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Abstract 

Autonomic computer systems react to changes in 
the system, including failures, load changes, and 
changed user behaviour. Autonomic control may be 
based on a performance model of the system and the 
software, which implies that the model should track 
changes in the system. A substantial theory of optimal 
tracking filters has a successful history of application 
to track parameters while integrating data from a 
variety of sources, an issue which is also relevant in 
performance modeling. This work applies Extended 
Kalman Filtering to track the parameters of a simple 
queueing network model, in response to a step change 
in the parameters. The response of the filter is affected 
by the way performance measurements are taken, and 
by the observability of the parameters. 

Keywords 
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1. Introduction 
 
Autonomic self-optimizing systems have two 

kinds of goals: they must maintain adequate quality of 
service (QoS), typically defined by service-level 
agreements (SLAs), and they may also seek to provide 
efficient operation, using a minimum of resources. 
Typically, priority is given to maintaining the SLA as 
performance constraints at all times, while seeking the 
minimum cost. 

Basic autonomic capability is provided by a 
controller with these functions: 
• monitoring performance variables, 
• deciding to change system management variables, 
• executing the decision. 
The changes in the system are based on a description 
or model of the system. Dynamic regression models 
have been described by several researchers: by 

Hellerstein and co-workers [3] [5] to control the 
memory used by an IBM® Lotus® Notes® application, 
and by Abdelzaher and co-workers [1] [11] to adjust 
the number of threads in Web servers. Queuing 
network models were described by Menasce [12] as 
predictive models for self-optimization, with a 
corresponding architecture [13].  

In [10] the present authors have proposed a 
hierarchical autonomic architecture to control QoS for 
a Web services system, in which the workload may 
change with time. It combines dynamic models for 
workload change, layered queuing models (LQM) for 
performance prediction and threshold-based control to 
seek self-optimization. Each level in the hierarchy uses 
performance monitoring to provide a tracking model, 
and model-based decision-making for control. One 
level of the hierarchy is illustrated in Figure 1. 

The model follows the changes in the workload 
imposed by users, and the Decision element searches 
the model to determine changes that will maintain QoS 
contracts in an economical way. This provides self-
tuning, self-balancing, and self-provisioning.  
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Figure 1.  Use of a tracking filter in autonomic 

control of performance 
 
The goal of this paper is to show how we can keep 

the performance model up-to-date as the software 
system changes. We will show how an Extended 
Kalman Filter can be constructed for a performance 
model, investigate its usefulness on an example, and 



identify potential pitfalls to its application. As far as 
we know, this is the first use of Kalman filtering to 
track changes in a performance model. Novel aspects 
include modeling the dynamics of parameter change, 
the linearization of the observation function (which is 
the model itself), and the choice of covariance values 
for the filter, which affect the gain matrix. 

The types of systems that can benefit from our 
approach are information and transaction-based 
software applications, for management, e-commerce, 
insurance, banking, brokerage, etc.  In these systems, 
users log in, alternate requests with think times, and 
then log out. In terms of performance modeling, these 
systems are best described by closed models. 

 
2. The Extended Kalman Filter for 

Parameter Tracking 
 
The problem of tracking the changing value of 

states and parameters, based on measurements of 
related quantities, is a common one in engineering 
systems. Kalman Filters are widely used; one example 
is in tracking vehicle positions (see [2]). 

In general, the theory assumes there is a state-and-
parameter vector x, which changes over time by a 
known law xnew = f(xold) that includes random 
disturbances. From an observation vector y = h(x) 
(which may include errors), an estimate x̂ for x is 
obtained, with the following tracking filter structure: 

oldx̂ = previous estimate of x 
ŷ   = prediction of observation y based on oldx̂  

and the model 
z     = new observation vector  

newx̂ = oldx̂  + K ( z  - ŷ ) 
The filter gain matrix K can be determined in a variety 
of ways, such as on Bayesian grounds to give the 
conditional expectation of x, conditioned on the stream 
of observations, the distribution of observation errors, 
and some initial distribution of x̂ . 

For cases with linear functions f() and h() and 
normally distributed independent disturbances and 
errors, Kalman’s classic paper [8] derived a filter with 
this structure that minimizes a quadratic norm on the 
estimation errors.  

