
Component Based Performance Prediction

Xiuping Wu David McMullan Murray Woodside
Carleton University Carleton University Carleton University

Ottawa, Canada K1S 5B6 Ottawa, Canada K1S 5B6 Ottawa, Canada K1S 5B6
xpwu@sce.carleton.ca dmcmulla@sce.carleton.ca cmw@sce.carleton.ca

ABSTRACT
Component Based Software Engineering (CBSE) exploits re-usability of configurable components to
generate software products more quickly, and with higher quality. CBSE offers potential advantages for
performance engineering. If most of a new system consists of existing software components, it should be
possible to predict properties like performance more easily, than if all of the software is new. The
performance-sensitive properties of the components can be extracted and stored in a library, and used to build
a predictive model for the performance of a proposed product. This paper describes an approach based on
performance submodels for each component, and a system assembly model to describe the binding together
of library components and new components into a product. In this work a component can be arbitrarily
complex, including a subsystem of concurrent processes. The description pays particular attention to
identifying the information that must be provided with the components, and with the bindings, and to
providing for parameterization to describe different configurations and workloads.

General Terms
Performance
Keywords
Component Based Software Engineering(CBSE), Performance prediction, Performance submodels, Assembly model

1. INTRODUCTION
Research in Component Based Software Engineering has focussed on functional aspects, with relatively little reported on design
for non-functional properties such as performance. One difficulty is the need to consider many potential execution environments
for a system. Sherif, Yacoub et. al. [9] proposed a way to characterize a software component, in which they mention non-
functional attributes, without details about how to describe them and use them. Sitaraman et. al. [4] argued that performance
specification of software components and assemblies is a basic problem that must be solved to enable software engineers to
 assemble systems from components. It would be very helpful if we can build a performance model for each component and then
assemble these sub-models for prediction according to the system design, especially if there are tools or methodology that can
automate these processes. Our research work has been motivated by this thought.

Application System

Customized
Component A

Customized
Component B

Infrastructure
support

Performance model of the
Application System

Customized Submodels

Component
Library

Library of
Infrastructure
Submodels

Library of
Component
Submodels

Product

and Model

Assembly

Specifications
 select select
 and with
 customize parameters

glue code glue model

Building the software from a
Component Library

Building the model from a
Component Submodel Library

Figure 1 Component Based System development

The development of component based software systems can be generalized [10] as shown in Figure 1. Using the same
specification as for the component-based software, our approach is to assemble performance sub-models for these components
into a system-level performance model, using an automated tool for model assembly.

2. COMPONENTS IN AN LQN PERFORMANCE MODEL
LQN models [5] extend the traditional queuing network models by considering both software and hardware contention, and the
impact of layers on service time. An LQN model is expressed as a set of objects called “tasks” offering services (like methods)
called “entries”; entries of one task make requests to entries of others at lower layers. LQN has been used for many industrial
case studies and has demonstrated the power of early performance prediction.

For component based software system prediction or evaluation, components are expressed as a type of LQN submodel [1], and
the binding definition for the overall system is expressed as another LQN, with additional information to define parameters and
bindings. Within a component submodel, the parts such as tasks, entries, processors and interactions will be called its “elements”.

2.1 Concept and definition of LQN component model
A component submodel represents a sub-system that can be incorporated into a software product. An example submodel for a
component called an Application Server is shown in Figure 2. The controller task interprets the request, the ReportGen task
creates and edits reports on an SQL database, and the ResultsCache task stores report data for reuse, to assist the assembly of
complex reports and the presentation of the same data from different points of view, or at different levels of detail. The stub
portion includes a processor for each software element, which allows unconstrained allocation to different processors. There is a
single incoming interface, showing that all requests come to a common point for dispatching

controller

ReportGen

Results Cache

DB1 DB2

driver

Incoming
Interface

Body of
component

stubs

PPP

Outgoing
Interface

Figure 2 A component model for an application server in an E-business system

The component submodel is the part inside the dashed box; the upper and lower parts are proxies for other elements which it
expects or requires to be combined with. The driver part defines placeholders for the elements that provide the input requests to
the component; the stub/processor part defines services that the component will require in order to function. Processors are
defined to execute the tasks; services might include file systems or databases.

The drivers and stubs in our approach fill an additional role: they can be optionally incorporated into the system with the
component, or overridden by elements in the rest of the system. Thus, a component can be defined with a default server or
database, that can be replaced where appropriate. In figure 2, the incoming interface refers to the services of the component that
can be accessed from outside while the outgoing interface is a source of requests to other components.

2.2 Component Parameters
The submodel has parameters defined which characterize its workload when it executes on a “standard” platform defined by the
stubs section of the submodel. This includes CPU demands on some nominal processor architecture, service request parameters
between elements of the component, and service request rates to stub services. It also includes default values for configuration
parameters such as processor allocations and replication and threading levels. Different sets of CPU demands can be provided for

different deployment environments, such as UNIX and Windows. The calibration of these demands is done in advance, and
maintained for the library, as described in [7], [8].

