

The Use of Optimal Filters to Track Parameters of Performance Models

Murray Woodside, Tao Zheng Marin Litoiu
Dept. of Systems and Computer Engineering,

Carleton University, Ottawa K1S 5B6
Canada

Centre for Advanced Studies,
IBM Toronto Lab

Canada
{cmw | zhengtao} @sce.carleton.ca marin@ca.ibm.com

Abstract

Autonomic computer systems react to changes in
the system, including failures, load changes, and
changed user behaviour. Autonomic control may be
based on a performance model of the system and the
software, which implies that the model should track
changes in the system. A substantial theory of optimal
tracking filters has a successful history of application
to track parameters while integrating data from a
variety of sources, an issue which is also relevant in
performance modeling. This work applies Extended
Kalman Filtering to track the parameters of a simple
queueing network model, in response to a step change
in the parameters. The response of the filter is affected
by the way performance measurements are taken, and
by the observability of the parameters.

Keywords
Autonomic systems, Software performance,

Parameter Tracking Performance Modeling, Layered
Queuing, Model Building

1. Introduction

Autonomic self-optimizing systems have two

kinds of goals: they must maintain adequate quality of
service (QoS), typically defined by service-level
agreements (SLAs), and they may also seek to provide
efficient operation, using a minimum of resources.
Typically, priority is given to maintaining the SLA as
performance constraints at all times, while seeking the
minimum cost.

Basic autonomic capability is provided by a
controller with these functions:
• monitoring performance variables,
• deciding to change system management variables,
• executing the decision.
The changes in the system are based on a description
or model of the system. Dynamic regression models
have been described by several researchers: by

Hellerstein and co-workers [3] [5] to control the
memory used by an IBM® Lotus® Notes® application,
and by Abdelzaher and co-workers [1] [11] to adjust
the number of threads in Web servers. Queuing
network models were described by Menasce [12] as
predictive models for self-optimization, with a
corresponding architecture [13].

In [10] the present authors have proposed a
hierarchical autonomic architecture to control QoS for
a Web services system, in which the workload may
change with time. It combines dynamic models for
workload change, layered queuing models (LQM) for
performance prediction and threshold-based control to
seek self-optimization. Each level in the hierarchy uses
performance monitoring to provide a tracking model,
and model-based decision-making for control. One
level of the hierarchy is illustrated in Figure 1.

The model follows the changes in the workload
imposed by users, and the Decision element searches
the model to determine changes that will maintain QoS
contracts in an economical way. This provides self-
tuning, self-balancing, and self-provisioning.

 Controlled Application

Model

Decision

Model-Building
(Tracking Filter)

Monitoring

Application

Web Application Interface

Figure 1. Use of a tracking filter in autonomic

control of performance

The goal of this paper is to show how we can keep

the performance model up-to-date as the software
system changes. We will show how an Extended
Kalman Filter can be constructed for a performance
model, investigate its usefulness on an example, and

identify potential pitfalls to its application. As far as
we know, this is the first use of Kalman filtering to
track changes in a performance model. Novel aspects
include modeling the dynamics of parameter change,
the linearization of the observation function (which is
the model itself), and the choice of covariance values
for the filter, which affect the gain matrix.

The types of systems that can benefit from our
approach are information and transaction-based
software applications, for management, e-commerce,
insurance, banking, brokerage, etc. In these systems,
users log in, alternate requests with think times, and
then log out. In terms of performance modeling, these
systems are best described by closed models.

2. The Extended Kalman Filter for

Parameter Tracking

The problem of tracking the changing value of

states and parameters, based on measurements of
related quantities, is a common one in engineering
systems. Kalman Filters are widely used; one example
is in tracking vehicle positions (see [2]).

In general, the theory assumes there is a state-and-
parameter vector x, which changes over time by a
known law xnew = f(xold) that includes random
disturbances. From an observation vector y = h(x)
(which may include errors), an estimate x̂ for x is
obtained, with the following tracking filter structure:

oldx̂ = previous estimate of x
ŷ = prediction of observation y based on oldx̂

and the model
z = new observation vector

newx̂ = oldx̂ + K (z - ŷ)
The filter gain matrix K can be determined in a variety
of ways, such as on Bayesian grounds to give the
conditional expectation of x, conditioned on the stream
of observations, the distribution of observation errors,
and some initial distribution of x̂ .

For cases with linear functions f() and h() and
normally distributed independent disturbances and
errors, Kalman’s classic paper [8] derived a filter with
this structure that minimizes a quadratic norm on the
estimation errors.