 
2.1 The Extended Kalman Filter 

 
Extensions cover nonlinear functions f() and h(), 

and non-normal distributions. We will adopt the most-
used variant, the Extended Kalman Filter (EKF),  sum-
marized as follows (see, for example, [2] [16]).   

The state or parameter vector x to be estimated 
evolves over time by a dynamic law of the form: 

          xk = f(xk-1,uk-1) + wk-1 (1)  
in which k denotes an integer time variable, u is a 
vector of known inputs, and w is a random disturbance 
or drift. w may represent actual random and 
unobserved forces acting on the system, or may 
represent modeling uncertainty; it is a random vector, 
“white” (independent over time), with mean 0 and a 
known disturbance error covariance matrix Q. 

Observations are made of a vector z, which is a 
function of these parameters, with added measurement 
error. At step k, it is defined by: 

zk = h(xk)+ vk (2)  
where  vk  is a white measurement noise, with mean 0 
and a known  measurement error covariance matrix 
R. 

The estimate x̂  of x is computed recursively in 
two steps: 
Step 1. Prediction:  

1.1 project the state ahead: 
−
kx̂  = f( −

−1ˆ kx ,uk-1) (3)  

1.2 project Pk, the estimated covariance matrix for 
the estimates of x: 

P-
k = APk-1AT+Q (4)  

Step 2. Feedback: 
   2.1. compute the Kalman gain K as: 

Kk =P-
kHk

T(HkP-
kHk

T + R)-1 (5)  
     2.2 correct the state vector: 

−
kx̂  = −

−1ˆ kx  + Kk( zk - h( −
−1ˆ kx ) ) (6)  

     2.3 correct the error covariance Pk: 
Pk=(I-KkHk)P-

k (7)  
 
with the notation: 
zk = the measured value for z at time k. 
h( −

kx̂ ) = ŷ k = predicted value for z. 
A = linear term in the Taylor expansion of f(x)  
    = ∂f/∂x. In our case, A is the identity matrix. 
H = linear term in the Taylor expansion of h(x)  
    = sensitivity of observations to parameters = ∂h/∂x. 
R = measurement error covariance.  
Q = disturbance error covariance.  

The recursive filter has to be initialized with the 
estimated state −

0x̂  (for Step 1.1) and an initial error 
covariance matrix P0 (for Step 1.2). We’ll see in the 
next sections how their selections can affect the filter 
performance. 

Where f(x) or h(x) are nearly linear, the filter is 
expected to have near-optimal properties. The 
optimality and convergence properties depend on the 
way the functions f(x) or h(x) are linearized around an 
operating point [9]. The Extended Kalman Filter  
presented above linearizes f(x) and h(x) by a first-



order Taylor series around the state estimate −
−1ˆ kx  and 

does not take linearization errors into account. A 
variant called the Iterative Extended Kalman Filter 
(IEKF) linearizes h(x) around the predicted state 
estimate −

kx̂ . Other variants of the filter, such as the 
Unscented Kalman Filter [7] or the Divided Difference 
Filter [14], capture the linearization errors in the 
covariance matrices. They were shown in [9] to 
provide better estimates when dealing with nonlinear 
f(x) functions, while  EKF and IEKF provide better 
performance when dealing with nonlinear h(x), which 
is the case here. This motivates our use of EKF instead 
of other types of filter. 

  
2.2 Tracking for a Performance Model 

 
For a performance model, we model x as a vector 

of n parameters that drift randomly. Thus: 
xk = xk-1 + wk 

The drift wk is assumed to be an independent normally 
distributed n-vector with covariance matrix Q = 
diag(q1, q2, ... qn).  

Also, the measurement m-vector z is modeled by 
the results y of the performance model calculation, 
with added errors of estimation: 

yk = h(xk)  
zk = yk + vk  

For a large step duration S, the sampling error vk will 
be approximately independent and normally distri-
buted. Its covariance matrix is defined as R = diag (r1, 
r2, ... rm) = diag(r), where ri = Var(zi). 
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Figure 2.  Logical architecture of a tracking 
filter for model parameters 

 
The functional architecture of a system with a 

Kalman Filter to track its performance model is shown 
in Figure 2. The filter has a feedback structure, in that 
the parameter estimates at each step are used to predict 
the performance for the next step, and the errors of 
prediction are used to correct the estimates. 