A component is instantiated in a slot defined in an LQN model, with some additional parameter values defined to customize it.
Some of these instantiation parameters can redefine the parameters of the elements of the submodel, such as processing demands,
the number of interactions, levels of replicas and multithreading, and also configuration parameters such as processor allocations.
Since components behave differently on different platforms, the choice of a particular platform for one of the processors is a
parameter which would select the corresponding CPU demands for the elements allocated to that processor.

Some of the parameters of the submodel elements may be defined as functions of a higher-level parameter, such as the size of a
database. The database server CPU demands and I/O demands would be defined, within the submodel, as functions of the
database size parameters.

2.3 Creating an LQN component
An LQN component that corresponds to a software component or subsystem can be derived in several ways. It can be derived
from analysis of scenarios, or design specifications [2]. The execution demands can be obtained from experience, or from
budgeted values [3]. The attributes of the component submodel can be verified using a testbed which provides drivers and load
generator and operational stubs, which can be related to the drivers and stubs in the component definition. The stub and driver
section included in the component model definition, can even be used to generate operational drivers and stubs for measurement
purposes, as in the Layered System Generator (LSG) [6].

3 COMPONENT ASSEMBLY MODEL
In order to assemble these sub-models, we define a high-level assembly model which can be derived from the software
architecture of the system. This is also in the form of an LQN, with some tasks representing slots for components, and others
representing glue for integrating them. There is a binding section which specifies how the components will be instantiated and
customized and how they are interfaced to each other.

Figure 3 shows the high-level assembly model for the three-tier E-business system. It shows the instantiation and connection of
three components from the library, with a set of user tasks. The connector has a square at an outgoing interface and a circle for
the input interface. The two databases in the stub part of the Application Server component will be connected to the same
Database Server but with two different entries in the model.

This example shows that clients send requests to the web server which does some processing and then invokes the application
server which executes the business logic and it may in turn invokes some database operations. After the results have been worked
out, they are sent back to clients (that is, the interactions are synchronous). Each element in this model is a component which
consists of several tasks. For example, the details of application server may be as shown in Figure 2. And the database server can
include separate entries for separate services to separate databases. It may also include separate entries for read and write requests.

This kind of high-level assembly model can also be derived for other types of systems as long as the relationships between
components are clear which usually can be obtained from the software architecture.

Client

WebServer

AppServer

DBServer

binding

section

Figure 3 A component assembly model for the E-business system

3.1 Binding Section
The binding section in Figure 3 shows how a particular component is connected into a system. As shown in Figure 3, the Client,
WebServer, AppServer and DBServer are placeholders for components. There will be a separate binding section for each
placeholder and a new instance of a component class will be created to replace it. To instantiate a component class, in the LQN
assembly model, a statement like a method call is used which includes the placeholder that is going to be replaced, the
component name, and the list of parameters. An example of this would be the following

B AppServer AppServerComp(<variable list>)

In this example, AppServer is the name of the placeholder while AppServerComp is the component class whose instance is going
to replace AppServer. The variable list may include the actual values that will replace the corresponding variables in the
component. If a variable is defined but with no instantiation value, then a default one will be used.

 There are three kinds of binding types named as service binding, request binding and processor binding. Processor bindings
identify an actual processor for each processor in the component interface definition. A service binding identifies one of the
placeholder’s entries with one of the component’s incoming interfaces (which is an entry). A request binding connects one of the
outgoing interfaces of the component to an outgoing request from the placeholders. This directs the request from the component
to a service outside of the component.

3.2 Binding Compatibility
In order to make sure that the bindings of a component are compatible with the single task which is the placeholder in the
assembly model, some checking must be performed before the component is actually plugged into the model. This includes the
type mapping checking such as a processor can only be bound to a processor and an entry can only be bound to an entry. In
addition, the component must have the same number of incoming interfaces as the placeholder. And the component must also
have the same number of outgoing interfaces as the outgoing requests of the placeholder.

3.3 Model Assembly
The system performance model is created from the component assembly model and the component submodels , by a software
tool called the “component assembler” which generates the task instances and their parameters, guided by the binding section of
the assembly model. This is an automated process.

After running the component assembler, the interfaces of each component submodel will disappear in the system model. And the
connections of components will be overwritten by the actual interactions that are specified by parameterization or by the
submodel definition itself.

4 INDUSTRIAL CASE STUDY
This component-based approach has been applied to modeling an enterprise information system; the description here is loosely
based on the real product, in a somewhat simplified form. We use the component assembly model shown in Figure 4 below
which is similar to Figure 3 but is an LQN model. The rectangles in the diagram are placeholders taking the form of tasks in LQN
model. The left sides of each task are entries. These placeholders will be replaced by the concrete instantiated components. The
details of the binding sections have not been listed. In this case, the DBServer is specified as being able to satisfy two different
types of requests coming from Application Server. This is modeled by using one task with two separate entries called DB1 and
DB2.

In the binding sections, the entries of these placeholders are bounded to the corresponding components’ interfaces. For instance,
the two different entries in one Database Server task are now being bound to the two databases in the stubs of AppServer
component shown in Figure 2. And the two processors that respectively host tasks of controller and ReportGen are now being
replaced by one processor ConP which means these two tasks are now sharing one processor. But the processor hosting
ResultsCache is still the same. The final performance model after assembly is shown in Figure 5.

