
 - 1 -

Performance Analysis of a Software Design using the
UML Profile for Schedulability, Performance and Time

Jing Xu, Murray Woodside, Dorina Petriu
Dept. of Systems and Computer Engineering,

Carleton University, Ottawa K1S 5B6, Canada
{xujing, cmw, petriu }@ sce.carleton.ca

Abstract: As software development cycles become shorter, it is more important
to evaluate non-functional properties of a design, such as its performance (in the
sense of response times, capacity and scalability). To assist users of UML (the
Unified Modeling Language), a language extension called Profile for
Schedulability, Performance and Time has been adopted by OMG. This paper
demonstrates the use of the profile to describe performance aspects of design, and
to evaluate and evolve the design to deal with performance issues, based on a
performance model in the form of a layered queueing network. The focus is on
addressing different kinds of performance concerns, and interpreting the results
into modifications to the design and to the planned run-time configuration.

1. Introduction
The Unified Modeling Language (UML) [2] is the most widely used design notation
for software at this time, unifying a number of popular approaches to specifying
structure and behaviour. To enable users to capture time and performance
requirements, and to evaluate those properties from early specifications, a language
extension called the UML Profile for Schedulability, Performance and Time has been
defined and adopted (the SPT Profile)[7]. In [18], the process of specifying a system
with the SPT Profile was described, together with a layered queueing model created
from it. The example was a building security system called BSS. This paper considers
how to use the same model to study several performance questions, and to improve
the design. The goal of the study is to provide a blueprint to users of the SPT Profile
for exploring how performance issues are related to features of a software design, and
to gain experience with use of the Profile. This is the first step towards a methodology
for guiding design changes and explorations, based on UML and layered modeling,
and previous work such as view navigation [19], optimal configuration [4], and
performance patterns and anti-patterns [16].

The use of the SPTProfile can be envisaged as in Figure 1, with a process to
interpret performance estimates made by a model, and to suggest changes to the
design or to the configuration in the intended environment. If there is a performance
shortfall, the process could iteratively improve the design until is satisfactory.

 - 2 -

UML
Software

Specification
Tool with

SPTProfile

Performance
Modeling

Tool

Performance Output
Measures:

Performance targets:
- Response time
- Throughput
- Utilization of resources

Behavior / demand
parameters:
- CPU time
- I/O requests
- Loop counts
- Branch probabilities

Analyze the Output Measures
- adequate performance?
- enhance configuration and

resources?
- modify design?

- Response time
- Throughput
- Utilization of resources

Figure 1. Performance measures: targets, input and output, and improvement process

The SPT profile extends UML by providing stereotypes and tagged values to
represent performance requirements, the resources used by the system and some
behaviour parameters, to be applied to certain UML behaviour models. The selected
behaviour models describe scenarios (e.g. sequence diagrams and activity diagrams),
because performance is usually specified and analyzed relative to selected scenarios
(which in turn represent system responses). Some examples of the Profile stereotypes
are shown below, for the example system. The performance model used in this work
is a layered queueing network (LQN) model, just one of several possible target
formalisms. LQNs are particularly well suited to analyzing software performance
because they model layered resources and logical resources in a natural way, and they
scale up well for large systems [6]. The concepts and notation for LQNs will be
briefly introduced for the example, below.

The process for improving designs will be explored using a Building Security
System (BSS), which is intended to control access and to monitor activity in a
building like a hotel or a university laboratory. Scenarios derived from two Use Cases
will be considered, related to control of door locks by access cards, and to video
surveillance. In the Access Control scenario a card is inserted into a door-side reader,
read and transmitted to a server, which checks the access rights associated with the
card in a data base of access rights, and then either triggers the lock to open the door,
or denies access. In the Aquire/Store Video scenario, video frames are captured
periodically from a number of web cameras located around the building, and stored in
the database. The system must implement other Use Cases as well, such as operations
for administration of the access rights, for sending an alarm after multiple access
failures, or for viewing the video frames, but for simplicity we assume that the main
performance concerns relate to the two Use Cases described above.

Both scenarios have delay requirements. The access control scenario has a target
completion time of one second, and the surveillance cycle has a target of one second

 - 3 -

or less between consecutive polls of a given camera. In both cases we will suppose
that 95% of responses, or of polling cycles, should meet the target delay. Further, it is
desired to initially handle access requests at about 1 per 2 second on average, and to
deploy about 50 cameras. Additional camera capacity would be desirable, and a
practical plan for scaling up the system to larger buildings and higher loads is to be
created.