 
 
 

2.3 The Example Performance Model 
 
To simplify the presentation, a very basic 

queueing network model will be considered as the 
performance model in this paper, as shown in Figure 
3. It represents a small Web server with its disk (node 
2) and a separate node for CGI application service 
(node 3). A response includes all the work done 
between visits to the “Users” node in the Figure, 
which represents the operation in which a user 
responds to one system output and generates the next 
request to the system. Users have a characteristic 
“think” time for this operation, which will be set to 
zero here. Service times are assumed to be 
exponential. Then the queueing model has four 
parameters:  
N = the number of active jobs, assumed to be constant 

(so this is a “closed” model), with default value 4, 
D = [D(1), D(2), D(3)] = the total average demands for 

service by nodes 1, 2 and 3, with default values  
[2, 3, 4] sec/response.  

The model is also assumed to satisfy the separability 
conditions, which means that it can be solved by Mean 
Value Analysis (MVA) [6]. 
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Figure 3.  A simple queueing model 

 
Some performance measures that at least 

potentially could be measured in the system are: 
     f = the throughput of requests from Users, per sec. 
    T = the mean response time = N/f, 
T(i) = the part of each response time that is spent 

queueing and in service at node i, 
U(i) = the mean utilization of node i, 
N(i) = the mean number in system at node i. 
In practice, we may use only some of these. The first 
case to be considered has measurement vector: 

z = [T(1), T(2), T(3), f ] 
The prediction vector ŷ has the same structure, and the 
error vector is e = z – ŷ . 

The vector of parameters to be estimated is 
x = D = [D(1), D(2), D(3)] 

Later, the question of tracking N will be considered as 
well. The filter operation is illustrated in Figure 4. 
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Figure 4. Operation of the estimating filter 

over time 
 

2.4 Measurement Errors and Drift 
 
The errors v are statistical sampling errors, which 

depend on the system and on the sampling period S. 
They were estimated with N = 4, D = [2, 3, 4], and 
sampling period S1 = 100000 sec, by simulating the 
model with batched means. S1 was chosen arbitrarily, 
and includes about 20,000 responses. The variances 
for T(i), U(i) and f were as follows: 
• for T(1..3): 0.0109, 0.0374, 0.0745 
• for U(1..3): 0.0000737, 0.0001531, 0.0000872 
• for f: 0.0000154 
For a given vector z of measurements, there is a vector 
r of variances, which are expressed in the error 
covariance matrix R = diag (r). Thus, for z = [T(1), 
T(2), T(3), f ], and step size S1, 
R = R(S1)  
    = diag(0.0109, 0.0374, 0.0745, 0.0000154)   (8) 
For other sampling step sizes S, the variances are 
multiplied by (S1/S):   

                           R = (S1/S) R(S1)                   (9) 
The factor (S1/S) in equation (9) follows from S and 
S1 being long enough, so that error variances are 
inversely proportional to the number of samples, and 
that the number of samples of each step is proportional 
to S. It was tested by simulating for S = 400000. 

The variances of the drifts in the parameters are 
typically unknown, but Q should represent typical drift 
magnitudes to be tracked. If the drift has independent 
increments, the variances will add, making the 
variance proportional to S. For this work, a base case 
was taken of unit drift variances for S = S1 = 100000, 
giving: 

                     Q = I3 *(S/S1)                                (10) 
where I3 is the 3x3 identity matrix. 
 
3. Experiment: A Step Change 

 
We will consider a situation where the system 

parameters make a step change from values Dold, 
which are constant, to new (constant) values D at time 
zero. At the moment of the change, the tracking filter 

has a correct estimate 0x̂ = Dold.. The estimated 
parameters are suddenly far from correct, the 
prediction error e becomes much larger and the filter 
executes a transient response, to acquire the new 
parameter values. 

