman, G. Kulczycki, J. Krone, W. F. Ogden and A.L.N. Reddy “Performance

Specification of Software Components”, Proceedings of SSR '01, pp. 3-10.

ACM/SIGSOFT, May 2001

[34] C. U. Smith and L. G. Williams, “Performance Solutions”, Addison-Wesley, 2002

[35] C. U. Smith, L. G. Williams, “Performance Engineering Evaluation of Object-

Oriented Systems with SPE·ED”, Lecture Notes in Computer Science 1245:

Computer Performance Evaluation Modelling Techniques and Tools, Springer, 1997

[36] C. Szyperski, “Component Software; Beyond Object-Oriented Programming”,

Addison-Wesley, 1998

[37] M. Woodside "Scalability metrics and analysis of mobile agent systems", Proc.

Workshop on Infrastructure for Scalable Mobile Agent Systems, at Autonomous

Agents 2000, Barcelona, June 3, 2000

[38] C.M. Woodside and C. Schramm "Scalability and Performance Experiments using

Synthetic Distributed Server Systems", Distributed Systems Engineering, vol. 3, pp. 2-

8, 1996

[39] C.M. Woodside, J.E. Neilson, D.C. Petriu, S. Majumdar, "The Stochastic Rendezvous

Network Model for Performance of Synchronous Client-Server-like Distributed

Software", IEEE Transactions on Computers, Vol.44, Nb.1, pp 20-34, January 1995

[40] C.M. Woodside, "Throughput Calculation for Basic Stochastic Rendezvous

Networks", Performance Evaluation, Vol. 9, No. 2, April 1989, pp143-160

[41] X. Wu, D. McMullan and M. Woodside. “Component Based Performance Prediction”,

Proceedings of 6th ICSE Workshop on Component-Based Software Engineering;

Automated Reasoning and Prediction, pp13-18, Portland, Oregon, USA, May 3-4,

2003

[42] R. A. Wyke and A. Watt. “XML Schema Essentials”, Wiley Computer Publishing,

2002

[43] S. Yacoub. “Performance Analysis of Component-Based Applications”, Proceedings

of the Second Software Product Line Conference, pp.299-315, San Diego, CA, USA,

August 2002

 128

[44] S. Yacoub, H. Ammar, and A. Mili “Characterizing a Software Component”,

http://www.sei.cmu.edu/cbs/icse99/papers/34/34.htm, May 1999

http://www.sei.cmu.edu/cbs/icse99/papers/34/34.htm

 129

Appendix A XSD Schema for LQML

A.1 XSD Schema for LQN Core (lqn-core.xsd)
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <!-- lqn-core is the kernel of lqn sub-model and assembly model-->
 <xsd:element name="lqn-core" type="Lqn-CoreType"/>
 <xsd:complexType name="Lqn-CoreType">
 <xsd:sequence>
 <xsd:element name="processor" type="ProcessorType"
maxOccurs="unbounded"/>
 <xsd:element name="slot" type="SlotType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--end of Lqn-CoreType -->
 <!--here goes the schema of SlotType -->
 <xsd:complexType name="SlotType">
 <xsd:sequence>
 <xsd:element name="Interface">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in-port" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="connect-from">
 <xsd:simpleType>
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="out-port" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="connect-to">
 <xsd:simpleType>
 <xsd:list itemType="xsd:string"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="binding" type="BindType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="bind-target" type="xsd:string" use="required"/>
 <xsd:attribute name="id" type="xsd:string" use="required"/>
 <xsd:attribute name="replic_num" type="xsd:int"/>
 </xsd:complexType>
 <!--end of SlotType definition-->

 130

 <xsd:complexType name="BindType">
 <xsd:sequence>
 <xsd:element name="parameter" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="value" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="processor-binding" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="source" type="xsd:string" use="required"/>
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="port-binding" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="source" type="xsd:string" use="required"/>
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <!--here goes the schema of ProcessorType-->
 <xsd:complexType name="ProcessorType">
 <xsd:sequence>
 <xsd:element name="processor-params" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="multiplicity" type="xsd:string" default="1"/>
 <xsd:attribute name="speed-factor" type="xsd:decimal" default="1"/>
 <xsd:attribute name="scheduling" type="SchedulingType"
default="fcfs"/>
 <xsd:attribute name="replication" type="xsd:string" default="1"/>
 <xsd:attribute name="quantum" type="xsd:decimal"/>
 <!--SchedulingType to be defined-->
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="task" type="TaskType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!--here goes the schema of SchedulingType-->
 <xsd:simpleType name="SchedulingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fcfs"/>
 <xsd:enumeration value="ps"/>
 <xsd:enumeration value="pp"/>
 <xsd:enumeration value="r"/>
 <xsd:enumeration value="h"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!--here goes the schema of TaskSchedulingType-->
 <xsd:simpleType name="TaskSchedulingType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="ref"/>
 <xsd:enumeration value="n"/>

 131

 <xsd:enumeration value="fcfs"/>
 <xsd:enumeration value="b"/>
 <xsd:enumeration value="P"/>
 <xsd:enumeration value="h"/>
 </xsd:restriction>
 </xsd:simpleType>

 <!--here goes the schema of TaskType-->
 <xsd:complexType name="TaskType">
 <xsd:sequence>
 <xsd:element name="task-params" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="mult" type="xsd:string" default="1"/>
 <xsd:attribute name="replication" type="xsd:string" default="1"/>
 <xsd:attribute name="scheduling" type="TaskSchedulingType"
default="n"/>
 <xsd:attribute name="think-time" type="xsd:string" default="0"/>
 <xsd:attribute name="priority" type="xsd:int"/>
 <xsd:attribute name="activity-graph" type="TaskOptionType"/>
 <!--OptionType to be defined Yes|NO-->
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="entry" type="EntryType" maxOccurs="unbounded"/>
 <xsd:element name="service" type="ServiceType" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element name="task-activities" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="activity" type="ActivityDefType"
maxOccurs="unbounded"/>
 <xsd:element name="precedence" type="PrecedenceType"
maxOccurs="unbounded"/>
 <xsd:element name="reply-entry" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="first-activity">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="reply-activity" type="xsd:string"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!-- here goes the schema of TaskOptionType-->
 <xsd:simpleType name="TaskOptionType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="YES"/>

