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Abstract. The earliest definition of a software system may be in the form of Use
Cases, which may be elaborated as scenarios. In this work performance models
are created from scenarios, to permit the earliest possible analysis of potential
performance issues. Suitable forms of scenario models include UML Activity or
Sequence Diagrams, and Use Case Maps from the URN standard. They capture
the causal flow of intended execution, and the operations, activities or responsi-
bilities which may be allocated to components, with their expected resource
demands. The SPT algorithm described here automatically transforms scenario
models into performance models, and the LQNGenerator tool implements SPT
to convert UCM scenario models into Layered Queueing performance models.
SPT can in principle also be applied to other scenario models, including Mes-
sage Sequence Charts, UML Activity Graphs (or Collaboration Diagrams, or
Sequence Diagrams).

1  Introduction

Software performance analysis often begins from scenario definitions, which
describe the system behaviour during a response. Many different notations have been
used to capture scenarios, and this masks their common features. Scenarios have been
developed as an approach to software design relatively recently. Carroll ([8], see Chap-
ter 3) gives a broad discussion of their significance and argues that scenario based
techniques avoid premature commitment, contain complexity and maintain focus on
the essential problem in a new application. They also naturally address the question of
evaluation during design rather than after, which is relevant to our present purpose.
Carroll’s work is focused on User Interface design, but we have found that his argu-
ments also apply to other software. Carroll’s scenarios are expressed as natural lan-
guage scripts, as a natural extension of Use Cases.

This work is based on a well-developed scenario language for software design,
called Use Case Maps (UCMs) [7], but the method applies to other notations such as
UML. UCMs expand Use Cases into scenarios described as causal sequences of
responsibilities, either unbound or associated with components. UCMs can be used to
reason about architecture and to develop an architecture within a structural notation,
possibly based on the UML, such as is described by Hofmeister, Nord and Soni [17].

To provide continuous re-evaluation during the evolution of an architecture there
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must be automation. This paper describes the LQNGenerator, a tool which automati-
cally creates Layered Queueing Network (LQN) performance models from UCMs. It
is integrated into the UCM Navigator, which is an editor and repository tool for
UCMs, so that the Navigator can be used as a front-end editor for design models which
are also performance models.

The concepts can in principle be extended to other scenario modeling tools such
as Stories [9], UML Sequence Diagrams or other behavior models [5]. Smith has
defined an Execution Graph notation which is converted into queueing models
[33][34]. Conversion of UML Collaboration models into layered queues has previ-
ously been described by Kahkipuro [20]. Eventually the ideas of LQNGenerator may
be applied to annotated UML models using a new standard profile for performance
annotations [31].

The performance model formulation used here is Layered Queueing, because it
captures logical resource effects and provides good traceability between the perfor-
mance measures and the emerging software architecture. It incorporates the software
components as servers, and logical resources (such as buffers, locks and threads), as
well as the hardware resources. Essentially, Layered Queueing is a canonical form for
simultaneous resource queues, that are common in software resources. Simpler queue-
ing models could be used instead, but they would model fewer features of the resource
architecture, as described in [38]. Petri net models capture these features very well, as
described by Pooley [28], but sometimes have problems with larger system scales.

The difficult problem solved by LQNGenerator applies to any scenario notation
which binds actions to software components, and not just to Use Case Maps. The prob-
lem is in interpreting paths as interactions between software objects which may have
resource attributes. Interactions which imply waiting for logical resources (blocking)
have performance effects and are captured by analyzing the entire path. A second kind
of difficulty comes from interactions between scenarios, either in competition or in
collaboration. The algorithm for creating the models is called SPT (Scenario to Perfor-
mance Model Transformation).

There has been considerable effort expended on methods for Software Perfor-
mance Engineering (SPE), and an overview can be obtained from the proceedings of
the three international Workshops on Software and Performance (WOSP’98 [39],
WOSP2000 [40] and WOSP2002 [41]). Despite this effort, SPE has proven to be more
appealing in concept than in practice. The effort needed to cross into the realm of per-
formance analysis, in the course of any design project, is too high, and the concepts are
alien to the developer. Using automated model-building reduces the need for special
performance expertise. There is still a requirement to specify the appropriate perfor-
mance data - such as service demands by responsibilities, arrival rates at start points,
branching probabilities, loop repetitions, and device speed factors - as annotations in
the UCM in order to get meaningful results. These values can be obtained from known
workloads or they can be approximated by using a budgeting approach and supplying
values based on an estimate of much time operations have to complete [32][35]. The
results may validate the performance aspects of the design by confirming the budgets,



 3

or may identify problems such as bottlenecks, and this work can be a partnership
between the designer and the performance expert.

This research pins its hopes on embedding most of the description into the soft-
ware definition as it emerges, and on tracking this definition through its stages into
code. It is important to begin early, and the automatic converter described here cap-
tures the first step in design.

An earlier version of this paper [25] gave a first description of the SPT algorithm
and UCMs; this expanded version gives a more complete description of the algorithm,
adds a much more extensive example related to software for telephony, and shows how
SPT can also be applied to UML Sequence Diagrams.

2  Models for Scenarios and Performance

Scenarios were proposed for object-oriented design (e.g. [36]) as plain-language
stories, which were analyzed to identify objects (nouns) and activities (verbs). This
approach was developed into Use Cases [19], in which the stories have formal relation-
ships to each other, and further developed by Constantine and Lockwood in [9].