The step response of the tracking filter can 
provide insight into many properties of the filter, and 
how it should be applied. We consider: 
• How quickly does the filter settle to the 

neighbourhood of the new parameter values D? 
• What is the steady-state tracking error over time, 

after settling to the new values? 
• What is the influence of the step (sampling) time? 
• What is the influence of the matrices R, Q, and 

P0? 
• What is the influence of using an incorrect model 

structure? 
Since R captures the accuracy of the measured data, a 
larger R will lead the filter to adjust more slowly to 
prediction errors. Conversely, a larger Q will lead the 
filter to depend more on the measurements. Too small 
a Q causes the filter to assume there is little or no 
change in the system; the filter will gradually close 
down and stop tracking. P0 only affects the initial 
conditions of the filter. 

The role of H is to connect the prediction errors 
back to sources in model parameter errors. If the 
model has a different structure, H will cause the filter 
to interpret the measurements according to the model. 
Base Case: 
• The server demands change from D = [4, 5, 6] to 

D = [2, 3, 4] at time zero and remains constant. 
• The performance model has the same structure 

and the filter begins at −
0x̂  = [4, 5, 6].  

• P0 , the estimated covariance of the initial estimate 
−
0x̂ , was chosen as the squares of the initial 

estimates, so P0 = diag(16, 25, 36). 
• The base-case sampling step time  is S1 = 100000 

time units, which gives R as in equations (8), (9) 
above. 

• From equation (10),  Q  = I3. 
The output sensitivity matrix H is the matrix of 

derivatives of output values to demand parameters D. 
Given a set of estimated demands, the derivatives were 
calculated exactly by differentiating through the mean-
value-analysis steps for solving the queueing network 
(see Appendix). H could also be found numerically. 
 
3.1 The Filter Simulation for a Step Response 

 
To study the filter behaviour, the system was 

replaced by a simplified representation, which returns 
a measurement vector z, which is the sum of the exact 



result vector y for D = (2, 3, 4) and a simulated 
sampling error v. v is a generated, independent, 
normally distributed random vector with component 
variances given by the diagonal of R.  

At each step, the model equations were also 
solved with the estimated parameters −

−1ˆ kx  to find the 

new predicted measures y = h( −
−1ˆ kx ), and the 

prediction error e = z - y. Then the filter was used to 
update to −

kx̂ , and the step was advanced.  
 

3.2 The Filter Step Response, Base Case 
 
A sample transient response of the tracking filter, 

equations (1)-(7), is shown in Figure 5. The upper 
three curves show the response of the parameter 
tracking, and the lower curve plots the throughput 
prediction error. As we shall see later, parameter 
estimates with large errors can give a correct 
throughput prediction.  
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Figure 5.  A sample transient 

 
Figure 5 shows that, at the beginning of the transient, 
the estimates change almost at once to the 
neighbourhood of the new values of D, and stay in that 
neighbourhood with a small random variation. The 
bottom curve shows that the filter predicts the 
throughput very well. The error (multiplied by 100 so 
it can be seen more clearly) settles quickly to near 
zero. The actual mean throughput is about 0.21/sec, 
and the error settles to within roughly ± 0.015, or 
about 7%. 

An average step response was found across 1000 
repetitions of the transient, and Figure 6 shows the 
average values, plus or minus one standard deviation. 
The variations are very small. The throughput 
prediction errors are also shown, again multiplied by 
100. Their mean goes quickly to near zero, and their 
standard deviation appears to be about 0.005. This is 

about 2.5% of the mean system throughput of about 
0.21 transactions/sec.  
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Figure 6. Estimates during a transient, with 

error bars for one standard deviation. 
 
The impact of the size of the sampling step size S, 

and the matrices P(0), Q, and R, was investigated by 
varying them by factors ranging from 0.01 to 1000.  

Figure 7 shows the effect of scaling R. The Y axis 
is the observed standard deviation of the parameter 
estimates in the steady-state part of the response 
(which, after observing Figure 6, was taken to begin at 
the fifth sampling step). The throughput prediction 
error was multiplied by 10 in Figure 7, to bring it into 
the scale of the other variables. 
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Figure 7. Effect of scaling the error variance 

matrix R on the accuracy of estimates 
 

As R is increased, the filter tends to reduce its 
adaptation to the measurements, and its prediction 
quality suffers.  