 132

 <xsd:enumeration value="NO"/>
 </xsd:restriction>
 </xsd:simpleType>
 <!-- here goes the schema of EntryType-->
 <xsd:complexType name="EntryType">
 <xsd:sequence>
 <xsd:element name="entry-params" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="open-arrival-rate" type="xsd:string"/>
 <xsd:attribute name="priority" type="xsd:int"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="forwarding" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="dest" type="xsd:string" use="required"/>
 <xsd:attribute name="probability" type="xsd:decimal"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="entry-activities" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="activity" type="ActivityDefType"
maxOccurs="unbounded"/>
 <xsd:element name="activity-sequence" type="Activity-Sequence-
Type" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <!--end of EntryType-->
 <xsd:attributeGroup name="MakingCallType">
 <xsd:attribute name="dest" type="xsd:string" use="required"/>
 <xsd:attribute name="calls-mean" type="xsd:string" use="required"/>
 <xsd:attribute name="calls-cvsq" type="xsd:decimal"/>
 <xsd:attribute name="fanout" type="xsd:int" default="1"/>
 <xsd:attribute name="fanin" type="xsd:int" default="1"/>
 </xsd:attributeGroup>
 <xsd:attributeGroup name="CallListType">
 <xsd:attribute name="dest" type="xsd:string" use="required"/>
 <xsd:attribute name="calls-cvsq" type="xsd:decimal"/>
 <xsd:attribute name="fanout" type="xsd:int" default="1"/>
 <xsd:attribute name="fanin" type="xsd:int" default="1"/>
 </xsd:attributeGroup>
 <xsd:complexType name="ServiceType">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:simpleType name="CallOrderType">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="STOCHASTIC"/>
 <xsd:enumeration value="DETERMINISTIC"/>
 <xsd:enumeration value="LIST"/>
 </xsd:restriction>
 </xsd:simpleType>

 133

 <xsd:group name="Call-Group">
 <xsd:sequence>
 <xsd:element name="synch-call" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attributeGroup ref="MakingCallType"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="asynch-call" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attributeGroup ref="MakingCallType"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>
 <xsd:group name="Call-List-Group">
 <xsd:sequence>
 <xsd:element name="call-list" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="synch-call" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attributeGroup ref="CallListType"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="asynch-call" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attributeGroup ref="CallListType"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>
 <!--here goes the schema for ActivityDefType-->
 <!--ActivityDefType defines activity-params and calls-->
 <xsd:complexType name="ActivityDefType">
 <xsd:sequence>
 <xsd:element name="activity-params">
 <xsd:complexType>
 <xsd:attribute name="host-demand-mean" type="xsd:string"
use="required"/>
 <xsd:attribute name="host-demand-cvsq" type="xsd:decimal"/>
 <xsd:attribute name="think-time" type="xsd:decimal"/>
 <xsd:attribute name="max-service-time" type="xsd:decimal"/>
 <xsd:attribute name="call-order" type="CallOrderType"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:choice>
 <xsd:group ref="Call-List-Group"/>
 <xsd:group ref="Call-Group"/>
 </xsd:choice>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>

 134

 </xsd:complexType>
 <!--here ends the schema for ActivityDefType.-->
 <!--The following definition is for activity precedence relationship --
>
 <xsd:complexType name="ActivityType">
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="OrListType">
 <xsd:sequence>
 <xsd:element name="activity" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="prob" type="xsd:string" default="1"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="AndListType">
 <xsd:sequence>
 <xsd:element name="activity" type="ActivityType"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Activity-Sequence-Type">
 <xsd:sequence>
 <xsd:choice>
 <xsd:group ref="Sequence-Group"/>
 <xsd:group ref="Phase-Group"/>
 </xsd:choice>
 <xsd:element name="reply-activity" type="xsd:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="PhaseOrSequence" use="required"/>
 </xsd:complexType>
 <xsd:simpleType name="PhaseOrSequence">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="PH1PH2"/>
 <xsd:enumeration value="GRAPH"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:group name="Phase-Group">
 <xsd:sequence>
 <xsd:element name="phase1" type="xsd:string"/>
 <xsd:element name="phase2" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:group>
 <xsd:group name="Sequence-Group">
 <xsd:sequence>
 <xsd:element name="first-activity">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="precedence" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>

 135

 <xsd:choice>
 <xsd:element name="pre" type="xsd:string"/>
 <xsd:element name="pre-OR" type="OrListType"/>
 <xsd:element name="pre-AND" type="AndListType"/>
 <xsd:element name="pre-LOOP" type="xsd:string"/>
 </xsd:choice>
 <xsd:choice>
 <xsd:element name="post" type="xsd:string"/>
 <xsd:element name="post-OR" type="OrListType"/>
 <xsd:element name="post-AND" type="AndListType"/>
 <xsd:element name="post-LOOP">
 <xsd:complexType>
 <xsd:attribute name="count" type="xsd:decimal" use="required"/>
 <xsd:attribute name="head" type="xsd:string" use="required"/>
 <xsd:attribute name="end" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>
 <!--here ends the schema of Sequence-Group-->
 <!-- here goes the schema of PrecedenceType-->
 <xsd:complexType name="PrecedenceType">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="pre" type="xsd:string"/>
 <xsd:element name="pre-OR" type="OrListType"/>
 <xsd:element name="pre-AND" type="AndListType"/>
 <xsd:element name="pre-LOOP" type="xsd:string"/>
 </xsd:choice>
 <xsd:choice>
 <xsd:element name="post" type="xsd:string"/>
 <xsd:element name="post-OR" type="OrListType"/>
 <xsd:element name="post-AND" type="AndListType"/>
 <xsd:element name="post-LOOP">
 <xsd:complexType>
 <xsd:attribute name="count" type="xsd:decimal" use="required"/>
 <xsd:attribute name="head" type="xsd:string" use="required"/>
 <xsd:attribute name="end" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:sequence>
 </xsd:complexType>
 <!--here ends the schema of PrecedenceType-->
</xsd:schema>

 136

A.2 XSD Schema for LQN Sub-model (lqn-sub.xsd)
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="lqn-core.xsd"/>
 <xsd:element name="lqn-submodel" type="Lqn-SubType"/>
 <xsd:complexType name="Lqn-SubType">
 <xsd:sequence>
 <xsd:element name="Interface">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in-port" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="connect-to" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="out-port" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="connect-from" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Replaceable-Processor" minOccurs="0"
maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Parameter" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="para" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="default" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="processor" type="ProcessorType"
maxOccurs="unbounded"/>
 <xsd:element name="slot" type="SlotType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
</xsd:schema>