Message Sequence Charts (MSCs) were developed to describe communications
systems, and evolved from a kind of virtual message trace into a more abstract lan-
guage which describes operations as well as messages and can combine sub-scenarios
[18]. Sequence Diagrams in UML, which are a popular notation for intended behav-
iour, are a modified version of MSCs. Both of these notations are most effective for
expressing single scenarios, although capabilities to describe alternative paths exists;
an example of a Sequence Diagram will be shown later. UML also incorporates two
other notations to display intended behaviour, the Activity Diagram and the Collabora-
tion Diagram.

The Use Case Map notation was invented by Buhr and his co-workers [6][7] to
capture designer intentions while reasoning about concurrency and partitioning of a
system, in the earliest stages of design. It was derived by watching designers discuss-
ing and massaging ideas into architectures, and is intended to be intuitive and high-
level. Details can be represented, but are not the purpose. UCMs are being standard-
ized as ITU-T Z.152 as part of the User Requirements Notation (ITU-T Z.150).

Compared to the Unified Modeling Language (UML), UCMs fit in between Use
Cases and UML behavioural diagrams. In UML, Class Diagrams are used to describe
how a system is constructed, but do not describe how it works; this task is taken up by
UCMs. Collaboration Diagrams in UML do provide a high-level description of how
the system works, but only one scenario at a time [3]

2.1  Use Case Maps

A Use Case Map is a collection of elements that describe one or more scenarios
unfolding throughout a system [7] [6]. The basic elements of the notation are shown in
Figure 1. A scenario is represented by apath, shown as a line from astart point (a
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filled circle) to anend point(a bar), and traversed by a token from start to end. Paths
can be overlaid oncomponentsrepresenting functional or logical entities, which may
represent hardware or software resources.Responsibilities, denoted with an X-shaped
mark on the path, represent functions to be accomplished. The generation of perfor-
mance models assumes that computational workload is associated with responsibili-
ties, or is overhead implied by crossings between components. Responsibilities are
annotated by service demands (number of CPU or disk operations, or calls to other ser-
vices) and data store operations.

A path can be traversed by many tokens, and several tokens may occupy a single
path at once. The workload of a path is indicated by annotations to its start point
(closed or open arrivals, arrival rates and external delays). A path can be refined hierar-
chically by adding stubs, which represent separately specified maps called plug-ins.
There may also be several alternative plug-ins for any stub.

Paths have the usual behaviour constructs ofOR fork/joins(representing alterna-
tive paths),AND fork/joins(representing parallel paths) andloops. OR forks and loops
are annotated by choice probabilities and mean loop counts. AND and OR forks do not
have to be nested, that is they do not have to join later. This is realistic for software
design, but creates problems for model creation, as the structured workload graph
reduction used by Smith ([33], chapter 4) does not always apply.

The UCM Navigator (UCMNav) [21] was developed by Miga as an editor and
repository manager, and has been used by our industrial associates to create large,
industry-scale scenario specifications. It supports:

• drawing and editing UCMs, including multiple scenarios, and storing in an XML
format.

• annotations for deployment on system devices and for performance, as well as
comments and pseudo code,

• specifying delay requirements along a path,
• generating Message Sequence Charts (MSC) as well as performance models.

The LQNGenerator is implemented as an add-on to UCMNav, and generates a file
in the LQN language which can then be used, outside the UCMNav, to compute per-
formance measures using either LQSim, a simulator, or LQNS, an analytic solver.

Figure 1:Example of the UCM notation.
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2.2  Layered Queueing Networks

Layered Queueing Networks (LQN) model contention for both software and hard-
ware resources, based on requests for services. Entities in the role of clients make ser-
vice requests and queue at the server. In ordinary queueing networks there is one layer
of servers; in LQN, servers may make requests to other servers, with any number of
layers [29]. An LQN can thus model the performance impact of the software structure
and interactions, and be used to detect software bottlenecks as well as hardware perfor-
mance bottlenecks [23]. There have been many applications [27][37].

In an LQN the software resources are calledtasks, (representing a software pro-
cess with its own thread of execution, or some other resource such as a buffer) and the
hardware resources are calleddevices(typical devices are CPUs and disks). Tasks can
have different priority levels on their CPU. The workload of a LQN is driven by open
arrival streams of external requests, or by tasks which cycle and make requests, called
reference tasks.

An LQN can be represented by a graph with nodes for tasks and devices, and
arrows for service requests (labelled by the mean number of messages sent). There are
two types of arc to represent asynchronous messages (with no reply) and synchronous
messages which block the sender until there is a reply (synchronous messages are also
called task calls; the model was created originally for Ada software). Tasks receive
either kind of request message at designated interface points calledentries. A task has
a different entry for every kind of service it provides; an entry also represents a class of
service. Internally an entry has service demands defined by sequences of smaller com-
putational blocks calledactivities, which are related in sequence, loop, parallel (AND
fork/joins) and alternative (OR fork/joins) configurations. Activities have processor
service demands and generate calls to entries in other tasks.

A third type of interaction calledforwarding is a combination of synchronous and
asynchronous behaviour. The sending client task makes a synchronous call and blocks
until it receives a reply. The receiving task partially processes the call and then for-
wards it to another server which becomes responsible for sending a reply to the
blocked client task; it can be forwarded with a probability, and any number of times.
The intermediate server task can begin a new operation after forwarding the call.

Models are created in a textual language which can be edited as text or with a sim-
ple graphical editor, and can be solved either by simulation using LQSim, or by ana-
lytic approximations using LQNS. LQNS is based on [37] and the Method of Layers
[29], with a number of additional approximations [12][13][14]. The approximations
have limitations in dealing with priorities (poor accuracy) and with AND-joins that do
not have an AND-fork in the same task, so simulation is often useful.