P(0) and Q were found to have very little effect 
on the long-run tracking accuracy, so the results are 
not shown here. As the scale factors varied from 0.01 
to 1000, the standard deviation values stayed within 
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+    estimate of D(3) 
*    100*(prediction error)  of throughput 

x-   SD of estimate of D(1) 
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*    10*(SD of prediction error) of 

throughput 

top         estimate of D(3) 
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bottom   100*(prediction error) of throughput 



10% of the values shown in Figure 7 for a scale factor 
of 1. 
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Figure 8. Effect of scaling the sampling step 

time S on the accuracy of estimates 
 
However, the length of the sampling step S had a 

significant effect, as shown in Figure 8. S affects the 
measurement error (since statistical sampling error 
variance declines as 1/S) and also the parameter drift. 
(A longer step permits greater drift, which is assumed 
here to have a variance proportional to S.) 

Despite the assumed greater drift, the filter gave 
more accurate estimates with larger S. 

 
4. Other Measurement Vectors 

The measurements T(1) – T(3) used above have a 
close relationship to the node service demands D(1) – 
D(3). Often we have less information, or more indirect 
information. A tracking filter can combine different 
kinds of data, as long as a corresponding prediction 
can be made and the sensitivity H can be calculated. 
This “data fusion” capability of tracking filters is 
important in many applications (e.g. [2]). 

Suppose we have a mixture of measurements of 
different types, such as: 

y = [T(1), U(2), f] 
This also has only three components instead of 

four. Then the tracking filter should be able to 
combine these disparate data to estimate D. 

 
4.1 Case 2: Fusion of Diverse Measures 

 
A filter was created to work with the 

measurement set y = [T(1), U(2), f], by incorporating 
the appropriate sensitivities in the matrix H. Figure 9 
shows that it succeeds just as well as the previous case 
in acquiring the new parameter values, settling almost 
at once to near the correct demand values [2, 3, 4]. The  
throughput prediction has greater errors, and over-

estimates the throughput at step 2. However, in 
general, the filter behaves very well. 
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Figure 9.  A transient response in Case 2, with 

different measurements: y = [T(1), U(2), f] 
 
Over the range of values of the sampling step size 

S shown in Figure 10, the variation in the estimated 
parameters is only a little larger than in Figure 8. The 
standard deviations are about 10% larger at a factor of 
10 -2 and also at a factor of 1. The throughput 
prediction error is smaller at 10 -2 but a little larger at a 
factor of 1. Overall, we can say the filter performance 
is very similar for this measurement vector. 
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Figure 10.  Variability of estimates and 

predicted throughputs in Case 2 
 

4.2 Case 3: Inadequate Information 
 
Suppose that T(1) used in Case 2 were dropped 

and a measurement vector y = [U(2), f] were used. 
 The transient response recorded in Figure 11 looks 
quite promising. It settles into a small range around the 
correct parameter values (2, 3, 4) within two steps, and 
the throughput prediction error is small (< ± 0.02).  
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Figure 11. Transient with measurements only 

for y = [U2, f] 
 
However, the statistical analysis of the steady-

state convergence is not so positive. Figure 12 shows 
the standard deviation of parameter estimates, from 
20000 steps of the simulated algorithm in steady state 
at each step size S = 100000*(scale factor). The errors 
for D(1) and D(3) are much larger than in Case 2, 
while the errors for D(2) are much the same. The small 
errors for D(2) reflect the better quality of information 
about the behaviour of node 2, provided by measuring 
U(2). 
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Figure 12.  Variability of steady-state 

estimates in Case 3 (measurement  y = [U2, f] 
) 

 
For an extreme example, a filter was constructed 

driven only by throughput measurements. A typical 
transient response is shown in Figure 13. The filter 
appears to converge, but to the wrong values. 
However, the prediction error is no worse because 
many models can predict the same congestion delay. 
Here it seems that D(3) has been set to zero, 
compensated by larger values of D(1) and D(2). 
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Figure 13.  Tracking with only one measured 

value, the throughput 
 

4.3 Case 4: Bottlenecked Estimated Model 
 
If the estimated parameters make the model 

heavily bottlenecked at one server, it is well-known 
that its performance predictions become insensitive to 
parameters of the other servers. This affects the H 
matrix used by the filter, and might affect the ability of 
the filter to track to the new parameter values.  
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Figure 14. Heavily bottlenecked initial model 

 
Case 4 was like Case 1, but with starting demand 

estimates [10, 0.1, 0.1] that imply a severe bottleneck 
at server 1. The transient results in Figure 14 show that 
it takes a little longer to reach the steady state at the 
new correct values: about four steps, instead of 1. 
However, it in no sense is “stuck” in the bottleneck 
mode, as the large parameter is quickly reduced. 