 137

A.3 XSD Schema for LQN Assembly Model (lqn.xsd)
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:include schemaLocation="lqn-core.xsd"/>
 <xsd:element name="lqn-model" type="LqnModelType"/>
 <xsd:complexType name="LqnModelType">
 <xsd:sequence>
 <xsd:element name="run-control" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="para" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:choice>
 <xsd:sequence>
 <xsd:element name="start-value" type="xsd:int"/>
 <xsd:element name="end-value" type="xsd:int"/>
 <xsd:element name="step-value" type="xsd:int"/>
 </xsd:sequence>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:int"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="plot-control" minOccurs="0">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="first-plot">
 <xsd:complexType>
 <xsd:attribute name="variable" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="plot" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:attribute name="variable" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="solver-params" minOccurs="0">
 <xsd:complexType>
 <xsd:attribute name="comment" type="xsd:string" default="LQN
comment"/>
 <xsd:attribute name="conv_val" type="xsd:decimal"
default="0.000001"/>
 <xsd:attribute name="it_limit" type="xsd:int" default="50"/>
 <xsd:attribute name="print_int" type="xsd:int" default="0"/>
 <xsd:attribute name="underrelax_coeff" type="xsd:decimal"
default="0.5"/>
 </xsd:complexType>
 <!--use default values if this is not present-->

 138

 </xsd:element>
 <xsd:element name="processor" type="ProcessorType"
maxOccurs="unbounded"/>
 <xsd:element name="slot" type="SlotType" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string"/>
 <xsd:attribute name="description" type="xsd:string"/>
 </xsd:complexType>
</xsd:schema>

 139

Appendix B Some Input and Output Documents for LQN Models

B.1 XML Document for SingleMod (SingleMod.xml)
<lqn-submodel name="SingleMod" description="an xml version of
OneTaskMod" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn-sub.xsd">
 <Interface>
 <in-port name="p1" connect-to="SingleE2" description="read data from

database"/>

 <in-port name="p2" connect-to="SingleE3" description="update data to

database"/>

 <out-port name="p3" connect-from="SingleE2" description="read request

to file sever"/>

 <out-port name="p4" connect-from="SingleE3" description="update

request to file server"/>

 <Replaceable-Processor name="SinglePr"/>
 </Interface>
 <Parameter>
 <para name="$SingleT2_mult" default="1"/>
 <para name="$SingleE2_demand" default="1.0"/>
 </Parameter>
 <processor name="SinglePr">
 <processor-params multiplicity="1"/>
 <task name="SingleT1">
 <task-params mult="1" activity-graph="NO" scheduling="ref"/>
 <entry name="SingleE1">
 <entry-activities>
 <activity name="SingleE1_ph1">
 <activity-params host-demand-mean="1.0"/>
 <synch-call dest="SingleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="SingleT2">
 <task-params mult="$SingleT2_mult" activity-graph="NO"/>
 <entry name="SingleE2">
 <entry-activities>
 <activity name="SingleE2_ph1">

 <activity-params host-demand-mean="$SingleE2_demand"/>
 <synch-call dest="p3" calls-mean="1"/>
 </activity>

 <activity-sequence type="PH1PH2">
 <phase1>SingleE2_ph1</phase1>

 </activity-sequence>
 </entry-activities>

 140

 </entry>
 <entry name="SingleE3">
 <entry-activities>

 <activity name="SingleE3_ph1">
 <activity-params host-demand-mean="1"/>

 <synch-call dest="p4" calls-mean="1"/>
 </activity>

 <activity-sequence type="PH1PH2">
 <phase1>SingleE3_ph1</phase1>

 </activity-sequence>
 </entry-activities>

 </entry>
 </task>
 </processor>
</lqn-submodel>

 141

 B.2 XML Document for NestedMod (NestedMod.xml)
<lqn-submodel name="NestedMod" description="an xml version of
SimpleMod" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn-sub.xsd">
 <Interface>
 <in-port name="SimpleP1" connect-to="SimpleE1" description="SimpleE1
of SimpleT1"/>
 <out-port name="SimpleP2" connect-from="SimpleE3"
description="request from SimpleE3"/>
 <out-port name="SimpleP3" connect-from="SimpleE4"
description="request from SimpleE4"/>
 <Replaceable-Processor name="SimplePr2"/>
 </Interface>
 <Parameter>
 <para name="$SimpleT1_mult" default="1"/>
 <para name="$SingleE2_demand" default="1.0"/>
 </Parameter>
 <processor name="SimplePr1">
 <processor-params multiplicity="1"/>
 <task name="SimpleT1">
 <task-params mult="$SimpleT1_mult" activity-graph="NO"/>
 <entry name="SimpleE1">
 <entry-activities>
 <activity name="SimpleE1_ph1">

 <activity-params host-demand-mean="1"/>
 <synch-call dest="S1.service1" calls-mean="1"/>

 <synch-call dest="S1.service2" calls-mean="2"/>
 <synch-call dest="SimpleE3" calls-mean="1"/>

 </activity>
 <activity-sequence type="PH1PH2">

 <phase1>SimpleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>

 </entry>
 </task>
 <task name="SimpleT3">
 <task-params mult="2" activity-graph="NO"/>
 <entry name="SimpleE3">
 <entry-activities>

 <activity name="SimpleE3_ph1">
 <activity-params host-demand-mean="1.5"/>

 <synch-call dest="SimpleP2" calls-mean="2"/>
 </activity>

 <activity-sequence type="PH1PH2">
 <phase1>SimpleE3_ph1</phase1>

 </activity-sequence>
 </entry-activities>

 </entry>
 </task>
 </processor>
 <processor name="SimplePr2">
 <task name="SimpleT4">
 <task-params activity-graph="NO"/>

 142

 <entry name="SimpleE4">
 <entry-activities>
 <activity name="SimpleE4_ph1">

 <activity-params host-demand-mean="5.0"/>
 <synch-call dest="SimpleP3" calls-mean="1"/>

 </activity>
 <activity-sequence type="PH1PH2">

 <phase1>SimpleE4_ph1</phase1>
 </activity-sequence>
 </entry-activities>

 </entry>
 </task>
 </processor>
 <slot id="S1" bind-target="SingleMod">
 <Interface>
 <in-port name="service1" connect-from="SimpleE1"/>
 <in-port name="service2" connect-from="SimpleE1"/>
 <out-port name="request1" connect-to="SimpleE3"/>
 <out-port name="request2" connect-to="SimpleE4"/>
 </Interface>
 <binding>
 <!--parameter assignment here for SingleMod-->
 <parameter name="$SingleT2_mult" value="4"/>
 <!--the rest parameters are defined as parameters for NestedMod -->
 <processor-binding source="SinglePr" target="SimplePr1"/>
 <!--source refers to elements in the inner component -->
 <!--target refers to elements in the slot -->
 <port-binding source="p1" target="service1"/>
 <port-binding source="p2" target="service2"/>
 <port-binding source="p3" target="request1"/>
 <port-binding source="p4" target="request2"/>
 </binding>
 </slot>
</lqn-submodel>

