
Proc 7th Workshop on Performability Modelling of Computer and Communications Systems (PMCCS7), Torino, Italy,
Sept 2005, pp 89-92.

A Composable Performance Model for Service/Resource Systems

Murray Woodside
 Dept. of Systems and Computer

Engineering,
Carleton University, Ottawa K1S 5B6,

Canada
cmw@sce.carleton.ca

Abstract

More and more systems have an architecture made up
of resources which offer services at interfaces. An algebra
with operators to compose services with each other and
with resources, and to compose subsystems into systems,
would make possible powerful compact descriptions of
such systems, taking advantage of their particular
structure. Practical modeling also often requires
composition of submodels obtained from partial studies.
Such an algebra can also support analysis models of
many kinds; here we consider layered performance
analysis. This paper outlines an algebra for composing
layered queueing models.

1. Introduction and motivation

Modern complex systems are often built up by

composing components and services, and a modeling
language with corresponding power is essential. Process
algebras have this capability, used by Hillston to create a
compositional performance modeling framework PEPA
[5] and initiate the fruitful field of Stochastic Process
Algebras. These however have difficulty in solving for
very large state spaces, which arise for instance in
describing queueing of large numbers of concurrent
entities.

Service systems with large state spaces include Web
Services, systems with a Service-Oriented Architecture,
Web Applications using J2EE or .NET or CORBA
platforms, and legacy client-server applications. However,
they have a more constrained class of behaviours, offering
services in structured interactions between their
components and their resources. Efficient performance
solutions can be obtained by other means such as Layered
Queueing Networks (LQNs), which are used here
[2][3][11][13].

Two practical motivations for a compositional model
for LQNs are, the need to mimic the system construction
process, and the need to compose partial models made
from measurements [6][7].

 Software resource architectures were described in
[12] as a combination of resources and operations, and the
present work gives an algebra for these architectures. This
paper sketches an algebraic system SRA
(Service/Resource Algebra) for composing LQN models
from simple elements and from LQN submodels. A more
complete definition is in preparation. In particular, some
special process types and operators are defined, with
constraints on their application. They should be viewed as
elements in a to-be-defined pattern system of process-
algebraic definitions for service systems.

2. Service Systems

A System is made up of five types of process: Hosts,

ServerTasks, Resources, Services, and Activities.
• a Host represents a device which executes the

behaviour specified by a System,
• a ServerTask is a combination of a Resource and a set

of Services that it offers, with a label defining a Host,
• a Resource accepts service calls into a queue, then

uses a queueing discipline to assign resource units to
calls, and dispatches its Services to serve them. It has
labels defining a multiplicity, and a service discipline.
Seen as a process, a resource has very constrained
behaviour; it can only be claimed and released by
requests,

• A Service is a process which is initiated by a call,
with three patterns of response (as in LQNs);
o an asynchronous response is concurrent with the

calling process, and terminates;
o a synchronous response generates a return to the

calling process, as well as terminating;
o a forwarding response forwards the request to

another service, as well as terminating.
• an Activity is a sub-process of a Service.
To denote a process of a given type without stating its
name, we will write :Type. Thus, :Service stands for some
process of type Service.

Processes may be composed by the usual operators:
• sequential: P = AB indicates that the completion of

process A triggers B;

Proc 7th Workshop on Performability Modelling of Computer and Communications Systems (PMCCS7), Torino, Italy,
Sept 2005, pp 89-92.

• alternative: P = A | B means A or B. There may be a
probability label (as also in PEPA) P = A (prob = pA)
| B (prob= pB);

• parallel: P = A || B.
A process may have a repetition count, as in P =

A(rep = n). A random number of repetitions may be
indicated by a distribution, as in P = A(rep =
Geometric(mean)). Repetition counts and probabilities are
special cases of labels, as in P = A(labelName = value, ...).
Label names are reserved words.

Every process defines a default interface, which is
denoted by its name. A process may also have lists of
offered and required services, as in P = [offered1, ...] A
[required1, ...]. The elements of these lists are of type
Service.

There are additional composition operators defined
for composing Activities into Services, Resources and
Services into ServerTasks, and ServerTasks into a System.
These additional operators act as a shorthand for defined
patterns of composition which embody the execution
constraints of server system technology, and the
performance model semantics of the LQN.