In this final model, we only show some details about the AppServer component yet with the rest shown as single tasks. However,
the WebServer component is a library submodel including disks storing static pages. The database servers in this instance were
represented very simply as pure delays, describing the response time of a database system without modeling its details.

execRequest

ReportGen

Results Cache

Database

AppServer

ConP
CacP

Client
request

WebServer

Client

Serve
request

DB1 DB2 DBServer

Controller

generate

getResults

Client
request

WebServer

AppServer

DB1 DB2

Client

Serve
request

App
operation

DBServer

Figure 4. LQN Assembly Model

Figure 5. The final LQN model of the E-business system

This system could run under different configurations. For instance, the business logic could be executed on several identical
nodes or on one more powerful node. In order to see how the system behaves in these different situations, we can use the
component assembler to instantiate a system model with a certain number of replicas of application nodes. And we can also
instantiate a system model with the application node running on one node which has the same number of processors.

Solving the system models that are generated by the component assembler, we can obtain a variety of results. For example, the
results in Figure 6 show that replication does better than a single more powerful node. With replications the utilization of the
processor has been improved, while the improvement is limited in the single node case by a different software bottleneck.

R e p l i c a t i o n i m p a c t o n s y s t e m r e s p o n s e t i m e

0

2 0

4 0

6 0

8 0

100

120

140

160

180

1 0 4 0 7 0 100 1 3 0 160

n u m b e r o f u s e r s

re
s

p
o

n
s

e
 t

im
e

 (
s

e
c

)

response t ime fo r sys tem w i th rep l i cas

response t ime fo r sys tem w i th s ing le node

Figure 6 Impact of replication of the ReportGen element on the system response time

5 CONCLUSIONS
In this paper, we have introduced an assembler tool and a methodology to automatically generate performance models for
component-based systems. The advantage of this appraoch is its parameterization which reflects the software component

performance attributes under different environments. Component submodel are reusable, just as components themselves. The
interface and stub sections that are defined in the component submodel can be used to define calibration tests.

The goals of current work with the model assembler are to improve the description of interfaces and bindings, to develop
practical libraries of component submodels, and to model product lines. Although the component assembler is successful in
building performance models for component based systems, it still has some limitations. Ideally the model assembly should be
specified by the software assembly specification, as indicated in Figure 1. In the assembler, the binding section is the key for
plugging submodels into a model. At present the interface of the submodel is not fully identified, and the binding section must
reference some details about its internals.

Acknowledgements
This research was supported by Nortel Networks through a postgraduate scholarship, and by NSERC (the Natural Sciences and
Engineering Research Council of Canada). David McMullan designed and wrote the software to build composed LQN models
while he was employed as a research engineer at Carleton University.

REFERENCES

[1] D. McMullan, “Components In Layered Queuing Networks”, http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/component3.pdf

[2] Dorin Petriu, Murray Woodside, "Software Performance Models from System Scenarios in Use Case Maps", Proc. 12 Int.
Conf. on Modelling Tools and Techniques for Computer and Communication System Performance Evaluation (Performance
TOOLS 2002), London, April 2002.

[3] Khalid H. Siddiqui, C.M. Woodside “Performance aware software development (PASD) using resource demand budgets”
In the Proceedings of the third international workshop on Software and performance, pp. 275 – 285, July 2003

[4] Murali Sitaraman, Greg Kulczycki, Joan Krone, William F. Ogden, A.L.N. Reddy “Performance Specification of Software
Components”, Proceedings of SSR '01, pp. 3­10. ACM/SIGSOFT, May 2001

[5] C.M. Woodside, J.E. Neilson, D.C. Petriu, S. Majumdar, "The Stochastic Rendezvous Network Model for Performance of
Synchronous Client-Server-like Distributed Software", IEEE Transactions on Computers, Vol.44, Nb.1, pp 20-34, January
1995

[6] C.M. Woodside, C. Schramm "Scalability and Performance Experiments using Synthetic Distributed Server Systems",
Distributed Systems Engineering, vol. 3, pp. 2-8, 1996.

[7] M. Woodside, C. Hrischuk, B. Selic, S. Bayarov, Automated performance modeling of software generated by a design
environment", Performance Evaluation, v 45, pp 107 - 124, July 2001

[8] M. Woodside, V. Vetland, M. Courtois, S. Bayarov, "Resource Functions for Performance Aspects of Software Components
and Sub-Systems", pp 339-256 in "Performance Engineering", eds R. Dumke, C. Rautenstrauch, A. Schmeitendorf, A.
Scholz, Lecture Notes in Computer Science no. 2047, Springer-Verlag, Mar. 2001.

[9] Sherif Yacoub, Hany Ammar, and Ali Mili “Characterizing a Software Component”,
http://www.sei.cmu.edu/cbs/icse99/papers/34/34.htm

[10] Sherif Yacoub “Performance Analysis of Component-Based Applications”, Proceedings of the Second Software Product
Line Conference, pp.299-315