2.1 The Extended Kalman Filter

Extensions cover nonlinear functions f() and h(),

and non-normal distributions. We will adopt the most-
used variant, the Extended Kalman Filter (EKF), sum-
marized as follows (see, for example, [2] [16]).

The state or parameter vector x to be estimated
evolves over time by a dynamic law of the form:

 xk = f(xk-1,uk-1) + wk-1 (1)
in which k denotes an integer time variable, u is a
vector of known inputs, and w is a random disturbance
or drift. w may represent actual random and
unobserved forces acting on the system, or may
represent modeling uncertainty; it is a random vector,
“white” (independent over time), with mean 0 and a
known disturbance error covariance matrix Q.

Observations are made of a vector z, which is a
function of these parameters, with added measurement
error. At step k, it is defined by:

zk = h(xk)+ vk (2)
where vk is a white measurement noise, with mean 0
and a known measurement error covariance matrix
R.

The estimate x̂ of x is computed recursively in
two steps:
Step 1. Prediction:

1.1 project the state ahead:
−
kx̂ = f(−

−1ˆ kx ,uk-1) (3)

1.2 project Pk, the estimated covariance matrix for
the estimates of x:

P-
k = APk-1AT+Q (4)

Step 2. Feedback:
 2.1. compute the Kalman gain K as:

Kk =P-
kHk

T(HkP-
kHk

T + R)-1 (5)
 2.2 correct the state vector:

−
kx̂ = −

−1ˆ kx + Kk(zk - h(−
−1ˆ kx)) (6)

 2.3 correct the error covariance Pk:
Pk=(I-KkHk)P-

k (7)

with the notation:
zk = the measured value for z at time k.
h(−

kx̂) = ŷ k = predicted value for z.
A = linear term in the Taylor expansion of f(x)
 = ∂f/∂x. In our case, A is the identity matrix.
H = linear term in the Taylor expansion of h(x)
 = sensitivity of observations to parameters = ∂h/∂x.
R = measurement error covariance.
Q = disturbance error covariance.

The recursive filter has to be initialized with the
estimated state −

0x̂ (for Step 1.1) and an initial error
covariance matrix P0 (for Step 1.2). We’ll see in the
next sections how their selections can affect the filter
performance.

Where f(x) or h(x) are nearly linear, the filter is
expected to have near-optimal properties. The
optimality and convergence properties depend on the
way the functions f(x) or h(x) are linearized around an
operating point [9]. The Extended Kalman Filter
presented above linearizes f(x) and h(x) by a first-

order Taylor series around the state estimate −
−1ˆ kx and

does not take linearization errors into account. A
variant called the Iterative Extended Kalman Filter
(IEKF) linearizes h(x) around the predicted state
estimate −

kx̂ . Other variants of the filter, such as the
Unscented Kalman Filter [7] or the Divided Difference
Filter [14], capture the linearization errors in the
covariance matrices. They were shown in [9] to
provide better estimates when dealing with nonlinear
f(x) functions, while EKF and IEKF provide better
performance when dealing with nonlinear h(x), which
is the case here. This motivates our use of EKF instead
of other types of filter.

2.2 Tracking for a Performance Model

For a performance model, we model x as a vector

of n parameters that drift randomly. Thus:
xk = xk-1 + wk

The drift wk is assumed to be an independent normally
distributed n-vector with covariance matrix Q =
diag(q1, q2, ... qn).

Also, the measurement m-vector z is modeled by
the results y of the performance model calculation,
with added errors of estimation:

yk = h(xk)
zk = yk + vk

For a large step duration S, the sampling error vk will
be approximately independent and normally distri-
buted. Its covariance matrix is defined as R = diag (r1,
r2, ... rm) = diag(r), where ri = Var(zi).

 SystemModel

Filter

x, P: new parameters
and covariances

x: new
parameters

H:
sensitivities

z:
measured
performance

y: predicted
performance

e:
prediction

error

Monitor

Figure 2. Logical architecture of a tracking
filter for model parameters

The functional architecture of a system with a

Kalman Filter to track its performance model is shown
in Figure 2. The filter has a feedback structure, in that
the parameter estimates at each step are used to predict
the performance for the next step, and the errors of
prediction are used to correct the estimates.