 
5. Use of an Approximate Model 

Since performance models are always 
approximations, the impact of a structural mismatch 
between the system and model must be considered. 
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5.1 Case 5: Wrong Model Structure 
 
We consider first a model with only two nodes, 

(while the actual system has three as before), and y = 
[T(1), T(2), f]. Figure 15 shows the transient estimates 
starting from D = [4, 5]. They show stable behaviour, 
and throughput prediction errors that are only slightly 
larger than in the base case of Figure 5.  
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Figure 15.  Typical transient of the estimates 

for a two-node model 
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Figure 16.  Standard deviations of estimates 

using a two-node model 
  
These comments are borne out by the results in Figure 
16 for the variation of the estimates. The filter settled 
to values for D(1), D(2) of about 2.78, 4.44 for every 
case. The errors are about the same size as in Figure 8. 
Thus the simpler model seems to predict as well, and 
to track as well, as the three-node model. Simplified 
models are important in practice. 
 
5.2 Case 6: Incorrect Parameter Value N 

 
The model was set up for 7 users, while the actual 

system (as in Case 1) has N = 4. N is not tracked and 

thus is not corrected. The measurements were y = 
[T(1), T(2), T(3), f].  

The filter was unable to cope with this situation; it 
settled to a predictor with an error of about 25% in 
throughput (Figure 17). It was seeking a compromise 
between errors in predicting the per-node response 
times T(i) and the throughput f. Rather than display 
details of this bad situation, we will address the 
question of tracking the population N for this model.  
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Figure 17  Transient response with N = 7 

 

6. Estimation of the User Population N 
 
The user population N is not a continuous variable 

and cannot be tracked by the usual filter based on 
derivatives. However, the well-known Schweitzer 
approximation for queueing models treats N as real, 
giving the calculations shown in the Appendix. Notice 
that we do not use the Schweitzer approximation to 
calculate performance, but only for the derivatives 
with respect to N. The nearest integer will be assigned 
to N if N is not an integer during the iteration steps. 

Results similar to those reported above for 
tracking two or three parameters are shown in Figures 
18 and 19 with four parameters x = [D(1), D(2), D(3), 
N]. We considered a step change from [4, 5, 6, 7] to 
[2, 3, 4, 4]. The transient in Figure 18 shows good 
convergence within two steps for both the demands 
and user population. The standard deviations of 
tracking in Figure 19, over changes in the sampling 
step sizes, are also very similar in magnitude to the 
earlier results shown in Figure 8 for the base case. The 
tracking errors decrease with the size of the sampling 
step S, and the filter converges faster for N than for the 
demands. 

The derivative calculation by the Schweitzer 
approximation appears to be successful. Thus, even a 
discrete variable can be tracked by the Kalman filter 
approximately. 
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Figure 18. Transient Including Estimates of N 
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Figure 19. Errors Including Estimates of N 

 
The results also show that as long as we can include 
the important model parameters (N in this case) into 
the tracking parameters, and get the respective 
sensitivity data, those model parameters could be 
tracked correctly.   

 
7. Conclusions 

 
Even though the performance model investigated 

here is a small and simple one, it is clear from the 
experience reported above that the Extended Kalman 
Filter can be applied to track changes in parameters of 
queueing models. In any case, practical models are 
often simple. 

No problems were experienced with stability or 
with slow convergence, over wide ranges of parameter 
values. When parameters P0 and Q, which must often 
be guessed, were varied over four orders of magnitude, 
the behaviour of the estimator was very little affected. 

The tracking filter operates in discrete steps, and 
the step time must be quite long. The basic step time 

used here, of 100000 time units, would contain about 
21000 responses (at a mean throughput of 0.21), and 
this gave acceptable accuracy; longer step times were 
better. 