2. Behaviour Specification of BSS and its Performance Annotations
The BSS has the planned deployment shown in Figure 2, with one application
processor, a separate database processor, and peripheral devices accessed over a
LAN.

<<PAhost>>
ApplicCPU

<<PAresource>> LAN

VideoAcquisition <<PAhost>>
DB_CPU

Database

<<PAresource>>

SecurityCard
Reader

<<PAresource>>

DoorLock
Actuator

<<PAresource>>

Video
Camera

<<PAresource>>

Disk
{PAcapacity=2}

Video
Controller

AcquireProc

StoreProc

Buffer
Manager

AccessControl

Acces
Controller

<<PAresource>>
Buffer

{PAcapacity=$Nbuf}

Figure 2. Deployment of the Building Security System

The access and surveillance scenarios will be described through sequence

diagrams, using stereotypes and tagged values defined in the SPT Profile [7]. Some of
the key stereotypes seen in these diagrams are a performance context defining a
scenario made up of steps and driven by a workload, and a resource, with a special
host resource for a processor. These stereotypes are, respectively, <<PAcontext>>,
<<PAstep>>, <<PAopenLoad>> and <<PAclosedLoad>> for workloads,
<<PAresource>> and <<PAhost>>.

Figure 3 shows the scenario for access control. The User provides an open
workload, meaning a given arrival process. The tagged values define it as a Poisson
process with a mean interarrival time of 0.5 seconds, and state a percentile

 - 4 -

requirement on the response time (95% of responses under 1 second). They also
define a variable name $UserR for the resulting 95th percentile value, to be
estimated. Each step is defined as a focus of control for some component, and the
stereotype can be applied to the focus of control or to the message that initiates it; it
can also be defined in a note. The steps are tagged with a demand value for
processing time (tag PAdemand) which is the CPU demand for the step. The request
goes from the card reader to the Access Controller software task, to the
database and its disk, and then back to execute the check logic and either allow the
entry or not. openDoor is a conditional step which can be tagged with a probability
(PAprob) which here is set to unity.

getRights()

 User

<<PAresource>>
CardReader

<<PAresource>>
DoorLock

<<PAresource>>
Alarm

<<PAresource>>
Access

Controller

<<PAresource>>
Database

{PAcapacity=10}

<<PAresource>>
Disk

{PAcapacity=2}

readCard

admit (cardInfo)

readRights() [not_in_cache] readData()

checkRights()
[OK] openDoor()

[not OK] alarm()
[need to log?] logEvent()

writeRec()

enterBuilding

writeEvent()

<<PAstep>>
{PAextOp=(read, 1)}

<<PAopenLoad>>
{PAoccurencePattern = (‘poisson’, 0.5, ‘s’),
PArespTime =((‘req’,’percentile’,95, (1, ‘s’)),
 (‘pred’,’percentile’, 95, $UserR)) }

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (3, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

<<PAcontext>>

o

o

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’, (1.8, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(1.5, ‘ms’)), PAprob = 0.4}

<<PAstep>>
{PAdelay=(‘asmd’, ‘mean’,
(500, ‘ms’)), PAprob = 1}

<<PAstep>>
{PAprob = 0}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.3, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(0.2, ‘ms’), PAprob=0.2}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

o

Figure 3. Annotated Sequence Diagram for the Access Control Scenario

The devices are stereotyped as <<PAresource>>, as in the deployment diagram,
and so are the software tasks AccessController and Database; this is because
a task has a queue and acts as a server to its messages. A resource can be tagged as
having multiple copies, as in a multiprocessor or a multithreaded task. The Database

 - 5 -

process is tagged with 10 threads, by {PAcapacity = 10}, and its disk
subsystem is tagged as having two disks.

<<PAresource>>
Video

Controller

<<PAresource>>
AcquireProc

<<PAresource>>
BufferManager

<<PAresource>>
StoreProc

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
releaseBuf (b)

freeBuf (b)

<<PAresource>>
Database

{PAcapacity=10}

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

<<PAcontext>>

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network, $P)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($B * 0.9, ‘ms’)),,
PAextOp=(writeBlock, $B)}

<<PAclosedLoad>>
{PApopulation = 1,
 PAinterval =((‘req’,’percentile’,95,
 (1, ‘s’)),
 (‘pred’,’percentile’, 95, $Cycle)) }

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

This object manages the
resource Buffer

o

Figure 4. Annotated Sequence Diagram for the Acquire/Store Video Scenario

The scenario for the video surveillance is shown in Figure 4. There is a single
VideoController task which commands the acquisition of video frames from $N
cameras in turn, by a process AcquireProc. The initial step is the focus of control
of VideoController which is stereotyped as a closed workload source with one
instance, with a required cycle time having 95% of cycles below 1 second, and a
predicted value $Cycle to represent the model result. AcquireProc is a
concurrent process (<<PAresource>>). It acquires a Buffer resource by a step
allocBuf which is also stereotyped as <<GRMacquire>>, indicating a resource