2.3 The Example Performance Model

To simplify the presentation, a very basic

queueing network model will be considered as the
performance model in this paper, as shown in Figure
3. It represents a small Web server with its disk (node
2) and a separate node for CGI application service
(node 3). A response includes all the work done
between visits to the “Users” node in the Figure,
which represents the operation in which a user
responds to one system output and generates the next
request to the system. Users have a characteristic
“think” time for this operation, which will be set to
zero here. Service times are assumed to be
exponential. Then the queueing model has four
parameters:
N = the number of active jobs, assumed to be constant

(so this is a “closed” model), with default value 4,
D = [D(1), D(2), D(3)] = the total average demands for

service by nodes 1, 2 and 3, with default values
[2, 3, 4] sec/response.

The model is also assumed to satisfy the separability
conditions, which means that it can be solved by Mean
Value Analysis (MVA) [6].

0:Users

3: CGI 2: Disk

1: Webserver

Figure 3. A simple queueing model

Some performance measures that at least

potentially could be measured in the system are:
 f = the throughput of requests from Users, per sec.
 T = the mean response time = N/f,
T(i) = the part of each response time that is spent

queueing and in service at node i,
U(i) = the mean utilization of node i,
N(i) = the mean number in system at node i.
In practice, we may use only some of these. The first
case to be considered has measurement vector:

z = [T(1), T(2), T(3), f]
The prediction vector ŷ has the same structure, and the
error vector is e = z – ŷ .

The vector of parameters to be estimated is
x = D = [D(1), D(2), D(3)]

Later, the question of tracking N will be considered as
well. The filter operation is illustrated in Figure 4.

k = 2 time k = 0 k = 1

step duration S

estimates parameter estimate

x x
x x

x

performance prediction

o

o o o

o

Figure 4. Operation of the estimating filter

over time

2.4 Measurement Errors and Drift

The errors v are statistical sampling errors, which

depend on the system and on the sampling period S.
They were estimated with N = 4, D = [2, 3, 4], and
sampling period S1 = 100000 sec, by simulating the
model with batched means. S1 was chosen arbitrarily,
and includes about 20,000 responses. The variances
for T(i), U(i) and f were as follows:
• for T(1..3): 0.0109, 0.0374, 0.0745
• for U(1..3): 0.0000737, 0.0001531, 0.0000872
• for f: 0.0000154
For a given vector z of measurements, there is a vector
r of variances, which are expressed in the error
covariance matrix R = diag (r). Thus, for z = [T(1),
T(2), T(3), f], and step size S1,
R = R(S1)
 = diag(0.0109, 0.0374, 0.0745, 0.0000154) (8)
For other sampling step sizes S, the variances are
multiplied by (S1/S):

 R = (S1/S) R(S1) (9)
The factor (S1/S) in equation (9) follows from S and
S1 being long enough, so that error variances are
inversely proportional to the number of samples, and
that the number of samples of each step is proportional
to S. It was tested by simulating for S = 400000.

The variances of the drifts in the parameters are
typically unknown, but Q should represent typical drift
magnitudes to be tracked. If the drift has independent
increments, the variances will add, making the
variance proportional to S. For this work, a base case
was taken of unit drift variances for S = S1 = 100000,
giving:

 Q = I3 *(S/S1) (10)
where I3 is the 3x3 identity matrix.

3. Experiment: A Step Change

We will consider a situation where the system

parameters make a step change from values Dold,
which are constant, to new (constant) values D at time
zero. At the moment of the change, the tracking filter

has a correct estimate 0x̂ = Dold.. The estimated
parameters are suddenly far from correct, the
prediction error e becomes much larger and the filter
executes a transient response, to acquire the new
parameter values.

The step response of the tracking filter can
provide insight into many properties of the filter, and
how it should be applied. We consider:
• How quickly does the filter settle to the

neighbourhood of the new parameter values D?
• What is the steady-state tracking error over time,

after settling to the new values?
• What is the influence of the step (sampling) time?
• What is the influence of the matrices R, Q, and

P0?
• What is the influence of using an incorrect model

structure?
Since R captures the accuracy of the measured data, a
larger R will lead the filter to adjust more slowly to
prediction errors. Conversely, a larger Q will lead the
filter to depend more on the measurements. Too small
a Q causes the filter to assume there is little or no
change in the system; the filter will gradually close
down and stop tracking. P0 only affects the initial
conditions of the filter.

The role of H is to connect the prediction errors
back to sources in model parameter errors. If the
model has a different structure, H will cause the filter
to interpret the measurements according to the model.
Base Case:
• The server demands change from D = [4, 5, 6] to

D = [2, 3, 4] at time zero and remains constant.
• The performance model has the same structure

and the filter begins at −
0x̂ = [4, 5, 6].