The filter converged remarkably quickly 
following a step change in the system parameters, 
which was the condition investigated here. We may 
expect similarly good tracking on steadily drifting or 
randomly drifting parameter values. 

A convenient aspect of the Kalman Filter is its 
capability to fuse data of different types, such as delay, 
throughput, and utilization, as demonstrated in Section 
4.1. It is not necessary to have direct data on every 
server in the system, but more measured variables 
naturally give smaller estimation errors. 

The filter was quite robust to the use of an 
approximate model, such as a model with fewer 
servers than the actual system. However it did not 
function satisfactorily with an incorrect user 
population. It will be necessary to estimate the 
customer population N as well, although as N is a 
discrete variable it does not fit the Kalman filter 
framework perfectly well. However, we showed that 
for separable queuing networks, we can find 
approximate derivatives by using the Schweitzer 
formula. The results showed that, using those 
approximations, the filter tracks the user population 
accurately. For more general models, such as layered 
queueing models, finding  the derivatives of N as well 
as well as other sensitivities, may be solved by 
numerical differentiation (by multiple solutions at 
slightly perturbed parameter values). 

Since the filter depends on sensitivities, and 
bottlenecked systems have low sensitivity to 
parameters away from the bottleneck, it was feared 
that a bottlenecked system or model might get “stuck” 
away from the correct values of parameters. However, 
this did not happen. 

This work concentrated on investigating 
feasibility and is not exhaustive. However, the 
investigation was overwhelmingly positive about the 
potential of these estimators to track parameter 
changes. 
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Appendix 

The exact recursive mean value analysis equations 
for a separable queueing network are [6]: 

T(i)N = (N(i)N-1 + 1) D(i) , i = 1,.., n    (A1) 
fN = N / Σi T(i)N 

N(i)N = fN T(i) N,   i = 1,..., n 
 
where: 
N = the population of jobs or customers in the model,  
N(i)N  = mean jobs at node i, at population N, 
T(i)N = residence time at node 1 per system response, 

at population N 
fN = system throughput at population N, 
D(i) = demand at node i per system response. 

The MVA equations are applied with initial 
conditions T(i)1 = D(i), and are applied for each value 
of N up to the desired value. To find the derivatives, 
one can simply differentiate these equations. Thus for 
differentiation with respect to D(j), we obtain: 
∂ T(i)N / ∂ D(j) = [ ∂ N(i)N-1 / ∂ D(j)] D(i) , i = 1,.., n 
∂ fN / ∂ D(j) = - [ N / (Σi T(i)N )2 ] Σi ∂ T(i)N/ ∂ D(j)  

     = - (1/N) (fN )2 Σi ∂ T(i)N/ ∂ D(j)     
∂ N(i)N/ ∂ D(j) = T(i)N ∂ fN/ ∂ D(j) + fN ∂ T(i)N / ∂ D(j), 
with initial conditions ∂ T(i)1/ ∂ D(j) = δij . 

The derivatives of U(i), the utilization of node i, 
are found from 
 U(i) = f(i) D(i) to be ∂ U(i)N/ ∂ D(j) 

 = D(i) ∂ fN / ∂ D(j) + f(i) δij . 
 

Derivatives with respect to N 
 

The well-known Schweitzer approximation for 
Equation (A1) above is: 

T(i)N ≈ [N(i)N (1 –(1/N)) + 1] D(i), 
(The Schweitzer approximation is discussed in a 
recent paper [17] which also proposes an improvement 
on it.) This can be differentiated with respect to N to 
give: 
∂T(i)N /∂N ≈ [∂N(i)N/∂N (1-(1/N)) + N(i)N(1/N2)]D(i) 

In evaluating this derivative we can use the values 
calculated by the exact MVA. We also need the 
following derivatives (found by differentiating the 
exact MVA equations: 
      ∂fN /∂N = 1 / Σi T(i)N – (1/N ) (fN)2 Σi (∂T(i)N/∂N) 

∂ N(i)N/ ∂ N = ∂ fN / ∂ N  D(i)  ,   i = 1,..., n 
The derivatives with respect to N require solving these 
three simultaneous nonlinear equations, which was 
done by a fixed-point iteration starting from: 

∂ N(i)N/ ∂ N = 1/K 
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