 - 6 -

acquisition. Buffer is a passive resource shown in the deployment diagram with a
multiplicity $Nbuf, managed by BufManager. In the sequence diagram the use of
Buffer is indicated by a note and by the stereotype <<GRMacquire>>. In the base
case, $Nbuf is set to 1. Once a buffer is acquired, AcquireProc requests the
image from the camera, receives it and passes the full buffer to a separate process
StoreProc, which stores the frame in the database and releases the buffer. The
writeImg operation on the Database has a tag PAextOp to indicate that it calls
($B times) for an operation writeBlock, which is not defined in the diagram. This
operation can be filled in, in the performance model, by a suitable operation to write
one block of data to disk.

3. LQN Model
A layered queueing model was derived from the concurrent processes and their
interactions, using the principles of scenario traversal described in [11]. The resulting
model is shown in Figure 5. Each process is represented by a “task” rectangle with
one or more “entry” rectangles attached to its left. A “task” models an active object,
process, thread or any other logical resource that requires mutual exclusion (such as
the buffer pool described below). An “entry” models the operation which processes a
distinct class of messages received by the task, For example, if a “task” models an
object, an “entry” models a method. Arrows to other entries indicate requests made by
an operation to other components. A solid arrowhead shows a synchronous call
(where the caller expects a reply, and is blocked until receiving it), as from the User
to the CardReader in Figure 5; it may be shown as a call and its corresponding
return in the sequence diagram. An open arrowhead shows an asynchronous message,
and a dashed arrow shows a synchronous request which is forwarded to another task.

A server task can carry out part of its work after replying to its client; this is
termed a “second phase” of service, and may have its own workload. For each entry
the host demand is represented by [s1, s2] for first and second phase CPU
demand in time units. For each request arc the mean number of calls in the two phases
are represented by (y1, y2); the second phase value is optional. For example, the
entry admit of the task AccessControl logs a message to the database and has
some execution in second phase.

A request arc in the model can have a mean number of calls per entry invocation,
or a deterministic integer number. Here all the calls are mostly given as averages,
however $N is the exact number of calls in a polling cycle, and each one leads to
exactly one buffer request, one getImage, one passImage, one storeImage,
and one writeImage operation. Similarly one User leads to one readRights
and one unlock operation.

 - 7 -

procOneImage
[1.5,0]

alloc
[0.5, 0]

bufEntry

getImage
[12,0]

passImage
[0.9, 0]

AcquireProc

BufferManager

Buffer

AcquireProc2

acquireLoop
[1.8]

VideoController

lock
[0, 500]

Lock

releaseBuf
[0.5, 0]

BufMgr2

alarm
[0,0]

Alarm

network
[0, 1]

Network
(infinite)

storeImage
[3.3, 0]

StoreProc

User
rate=0.5/sec

Users

readCard
[1, 0]

CardReader

admit
[3.9, 0.2]

AccessController

writeEvent
[1.8, 0]

writeImg
[7.2, 0]

readRights
[1.8,0]

writeRec
[3, 0]

writeBlock
[1, 0]

readData
[1.5, 0]

(1,0)

(forwarded)

(1, 0) (1, 0)
(0, 1)

($P, 0) (1, 0) (1, 0)

($N)

(1, 0)

(0, 0.2)

($B, 0) (0.4, 0) (1, 0)

(forwarded)

(0, 0)

Applic
CPU

DB
CPU

DiskP

LockP

AlarmP

CardP

UserP

NetP

Dummy

DataBase
(10 threads)

Disk
(2 threads)

(1)

(1,0)

Figure 5. Layered Queueing Network model for the Building Security System

Since logical resources are represented by “tasks” in an LQN, the buffer pool is

modeled by a task which is shaded in Figure 5 (we can think of it as a virtual task). It
has an “entry” bufEntry which makes synchronous virtual calls to invoke the
operations which are carried out holding the buffer (in [20] these operations were
identified with the resource context of the buffer). Although the Sequence Diagram
shows that these operations are in the same AcquireProc task in the software, they
are separated in the model into a nested pseudo task AcquireProc2, which
executes while AcquireProc is blocked. This only breaks a calling cycle which
would otherwise appear around Buffer, and does not affect the behaviour of the
model. Passing the buffer to Store is also modeled as a call from the Buffer
virtual task to Store. It is a second phase call because the reference task
VideoController, the originator of the chain of requests, is not supposed to wait
for the storing of the frame in the database, only Buffer must wait for it. Store

 - 8 -

finally calls the BufferManager task to release the buffer; however, to avoid
another calling cycle in the model, the release is again modeled as an entry of a
pseudo task BufMgr2.