 143

B.3 XML Document for Flattened NestedMod (NestedMod_flt.xml)
<?xml version="1.0" encoding="UTF-8"?>
<lqn-submodel name="NestedMod" description="an xml version of SimpleMod"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn-sub.xsd">
 <Interface>
 <in-port name="SimpleP1" connect-to="SimpleE1" description="SimpleE1
of SimpleT1"/>
 <out-port name="SimpleP2" connect-from="SimpleE3" description="request
from SimpleE3"/>
 <out-port name="SimpleP3" connect-from="SimpleE4" description="request
from SimpleE4"/>
 <Replaceable-Processor name="SimplePr2"/>
 </Interface>
 <Parameter>
 <para name="$SimpleT1_mult" default="1"/>
 <para name="$SingleE2_demand" default="1.0"/>
 </Parameter>
 <processor name="SimplePr1">
 <processor-params multiplicity="1"/>
 <task name="SimpleT1">
 <task-params mult="$SimpleT1_mult" activity-graph="NO"/>
 <entry name="SimpleE1">
 <entry-activities>
 <activity name="SimpleE1_ph1">
 <activity-params host-demand-mean="1"/>
 <synch-call dest="S1_SingleE2" calls-mean="1"/>
 <synch-call dest="S1_SingleE3" calls-mean="2"/>
 <synch-call dest="SimpleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SimpleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="SimpleT3">
 <task-params mult="2" activity-graph="NO"/>
 <entry name="SimpleE3">
 <entry-activities>
 <activity name="SimpleE3_ph1">
 <activity-params host-demand-mean="1.5"/>
 <synch-call dest="SimpleP2" calls-mean="2"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SimpleE3_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="S1_SingleT1">
 <task-params mult="1" activity-graph="NO" scheduling="ref"/>
 <entry name="S1_SingleE1">

 144

 <entry-activities>
 <activity name="SingleE1_ph1">
 <activity-params host-demand-mean="1.0"/>
 <synch-call dest="S1_SingleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="S1_SingleT2">
 <task-params mult="4" activity-graph="NO"/>
 <entry name="S1_SingleE2">
 <entry-activities>
 <activity name="SingleE2_ph1">
 <activity-params host-demand-mean="$SingleE2_demand"/>
 <synch-call dest="SimpleE3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE2_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="S1_SingleE3">
 <entry-activities>
 <activity name="SingleE3_ph1">
 <activity-params host-demand-mean="1"/>
 <synch-call dest="SimpleE4" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SingleE3_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="SimplePr2">
 <task name="SimpleT4">
 <task-params activity-graph="NO"/>
 <entry name="SimpleE4">
 <entry-activities>
 <activity name="SimpleE4_ph1">
 <activity-params host-demand-mean="5.0"/>
 <synch-call dest="SimpleP3" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SimpleE4_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
</lqn-submodel>

 145

B.4 Output of Transforming SimpleAbl (SimpleAbl.lqn)
#This is the output from xml2LQN
G
"This is a test case"
0.00001
50
1
0.8
-1
P 0
p SimplePr1 f
p SimplePr2 f
-1
T 0
t SimpleT1 r SimpleE1 -1 SimplePr1 m 3
t SimpleT3 n SimpleE3 -1 SimplePr1 m 2
t S1_SingleT1 r S1_SingleE1 -1 SimplePr1
t S1_SingleT2 n S1_SingleE2 S1_SingleE3 -1 SimplePr1 m 4
t SimpleT4 n SimpleE4 -1 SimplePr2
-1
E 0
s SimpleE1 1 -1
y SimpleE1 S1_SingleE2 1 -1
y SimpleE1 S1_SingleE3 2 -1
y SimpleE1 SimpleE3 1 -1
s SimpleE3 1.5 -1
s S1_SingleE1 1.0 -1
y S1_SingleE1 S1_SingleE3 1 -1
s S1_SingleE2 5.5 -1
y S1_SingleE2 SimpleE3 1 -1
s S1_SingleE3 1 -1
y S1_SingleE3 SimpleE4 1 -1
s SimpleE4 5.0 -1
-1

 146

B.5 XML Document for a Database Model (par-db.xml)
<lqn-model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn.xsd">
 <solver-params comment="Test case of fork-join" conv_val="0.00001"
it_limit="50" print_int="5" underrelax_coeff="0.9"/>
 <processor name="Pusers">
 <processor-params multiplicity="i"/>
 <task name="Users">
 <task-params mult="2" scheduling="ref" activity-graph="NO"/>
 <entry name="user">
 <entry-activities>
 <activity name="user_ph2">
 <activity-params host-demand-mean="1.0" think-time="50"/>
 <synch-call dest="applic" calls-mean="2.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase2>user_ph2</phase2>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Papplic">
 <task name="Applic">
 <task-params activity-graph="YES"/>
 <entry name="applic">
 <entry-activities>
 <activity name="x1">
 <activity-params host-demand-mean="0.0"/>
 </activity>
 <activity name="a1">
 <activity-params host-demand-mean="0.3"/>
 </activity>
 <activity name="a2">
 <activity-params host-demand-mean="0.1"/>
 <synch-call dest="db1" calls-mean="1.0"/>
 <synch-call dest="db2" calls-mean="0.2"/>
 </activity>
 <activity name="b1">
 <activity-params host-demand-mean="0.05"/>
 <synch-call dest="db1" calls-mean="1.0"/>
 </activity>
 <activity name="b2">
 <activity-params host-demand-mean="0.08"/>
 <synch-call dest="db2" calls-mean="1.0"/>
 </activity>
 <activity name="b3">
 <activity-params host-demand-mean="0.01"/>
 <synch-call dest="db3" calls-mean="1.0"/>
 </activity>
 <activity name="c1">
 <activity-params host-demand-mean="0.1"/>
 </activity>

