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Abstract 
 

More and more systems have an architecture made up 
of resources which offer services at interfaces. An algebra 
with operators to compose services with each other and 
with resources, and to compose subsystems into systems, 
would make possible powerful compact descriptions of 
such systems, taking advantage of their particular 
structure. Practical modeling also often requires 
composition of submodels obtained from partial studies. 
Such an algebra can also support analysis models of 
many kinds; here we consider layered performance 
analysis. This paper outlines an algebra for composing 
layered queueing models. 

 
1. Introduction and motivation 

 
Modern complex systems are often built up by 

composing components and services, and a modeling 
language with corresponding power is essential. Process 
algebras have this capability, used by Hillston to create a 
compositional performance modeling framework PEPA 
[5] and initiate the fruitful field of Stochastic Process 
Algebras. These however have difficulty in solving for 
very large state spaces, which arise for instance in 
describing queueing of large numbers of concurrent 
entities.  

Service systems with large state spaces include Web 
Services, systems with a Service-Oriented Architecture, 
Web Applications using J2EE or .NET or CORBA 
platforms, and legacy client-server applications. However, 
they have a more constrained class of behaviours, offering 
services in structured interactions between their 
components and their resources. Efficient performance 
solutions can be obtained by other means such as Layered 
Queueing Networks (LQNs), which are used here 
[2][3][11][13]. 

Two practical motivations for a compositional model 
for LQNs are, the need to mimic the system construction 
process, and the need to compose partial models made 
from measurements [6][7]. 

 Software resource architectures were described in 
[12] as a combination of resources and operations, and the 
present work gives an algebra for these architectures. This 
paper sketches an algebraic system SRA 
(Service/Resource Algebra) for composing LQN models 
from simple elements and from LQN submodels. A more 
complete definition is in preparation. In particular, some 
special process types and operators are defined, with 
constraints on their application. They should be viewed as 
elements in a to-be-defined pattern system of process-
algebraic definitions for service systems. 

 
2. Service Systems 

 
A System is made up of five types of process: Hosts, 

ServerTasks, Resources, Services, and Activities. 
• a Host represents a device which executes the 

behaviour specified by a System, 
• a ServerTask is a combination of a Resource and a set 

of Services that it offers, with a label defining a Host, 
• a Resource accepts service calls into a queue, then 

uses a queueing discipline to assign resource units to 
calls, and dispatches its Services to serve them. It has 
labels defining a multiplicity, and a service discipline. 
Seen as a process, a resource has very constrained 
behaviour; it can only be claimed and released by 
requests, 

• A Service is a process which is initiated by a call, 
with three patterns of response (as in LQNs);  
o an asynchronous response is concurrent with the 

calling process, and terminates; 
o a synchronous response generates a return to the 

calling process, as well as terminating; 
o a forwarding response forwards the request to 

another service, as well as terminating. 
• an Activity is a sub-process of a Service. 
To denote a process of a given type without stating its 
name, we will write :Type. Thus, :Service stands for some 
process of type Service. 

Processes may be composed by the usual operators:  
• sequential: P = AB indicates that the completion of 

process A triggers B; 
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• alternative: P = A | B means A or B. There may be a 
probability label (as also in PEPA) P = A (prob = pA) 
| B (prob= pB);  

• parallel: P = A || B.  
A process may have a repetition count, as in P = 

A(rep = n). A random number of repetitions may be 
indicated by a distribution, as in P = A(rep = 
Geometric(mean)). Repetition counts and probabilities are 
special cases of labels, as in P = A(labelName = value, ...). 
Label names are reserved words. 

Every process defines a default interface, which is 
denoted by its name. A process may also have lists of 
offered and required services, as in P = [offered1, ...] A 
[required1, ...]. The elements of these lists are of type 
Service.  

There are additional composition operators defined 
for composing Activities into Services, Resources and 
Services into ServerTasks, and ServerTasks into a System. 
These additional operators act as a shorthand for defined 
patterns of composition which embody the execution 
constraints of server system technology, and the 
performance model semantics of the LQN.  

For simplicity the allocation of ServerTasks to Hosts 
is indicated not by composition but by a label of the 
ServerTask, as in Task = T(host = :Processor). The actual 
execution of any computational operation only begins 
when a Host executes it. Host processes are not described 
here. 

To refer to properties of composed processes, a set of 
functions are defined: 
• the processor of a given ServerTask, Service or 

Activity is  host(element). 
• the ServerTask of a given Service or Activity is the 

function task(element). 
• the Service of a given Activity is service(:Activity). 
• the set of serverTasks on a given :Host is 

tasks(:Host). 
• the set of services offered or required by a 

ServerTask, System or Service is the function 
offServ(element) or reqServ(element).  For Services, 
offServ( ) returns “self”. 
 