The interactions in LQNs can be understood more clearly using UCMs to show
the sequences of events. Figure 2 shows a series of UCMs describing the interactions
which must be detected when building an LQN model:

1.  a basic synchronous interaction between two tasks
taskA and taskB has a path launched by an activity
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(which is an inferred overhead activity for communi-
cations); the reply returns the path to the same
activity. The interpretation of this message is the
same if the path goes on from taskB to other tasks,
returning to taskB before returning to taskA.

2.  taskA sends an asynchronous message to taskB. The
interpretation of the message is the same if the path
goes on from there, but never returns to taskA. The
LQN notation is an open arrowhead, here shown with
one side only.

3. taskA sends a message to taskB which is forwarded to
taskC, before returning directly to taskA. The for-
warding path can include any number of intermediate
tasks; the assumption is that taskA (or a thread of
the task) waits blocked for the return, unless there
is a fork in taskA before sending the request. The
LQN notation for the forwarding steps is a solid
arrow for the original blocking call, and dashed
arrows for the other, non-blocking messages.

Figure 2 also shows the LQN notations for forks and joins and for loops.

3  Extracting a Layered Performance Model

The novel contribution in this work is finding disguised synchronous and forward-
ing interactions. These identify potential software blocking which may have signifi-
cant performance implications. Compared to many scenario analyses (such as used in
[33]), which only determine device demands by class, the layered model also retains
the component context of each demand. Other models which retain the software con-
text of demand, e.g. Kahkipuro’s AQN [20], require that blocking interactions be
explicitly identified.

3.1  Identifying Blocking Interactions

The detection of blocking interactions is important because they are not always
obvious in a system but they have a big performance impact. The SPT algorithm takes
a conservative approach to performance modeling and assumes that if the path returns
to a component, it was waiting for the return and thus was blocked. This maximizes the
interpretation of blocking interactions, which yields models that capture all the possi-
ble blocking points in a system.

We have found that even when designers use asynchronous messaging, the design
may introduce blocking, when a task needs certain information before it can proceed.
If there is a truly non-blocking component it is modeled as having multiple threads,
one to maintain the context of each uncompleted operation. If the number of opera-
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tions that may be carried is unbounded there are infinite threads. In this way blocking
behaviour is decoupled from the use of synchronous or asynchronous messages.

There may be additional blocking introduced by the environment, for example an
ORB, in behaviour that is not described in the UCM. To discover this blocking, we
need more information, for example from completions of the model [32].

3.2  Correspondences between UCMs and LQNs

There are some quite close correspondences between some of the scenario enti-
ties, and LQN model entities that can represent them.

Figure 2:Corresponding interactions and structures in UCM and LQN.
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Considering each pair in order:
• A reference task can serve either as an open workload generator inserting asyn-

chronous requests, or a closed workload generator, in which case it has a multi-
plicity equal to the population, and each task makes synchronous requests (and
waits for the response).

• A UCM responsibility can represent an arbitrarily complex set of operations,
however here we are restricting its significance to a sequential operation, which
can make calls to services. A complex operation can be captured in many cases
by these calls, which are mapped to servers and service requests in the LQN.

• A component may represent an operating system process, or an object or module
of some kind. An LQN task has a primary meaning as a separate operating sys-
tem process, but it also represent an object or module executing in the context of
some task. A synchronous call to the module is effectively sequential, because of
the blocking of the main task, so it is equivalent to including the module inside
the main task... modeling a module in this way exposes its contributions to per-
formance.

• A “service” in UCM is an annotation representing a service used by the software
but outside the scope of the UCM, such as a file service or a database service.
Ultimately a submodel for this subsystem will be added to the model, but as a
placeholder, a task with a dedicated processor is inserted to take the calls for the
service.

3.3  Correspondences of Path Structure in LQN

The scenario expression of path structure within a component translates directly to
the LQN activity sequence notation, with the usual constructs of alternate and parallel
branching (and joining), as well as looping. The LQN notation supports the same con-
structs. Figure 2(d) shows a UCM interpretation of an LQN task with an OR fork and
join (in the LQN model the OR is indicated by a ‘+’ connector). Figure 2(e) shows an
AND fork and join (the LQN model uses ‘&’ in the connector). A UCM loop point is

UCM Construct LQN Construct

start point reference task

responsibility activity

AND/OR forks and joins LQN AND/OR forks and joins

component task

device device

service
entry in a task (with a dedicated
processor)

Table 1:Corresponding UCM and LQN constructs.
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indicated by an OR join followed immediately by an OR fork; the LQN notation has a
loop traversal count. A complex loop body can be represented in the LQN by a
pseudo-task which is called by the loop controller and executes the activities of the
body, as indicated in Figure 2(f).

3.3.1  Fork and Join in Separate Components

In a scenario, paths may fork in one component and join in another. Both UCMs
and LQNs support this feature; the path is conveyed from the first component to the
second by asynchronous or forwarding interactions. Simulation evaluation in our tools
assumes that any token on the joining paths is a candidate, but applications may
require that only tokens that are siblings from the fork should be allowed to join. If the
scenario is such that tokens cannot pass each other this is no problem, otherwise it is a
headache both to model and (indeed) to implement.