 147

 <activity name="y1">
 <activity-params host-demand-mean="0.0"/>
 </activity>
 <activity-sequence type="GRAPH">
 <first-activity name="x1"/>
 <precedence>
 <pre>x1</pre>
 <post-OR>
 <activity name="a2" prob="0.5"/>
 <activity name="a1" prob="0.5"/>
 </post-OR>
 </precedence>
 <precedence>
 <pre>a1</pre>
 <post-AND>
 <activity name="b1"/>
 <activity name="b2"/>
 <activity name="b3"/>
 </post-AND>
 </precedence>
 <precedence>
 <pre-AND>
 <activity name="b1"/>
 <activity name="b2"/>
 <activity name="b3"/>
 </pre-AND>
 <post>c1</post>
 </precedence>
 <precedence>
 <pre-OR>
 <activity name="c1"/>
 <activity name="a2"/>
 </pre-OR>
 <post>y1</post>
 </precedence>
 <reply-activity>y1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pdb1">
 <task name="Db1">
 <task-params mult="2" activity-graph="NO"/>
 <entry name="db1">
 <entry-activities>
 <activity name="db1_ph1">
 <activity-params host-demand-mean="0.04"/>
 <synch-call dest="d1" calls-mean="1.0"/>
 <synch-call dest="d2" calls-mean="1.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>db1_ph1</phase1>
 <reply-activity>db1_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>

 148

 </entry>
 </task>
 </processor>
 <processor name="Pdb2">
 <task name="Db2">
 <task-params mult="3" activity-graph="NO"/>
 <entry name="db2">
 <entry-activities>
 <activity name="db2_ph1">
 <activity-params host-demand-mean="0.04"/>
 <synch-call dest="d3" calls-mean="1.0"/>
 <synch-call dest="d4" calls-mean="1.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>db2_ph1</phase1>
 <reply-activity>db2_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pdb3">
 <task name="Db3">
 <task-params activity-graph="YES"/>
 <entry name="db3">
 <entry-activities>
 <activity name="a1">
 <activity-params host-demand-mean="0.01"/>
 </activity>
 <activity name="b1">
 <activity-params host-demand-mean="0.01"/>
 <synch-call dest="d5" calls-mean="1.0"/>
 </activity>
 <activity name="b2">
 <activity-params host-demand-mean="0.01"/>
 <synch-call dest="d6" calls-mean="1.0"/>
 </activity>
 <activity name="b3">
 <activity-params host-demand-mean="0.01"/>
 <synch-call dest="d7" calls-mean="1.0"/>
 </activity>
 <activity name="b4">
 <activity-params host-demand-mean="0.01"/>
 <synch-call dest="d8" calls-mean="1.0"/>
 </activity>
 <activity name="c1">
 <activity-params host-demand-mean="0.01"/>
 </activity>
 <activity-sequence type="GRAPH">
 <first-activity name="a1"/>
 <precedence>
 <pre>a1</pre>
 <post-AND>
 <activity name="b1"/>
 <activity name="b2"/>
 <activity name="b3"/>

 149

 <activity name="b4"/>
 </post-AND>
 </precedence>
 <precedence>
 <pre-AND>
 <activity name="b1"/>
 <activity name="b2"/>
 <activity name="b3"/>
 <activity name="b4"/>
 </pre-AND>
 <post>c1</post>
 </precedence>
 <reply-activity>c1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd1">
 <task name="D1">
 <task-params activity-graph="NO"/>
 <entry name="d1">
 <entry-activities>
 <activity name="d1_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d1_ph1</phase1>
 <reply-activity>d1_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd2">
 <task name="D2">
 <task-params activity-graph="NO"/>
 <entry name="d2">
 <entry-activities>
 <activity name="d2_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d2_ph1</phase1>
 <reply-activity>d2_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd3">
 <task name="D3">
 <task-params activity-graph="NO"/>
 <entry name="d3">
 <entry-activities>
 <activity name="d3_ph1">

 150

 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d3_ph1</phase1>
 <reply-activity>d3_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd4">
 <task name="D4">
 <task-params activity-graph="NO"/>
 <entry name="d4">
 <entry-activities>
 <activity name="d4_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d4_ph1</phase1>
 <reply-activity>d4_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd5">
 <task name="D5">
 <task-params activity-graph="NO"/>
 <entry name="d5">
 <entry-activities>
 <activity name="d5_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d5_ph1</phase1>
 <reply-activity>d5_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd6">
 <task name="D6">
 <entry name="d6">
 <entry-activities>
 <activity name="d6_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d6_ph1</phase1>
 <reply-activity>d6_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>

 151

 </processor>
 <processor name="Pd7">
 <task name="D7">
 <entry name="d7">
 <entry-activities>
 <activity name="d7_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d7_ph1</phase1>
 <reply-activity>d7_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="Pd8">
 <task name="D8">
 <entry name="d8">
 <entry-activities>
 <activity name="d8_ph1">
 <activity-params host-demand-mean="0.03"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>d8_ph1</phase1>
 <reply-activity>d8_ph1</reply-activity>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
</lqn-model>

 152

B.6 Output of Transforming par-db.xml (par-db.lqn)
#This is the output from xml2LQN
G
"Test case of fork-join"
0.00001
50
5
0.9
-1
P 0
p Pusers f i
p Papplic f
p Pdb1 f
p Pdb2 f
p Pdb3 f
p Pd1 f
p Pd2 f
p Pd3 f
p Pd4 f
p Pd5 f
p Pd6 f
p Pd7 f
p Pd8 f
-1
T 0
t Users r user -1 Pusers m 2
t Applic n applic -1 Papplic
t Db1 n db1 -1 Pdb1 m 2
t Db2 n db2 -1 Pdb2 m 3
t Db3 n db3 -1 Pdb3
t D1 n d1 -1 Pd1
t D2 n d2 -1 Pd2
t D3 n d3 -1 Pd3
t D4 n d4 -1 Pd4
t D5 n d5 -1 Pd5
t D6 n d6 -1 Pd6
t D7 n d7 -1 Pd7
t D8 n d8 -1 Pd8
-1
E 0
s user 0 1.0 -1
Z user 0 50 -1
y user applic 0 2.0 -1
A applic x1
s db1 0.04 -1
y db1 d1 1.0 -1
y db1 d2 1.0 -1
s db2 0.04 -1
y db2 d3 1.0 -1
y db2 d4 1.0 -1
A db3 a1
s d1 0.03 -1
s d2 0.03 -1