Task multiplicities represent the number of identical replicated processes (or
threads) that work in parallel serving requests from the same queue, or the number of
logical resources of the same type (e.g., buffers). The parameter values for $P,
packets per video frame and $B, disk operations to store a video frame, are both set to
8. The number of buffers $NBuf for the buffer pool was set to 1.

4. Performance Evaluation and Improvement
The model was solved by simulation to obtain the percentile values for delays, giving
results for the user response times, throughputs, service times of entries and tasks,
utilizations and waiting times for software or hardware resources, and probabilities of
missing the deadlines. As mentioned above, the performance requirements are to meet
a 1-second-deadline for both the Access Control scenario and the Acquire/Store
Video scenario, with a 95% confidence level. In the LQN model, these requirements
are translated to requiring the service time of the Video Controller task (also called its
cycle time) and the response time of the User task to be less than 1 second with
probability of 95%.

4.1. Base case for performance evaluation
At the very beginning we did not know if the performance of the system could be
satisfied and if there were some bottleneck or design pitfalls in the system. Therefore,
we started the evaluation with a base case, which is using a single copy for all
software and hardware resources, except for the network, database and disk (whose
multiplicities were set according to the system design).

Table 1 shows the LQN results for the base case. It lists the cycle time for polling
all cameras, the response time for a human user accessing the door, the normalized
utilizations of the software and hardware resources and the probabilities of missing
deadlines. Here we list only the normalized utilizations of the most heavily loaded
resources. The normalized utilization is the ratio of the mean number of busy
resources to the total number of the corresponding resources. A resource with a
normalized utilization of 100% is fully saturated. By using normalized utilization, we
can assess at a glance the actual usage of a resource without worrying about the total
number of resources.

Checking the simulation results for the base case, we can see that the internal
throughputs and utilizations are constant, and the cycle time to poll all cameras grows
linearly, as the number of cameras is increased. This follows from the design polling
the cameras one at a time. No new polling request is generated before the
AcquireProc completes the polling of a camera and returns.

 - 9 -

Table 1. Simulation results for the base case
Average

Response
Time

Normalized Utilizations Prob of Missing
Deadline Ncam

Cycle
(sec)

User
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser

10 0.327 0.127 0.960 0.9998 0.582 0.549 0 0.031
20 0.655 0.138 0.963 0.9999 0.582 0.545 0.0007 0.036
30 0.983 0.133 0.964 0.9999 0.582 0.544 0.4196 0.038
40 1.310 0.129 0.965 0.9999 0.582 0.544 0.9962 0.034

The results show the performance requirement for the Access Control scenario can

be achieved in all cases, with about 3%-4% probability of missing the deadline.
However, the other requirement for the Video Acquire scenario cannot be fulfilled for
50 cameras, or even for 30. The probability of missing the deadline jumps from
0.07% for 20 cameras to 42.96% for 30 cameras, and to 99.62% for 40 cameras. This
is clearly unsatisfactory.

In this paper, we use the term capacity to indicate the maximum number of
cameras the system can support while still meeting the 5% deadline miss requirement.
From the simulation results, we learn the capacity for the base case is just above 20,
which is far from satisfactory. Therefore, we have to analyze more deeply the LQN
performance results, in order to identify bottlenecks and to eliminate design pitfalls.

We can see that in the base case two tasks are nearly fully saturated,
AcquireProc and Buffer. This is a typical example of the bottleneck push-back
phenomenon described in [8]. Here Buffer can be deemed as a server, which
provides services to AcquireProc. In spite of being saturated, AcquireProc is
not the bottleneck, because its underlying server Buffer is also saturated. On the
other hand, Buffer is the real bottleneck, because it is saturated while its direct or
indirect servers are not saturated.

As suggested in [8], a standard inexpensive way of relieving a software bottleneck
is by cloning (i.e., making multiple identical copies of the constrained server that
share the same incoming request queue). In the case of the buffer pool, clones take
the form of additional buffers. We also expect that by relieving one bottleneck,
another bottleneck may appear, and that we can repeat the process until the bottleneck
is either pushed down to the hardware resources (hardware saturation), or up to the
client end (adequate capacity for the offered load). Hardware bottlenecks can also be
solved by cloning in the form of multiple devices such as multiprocessors.