• P0 , the estimated covariance of the initial estimate
−
0x̂ , was chosen as the squares of the initial

estimates, so P0 = diag(16, 25, 36).
• The base-case sampling step time is S1 = 100000

time units, which gives R as in equations (8), (9)
above.

• From equation (10), Q = I3.
The output sensitivity matrix H is the matrix of

derivatives of output values to demand parameters D.
Given a set of estimated demands, the derivatives were
calculated exactly by differentiating through the mean-
value-analysis steps for solving the queueing network
(see Appendix). H could also be found numerically.

3.1 The Filter Simulation for a Step Response

To study the filter behaviour, the system was

replaced by a simplified representation, which returns
a measurement vector z, which is the sum of the exact

result vector y for D = (2, 3, 4) and a simulated
sampling error v. v is a generated, independent,
normally distributed random vector with component
variances given by the diagonal of R.

At each step, the model equations were also
solved with the estimated parameters −

−1ˆ kx to find the

new predicted measures y = h(−
−1ˆ kx), and the

prediction error e = z - y. Then the filter was used to
update to −

kx̂ , and the step was advanced.

3.2 The Filter Step Response, Base Case

A sample transient response of the tracking filter,

equations (1)-(7), is shown in Figure 5. The upper
three curves show the response of the parameter
tracking, and the lower curve plots the throughput
prediction error. As we shall see later, parameter
estimates with large errors can give a correct
throughput prediction.

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

6

7

8

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands and Throughput in the Base Case

Figure 5. A sample transient

Figure 5 shows that, at the beginning of the transient,
the estimates change almost at once to the
neighbourhood of the new values of D, and stay in that
neighbourhood with a small random variation. The
bottom curve shows that the filter predicts the
throughput very well. The error (multiplied by 100 so
it can be seen more clearly) settles quickly to near
zero. The actual mean throughput is about 0.21/sec,
and the error settles to within roughly ± 0.015, or
about 7%.

An average step response was found across 1000
repetitions of the transient, and Figure 6 shows the
average values, plus or minus one standard deviation.
The variations are very small. The throughput
prediction errors are also shown, again multiplied by
100. Their mean goes quickly to near zero, and their
standard deviation appears to be about 0.005. This is

about 2.5% of the mean system throughput of about
0.21 transactions/sec.

-2 0 2 4 6 8 10 12
-1

0

1

2

3

4

5

6

7

8

9

Steps from the Start

E
st

im
at

es
 p

lu
s/

m
in

us
 o

ne
 S

ta
nd

ar
d

D
ev

ia
tio

n

Means and Standard Deviations of the Transient Estimates

Figure 6. Estimates during a transient, with

error bars for one standard deviation.

The impact of the size of the sampling step size S,

and the matrices P(0), Q, and R, was investigated by
varying them by factors ranging from 0.01 to 1000.

Figure 7 shows the effect of scaling R. The Y axis
is the observed standard deviation of the parameter
estimates in the steady-state part of the response
(which, after observing Figure 6, was taken to begin at
the fifth sampling step). The throughput prediction
error was multiplied by 10 in Figure 7, to bring it into
the scale of the other variables.

10
-2

10
-1

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Factor on R

S
td

 D
ev

ia
tio

n
of

 S
te

ad
y

S
ta

te
 E

st
im

at
es

Tracking Error with Different Factors on R

Figure 7. Effect of scaling the error variance

matrix R on the accuracy of estimates

As R is increased, the filter tends to reduce its
adaptation to the measurements, and its prediction
quality suffers.

P(0) and Q were found to have very little effect
on the long-run tracking accuracy, so the results are
not shown here. As the scale factors varied from 0.01
to 1000, the standard deviation values stayed within

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
* 100*(prediction error) of throughput

x- SD of estimate of D(1)
o SD of estimate of D(2)
+ SD of estimate of D(3)
* 10*(SD of prediction error) of

throughput

top estimate of D(3)
second estimate of D(2)
third estimate of D(3)
bottom 100*(prediction error) of throughput

10% of the values shown in Figure 7 for a scale factor
of 1.

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Factor on S

S
td

 D
ev

ia
tio

n
of

 S
te

ad
y

S
ta

te
 E

st
im

at
es

Tracking Error with Different Factors on Sampling Step time S

Figure 8. Effect of scaling the sampling step

time S on the accuracy of estimates

However, the length of the sampling step S had a

significant effect, as shown in Figure 8. S affects the
measurement error (since statistical sampling error
variance declines as 1/S) and also the parameter drift.
(A longer step permits greater drift, which is assumed
here to have a variance proportional to S.)