3.4  Performance Annotations in UCMs

The performance annotations on UCM elements were mentioned in the descrip-
tion of the UCM notation above, but it is worth summarizing them more formally since
they provide the parameters and some of the elements of the performance model. Table
2 shows the annotations and their default values.

UCM Element Performance Annotation Default

responsibility number of calls 1.0 calls

component associated devices one infinite processor

device speed-up factor 1.0

OR fork probability of each branch
 (as a weight)

equal probability for
each branch

loop number of loop iterations 1.0 iterations

start point open system arrival rate
and distribution

1 arrival/sec, with
deterministic delay

OR closed system popula-
tion and delay

10 jobs with deterministic
delay of 1 sec.

Table 2: UCM constructs, the necessary performance data needed to
create meaningful LQNs, UCMNav support for entering the
data, and default values used if the data is not specified.



 10

4  Algorithm for Scenario to Performance Model Transformation

The algorithm for Scenario to Performance model Transformation (SPT) must do
the following:

• identify when the path crosses component boundaries
• determine the type of messages sent or received when crossing component

boundaries
• capture the path structure and the correct sequence of path elements

• create the LQN objects that correspond directly to UCM elements
• handle forks, joins, and loops

The UCM is transformed into an LQN on a path by path basis. Each start point is
assumed to begin an independent path, and as such is assigned to its own reference
task. Reference tasks act as the work generators for the LQN model. Each reference
tasks is assigned arrival rates and distributions as specified by the start points in the
UCM. Similarly, LQN activities are assigned workload demands as specified in the
corresponding UCM responsibility and OR branches are assigned probabilities set in
the UCM. If any performance data is missing from the UCM, default values are
assigned as noted in Table 2.

The SPT algorithm follows a UCM path from its start point. Each element along
the path is checked for its enclosing component, and if the enclosing component has
changed then a boundary has been crossed. Each boundary crossing corresponds to a
message between components. The message may be a synchronous call, a reply, an
asynchronous call, or a forwarding; to resolve its role in an interaction requires exam-
ining a portion of the history of the path. This is calledresolvingthe interaction. There-
fore there is a need to keep track of all messages that have been discovered, but not yet
resolved.

4.1  Message Stack (MStack)

The Message Stack (MStack) is the mechanism that stores the unresolved mes-
sage history as the path is traversed. Whenever a component boundary is crossed, the
message event is pushed onto the stack and then the pattern of messages in the stack is
analyzed to see if they satisfy one of the interaction patterns illustrated in Figure 2. For
example, if the most recent message can be interpreted as a reply to a previous mes-
sage on the MStack, the interpretation is performed and a synchronous interaction is
generated and attached to the LQN elements. The priority in resolving interactions is
to interpret them first as synchronous, and then as forwarding; interactions are inter-
preted as asynchronous only as a last resort. The operations of the MStack can be sum-
marized as follows:

• unresolved messages, with the LQN entries and activities involved in sending and
receiving, are pushed on the MStack

• when messages are resolved as LQN interactions, they are popped off the MStack
and their associated LQN entries and activities are updated

• any messages remaining on the MStack when the end of the path is reached are
resolved as being involved in asynchronous calls.
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A result of this approach is that no message (with its associated workload) is ever lost.

Figure 3 shows a UCM with multiple boundary crossings and the state of the
MStack after each of those crossings.

The path traversal is made more complicated by the presence of forks and joins. If
a fork is encountered along the path, then the outgoing branches are followed one by
one, until either a join or an end point is reached. Figure 4 shows the order in which a
set of path segments with forks and joins are traversed, starting from the start point on
the left. When a join is encountered the traversal proceeds past it only after all the
incoming branches that can be reached from the current start point have been tra-
versed.

Branching can also affect the structure of the MStack. When a fork is encountered
the MStack is also forked by copying, so that there is a separate MStack for each

Figure 3:UCM showing the contents of the MStack after each of a series of compo-
nent boundary crossings.
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branch of the fork. Branches are explored in an arbitrary order. When exploring a
branch, interactions are resolved as they are found. If a branch ends and some mes-
sages from before the fork are resolved as being asynchronous, subsequent branches
may re-resolve those messages as being synchronous. However in order to maximize
the synchronous interpretation of messages, synchronous messages may not be re-
resolved as asynchronous by any other branches.

4.2  SPT Algorithm

The following high-level description of the algorithm describes the operations car-
ried out at each point along the path:

1. create appropriate LQN objects for the current path
point

1.1. if  the current point is a start point then

1.1.1. create a reference task for the start point

1.2. if  the current point is an end point then go to
step 4

1.3. if  the current point is a responsibility or an
empty stub then

1.3.1. create an LQN activity and update it with the
service requests of the responsibility or stub

1.3.2. make the activity a candidate activity for use
to capture path sequencing detail

1.4. if  the current point is a fork then

1.4.1. create an LQN fork of an appropriate type

1.4.2. create a duplicate MStack for the next branch
path to be traversed

1.5. if  the current point is a join then

1.5.1. if  all the incoming branches have been tra-
versed  then

1.5.1.1.proceed past the join and merge the MStack

Figure 4:UCM path showing the order in which branches are traversed.
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for the last branch to be traversed with the
main path MStack before the branch

1.5.2. else

1.5.2.1. go back and traverse the next incoming
branch

1.5.2.2. create a duplicate MStack for the next
branch path to be traversed

1.6. if  the current point is a loop head then

1.6.1. create a repeated LQN activity to be the loop
control activity

1.6.2. create an LQN task to handle the loop body

1.6.3. add a synchronous call from the loop control
activity to the loop body

2.  look ahead to the next point on the path

3.  analyze inter-component interactions (identify any
component boundary crossings and resolve the nature
of the inter-component messages)