 153

s d3 0.03 -1
s d4 0.03 -1
s d5 0.03 -1
s d6 0.03 -1
s d7 0.03 -1
s d8 0.03 -1
-1
A Applic
s x1 0.0
s a1 0.3
s a2 0.1
y a2 db1 1.0
y a2 db2 0.2
s b1 0.05
y b1 db1 1.0
s b2 0.08
y b2 db2 1.0
s b3 0.01
y b3 db3 1.0
s c1 0.1
s y1 0.0
:
x1 -> (0.5)a2+(0.5)a1;
a1 -> b1&b2&b3;
b1&b2&b3->c1;
c1+a2->y1;
y1[applic]
-1
A Db3
s a1 0.01
s b1 0.01
y b1 d5 1.0
s b2 0.01
y b2 d6 1.0
s b3 0.01
y b3 d7 1.0
s b4 0.01
y b4 d8 1.0
s c1 0.01
:
a1 -> b1&b2&b3&b4;
b1&b2&b3&b4->c1;
c1[db3]
-1

 154

B.7 XML Document for an LQN Model that Has Task Activities (task-act.xml)
<lqn-model xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn.xsd">
 <solver-params comment="Test case of task-activities"
conv_val="0.00001" it_limit="50" print_int="5" underrelax_coeff="0.9"/>
 <processor name="P1">
 <processor-params multiplicity="i"/>
 <task name="t0">
 <task-params mult="2" scheduling="ref" activity-graph="NO"/>
 <entry name="user">
 <entry-activities>
 <activity name="user_ph2">
 <activity-params host-demand-mean="1.0" think-time="50"/>
 <synch-call dest="e1" calls-mean="1.0"/>
 <synch-call dest="e2" calls-mean="1.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase2>user_ph2</phase2>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="t1">
 <entry name="e1">
 <entry-activities>
 <activity name="e1_ph1">
 <activity-params host-demand-mean="1.5"/>
 <synch-call dest="e3" calls-mean="1.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>e1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="t2">
 <entry name="e2">
 <entry-activities>
 <activity name="e2_ph1">
 <activity-params host-demand-mean="0.5"/>
 <synch-call dest="e4" calls-mean="1.0"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>e2_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="P2">
 <task name="t3">
 <task-params activity-graph="YES"/>
 <entry name="e3"/>
 <entry name="e4"/>
 <task-activities>

 155

 <activity name="a1">
 <activity-params host-demand-mean="1.0"/>
 </activity>
 <activity name="a2">
 <activity-params host-demand-mean="1.0"/>
 </activity>
 <activity name="c1">
 <activity-params host-demand-mean="1.0"/>
 </activity>
 <precedence>
 <pre-AND>
 <activity name="a1"/>
 <activity name="a2"/>
 </pre-AND>
 <post>c1</post>
 </precedence>
 <reply-entry name="e3">
 <first-activity name="a1"/>
 <reply-activity>c1</reply-activity>
 </reply-entry>
 <reply-entry name="e4">
 <first-activity name="a2"/>
 <reply-activity>c1</reply-activity>
 </reply-entry>
 </task-activities>
 </task>
 </processor>
</lqn-model>

 156

B.8 Output Model from Transforming task-act.xml (task-act.lqn)
#This is the output from xml2LQN
G
"Test case of task-activities"
0.00001
50
5
0.9
-1
P 0
p P1 f i
p P2 f
-1
T 0
t t0 r user -1 P1 m 2
t t1 n e1 -1 P1
t t2 n e2 -1 P1
t t3 n e3 e4 -1 P2
-1
E 0
s user 0 1.0 -1
Z user 0 50 -1
y user e1 0 1.0 -1
y user e2 0 1.0 -1
s e1 1.5 -1
y e1 e3 1.0 -1
s e2 0.5 -1
y e2 e4 1.0 -1
A e3 a1
A e4 a2
-1
A t3
s a1 1.0
s a2 1.0
s c1 1.0
:
a1&a2->c1;
c1[e3,e4]
-1

 157

Appendix C Source Files for LQN Models in the Case Study

C.1 XML Document for MISAssemble (MISAssemble.xml)
<lqn-model name="MISAssemble" description="An Assembly model for MIS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn.xsd">
 <solver-params comment="An Assembly model for MIS" conv_val="0.00001"
it_limit="100" print_int="1" underrelax_coeff="0.9"/>
 <processor name="ClientP">
 <processor-params multiplicity="i"/>
 <task name="Client">
 <task-params mult="10" scheduling="ref"/>
 <entry name="Request">
 <entry-activities>
 <activity name="Request_ph2">
 <activity-params host-demand-mean="0.02"/>
 <synch-call dest="RSRequest" calls-mean="5"/>
 <synch-call dest="VSRequest" calls-mean="15"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase2>Request_ph2</phase2>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="RSClient">
 <task-params mult="i"/>
 <entry name="RSRequest">
 <entry-activities>
 <activity name="RSRequest_ph1">
 <activity-params host-demand-mean="0"/>
 <synch-call dest="AcceptRS" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>RSRequest_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="VSClient">
 <task-params mult="i"/>
 <entry name="VSRequest">
 <entry-activities>
 <activity name="VSRequest_ph1">
 <activity-params host-demand-mean="0"/>
 <synch-call dest="AcceptVS" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>VSRequest_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>

 158

 </processor>
 <processor name="WebP">
 <task name="WebServer">
 <task-params mult="i" activity-graph="NO"/>
 <entry name="AcceptRS">
 <entry-activities>
 <activity name="AcceptRS_ph1">
 <activity-params host-demand-mean="0.03"/>
 <synch-call dest="AppS.CompuRS" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>AcceptRS_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="AcceptVS">
 <entry-activities>
 <activity name="AcceptVS_ph1">
 <activity-params host-demand-mean="0.025"/>
 <synch-call dest="AppS.CompuVS" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>AcceptVS_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="CachP">
 <task name="CacheInfo">
 <entry name="cache">
 <entry-activities>
 <activity name="cache_ph1">
 <activity-params host-demand-mean="0.04"/>
 <synch-call dest="CachOP" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>cache_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <processor name="DBP">
 <task name="DBServer">
 <entry name="BigOP">
 <entry-activities>
 <activity name="BigOP_ph1">
 <activity-params host-demand-mean="4"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>BigOP_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="SmallOP">