Despite the assumed greater drift, the filter gave
more accurate estimates with larger S.

4. Other Measurement Vectors

The measurements T(1) – T(3) used above have a
close relationship to the node service demands D(1) –
D(3). Often we have less information, or more indirect
information. A tracking filter can combine different
kinds of data, as long as a corresponding prediction
can be made and the sensitivity H can be calculated.
This “data fusion” capability of tracking filters is
important in many applications (e.g. [2]).

Suppose we have a mixture of measurements of
different types, such as:

y = [T(1), U(2), f]
This also has only three components instead of

four. Then the tracking filter should be able to
combine these disparate data to estimate D.

4.1 Case 2: Fusion of Diverse Measures

A filter was created to work with the

measurement set y = [T(1), U(2), f], by incorporating
the appropriate sensitivities in the matrix H. Figure 9
shows that it succeeds just as well as the previous case
in acquiring the new parameter values, settling almost
at once to near the correct demand values [2, 3, 4]. The
throughput prediction has greater errors, and over-

estimates the throughput at step 2. However, in
general, the filter behaves very well.

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands, and Throughput Prediction Errors, in the Base Case

Figure 9. A transient response in Case 2, with

different measurements: y = [T(1), U(2), f]

Over the range of values of the sampling step size

S shown in Figure 10, the variation in the estimated
parameters is only a little larger than in Figure 8. The
standard deviations are about 10% larger at a factor of
10 -2 and also at a factor of 1. The throughput
prediction error is smaller at 10 -2 but a little larger at a
factor of 1. Overall, we can say the filter performance
is very similar for this measurement vector.

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Factor on S

S
td

 D
ev

ia
tio

n
of

 S
te

ad
y

S
ta

te
 E

st
im

at
es

Tracking Error with Different Factors on Sampling Step time S

Figure 10. Variability of estimates and

predicted throughputs in Case 2

4.2 Case 3: Inadequate Information

Suppose that T(1) used in Case 2 were dropped

and a measurement vector y = [U(2), f] were used.
 The transient response recorded in Figure 11 looks
quite promising. It settles into a small range around the
correct parameter values (2, 3, 4) within two steps, and
the throughput prediction error is small (< ± 0.02).

x- SD of estimate of D(1)
o SD of estimate of D(2)
+ SD of estimate of D(3)
* 10*(SD of prediction error) of

throughput

x- SD of estimate of D(1)
o SD of estimate of D(2)
+ SD of estimate of D(3)
* 10*(SD of prediction error) of

throughput

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
* 100*(prediction error) of throughput

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands, and Throughput Prediction Errors, in the Base Case

Figure 11. Transient with measurements only

for y = [U2, f]

However, the statistical analysis of the steady-

state convergence is not so positive. Figure 12 shows
the standard deviation of parameter estimates, from
20000 steps of the simulated algorithm in steady state
at each step size S = 100000*(scale factor). The errors
for D(1) and D(3) are much larger than in Case 2,
while the errors for D(2) are much the same. The small
errors for D(2) reflect the better quality of information
about the behaviour of node 2, provided by measuring
U(2).

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Factor on S

S
td

 D
ev

ia
tio

n
of

 S
te

ad
y

S
ta

te
 E

st
im

at
es

Tracking Error with Different Factors on Sampling Step time S

Figure 12. Variability of steady-state

estimates in Case 3 (measurement y = [U2, f]
)

For an extreme example, a filter was constructed

driven only by throughput measurements. A typical
transient response is shown in Figure 13. The filter
appears to converge, but to the wrong values.
However, the prediction error is no worse because
many models can predict the same congestion delay.
Here it seems that D(3) has been set to zero,
compensated by larger values of D(1) and D(2).

0 2 4 6 8 10 12 14 16 18 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands, and Throughput Prediction Errors, in the Base Case

Figure 13. Tracking with only one measured

value, the throughput

4.3 Case 4: Bottlenecked Estimated Model

If the estimated parameters make the model

heavily bottlenecked at one server, it is well-known
that its performance predictions become insensitive to
parameters of the other servers. This affects the H
matrix used by the filter, and might affect the ability of
the filter to track to the new parameter values.