There are other ways of solving bottlenecks, such as changing the scenario design,
using more efficient strategies for scheduling, modifying the deployment, etc.

 - 10 -

Furthermore, when all bottlenecks are eventually solved or have been pushed to client
end, we have to depend on other methods for further improving the performance, as
discussed in the next section.

4.2. Strategy for improving the performance
Our strategy for improving the system performance is sketched in Figure 6. We start
with the base case of the performance model, which is translated directly from the
design. Solving the model by simulation, we can get the performance result data from
which we can identify the performance problems. If the performance requirements
were satisfied, that means the current design is fine. Otherwise, we further explore the
performance results, looking for bottlenecks. If a bottleneck is found, we can solve it
by cloning the bottleneck resource, such as using multiple buffers, multi-threading
software processes or using multiple processors. We can achieve this by modifying
the performance model, then solving it with new parameters and repeating the same
procedure.

Get LQN
Results

Performance
Satisfied?

Yes

No

Bottleneck
Found?

Clone
Bottleneck
Resource

Other
solutions

Yes

No

Initial
design

Feedback
to design

Figure 6. Strategy of performance improving for BSS

In [8] utilization measures are used to locate the bottleneck in client-server systems
and rendezvous networks. In this paper, we use the normalized utilization, which has
been defined in section 4.2, as one of the indicators. The most saturated resource has
the greatest potential to be the bottleneck. However, to decide whether it is the real
bottleneck, the system architecture should also be considered, because a client
resource may be blocked by a server resource, which is in fact the real bottleneck.
(Please note that a resource that requests a service is called a client resource, whereas
one that provides the service is called a server resource.) Usually, a resource with a
large number of outgoing (fan-outs) calls, second phase service, or incoming
asynchronous calls can become easily the bottleneck.

 - 11 -

Using multiple identical copies of resources is a straightforward way to solve the
bottleneck. Usually, resolving one bottleneck in this way will push the bottleneck to
another resource, either to a lower layer or to a higher one. Repeatedly, by adjusting
the number of copies for different resources within the system, the bottleneck will
move around, until is finally eliminated. In this paper, we call this procedure system
configuration tuning. At that point, in open systems there is no saturated resource, and
in closed systems the saturation is pushed back to the external client end.

There is a second path in the strategy given in Figure 6, which is seeking other
solutions for performance improvement when no bottleneck could be identified. If the
performance requirements still cannot be satisfied after tuning the system
configuration, it is not because of limited resources. The cause may be heavy
execution demand, long scenario paths, or lack of concurrency in the system. In this
case, we take the second path of the strategy, for which there is no standard approach.
The solution is usually project specific. Typical solutions include changing the
scenario design, shortening long scenarios, decomposing large components, using
more efficient scheduling strategies, and modifying the deployment.

After applying these solutions, bottlenecks usually appear again in the system,
because such solutions lead to a more efficient, and therefore more intense, usage of
the existing resources. Thus we are back on the main path of the strategy. By
repeating the strategy, we will eventually reach a point where the performance
requirements can be met (assuming that the requirements are reasonable). Then we
translate the changes that were applied to the performance model in terms of system
configuration information and software design description, and give feedback to the
designer.

4.3. Using multiple copies or clones of resources
This section describes efforts to solve the software and hardware bottlenecks by

using multiple copies of resources (i.e., by cloning). As discussed in the base case
evaluation (section 4.1), the first bottleneck is the Buffer. Therefore, our first
solution step is to use multiple buffers. Many cases were solved for the system under
different configurations, i.e. with different numbers of cameras and buffers. Table 2
lists the data for 40 cameras and different numbers of buffers.

As seen in Table 2, the performance improvement due to multiple buffers is
obvious. The probability of missing the cycle time deadline drops greatly, from 99%
for 1 buffer to 9.35% for 10 buffers, but the requirement of a 5% probability for
missing the deadline is still not achieved. We can see that now there is a newly
saturated resource, namely StoreProc, which is the real bottleneck in the case with
10 buffers. We notice that the normalized utilization of Buffer drops at first as
NBuf grows from 1 to 4, then raises slightly afterwards. However, the normalized
utilization of Buffer is only high (over 84%) in the case with 10 buffers, because it

 - 12 -

is blocked by its server resource StoreProc. The bottleneck is pushed to a lower
layer in the model.