For simplicity the allocation of ServerTasks to Hosts
is indicated not by composition but by a label of the
ServerTask, as in Task = T(host = :Processor). The actual
execution of any computational operation only begins
when a Host executes it. Host processes are not described
here.

To refer to properties of composed processes, a set of
functions are defined:
• the processor of a given ServerTask, Service or

Activity is host(element).
• the ServerTask of a given Service or Activity is the

function task(element).
• the Service of a given Activity is service(:Activity).
• the set of serverTasks on a given :Host is

tasks(:Host).
• the set of services offered or required by a

ServerTask, System or Service is the function
offServ(element) or reqServ(element). For Services,
offServ() returns “self”.

3. Activities and Services

Activities and services are processes whose definition

is constrained to suit the role.
• An Activity is a process with no internal parallelism,

except parallelism which may be embedded in service
call activities. It may have a label “demand” for its
mean CPU demand, and a label “rep” for mean
repetitions, as in act = A(demand = 1.5, rep = 2).

• A Service request activity or call activity is a
placeholder for the behaviour of the requested
service, up to a “return” event, which terminates the

call activity. It can only be composed sequentially
within an activity. It has labels
• “rep” for the number of calls,
• “callType” (with value = synchronous |

asynchronous) for the type, and
• “target” for the Service requested.

• A ServiceProcess is a process composed of activities.
including parallel composition.

In a ServiceProcess, some activities may labeled as
“return” activities, as anAct = A(return). They return
control (and the result of the service) to the caller of the
service, and this terminates the calling activity. However
they do not terminate the service behaviour. If a Service
receives a synchronous call and terminates without a
“return” activity, control is returned by default at its
termination. If a Service receives an asynchronous call it
ignores return activities.

An alternative to “return” activities is “forwarding”
activities, shown by a label as in Act =
A(forward(aService, probF)), which forward the request
(and the responsibility to return a result to the caller) to
aService, with probability probF (or to return). They have
the same constraints as “return” activities and can be
mixed with them. Some examples of Service processes
are:

aServiceP1 = act1
aServiceP2 = phase1(return) phase2
aServiceP3 = act1 act2 (act3(return) || act4) act5
aServiceP4 = act1 act2

 (act3(return) | act4(forward(exceptionService))) act5

If a process acquires a logical resource such as a
semaphore, the execution within the resource context of
the semaphore is regarded as a service of the semaphore.
Since the semaphore must be released, the request is
always synchronous.

A Service is defined by a serviceProcess and a list of
labels giving properties of the service. The labels include
its priority in the server:

aService = (:ServiceProcess)(list of service labels)
The set of Required Services (RS) for a Service are
defined by the requests made by its Call Activities. Each
call activity has a set RS with one element, the service it
calls. Composing activities gives a set RS’ which is the
union of their sets RS. The same is true for a
serviceProcess and its Service. Required services can be
displayed after a process name, as a list in square brackets,
or returned as the function reqServ() (abbreviated here to
rS(). Suppose:

 rS(act1) = [aService1]; rS(act2) = [aService2];
rS(act4 = [aService3];

then from the above definitions,
 rS(aServiceP4) = [aService1, aService2, aService3]

Proc 7th Workshop on Performability Modelling of Computer and Communications Systems (PMCCS7), Torino, Italy,
Sept 2005, pp 89-92.

4. Composition of Services

A ServerTask is composed of one Resource and one

or more Services:
 aServerTask = (:Service | :Service | ...)

|[ServT]| :Resource
where the special parallel composition operator |[ServT]|
has these semantics:
• each :Resource enters only one such task in a system,
• a service operation requires a unit of the resource,
• the order of serving requests is determined by the

queueing discipline of :Resource, and possibly by the
priority of the services,

• the execution of sub-operations of any Service,
relative to other services with the same host, is
determined by the queueing discipline of
host(:Resource).

The set of offered services of the task is just the set of
Services that are composed. The set of required services is
the union of the sets for the Services that are composed.

For a logical resource the ServerTask does not have a
Host, and each of its Services may be executed on a
different Host. This requires that each of these Services
should immediately “call back” to a separate Service
associated with the originating Host. This separate service
(and its ServerTask) defines the part of the originating
service executed within the context of the logical resource.