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

10

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands and Throughput in the Base Case

Figure 14. Heavily bottlenecked initial model

Case 4 was like Case 1, but with starting demand

estimates [10, 0.1, 0.1] that imply a severe bottleneck
at server 1. The transient results in Figure 14 show that
it takes a little longer to reach the steady state at the
new correct values: about four steps, instead of 1.
However, it in no sense is “stuck” in the bottleneck
mode, as the large parameter is quickly reduced.

5. Use of an Approximate Model

Since performance models are always
approximations, the impact of a structural mismatch
between the system and model must be considered.

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
* 10*(prediction error) of throughput

x- SD of estimate of D(1)
o SD of estimate of D(2)
+ SD of estimate of D(3)
* 10*(SD of prediction error) of

throughput

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
* 100*(prediction error) of throughput

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
* 10*(prediction error) of throughput

5.1 Case 5: Wrong Model Structure

We consider first a model with only two nodes,

(while the actual system has three as before), and y =
[T(1), T(2), f]. Figure 15 shows the transient estimates
starting from D = [4, 5]. They show stable behaviour,
and throughput prediction errors that are only slightly
larger than in the base case of Figure 5.

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands and Throughput in the Base Case

Figure 15. Typical transient of the estimates

for a two-node model

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Factor on S

S
td

 D
ev

ia
tio

n
of

 S
te

ad
y

S
ta

te
 E

st
im

at
es

Tracking Error with Different Factors on Sampling Step time S

Figure 16. Standard deviations of estimates

using a two-node model

These comments are borne out by the results in Figure
16 for the variation of the estimates. The filter settled
to values for D(1), D(2) of about 2.78, 4.44 for every
case. The errors are about the same size as in Figure 8.
Thus the simpler model seems to predict as well, and
to track as well, as the three-node model. Simplified
models are important in practice.

5.2 Case 6: Incorrect Parameter Value N

The model was set up for 7 users, while the actual

system (as in Case 1) has N = 4. N is not tracked and

thus is not corrected. The measurements were y =
[T(1), T(2), T(3), f].

The filter was unable to cope with this situation; it
settled to a predictor with an error of about 25% in
throughput (Figure 17). It was seeking a compromise
between errors in predicting the per-node response
times T(i) and the throughput f. Rather than display
details of this bad situation, we will address the
question of tracking the population N for this model.

0 2 4 6 8 10 12 14 16 18 20
-12

-10

-8

-6

-4

-2

0

2

4

6

Steps from the Start
E

st
im

at
es

Transient Estimates of Demands and Throughput in the Base Case

Figure 17 Transient response with N = 7

6. Estimation of the User Population N

The user population N is not a continuous variable

and cannot be tracked by the usual filter based on
derivatives. However, the well-known Schweitzer
approximation for queueing models treats N as real,
giving the calculations shown in the Appendix. Notice
that we do not use the Schweitzer approximation to
calculate performance, but only for the derivatives
with respect to N. The nearest integer will be assigned
to N if N is not an integer during the iteration steps.

Results similar to those reported above for
tracking two or three parameters are shown in Figures
18 and 19 with four parameters x = [D(1), D(2), D(3),
N]. We considered a step change from [4, 5, 6, 7] to
[2, 3, 4, 4]. The transient in Figure 18 shows good
convergence within two steps for both the demands
and user population. The standard deviations of
tracking in Figure 19, over changes in the sampling
step sizes, are also very similar in magnitude to the
earlier results shown in Figure 8 for the base case. The
tracking errors decrease with the size of the sampling
step S, and the filter converges faster for N than for the
demands.

The derivative calculation by the Schweitzer
approximation appears to be successful. Thus, even a
discrete variable can be tracked by the Kalman filter
approximately.

x- SD of estimate of D(1)
o SD of estimate of D(2)
* 10*(SD of prediction error) of throughput

x- estimate of D(1)
o estimate of D(2)
* 100*(prediction error) of throughput

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
* 100*(prediction error) of throughput

0 2 4 6 8 10 12 14 16 18 20
-6

-4

-2

0

2

4

6

8

Steps from the Start

E
st

im
at

es

Transient Estimates of Demands and Throughput in the Base Case

Figure 18. Transient Including Estimates of N

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Factor on S

S
td

 D
ev

ia
tio

n
of

 S
te

ad
y

S
ta

te
 E

st
im

at
es

Tracking Error with Different Factors on Sampling Step time S

Figure 19. Errors Including Estimates of N

The results also show that as long as we can include
the important model parameters (N in this case) into
the tracking parameters, and get the respective
sensitivity data, those model parameters could be
tracked correctly.