3.1. if  the current point resides in a component then

3.1.1. if  the next point does not reside in a compo-
nent then

3.1.1.1. create an unresolved message
3.1.1.1.1.if there is a candidate activity in the

task then
3.1.1.1.1.1.use the candidate activity to send

the message
3.1.1.1.2.else

3.1.1.1.2.1.create a new default activity to
send the message

3.1.1.2. push the message on the MStack

3.1.2. else if the next point resides in a different
component that has a message pending on the MStack
then

3.1.2.1. identify a synchronous or forwarding
interaction and resolve it

3.1.3. else if the next point resides in a different
component that does not have any message pending
on the MStack then

3.1.3.1. identify a call of unknown type (may later
turn out to be a synchronous, forwarding, or
asynchronous call)

3.2. else the current point does not reside in a compo-
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nent

3.2.1. if the next point resides in a component that
does not have any messages pending on the MStack
then

3.2.1.1. identify the reception of a call

3.2.2. else if the next point resides in a component
that has a message pending on the MStack then

3.2.2.1. identify a synchronous or forwarding
interaction and resolve the appropriate message

4. if  the current point is an end point then

4.1. any unresolved interactions are asynchronous

5. else

5.1. set the next point as the current path point and
go to step 1

The SPT algorithm ensures that every responsibility in the scenario is traversed
and that a corresponding LQN activity is generated with the specified service
demands. A more detailed description of the algorithm can be found in [24].

5  Examples

5.1  Ticket Reservation System

The Ticket Reservation System (TRS) allows users to browse through a catalogue
of events and seat availability, and to buy tickets using a credit card. The UCM design
for the TRS is shown in Figure 5, with the components being as follows:

• User: TRS customer
• WebServer: web interface to the TRS, executes CGI scripts
• Netware: the underlying network software and the network itself
• CCReq: credit card verification and authorization server
• Database: database server

A Usercan access the TRS can be used either to browse events by displaying an
event schedule and seating availability, or to buy tickets using a credit card. A typical
scenario involves theUser logging on to the system by requesting a connection. The
WebServerthen logs the user on and opens a session, then confirms that the connection
was made. Once she is connected to the system, theUserenters a loop where she has
two options. She can either choose to browse and check information about an event, or
she can buy a ticket. If the browsing option is chosen, theWebServersends an event
information request to theDatabase, through theNetware. TheDatabaseis responsi-
ble for retrieving the data requested and send it to theWebServer. The information can
then be displayed back to theUser, who can now choose whether to continue brows-
ing, purchase tickets or disconnect. If the ticket purchasing option is chosen, theUser
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must supply a credit card number to which the purchase price can be billed. TheWeb-
Serverthen begins to confirm the transaction by contacting theCCReqthrough the
Netwareand requesting that the credit card be verified. Once the credit card is checks
out, CCReq forwards the purchase request to theDatabaseso it may update its
records. The transaction is now completed and a confirmation is sent to theWebServer,
which in turn relays it back to theUser. TheUsermay continue to browse or purchase
more tickets as she wishes. Once theUser is done, she can make a disconnection
request and theWebServercloses the session and confirms that the she has been logged
out.

Figure 5:Ticket Reservation System Use Case Map model.
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Figure 6:TRS LQN showing activity connections based on the output generated by
the LQNGenerator from the UCM shown in Figure 5.
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The TRS LQN is shown in Figure 6. The LQN shows an initial asynchronous call
from the reference task to theUser, due to the open nature of the model’s arrivals. This
example requires the conversion of a complex loop, the body of which features forking
and joining and makes service requests of other tasks.

Examining the flow of activities and messages in the LQN, the UCM path is
readily identifiable. The loop control activity is shown as the diagonally shaded activ-
ity marked with an asterisk in theUser task. The loop body was abstracted away from
the loop head and is represented by theUser_loop1task. The rest of the loop body is
taken care of by the activities inUser_loop1. The activities for theWebServertask
incorporate the OR fork and join necessary to separate the sequence of actions for
browsing or buying. Calls from theWebServerare forwarded by theNetware, and by
theCCReq if a reservation was made, before being replied to by theDatabase.

The resulting LQN has been solved by the solver LQNS, to demonstrate that it is a
correctly formed model definition. However the model results are not critical to the
present discussion and will not be presented here. With the model, one could address
such issues as

• the CPU load imposed by the servers
• the levels of concurrency needed in the servers,
• the impact on capacity, if there are longer sessions or longer internet delays for

each interaction.

5.2  POTS

This section analyzes a Plain Old Telephone System (POTS) call connection sce-
nario. Figure 7 and Figure 8 describe the scenario, including stubs for incorporating
enhanced features which are not elaborated in this analysis. Features can be described
by separate plug-in maps or, for the purposes of performance analysis, their workload
can be expressed as an average workload for the stub.