3. Activities and Services 
 
Activities and services are processes whose definition 

is constrained to suit the role. 
• An Activity is a process with no internal parallelism, 

except parallelism which may be embedded in service 
call activities. It may have a label “demand” for its 
mean CPU demand, and a label “rep” for mean 
repetitions, as in act = A(demand = 1.5, rep = 2).  

• A Service request activity or call activity is a 
placeholder for the behaviour of the requested  
service, up to a “return” event, which terminates the 

call activity. It can only be composed sequentially 
within an activity. It has labels  
• “rep” for the number of calls,  
• “callType” (with value = synchronous | 

asynchronous) for the type, and  
• “target” for the Service requested. 

• A ServiceProcess is a process composed of activities. 
including parallel composition. 

In a ServiceProcess, some activities may labeled as 
“return” activities, as anAct = A(return). They return 
control (and the result of the service) to the caller of the 
service, and this terminates the calling activity. However 
they do not terminate the service behaviour. If a Service 
receives a synchronous call and terminates without a 
“return” activity, control is returned by default at its 
termination. If a Service receives an asynchronous call it 
ignores return activities. 

An alternative to “return” activities is “forwarding” 
activities, shown by a label as in Act = 
A(forward(aService, probF)), which forward the request 
(and the responsibility to return a result to the caller) to 
aService, with probability probF (or to return). They have 
the same constraints as “return” activities and can be 
mixed with them. Some examples of Service processes 
are: 

 
aServiceP1 = act1 
aServiceP2 = phase1(return) phase2 
aServiceP3 = act1 act2 (act3(return) || act4) act5 
aServiceP4 = act1 act2  

    (act3(return) | act4(forward(exceptionService))) act5 
 
If a process acquires a logical resource such as a 
semaphore, the execution within the resource context of 
the semaphore is regarded as a service of the semaphore. 
Since the semaphore must  be released, the request is 
always synchronous.  

A Service is defined by a serviceProcess and a list of 
labels giving properties of the service. The labels include 
its priority in the server: 

aService = (:ServiceProcess )(list of service labels) 
The set of Required Services (RS) for a Service are 
defined by the requests made by its Call Activities. Each 
call activity has a set RS with one element, the service it 
calls. Composing activities gives a set RS’ which is the 
union of their sets RS. The same is true for a 
serviceProcess and its Service. Required services can be 
displayed after a process name, as a list in square brackets, 
or returned as the function  reqServ( ) (abbreviated here to 
rS( ). Suppose: 

   rS(act1) = [aService1]; rS(act2) = [aService2];  
rS(act4 = [aService3]; 

then from the above definitions,  
 rS(aServiceP4) = [aService1, aService2, aService3] 
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4. Composition of Services  
 
A ServerTask is composed of one Resource and one 

or more Services: 
    aServerTask = (:Service | :Service | ... )  

|[ServT]| :Resource 
where the special parallel composition operator |[ServT]| 
has these semantics: 
• each :Resource enters only one such task in a system, 
• a service operation requires a unit of the resource, 
• the order of serving requests is determined by the 

queueing discipline of :Resource, and possibly by the 
priority of the services, 

• the execution of sub-operations of any Service, 
relative to other services with the same host, is 
determined by the queueing discipline of 
host(:Resource). 

The set of offered services of the task is just the set of 
Services that are composed. The set of required services is 
the union of the sets for the Services that are composed.  

For a logical resource the ServerTask does not have a 
Host, and each of its Services may be executed on a 
different Host. This requires that each of these Services 
should immediately “call back” to a separate Service 
associated with the originating Host. This separate service 
(and its ServerTask) defines the part of the originating 
service executed within the context of the logical resource.  

 
4.1 Merging ServerTasks 

 
Submodels may be created that describe only some of 

the services of a task. To compose them, the tasks that 
occur in more than one are merged to one, with the union 
of their services. We define: 
    aServerTask1 = Merge(aResource) (list of :ServerTask) 
such that the merged aServerTask1 has the union of 
services of the :ServerTask arguments, and aResource as 
its task Resource. In the union of services, duplicates are 
removed. A service is a duplicate of another if its service 
definition is the same and its properties are compatible 
(for example, if relative priorities can be adjusted to 
maintain the original relationships within the original 
subgroups). 

The merge operator has been implemented for 
merging together tasks in two submodels created from 
different scenarios of the same system [6][7]. 