7. Conclusions

Even though the performance model investigated

here is a small and simple one, it is clear from the
experience reported above that the Extended Kalman
Filter can be applied to track changes in parameters of
queueing models. In any case, practical models are
often simple.

No problems were experienced with stability or
with slow convergence, over wide ranges of parameter
values. When parameters P0 and Q, which must often
be guessed, were varied over four orders of magnitude,
the behaviour of the estimator was very little affected.

The tracking filter operates in discrete steps, and
the step time must be quite long. The basic step time

used here, of 100000 time units, would contain about
21000 responses (at a mean throughput of 0.21), and
this gave acceptable accuracy; longer step times were
better.

The filter converged remarkably quickly
following a step change in the system parameters,
which was the condition investigated here. We may
expect similarly good tracking on steadily drifting or
randomly drifting parameter values.

A convenient aspect of the Kalman Filter is its
capability to fuse data of different types, such as delay,
throughput, and utilization, as demonstrated in Section
4.1. It is not necessary to have direct data on every
server in the system, but more measured variables
naturally give smaller estimation errors.

The filter was quite robust to the use of an
approximate model, such as a model with fewer
servers than the actual system. However it did not
function satisfactorily with an incorrect user
population. It will be necessary to estimate the
customer population N as well, although as N is a
discrete variable it does not fit the Kalman filter
framework perfectly well. However, we showed that
for separable queuing networks, we can find
approximate derivatives by using the Schweitzer
formula. The results showed that, using those
approximations, the filter tracks the user population
accurately. For more general models, such as layered
queueing models, finding the derivatives of N as well
as well as other sensitivities, may be solved by
numerical differentiation (by multiple solutions at
slightly perturbed parameter values).

Since the filter depends on sensitivities, and
bottlenecked systems have low sensitivity to
parameters away from the bottleneck, it was feared
that a bottlenecked system or model might get “stuck”
away from the correct values of parameters. However,
this did not happen.

This work concentrated on investigating
feasibility and is not exhaustive. However, the
investigation was overwhelmingly positive about the
potential of these estimators to track parameter
changes.

Acknowledgements

This research was supported by grants from IBM
Corporation and from CITO (Communications and
Information Technology Ontario).

References
[1] Tarek Abdelzaher, Kang G. Shin, Nina Bhatti,

“Performance Guarantees for Web Server End-
Systems: A Control-Theoretical Approach,'” IEEE
Trans. on Parallel and Distributed Systems , V. 13, n.
1, 2002.

x- SD of estimate of D(1)
o SD of estimate of D(2)
+ SD of estimate of D(3)
◊ estimate of N
* 10*(SD of prediction error) of throughput

x- estimate of D(1)
o estimate of D(2)
+ estimate of D(3)
◊ estimate of N
* 100*(prediction error) of throughput

[2] E. Brookner, Tracking and Kalman Filtering Made
Easy, Wiley Interscience, 1998.

[3] Yixin Diao, Xue Lui, Steve Froehlich, Joseph L
Hellerstein, Sujay Parekh, and Lui Sha. “On-Line
Response Time Optimization of An Apache Web
Server,” Int. Workshop on Quality of Service, 2003.

[4] Neha Gandhi, Joseph L. Hellerstein, Sujay Parekh, and
Dawn M Tilbury, “Managing the Performance of Lotus
Notes: A Control Theoretic Approach”, Proc. of the
Computer Measurement Group, 2001.

[5] Hellerstein J., Diao Y., Parech S., Tilbury D., Feedback
Control of Computing Systems, Wiley, 2004.

[6] R. Jain, The Art of Computer Systems Performance
Analysis. Wiley, 1991.

[7] S. Julier, J. Uhlmann, H.F. Durant-Whyte, “A new
method for approximating nonlinear transformations of
means and covariances in filters and estimators,” IEEE
Trans. on Automatic Control, v. 45, pp. 477-482, 2000.

[8] R.E. Kalman, “A new approach to linear filtering and
prediction problems,” Transactions of ASME, Journal
of Basic Engineering, vol. 82, pp 34-45, March 1960.

[9] T. Lefebvre, H. Bruyninckx, and J. De Schutter,
“Kalman filters for nonlinear systems: a comparison of
performance,” Internal Report 01R033, KU Leuven,
2001, http://people.mech.kuleuven.ac.be/~tlefebvr/
publicatie.htm.