 159

 <entry-activities>
 <activity name="SmallOP_ph1">
 <activity-params host-demand-mean="0.5"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SmallOP_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="CachOP">
 <entry-activities>
 <activity name="CachOP_ph1">
 <activity-params host-demand-mean="0.4"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>CachOP_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
 <slot id="AppS" bind-target="AppComp">
 <Interface>
 <in-port name="CompuRS" connect-from="AcceptRS"/>
 <in-port name="CompuVS" connect-from="AcceptVS"/>
 <out-port name="bigReq" connect-to="BigOP"/>
 <out-port name="smallReq" connect-to="SmallOP"/>
 <out-port name="cachReq" connect-to="cache"/>
 </Interface>
 <binding>
 <!--parameter assignement here for AppComp-->
 <parameter name="$AsP_num" value="2"/>
 <!--processor-binding source="AsP" target="CachP"/-->
 <!--source refers to elements in the inner component -->
 <!--target refers to elements in the slot -->
 <port-binding source="RSCtl" target="CompuRS"/>
 <port-binding source="VSCtl" target="CompuVS"/>
 <port-binding source="bigReq" target="bigReq"/>
 <port-binding source="smallReq" target="smallReq"/>
 <port-binding source="cachReq" target="cachReq"/>
 </binding>
 </slot>
</lqn-model>

 160

C.2 XML Document for AppComp (AppComp.xml)
<lqn-submodel name="AppComp" description="A submodel for Application
Server in XML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="lqn-sub.xsd">
 <Interface>
 <in-port name="RSCtl" connect-to="SchedRS" description="Reporting
request controller"/>
 <in-port name="VSCtl" connect-to="SchedVS" description="Viewing
request controller"/>
 <out-port name="bigReq" connect-from="BigRep1 BigRep2"
description="big report request"/>
 <out-port name="smallReq" connect-from="SmallR1 SmallR2"
description="samll report request"/>
 <out-port name="cachReq" connect-from="View GenReport"
description="obtaining results from cache"/>
 <Replaceable-Processor name="AsP"/>
 </Interface>
 <Parameter>
 <para name="$AsP_num" default="1"/>
 </Parameter>
 <processor name="ScheduP">
 <processor-params multiplicity="i"/>
 <task name="Scheduler">
 <task-params mult="i" activity-graph="NO"/>
 <entry name="SchedRS">
 <forwarding dest="DispRS" probability="1"/>
 </entry>
 <entry name="SchedVS">
 <forwarding dest="DispVS" probability="1"/>
 </entry>
 </task>
 </processor>
 <processor name="AsP">
 <processor-params multiplicity="$AsP_num"/>
 <task name="DSP">
 <task-params mult="i"/>
 <entry name="DispRS">
 <entry-activities>
 <activity name="DispRS_ph1">
 <activity-params host-demand-mean="1.0"/>
 <synch-call dest="SmallR1" calls-mean="0.4"/>
 <synch-call dest="SmallR2" calls-mean="0.4"/>
 <synch-call dest="BigRep1" calls-mean="0.1"/>
 <synch-call dest="BigRep2" calls-mean="0.1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>DispRS_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 <entry name="DispVS">
 <entry-activities>
 <activity name="DispVS_ph1">

 161

 <activity-params host-demand-mean="1.0"/>
 <synch-call dest="View" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>DispVS_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="SmallReport1">
 <entry name="SmallR1">
 <entry-activities>
 <activity name="SmallR1_ph1">
 <activity-params host-demand-mean="0.03"/>
 <synch-call dest="smallReq" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SmallR1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="SmallReport2">
 <entry name="SmallR2">
 <entry-activities>
 <activity name="SmallR2_ph1">
 <activity-params host-demand-mean="0.03"/>
 <synch-call dest="smallReq" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>SmallR2_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="BigReport1">
 <entry name="BigRep1">
 <entry-activities>
 <activity name="BigRep1_ph1">
 <activity-params host-demand-mean="0.3"/>
 <synch-call dest="bigReq" calls-mean="1"/>
 <synch-call dest="GenReport" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>BigRep1_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="BigReport2">
 <entry name="BigRep2">
 <entry-activities>
 <activity name="BigRep2_ph1">
 <activity-params host-demand-mean="0.3"/>
 <synch-call dest="bigReq" calls-mean="1"/>
 <synch-call dest="GenReport" calls-mean="1"/>

 162

 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>BigRep2_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="ViewData">
 <entry name="View">
 <entry-activities>
 <activity name="View_ph1">
 <activity-params host-demand-mean="0.06"/>
 <synch-call dest="cachReq" calls-mean="1"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>View_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 <task name="ReportGen">
 <entry name="GenReport">
 <entry-activities>
 <activity name="GenReport_ph1">
 <activity-params host-demand-mean="0.26"/>
 <synch-call dest="cachReq" calls-mean="2"/>
 </activity>
 <activity-sequence type="PH1PH2">
 <phase1>GenReport_ph1</phase1>
 </activity-sequence>
 </entry-activities>
 </entry>
 </task>
 </processor>
</lqn-submodel>

 163

C.3 Resulting Model in LQN Language (MISAssemble.lqn)
#This is the output from xml2LQN
G
"An Assembly model for MIS"
0.00001
100
1
0.9
-1
P 0
p ClientP f i
p WebP f
p CachP f
p DBP f
p AppS_ScheduP f i
p AppS_AsP f m 2
-1
T 0
t Client r Request -1 ClientP m 10
t RSClient n RSRequest -1 ClientP i
t VSClient n VSRequest -1 ClientP i
t WebServer n AcceptRS AcceptVS -1 WebP i
t CacheInfo n cache -1 CachP
t DBServer n BigOP SmallOP CachOP -1 DBP
t AppS_Scheduler n AppS_SchedRS AppS_SchedVS -1 AppS_ScheduP i
t AppS_DSP n AppS_DispRS AppS_DispVS -1 AppS_AsP i
t AppS_SmallReport1 n AppS_SmallR1 -1 AppS_AsP
t AppS_SmallReport2 n AppS_SmallR2 -1 AppS_AsP
t AppS_BigReport1 n AppS_BigRep1 -1 AppS_AsP
t AppS_BigReport2 n AppS_BigRep2 -1 AppS_AsP
t AppS_ViewData n AppS_View -1 AppS_AsP
t AppS_ReportGen n AppS_GenReport -1 AppS_AsP
-1
E 0
s Request 0 0.02 -1
y Request RSRequest 0 5 -1
y Request VSRequest 0 15 -1
s RSRequest 0 -1
y RSRequest AcceptRS 1 -1
s VSRequest 0 -1
y VSRequest AcceptVS 1 -1
s AcceptRS 0.03 -1
y AcceptRS AppS_SchedRS 1 -1
s AcceptVS 0.025 -1
y AcceptVS AppS_SchedVS 1 -1
s cache 0.04 -1
y cache CachOP 1 -1
s BigOP 4 -1
s SmallOP 0.5 -1
s CachOP 0.4 -1
F AppS_SchedRS AppS_DispRS 1 -1
F AppS_SchedVS AppS_DispVS 1 -1
s AppS_DispRS 1.0 -1