 
5. Composition of ServerTasks 

 
A System is an assembly of ServerTasks composed by 

connecting required services to offered services, and 
assigning hosts to tasks. The assembly can be defined by 
listing the tasks, with the bindings of required to offered 
services, and of tasks to hosts. 

  

  System = |[Assemble]| ((list  :ServerTask), bindings)   
 (1) 

A subtype of ServerTask in Eq (1) is a placeholder for a 
variety of component subsystems, called a Slot, which has 
only the offered and required interfaces.  

For performance modeling purposes a system 
definition must include elements that define the sources of 
interactions (the system’s users). These are defined by a 
distinct type of SourceTask that offers no services, and 
has just one Service element (rather mis-named in this 
case) which cycles forever and generates requests for 
service. The Resource of this task models the users or 
sources, with a multiplicity representing the number of 
users or sources that have this behaviour. Its Host is 
usually a set of hosts, one per source. Its required services 
are the users demands on the system. It enters Eq (1) as a 
subtype of ServerTask. In LQN literature, SourceTasks 
are described as “reference tasks”. 

Required services that are not bound form a list 
RS(:System). If it is non-empty the System is incomplete 
and must be treated as a “component subsystem”. As a 
subsystem it also may have a list OS with a subset of the 
services offered within it, and can be written 
[OS]System[RS]. 

 
5.1 Composition of “component subsystems” 

 
For LQNs, a sublanguage called CBML was defined 

to describe component submodels [14][15], which are 
models with offered and required services. CBML is 
compatible with UML component notation. In SRA a 
component subsystem can enter an Assembly in the same 
way that Slots and ServerTasks are, in Eq (1). Also, if a 
System has a Slot then a component subsystem can be 
fitted into it by the same Assembly operation applied to 
the Slot and the System: 

 
     System2 = |[Assemble]|(:Slot, aSystem; list of 

bindings) 
but for the argument :Slot, the offered and required 
services are interchanged (from the view inside the Slot, a 
Service it offers is required from the component, and vice 
versa).  

 
6. Reconfigurations 

 
When a processor or task fails the system 

configuration changes due to the failure and to a recovery 
subsystem. Das described a FTLQN (fault-tolerant LQN) 
[1] to capture some of these effects, and we will try to 
incorporate it. An augmented FTSystem model has 
additional parameters: each Host or ServerTask has a 
“status” label defined by status = active | ready | failed, 
and each Call Activity has a prioritized list of standby or 
candidate target Services (rather than just one target, as 
described above). Given values of the status variables, a 
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Configure operation can applied to an FTSystem 
definition to give a System: 

 
  FTSystem = System, (status attributes), (Service lists) 

       aSystem = Configure (FTSystem, strategy) 
 
For a hot-standby strategy each Call Activity targets the 
first non-failed service in its ordered list. Failures of 
ServerTasks propagate to their clients, and failures of 
Hosts propagate to their tasks and Services. The 
configured System may offer fewer services, or service at 
reduced performance. Load-balancing and active 
replication strategies produce their own variants. 

 
7. Relationship to LQN Notation 

 
The elements defined here correspond closely but not 

exactly to the LQN notation used for the LQNS solver [3]. 
The following table describes the correspondences. 

 
 
Service/Resource Algebra LQN 
Host  Processor (the same) 
ServiceTask  Task (the same) 
Resource  Task (an aspect) 
SourceTask  Task (reference task) 
Service  Entry (the same) 
Activity  Activity (some differences) 
Call   Call (the same) 
Offered Services Offered Services (CBML) 
Required Services Req. Services (CBML only) 
Slot   Slot (CBML only) 

 
In a layered system the tasks can be ordered into layers 
such that all required services are in a lower layer. 
 
8. Conclusions 

 
Related work includes Hillston’s description of PEPA 

[5] and other work on process algebras. SRA has 
fundamental differences from PEPA, in particular time 
delays in SRA are deferred to analysis of the LQN. SRA 
is not a stochastic process algebra. The work [4] has some 
of the same goals as ours but uses different techniques and 
targets Stochastic Petri Nets for performance solutions. 

Another related area is the algebraic definition of 
software architectures, by Garlan and Shaw, and others 
(e.g. [10]). This relationship is potentially important, since 
the intention of LQN is to model the performance of 
software systems from an architecture definition. 

This extended abstract has described the beginning of 
a plan to create a formal framework for manipulating 
models of service systems, for performance and 
availability analysis using LQNs. Some features of LQNs 
have been incorporated, but others would be useful, such 
as parameterized definitions (for defining experiments 

over ranges of parameters) and replication by activities, by 
tasks and by subsystem (as in [8]). 
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