POTS has two possible scenarios that can happen when attempting to make a call:
the call can either be set up successfully, or the callee is busy. If the call is placed suc-
cessfully, the scenario unfolds as follows:

• the originator (caller) picks up the receiver
• the switch notes that the originator is now busy
• the originator gets a dial tone
• the originator dials the desired terminator’s number (callee)
• the dial tone stops
• the switch checks and finds that the terminator is currently idle
• the switch stores the originator’s number as the terminator’s last incoming num-

ber
• the terminator gets a ring and the originator gets a remote ringing tone
• the terminator picks up the receiver
• the terminator’s ring stops
• the originator’s remote ringing tone stops and the billing details are recorded by

the operations system
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• the connection is now made

Otherwise, an unsuccessful call connection scenario unfolds as follows:
• step 1 through step 5 are the same
• the switch checks and finds that the terminator is currently busy
• the originator gets a busy tone
• the connection is not made

Figure 7 shows the root UCM for the POTS system. The components for all the
POTS maps are as follows:

• Orig: the caller’s telephone set
• Term: the callee’s telephone set
• Switch: the telephone company’s switch gear
• SCP: the Service Control Point that processes IN features (not used in the POTS

scenario)
• OS: the Operations System that does the billing

The POTS root map features the following stubs:
• PreDial: features that are activated before the number is dialed
• PostDial: features that are activated after the number is dialed
• Billing: different billing schemes depending on the kind of connection and which

features are invoked

For POTS operation the PreDial stub can either be left empty or it may have a
default plug-in that merely connects the input and output paths. Similarly, the Billing
stub has a straight path connecting its input and output. This billing path has a single
responsibility to log the start time of the connection between the caller and the callee.

The PostDial stub has more functionality and the plug-in is shown in Figure 8.
The PostDial plug-in describes the behaviour of contacting the called party and estab-
lishing a connection, or the notification of the caller that the called party is busy. The
PostDial map features the following stubs:

• ProcessCall: features dealing with making a connection
• ProcessBusy: features associated with the callee being busy
• NumberDisplay: feature displaying the caller’s number

For POTS operation both the ProcessBusy and NumberDisplay stubs can either be
left empty or have default plug-ins without any responsibilities

The ProcessCall plug-in for normal POTS operation is shown in Figure 9 and
checks whether the called party is idle or busy. If the called party is idle then its status
is changed to busy and the process of making the connection is started. Otherwise the
process of notifying the caller that the called party is busy begins.

5.2.1  POTS Path Traversal

The POTS model incorporates multiple levels of abstraction in the form of multi-
ple levels of stubs. The SPT algorithm handles the abstraction by flattening out the
UCM as the stubs are traversed.  The path traversal for a stub is done as follows:
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1. if  the stub has multiple plug-ins then

1.1. identify the stub as a dynamic stub

1.2. create an OR fork for each stub input point

1.3. create an OR join for each stub output point

1.4. for  each plug-in

1.4.1. traverse the path from each bound start point
as if it were a branch on the stub input OR fork
and join each bound end point as if were a branch
on the stub output OR fork

2. else if  the stub only has one plug-in then

2.1. identify the stub as a static stub

2.2. traverse the path from each bound start point as
if it were joined to the stub input and join each
bound end point to the stub output

3. else

Figure 7:Top level UCM map for the POTS example.
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3.1. identify the stub as an empty stub

3.2. create an LQN activity and update it with the ser-
vice requests of the stub

3.3. make the activity a candidate activity for use to
capture path sequencing detail

4.  continue past the stub

Notice that this traversal of the paths “flattens” the plug-ins so they are incorpo-
rated seamlessly in the system behavior.

5.2.2  POTS Performance Analysis Results

Figure 10 shows the POTS LQN model generated by the LQNGenerator from the
UCMs described above. The layered architecture of the system is now evident, with
the Orig (caller) generating the requests for theSwitchwhich in turn calls theTerm
(callee) and sends billing messages to the OS

Figure 8:Plug-in UCM for the PostDial stub in Figure 7.
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Figure 11 shows the connection delay vs. call volume results obtained by simulat-
ing the POTS LQN using LQSim. The simulations were run using either a single
thread, five threads, or ten threads for theSwitchtask. Assuming that an acceptable
threshold for the connection delay is 100 ms, then the system can handle up to about
210000 calls per hour in the single-threaded case, up to about 250000 calls per hour in
the case with five threads, and up to a little more than 250000 calls per hour in the case
with ten threads. The results show that there is practically no difference, and thus no
benefit, to having tenSwitch threads as opposed to fiveSwitch threads.

6  Obtaining Performance Models from UML Sequence Diagrams

The SPT algorithm can work with any scenario notation which is based on the
sequence connectors described here (sequence, alternative paths, AND forks and joins,
and loops), and which binds elements to components. Thus any of the three UML dia-
grams which show scenarios (Sequence Diagrams, Collaboration Diagrams, and
Activity Diagrams) can be transformed by the SPT algorithm. Recently a new standard
UML Profile has been defined for Schedulability, Performance and Time [31], which
defines performance annotations in the form of stereotypes and tags that can be added

Figure 9:POTS call processing plug-in for the ProcessCall stub in Figure 8.
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to these diagrams. The Profile interprets the sequence of messages that invoke opera-
tions, as Steps in a Scenario, which includes all the necessary precedence relation-
ships.

Figure 12 shows a Sequence Diagram for the Ticket Reservation scenario, to illus-
trate these ideas. The vertical lines (“lifelines”) are associated with instances (typically
objects or subsystems) which represent components, at the level of abstraction of the
diagram. Operations analogous to responsibilities in UCMs are shown by the rectan-
gles (“focus of control”) over the vertical lines, and causal sequences are indicated by
arrows representing messages from one component to another. A sequence of Steps in
the same component is indicated by a series of nested focus of control rectangles. OR
forks may be shown in two ways; by multiple messages leaving the same point, or by a

Figure 10:POTS LQN generated by the LQNGenerator implementing the SPT algo-
rithm.
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split in the instance lifeline (the vertical timeline associated with the instance). An OR
join may be shown by a merging of the split lifelines, or by messages arriving at the
same point. An AND fork is indicated where two or more messages leave the same
lifeline with no message received between them, and the join, where two or more mes-
sages arrive at a lifeline with no message sent between them. A loop can indicated by a
message with a repeat count (e.g. *N), which shows that the focus of control that
receives it will be repeated.