Table 2. LQN Results for using multiple Buffers (40 cameras)
Average

Response
Time

Normalized Utilizations Prob of Missing
Deadline NBuf

Cycle
(sec)

User
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser

1 1.309 0.137 0.965 0.9999 0.583 0.544 0.9961 0.034
2 1.016 0.132 0.975 0.8762 0.800 0.702 0.5503 0.032
3 0.941 0.132 0.980 0.8235 0.893 0.756 0.2506 0.036
4 0.911 0.131 0.983 0.8042 0.936 0.782 0.1597 0.032
7 0.879 0.132 0.986 0.8136 0.984 0.810 0.0948 0.033
10 0.872 0.129 0.987 0.8437 0.995 0.817 0.0935 0.034

Therefore, the second solution step is to clone the StoreProc task. Table 3

shows the results for the case of 40 cameras with 4 buffers. We can see that with 2
StoreProc threads, the probability of missing the deadline has dropped to a
satisfying level. The system capacity is now above 40 cameras, about double that for
the base case.

Table 3. LQN Results for multi-threading StoreProc (40 cameras, 4 Buffers)
Average

Response Time Normalized Utilizations Prob of Missing
Deadline

No.
of

Store
Proc

Cycle
(sec)

User
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser

1 0.911 0.131 0.983 0.8042 0.936 0.782 0.1597 0.032
2 0.756 0.137 0.946 0.5805 0.616 0.940 0.0022 0.035
3 0.743 0.139 0.932 0.5484 0.441 0.956 0.0015 0.039

According to the same reasoning, the new bottleneck is ApplicationCPU. The

bottleneck was pushed from software resources to hardware resources. This
bottleneck can be relieved by using a multi-processor, giving the results in Table 4.

The simulation results show that 2 ApplicationCPUs are enough for solving the
hardware bottleneck here. Using a double-processor is a typical configuration
strategy. The system capacity is now 50 cameras, with 4 Buffers, 2 StoreProc
threads and 2 ApplicationCPUs. This is 2.5 times higher than the base case and
achieves our initial goal of system capacity.

The point has been reached where, except for the reference task
VideoController, there is only one saturated resource in the system, namely

 - 13 -

AcquireProc. We may consider it as the bottleneck. However, LQN results show
that cloning it gives no improvement. In fact, its queue contains at most one request at
any time and never grows. The performance is not limited by a lack of resources now,
but by design limitations.

Table 4. LQN Results for using multiple processors for ApplicationCPU
(40 cameras, 4 Buffers, 2 StoreProc threads)
Average

Response
Time

Normalized Utilizations Prob of Missing
Deadline No.

of
CPU Cycle

(sec)
User
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser

1 0.756 0.137 0.946 0.5805 0.616 0.94 0.0022 0.035
2 0.648 0.127 0.995 0.6111 0.653 0.549 0 0.035
3 0.644 0.128 0.997 0.6105 0.652 0.368 0 0.033

Now we take the second path of our performance-improving strategy.

4.4. Changing the Scenario Design to introduce more concurrency
As mentioned before, there are two saturated tasks in the model, the reference task
VideoController, and AcquireProc. A reference task in a closed model
drives the system by generating workload, and usually represents the behaviour of an
external client. Its normalized utilization is always 1, because it is always blocked by
all of the services in the scenario.

Here VideoController is similar to an external client, although it is a part of
the system. The VideoController has to wait for the message returned from
AcquireProc before generating the next polling call. The call from the
VideoController to AcquireProc is synchronous, and all of the work of
AcquireProc is finished in its first phase. Therefore, only one instance of
AcquireProc can be activated at any time. The system suffers from too much
serialization, and the system capacity is limited by the duration of the scenario which
polls one video camera.

To solve this problem, a change in the system design is required. A key point is to
enable concurrent activations of the AcquireProc task by multi-threading the
process. A solution is to move the calls made by AcquireProc for allocating and
using the buffer into its second phase, and making an early reply to
VideoController. Then VideoController can generate its next polling call
earlier.

 - 14 -

After introducing more concurrency into the system, the software and hardware
bottlenecks appear again. We come to the main path in our strategy again, tuning the
system configuration. During the tuning, the bottleneck moves around within the
system. For example, the bottleneck may move to task AcquireProc or
StoreProc as well as ApplicationCPU. There are different configuration
strategies to address these problems. By repeatedly tuning the system configuration
on software and hardware, the system performance can be improved dramatically.

 Table 5 shows some system performance results under different configurations.
Here we aim for a capacity of 100 cameras and increase the number of threads for
Buffer, AcquireProc, StoreProc and the number of ApplicationCPU
step by step. Finally, with 3 AcquireProc, 6 StoreProc threads and 3
ApplicationCPU, we manage to achieve the 1-second-deadline for the cycle time
for the case with 100 cameras with a probability of 99.95%. This capacity is 5 times
higher than the base case, and twice the capacity before changing the design.