 164

y AppS_DispRS AppS_SmallR1 0.4 -1
y AppS_DispRS AppS_SmallR2 0.4 -1
y AppS_DispRS AppS_BigRep1 0.1 -1
y AppS_DispRS AppS_BigRep2 0.1 -1
s AppS_DispVS 1.0 -1
y AppS_DispVS AppS_View 1 -1
s AppS_SmallR1 0.03 -1
y AppS_SmallR1 SmallOP 1 -1
s AppS_SmallR2 0.03 -1
y AppS_SmallR2 SmallOP 1 -1
s AppS_BigRep1 0.3 -1
y AppS_BigRep1 BigOP 1 -1
y AppS_BigRep1 AppS_GenReport 1 -1
s AppS_BigRep2 0.3 -1
y AppS_BigRep2 BigOP 1 -1
y AppS_BigRep2 AppS_GenReport 1 -1
s AppS_View 0.06 -1
y AppS_View cache 1 -1
s AppS_GenReport 0.26 -1
y AppS_GenReport cache 2 -1
-1

	An Approach to Predicting Performance for Component Based Systems
	1.1 Motivation and objective
	1.2 Thesis goals
	1.3 Contributions
	1.4 Thesis Organization

	2.1 Software Performance Engineering (SPE)
	2.2 Component Based Software Engineering (CBSE)
	2.2.1 Overview of Component Based Software Engineering (CBSE)
	2.3 Layered Queuing Network (LQN) Performance Model
	The LQN modeling technique was formulated not only for the one level client-server interaction systems but also those that have multiple levels [12]. Therefore, an LQN can model the intermediate software servers which are very common in the large and dis
	2.3.1 Software Bottlenecks

	2.3.2 LQN Graphical Notations
	2.3.3 LQN Solvers and Input File Format
	2.4 The CB-LQN Component Model
	2.4.1 The Structure of CB-LQN Component Model

	2.4.3 Advantages and Limitations of the CB-LQN Component Model
	3.1.3 The eXtensible Stylesheet Language Transformations (XSLT)
	3.2 Overview of the XML-Based LQML Component Model
	3.3 Apply XML to LQN Definition
	3.3.1 Why XML Applies to LQN Definition?
	3.3.2 XML Schema for LQML Sub-model and Assembly Model Definition

	3.3.2.1 New Elements Introduced to LQML
	3.3.2.1.1 Slot
	3.3.2.1.2 Phase activities
	3.3.2.1.3 Task-activities
	3.3.2.1.4 Service
	3.3.2.2 LQN Core
	3.3.2.2.1 Processor in LQN Core
	3.3.2.2.2 Task in LQN Core
	3.3.2.2.3 Activities in LQN Core
	3.3.2.3 LQN Sub-model
	3.3.2.4 LQN Assembly Model
	3.4 An Example of Components Assembly
	3.5 Approaches to Creating LQN Component Models
	4.1 Design Issues
	4.2 Overview of the Present Approach
	4.3 LQN Assembly Model
	4.3.1 An Example of an LQN Assembly Model
	4.3.2 The Reusability and Adaptability of the Assembly Model
	4.4 Tool ¨C LQComposer
	4.4.1 Overview of Tool Design
	4.4.2 LQNAssemble Design
	4.4.3 xml2LQN Design
	4.4.3.1 Template Algorithm in xml2LQN Stylesheet
	4.5 Tool Validation
	4.5.1 Validation of LQNAssemble
	4.5.2 Validation of xml2LQN
	4.5.3 Validation Against the Combined Tool ¨CLQC�
	The validation here takes the assembly model in List 4-3. The command to invoke this is as follows.

	4.5.4 Conclusions
	A.1 XSD Schema for LQN Core (lqn-core.xsd)
	A.2 XSD Schema for LQN Sub-model (lqn-sub.xsd)
	A.3 XSD Schema for LQN Assembly Model (lqn.xsd)
	B.1 XML Document for SingleMod
	B.2 XML Document for NestedMod
	B.3 XML Document for Flattened NestedMod (NestedMod_flt)
	B.4 Output of Transforming SimpleAbl (SimpleAbl_flt.lqn)
	B.5 XML Document for a Parallel Database Model (par-db.xml)
	B.6 Output of Transforming par-db.xml (par-out.lqn)
	B.7 An LQN model that has task activities ¨C tas�
	B.8 Output model from transforming task-act.xml (task-act.lqn)

	C.1 XML Document for MISAssemble
	C.2 XML Document for AppComp
	C.3 Resulting Model in LQN Language (MISAssemble_flt.lqn)
	Chapter-5.pdf
	5.1 A Conceptual Performance Model for a Management Information System (MIS)
	5.2 The Component Based Approach to Model the MIS
	5.2.1 The Assembly Model for the MIS
	5.2.2 The Application Server Component Model
	5.2.3 Resulting Model from LQComposer
	5.3 Performance Results for the Base Case
	5.4 Performance Results with Multithreading
	Case I-1 The number of processors of AsP increases to 4
	Case I-2 CacheInfo is multithreaded to 10.
	Case I-3 CacheInfo is multithreaded to 20.
	Case I-4 CacheInfo is multithreaded to 20. SmallReport1 and SmallReport2 are multithreaded to 2.
	Conclusions from the Base Case to Group I
	5.5 Performance Results with Replicated Application Nodes
	Case II-1 Two Replicated Nodes
	Conclusions from Groups II
	5.6 Scaling Limits
	6.2 Limitations
	6.3 Future Research
	A.1 XSD Schema for LQN Core (lqn-core.xsd)
	A.2 XSD Schema for LQN Sub-model (lqn-sub.xsd)
	A.3 XSD Schema for LQN Assembly Model (lqn.xsd)
	B.1 XML Document for SingleMod (SingleMod.xml)
	B.2 XML Document for NestedMod (NestedMod.xml)
	B.3 XML Document for Flattened NestedMod (NestedMod_flt.xml)
	B.4 Output of Transforming SimpleAbl (SimpleAbl.lqn)
	B.5 XML Document for a Database Model (par-db.xml)
	B.6 Output of Transforming par-db.xml (par-db.lqn)
	B.7 XML Document for an LQN Model that Has Task Activities (task-act.xml)
	B.8 Output Model from Transforming task-act.xml (task-act.lqn)

	C.1 XML Document for MISAssemble (MISAssemble.xml)
	C.2 XML Document for AppComp (AppComp.xml)
	C.3 Resulting Model in LQN Language (MISAssemble.lqn)