The annotations shown as tagged values in the performance-related stereotypes
are related in obvious ways to the performance annotations in a UCM, covering the
load intensity, processor deployment, and demands made by a Step.

Sequence Diagrams are more limited than UCMs for expressing scenarios. The
workload intensity and deployment descriptions are similar. Both describe operations
carried out by components. The essential structure of paths can be represented in both,
as described above, although the SD representation requires making assumptions.
Apart from these points,

• A UCM can include operations not assigned to a component (which we interpret

Figure 11:POTS simulation results for call connection delay vs. call volume with 1,
5, and 10 Switch threads.
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as executed by a task and processor created for that purpose)
• One UCM can represent several Sequence Diagrams with different scenarios.
• UCM stubs are more descriptive than hiding of a sub-scenario in a SD. This can

be done only at the subsystem level, by creating a lifeline to represent a sub-
system with a separate diagram to show its internals; the inner diagram is
restricted to the internals. A UCM stub can show any behavior involving any
components

A general approach to automatically converting a Sequence Diagram to a LQN
model is, to first generate a UCM from it, and then to convert the UCM with the SPT
algorithm. This can always be done, because the Sequence Diagram has more limited
semantics than the UCM in those aspects that influence performance modeling, as
described briefly above.

Figure 12:SD for the Ticket Reservation System superimposed with the equivalent
UCM.
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A two-step approach can be taken to show the application of the SPT algorithm to
this scenario. First, it is transformed to an equivalent UCM, then SPT is applied to the
UCM. Here, the UCM is indicated by drawing the paths and path connectors over the
Sequence Diagram, directly in Figure 12. The instances are interpreted as UCM com-
ponents, and will be transformed into LQN tasks. Messages are clearly identified and
do not need to be inferred. Each message reception or focus of control is interpreted as
a UCM responsibility. The annotations for workloads, resource demands and resource
parameters, provided by the UML Profile for performance [31], are approximately
equivalent to those of a UCM that were described above. In general, a scenario
expressed in a UML Sequence Diagram can be interpreted without ambiguity.

Where a system is defined by multiple scenarios, several Sequence Diagrams may
be required. In this case each one is converted separately and the resulting submodels
can be composed together in a straightforward way, by composing the entries of a
given task from all scenarios, into a single task based on the task instance name.

Other Scenario Models.

Other kinds of scenario models are transformable in the same way. For example,
the closely related notation of Message Sequence Charts was used for performance
modeling in [4], [10] and [34]. However, the procedures used for creating a perfor-
mance model in those works either required user intervention, and were restricted to
simpler behaviour. They could not, for instance, recognize blocking interaction pat-
terns and software task resources. SPT could be applied to them also, provided they are
used to express models of similar semantics to the UCM models.

In general, any scenario notation that can in principle be transformed to a UCM,
can be transformed to a performance model by SPT. Either it is actually first trans-
formed to a UCM and processed by LQNGenerator, or SPT is directly applied to the
elements of the notation.

7  Conclusions

The SPT algorithm and the tool based on it address the problem of capturing per-
formance issues in the earliest software design efforts. The LQNGenerator presently
connects high level design in the form of Use Case Maps with performance analysis
using Layered Queueing Networks. It demonstrates close integration between the soft-
ware specification tool (the UCMNav editor) and the performance analysis programs
(the LQNS analytic solver and the LQSim simulator).

These tools have been used in several projects to model substantial specifications,
including an e-commerce site with a dozen scenarios, and a presence service. They
provide rapid tracking of the specifier’s evolving ideas. One hazard is that it is so easy
to create a new UCM, that the performance annotations may be lost! A facility for
loading performance annotations from a table such as a spreadsheet has been designed,
to overcome this and to give a focussed access to the parameter values.

The two examples described here cover most of the kinds of behaviour and inter-
actions that may occur in UCMs and LQNs. The LQN components correspond one-to-



 26

one with the elements of the UCM specification, traceable by name, so the perfor-
mance results can be correlated instantly with the scenario specification.

The key difficulty addressed by SPT is in identifying blocking interactions
between software entities, and potential contention for servers and other logical
resources. This involves matching patterns for two kinds of synchronous interactions
(synchronous and forwarding), delaying the matching to obtain sufficient information
from the path traversal, and careful handling of forks in the path that occur during one
of these interactions.

The LQNGenerator model-building tool is currently integrated into the UCM
Navigator, which is freely distributed and has over a hundred users (see the web site
www.usecasemaps.org  for the UCM User Group).