4.1 Merging ServerTasks

Submodels may be created that describe only some of

the services of a task. To compose them, the tasks that
occur in more than one are merged to one, with the union
of their services. We define:
 aServerTask1 = Merge(aResource) (list of :ServerTask)
such that the merged aServerTask1 has the union of
services of the :ServerTask arguments, and aResource as
its task Resource. In the union of services, duplicates are
removed. A service is a duplicate of another if its service
definition is the same and its properties are compatible
(for example, if relative priorities can be adjusted to
maintain the original relationships within the original
subgroups).

The merge operator has been implemented for
merging together tasks in two submodels created from
different scenarios of the same system [6][7].

5. Composition of ServerTasks

A System is an assembly of ServerTasks composed by

connecting required services to offered services, and
assigning hosts to tasks. The assembly can be defined by
listing the tasks, with the bindings of required to offered
services, and of tasks to hosts.

 System = |[Assemble]| ((list :ServerTask), bindings)
 (1)

A subtype of ServerTask in Eq (1) is a placeholder for a
variety of component subsystems, called a Slot, which has
only the offered and required interfaces.

For performance modeling purposes a system
definition must include elements that define the sources of
interactions (the system’s users). These are defined by a
distinct type of SourceTask that offers no services, and
has just one Service element (rather mis-named in this
case) which cycles forever and generates requests for
service. The Resource of this task models the users or
sources, with a multiplicity representing the number of
users or sources that have this behaviour. Its Host is
usually a set of hosts, one per source. Its required services
are the users demands on the system. It enters Eq (1) as a
subtype of ServerTask. In LQN literature, SourceTasks
are described as “reference tasks”.

Required services that are not bound form a list
RS(:System). If it is non-empty the System is incomplete
and must be treated as a “component subsystem”. As a
subsystem it also may have a list OS with a subset of the
services offered within it, and can be written
[OS]System[RS].

5.1 Composition of “component subsystems”

For LQNs, a sublanguage called CBML was defined

to describe component submodels [14][15], which are
models with offered and required services. CBML is
compatible with UML component notation. In SRA a
component subsystem can enter an Assembly in the same
way that Slots and ServerTasks are, in Eq (1). Also, if a
System has a Slot then a component subsystem can be
fitted into it by the same Assembly operation applied to
the Slot and the System:

 System2 = |[Assemble]|(:Slot, aSystem; list of

bindings)
but for the argument :Slot, the offered and required
services are interchanged (from the view inside the Slot, a
Service it offers is required from the component, and vice
versa).

6. Reconfigurations

When a processor or task fails the system

configuration changes due to the failure and to a recovery
subsystem. Das described a FTLQN (fault-tolerant LQN)
[1] to capture some of these effects, and we will try to
incorporate it. An augmented FTSystem model has
additional parameters: each Host or ServerTask has a
“status” label defined by status = active | ready | failed,
and each Call Activity has a prioritized list of standby or
candidate target Services (rather than just one target, as
described above). Given values of the status variables, a

Proc 7th Workshop on Performability Modelling of Computer and Communications Systems (PMCCS7), Torino, Italy,
Sept 2005, pp 89-92.

Configure operation can applied to an FTSystem
definition to give a System:

 FTSystem = System, (status attributes), (Service lists)

 aSystem = Configure (FTSystem, strategy)

For a hot-standby strategy each Call Activity targets the
first non-failed service in its ordered list. Failures of
ServerTasks propagate to their clients, and failures of
Hosts propagate to their tasks and Services. The
configured System may offer fewer services, or service at
reduced performance. Load-balancing and active
replication strategies produce their own variants.

7. Relationship to LQN Notation

The elements defined here correspond closely but not

exactly to the LQN notation used for the LQNS solver [3].
The following table describes the correspondences.

Service/Resource Algebra LQN
Host Processor (the same)
ServiceTask Task (the same)
Resource Task (an aspect)
SourceTask Task (reference task)
Service Entry (the same)
Activity Activity (some differences)
Call Call (the same)
Offered Services Offered Services (CBML)
Required Services Req. Services (CBML only)
Slot Slot (CBML only)

In a layered system the tasks can be ordered into layers
such that all required services are in a lower layer.