Table 5. LQN results for with more concurrency case (100 cameras, 10 Buffers)
Average

Response
Time

Normalized Utilizations Prob of Missing
Deadline

Multiplicity
(Acquire,
 Buffer,
 Store,

App. CPU)
Cycle
(sec)

User
(ms)

Acquire
Proc Buffer Store

Proc

App
CPU

Cycle RUser

2, 4, 2, 2 1.250 0.133 0.988 0.923 0.886 0.710 0.9995 0.0332
2, 10, 6, 3 0.837 0.132 0.988 0.689 0.751 0.707 0.0057 0.0307
3, 10, 6, 3 0.768 0.134 0.983 0.895 0.910 0.769 0.0005 0.0352

The results also show that AcquireProc and StoreProc tasks are saturated
again. Therefore, we expect that there is more room for improving the capacity by
further tuning the system configuration.

4.5. Feedback into the Software Design
The exploration described above is carried out in the space of LQN models, but the
final result must be transferred back into the software design. The modified sequence
diagram in Figure 7 shows two kinds of change:
? ? suggestions on multithreading of active objects are represented by the tag

PAcapacity, as in the object AcquireProc and StoreProc.
? ? the design change to AcquireProc, to put all the buffer processing into a
second phase. The second phase is incorporated into the specification by changing the
synchronous message from VideoController to AcquireProc into two
asynchronous messages, for the VideoController’s request and the

 - 15 -

corresponding reply. After sending the reply, AcquireProc invokes its own
getBuffer operation and everything that follows, as the second phase.

<<PAresource>>
Video

Controller

<<PAresource>>
AcquireProc
{PAcapacity= 3}

<<PAresource>>
BufferManager

<<PAresource>>
StoreProc

{PAcapacity= 6}

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
releaseBuf (b)

freeBuf (b)

<<PAresource>>
Database

{PAcapacity= 10}

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

<<PAcontext>>

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network,

$P)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($B * 0.9, ‘ms’)),,
PAextOp=(writeBlock, $B)}

<<PAclosedLoad>>
{PApopulation = 1,
 PAinterval =((‘req’,’percentile’, 95,

(1, ‘s’)),
 (‘pred’, ‘percentile’, 95, $Cycle))}

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

o

This object manages the
resource Buffer

Figure 7. Modified Sequence Diagram for Acquire/Store scenario

As this example shows, some kinds of feedback can be presented in the design
model just by using tag values defined in SPT Profile. However, others require deeper
changes to be made by the designers. For instance, multithreading may require
changes to synchronize threads or to maintain consistency in data shared by the
threads; partitioning an object into two concurrent objects would require new classes.

Techniques to support these changes, possibly based on patterns to solve typical
problems that arise, will be needed.

5. Related Work
Other researchers have developed approaches to convert UML software specifications
into different kinds of performance models, including Queueing networks (Smith and
Williams [17]), Petri Net models (Merseguer et al [9], and work surveyed by Pooley

 - 16 -

[14]), and Stochastic Process Algebras (Canevet et. al. [3]). Layered queueing models
were produced from UML activity diagrams by Petriu and Shen in [13]. Other kinds
of specifications have also been converted, for instance LQN models were produced
by automated transformation of a non-UML scenario specification in [11]. Most of
these papers focus on the conversion process itself.

The use of a model to improve a software design is the focus of the “performance
principles” in Smith's book [17] and of her work with Williams on antipatterns [16].
In [10], Menasce and Gomaa modeled an information system and redesigned database
transactions for performance. In [9] Merseguer et.al. evolved the design of a wireless
application. Improvements related to software bottlenecks were defined by Neilson et.
al. in [8], including their systematic removal by introduction of task threads. In [12],
Petriu and Woodside showed how part of an e-commerce system could be redesigned
to achieve performance goals.

The question of how to navigate through the results of a software model, to
identify the source of performance problems, was discussed in a general way in [19].
In a broader context of computer and network systems (not just software designs)
various kinds of reasoning aids for performance diagnosis have been described. An
example for distributed computing (with references to other work) is described by
Hellerstein [5] in the form of a QPD (Quantitative Performance Diagnosis) algorithm.
It estimates how much certain system attributes such as traffic levels and hardware
capacities contribute to performance problems, to assist in hardware improvement.
QPD includes navigation of the measurements, guided by a model-like view of the
system.

6. Conclusion
A layered performance model has been used to expose performance problems in a

software design, and to evaluate design changes, in a case study which combines
client-server aspects with real-time deadlines including video frame transfer.