The SPT algorithm used in the LQNGenerator can be applied equally to scenario
specifications in other languages, such as Sequence Diagrams conforming to the UML
performance profile [31]. A procedure for doing this was described, and tools for UML
are a subject of current research.
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	2. look ahead to the next point on the path
	3. analyze inter-component interactions (identify any component boundary crossings and resolve th...
	3.1. if the current point resides in a component then
	3.1.1. if the next point does not reside in a component then
	3.1.1.1. create an unresolved message
	3.1.1.1.1. if there is a candidate activity in the task then
	3.1.1.1.1.1. use the candidate activity to send the message
	3.1.1.1.2. else
	3.1.1.1.2.1. create a new default activity to send the message
	3.1.1.2. push the message on the MStack
	3.1.2. else if the next point resides in a different component that has a message pending on the ...
	3.1.2.1. identify a synchronous or forwarding interaction and resolve it
	3.1.3. else if the next point resides in a different component that does not have any message pen...
	3.1.3.1. identify a call of unknown type (may later turn out to be a synchronous, forwarding, or ...
	3.2. else the current point does not reside in a component
	3.2.1. if the next point resides in a component that does not have any messages pending on the MS...
	3.2.1.1. identify the reception of a call
	3.2.2. else if the next point resides in a component that has a message pending on the MStack then
	3.2.2.1. identify a synchronous or forwarding interaction and resolve the appropriate message
	4. if the current point is an end point then
	4.1. any unresolved interactions are asynchronous
	5. else
	5.1. set the next point as the current path point and go to step 1

	The SPT algorithm ensures that every responsibility in the scenario is traversed and that a corre...


	5 Examples
	5.1 Ticket Reservation System
	The Ticket Reservation System (TRS) allows users to browse through a catalogue of events and seat...
	Figure 5: Ticket Reservation System Use Case Map model.
	A User can access the TRS can be used either to browse events by displaying an event schedule and...
	Figure 6: TRS LQN showing activity connections based on the output generated by the LQNGenerator ...
	The TRS LQN is shown in Figure 6. The LQN shows an initial asynchronous call from the reference t...
	Examining the flow of activities and messages in the LQN, the UCM path is readily identifiable. T...
	The resulting LQN has been solved by the solver LQNS, to demonstrate that it is a correctly forme...

	5.2 POTS
	This section analyzes a Plain Old Telephone System (POTS) call connection scenario. Figure 7 and ...
	POTS has two possible scenarios that can happen when attempting to make a call: the call can eith...
	Otherwise, an unsuccessful call connection scenario unfolds as follows:
	Figure 7 shows the root UCM for the POTS system. The components for all the POTS maps are as foll...
	The POTS root map features the following stubs:
	Figure 7: Top level UCM map for the POTS example.
	For POTS operation the PreDial stub can either be left empty or it may have a default plug-in tha...
	The PostDial stub has more functionality and the plug-in is shown in Figure 8. The PostDial plug-...
	Figure 8: Plug-in UCM for the PostDial stub in Figure 7.
	For POTS operation both the ProcessBusy and NumberDisplay stubs can either be left empty or have ...
	The ProcessCall plug-in for normal POTS operation is shown in Figure 9 and checks whether the cal...
	Figure 9: POTS call processing plug-in for the ProcessCall stub in Figure 8.
	5.2.1 POTS Path Traversal
	The POTS model incorporates multiple levels of abstraction in the form of multiple levels of stub...
	1. if the stub has multiple plug-ins then
	1.1. identify the stub as a dynamic stub
	1.2. create an OR fork for each stub input point
	1.3. create an OR join for each stub output point
	1.4. for each plug-in
	1.4.1. traverse the path from each bound start point as if it were a branch on the stub input OR ...
	2. else if the stub only has one plug-in then
	2.1. identify the stub as a static stub
	2.2. traverse the path from each bound start point as if it were joined to the stub input and joi...
	3. else
	3.1. identify the stub as an empty stub
	3.2. create an LQN activity and update it with the service requests of the stub
	3.3. make the activity a candidate activity for use to capture path sequencing detail
	4. continue past the stub

	Notice that this traversal of the paths “flattens” the plug-ins so they are incorporated seamless...

	5.2.2 POTS Performance Analysis Results
	Figure 10 shows the POTS LQN model generated by the LQNGenerator from the UCMs described above. T...
	Figure 10: POTS LQN generated by the LQNGenerator implementing the SPT algorithm.
	Figure 11 shows the connection delay vs. call volume results obtained by simulating the POTS LQN ...
	Figure 11: POTS simulation results for call connection delay vs. call volume with 1, 5, and 10 Sw...



	6 Obtaining Performance Models from UML Sequence Diagrams
	The SPT algorithm can work with any scenario notation which is based on the sequence connectors d...
	Figure 12: SD for the Ticket Reservation System superimposed with the equivalent UCM.
	Figure 12 shows a Sequence Diagram for the Ticket Reservation scenario, to illustrate these ideas...
	The annotations shown as tagged values in the performance-related stereotypes are related in obvi...
	Sequence Diagrams are more limited than UCMs for expressing scenarios. The workload intensity and...
	A general approach to automatically converting a Sequence Diagram to a LQN model is, to first gen...
	A two-step approach can be taken to show the application of the SPT algorithm to this scenario. F...
	Where a system is defined by multiple scenarios, several Sequence Diagrams may be required. In th...
	Other Scenario Models
	Other kinds of scenario models are transformable in the same way. For example, the closely relate...
	In general, any scenario notation that can in principle be transformed to a UCM, can be transform...


	7 Conclusions
	The SPT algorithm and the tool based on it address the problem of capturing performance issues in...
	These tools have been used in several projects to model substantial specifications, including an ...
	The two examples described here cover most of the kinds of behaviour and interactions that may oc...
	The key difficulty addressed by SPT is in identifying blocking interactions between software enti...
	The LQNGenerator model-building tool is currently integrated into the UCM Navigator, which is fre...
	The SPT algorithm used in the LQNGenerator can be applied equally to scenario specifications in o...
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