8. Conclusions

Related work includes Hillston’s description of PEPA

[5] and other work on process algebras. SRA has
fundamental differences from PEPA, in particular time
delays in SRA are deferred to analysis of the LQN. SRA
is not a stochastic process algebra. The work [4] has some
of the same goals as ours but uses different techniques and
targets Stochastic Petri Nets for performance solutions.

Another related area is the algebraic definition of
software architectures, by Garlan and Shaw, and others
(e.g. [10]). This relationship is potentially important, since
the intention of LQN is to model the performance of
software systems from an architecture definition.

This extended abstract has described the beginning of
a plan to create a formal framework for manipulating
models of service systems, for performance and
availability analysis using LQNs. Some features of LQNs
have been incorporated, but others would be useful, such
as parameterized definitions (for defining experiments

over ranges of parameters) and replication by activities, by
tasks and by subsystem (as in [8]).

9. References

[1] O. Das and M. Woodside, “Computing the Performability

of Layered Distributed Systems with a Management
Architecture," in Proc. 4th Int. Workshop on Software and
Performance (WOSP 04), Redwood Shores, Calif., Jan
2004, pp. 174 – 185.

[2] G. Franks, A. Hubbard, S. Majumdar, J. Neilson, D.C.
Petriu, J.A. Rolia and C.M. Woodside, "A Toolset for
Performance Engineering and Software Design of Client-
Server Systems", Performance Evaluation, vol. 24, pp 117-
136, 1995.

[3] Greg Franks, “Performance Analysis of Distributed Server
Systems”, PhD. thesis, Carleton Univ. Jan. 2000.

[4] V. Grassi, R. Mirandola, “Towards Automatic
Compositional Analysis of Component Based Systems”,
Proc 4th Int. Workshop on Software and Performance,
Redwoood Shores, CA, Jan. 2004, pp 59-63.

[5] J. Hillston, A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[6] C. Hrischuk, J. A. Rolia, and C. M. Woodside, “Automatic
Generation of a Software Performance Model Using an
Object-Oriented Prototype”, Proc. 3rd Int. Workshop on
Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS '95), Durham, NC,
Jan 1995, pp. 399-409.

[7] T.A. Israr, D.H. Lau, G. Franks, M. Woodside, “Automatic
Generation of Layered Queuing Software Performance
Models from Commonly Available Traces”, Proc. 4th Int.
Workshop on software and Performance (WOSP 05), July
2005.

[8] T. Omari, G. Franks, M. Woodside, A. Pan, “Solving
Layered Queueing Networks of Large Client-Server
Systems with Symmetric Replication”, Proc. 4th Int.
Workshop on Software and Performance (WOSP 05), July
2005.

[9] J. A. Rolia and K. C. Sevcik, "The Method of Layers,"
IEEE Trans. on Software Engineering, v. 21, n. 8 pp. 689-
700, Aug 1995.

[10] M. Shaw and D. Garlan, Software Architecture, Prentice-
Hall, Inc., 1996.

[11] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar,
"The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-Like
Distributed Software", IEEE Transactions on Computers, v
44, n 1, pp. 20-34, January 1995.

[12] C. M. Woodside, "Software Resource Architecture", Int.
Journal on Software Engineering and Knowledge
Engineering (IJSEKE), v 11, n 4, pp. 407-429, 2001.

[13] M. Woodside, “Tutorial Introduction to Layered Modeling
of Software Performance”, Edition 3.0, May 2002
(Accessible from http://www.sce.carleton.ca/rads/ lqn/lqn-
documentation/tutorialg.pdf)

[14] X.P. Wu and M. Woodside, "Performance Modeling from
Software Components," in Proc. 4th Int. Workshop on
Software and Performance (WOSP 04), Redwood Shores,
Calif., Jan 2004, pp. 290-301.

Proc 7th Workshop on Performability Modelling of Computer and Communications Systems (PMCCS7), Torino, Italy,
Sept 2005, pp 89-92.

[15] Erik Putrycz, Murray Woodside, and Xiuping Wu,
“Performance Techniques for COTS Systems”, IEEE
Software, v. 22, n 4, pp. 36–44, July-August 2005.