[10] Litoiu M., Woodside M., Zheng T., “Hierarchical
model based autonomic control of software systems,”
Proc. of Design and Evolution of Autonomic Software
(DEAS’05) Workshop, St. Louis, USA, May 2005.

[11] Ying Lu, Tarek Abdelzaher, Chenyang Lu, Lui Sha,
Xue Liu, “Feedback Control with Queueing-Theoretic
Prediction for Relative Delay Guarantees in Web
Servers,” Proc. Real-Time and Embedded Technology
and Applications Symposium, Toronto, May 2003.

[12] D. A. Menasce, M. Bennani, "On the Use of
Performance Models to Design Self-Managing
Computer Systems," Proc. 2003 Computer
Measurement Group Conference, Dallas, Dec, 2003.

[13] D. A. Menasce, "QoS-aware software components,"
IEEE Internet Computing, Vol. 8, No. 2, 2004.

[14] M. Norgaard, N.K Poulsen, and O. Ravn, “ New
developments in state estimations for nonlinear
systems,” Automatica, vol 36, pp. 1627-1638, 2000.

[15] L. Stojanovic, J. Schneider, A. Maedche, S. Libischer,
R. Studer, Th. Lumpp, A. Abecker, G. Breiter, and J.
Dinger, “The role of ontologies in autonomic
computing systems”, IBM Systems J., v. 43, 2004.

[16] H Tanizaki, “Nonlinear Filters: Estimation and
Applications- Second, Revised and Enlarged Edition,”
Springer-Verlag, Berlin-Heilderberg, 1996.

[17] Hai Wang , K.C. Sevcik, “Experiments with improved
approximate mean value analysis algorithms”,
Performance Evaluation, v.39, p.189-206, Feb. 2000.

Appendix

The exact recursive mean value analysis equations
for a separable queueing network are [6]:

T(i)N = (N(i)N-1 + 1) D(i) , i = 1,.., n (A1)
fN = N / Σi T(i)N

N(i)N = fN T(i) N, i = 1,..., n

where:
N = the population of jobs or customers in the model,
N(i)N = mean jobs at node i, at population N,
T(i)N = residence time at node 1 per system response,

at population N
fN = system throughput at population N,
D(i) = demand at node i per system response.

The MVA equations are applied with initial
conditions T(i)1 = D(i), and are applied for each value
of N up to the desired value. To find the derivatives,
one can simply differentiate these equations. Thus for
differentiation with respect to D(j), we obtain:
∂ T(i)N / ∂ D(j) = [∂ N(i)N-1 / ∂ D(j)] D(i) , i = 1,.., n
∂ fN / ∂ D(j) = - [N / (Σi T(i)N)2] Σi ∂ T(i)N/ ∂ D(j)

 = - (1/N) (fN)2 Σi ∂ T(i)N/ ∂ D(j)
∂ N(i)N/ ∂ D(j) = T(i)N ∂ fN/ ∂ D(j) + fN ∂ T(i)N / ∂ D(j),
with initial conditions ∂ T(i)1/ ∂ D(j) = δij .

The derivatives of U(i), the utilization of node i,
are found from
 U(i) = f(i) D(i) to be ∂ U(i)N/ ∂ D(j)

 = D(i) ∂ fN / ∂ D(j) + f(i) δij .

Derivatives with respect to N

The well-known Schweitzer approximation for
Equation (A1) above is:

T(i)N ≈ [N(i)N (1 –(1/N)) + 1] D(i),
(The Schweitzer approximation is discussed in a
recent paper [17] which also proposes an improvement
on it.) This can be differentiated with respect to N to
give:
∂T(i)N /∂N ≈ [∂N(i)N/∂N (1-(1/N)) + N(i)N(1/N2)]D(i)

In evaluating this derivative we can use the values
calculated by the exact MVA. We also need the
following derivatives (found by differentiating the
exact MVA equations:
 ∂fN /∂N = 1 / Σi T(i)N – (1/N) (fN)2 Σi (∂T(i)N/∂N)

∂ N(i)N/ ∂ N = ∂ fN / ∂ N D(i) , i = 1,..., n
The derivatives with respect to N require solving these
three simultaneous nonlinear equations, which was
done by a fixed-point iteration starting from:

∂ N(i)N/ ∂ N = 1/K

Trademarks
IBM, Lotus, and Notes are registered trademarks of

International Business Machines Corporation in the United
States, other countries, or both.

Other company, product, or service names may be
trademarks or service marks of others.