Three kinds of performance issue emerged in this study. First, there was a question
of video buffers; it is essential to provide multiple buffers, to overlap video
acquisition from the cameras with the storage of the frames. For a capacity of 50
cameras, double buffering (with two buffers alternating) is not as good as four buffers
used in rotation. For a higher capacity of 100 cameras, 10 buffers are needed. Second,
there are deployment and configuration issues, such as providing multithreaded tasks
for adequate concurrency. Finally a change in the software execution sequence within
the video acquisition task was found beneficial. By providing an early reply to the
control task that manages the acquisition loop, greater concurrency in video
acquisition could be achieved and a much higher capacity was obtained.

A notable result here is that the software change could only be identified as
beneficial, after the thread configuration and buffer questions had been resolved.
Without the buffers and the threads, the early reply from AcquireProc would not

 - 17 -

help (the results for that case are not given here, but they are identical to the base
case). So we have evidence for a general principle for software design improvement:

Holistic Improvement Principle: Software design improvements can only be
evaluated in the context of the best possible deployment and configuration
alternatives.

The case study shows how drastic changes in the design can be inserted into a
performance model and evaluated very quickly and inexpensively. Many possible
changes can be assessed, the best ones are selected, and finally the design is updated
to incorporate the beneficial changes.

A question raised and not resolved here is the systematic navigation of the model
results to identify and rank the potential design changes at each step. This is one
subject of the PUMA project [15] for integration of UML design and performance
engineering. An outline of the complete PUMA project is shown in Figure 1,
including UML model transformation, performance model experimentation, and
feedback of results.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research
Council of Canada.

References

[1] Simona Bernardi, Susanna Donatelli, Jose Merseguer, “From UML sequence
diagrams and statecharts to analysable petri net models”, Proc. 3rd international
workshop on Software and performance 2002, Rome, Italy, pp35-45.

[2] Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling
Language User Guide, Reading Mass.: Addison-Wesley, 1999.

[3] C. Canevet, S. Gilmore, J. Hillston, M. Prowse, and P. Stevens, “Performance
modelling with UML and stochastic process algebras”, Proc IEE on Computers
and Digital Techniques, October 2002.

[4] H. E. El-Sayed, Don Cameron, C. M. Woodside, “Automation Support for
Software Performance Engineering”, Proc Joint Int. Conf on Measurement and
Modeling of Computer Systems (Sigmetrics 2001/Performance 2001),
Cambridge, MA, June 16 - 20, 2001, ACM order no. 488010, pp 301-311.

[5] Joseph L. Hellerstein. “A General-Purpose Algorithm for Quantitative Diagnosis
of Performance Problems”, Journal of Network and Systems Management, 2001.

[6] Prasad Jogalekar, Murray Woodside, “Evaluating the Scalability of Distributed
Systems”, IEEE Trans. on Parallel and Distributed Systems, v 11 n 6 pp 589-603,
June 2000.

[7] Object Management Group, “UML Profile for Schedulability, Performance, and
Time Specification”, OMG Adopted Specification ptc/02-03-02, July 1, 2002.

[8] J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, “Software
Bottlenecking in Client-Server Systems and Rendez-vous Networks”, IEEE
Trans. On Software Engineering, Vol. 21, No. 9, pp. 776-782, September 1995.

 - 18 -

[9] Jose Merseguer, Javier Campos, Eduardo Mena, “Performance analysis of
Internet based software retrieval systems using Petri Nets”, Proceedings of the
4th ACM International Workshop on Modeling, Analysis and Simulation of
Wireless and Mobile Systems 2001 , Rome, Italy, pp 47 – 56.

[10] D. Menasce and H. Gomaa, “A Method for Design and Performance Modeling of
Client/Server Systems,” IEEE Transactions on Software Engineering, vol. 26,
no. 11 pp. 1066-1085, 2000.

[11] Dorin Petriu, Murray Woodside, “Software Performance Models from System
Scenarios in Use Case Maps”, Proc. 12 Int. Conf. on Modeling Tools and
Techniques for Computer and Communication System Performance Evaluation
(Performance TOOLS 2002), London, April 2002.

[12] Dorin Petriu, Murray Woodside, “Analysing Software Requirements
Specifications for Performance”, Proc. 3rd Int. Workshop on Software and
Performance, Rome, pp 1 – 9, July 2002.

[13] D.C.Petriu, H.Shen, “Applying the UML Performance Profile: Graph Grammar
based derivation of LQN models from UML specifications”, in Computer
Performance Evaluation - Modelling Techniques and Tools, (Tony Fields, Peter
Harrison, Jeremy Bradley, Uli Harder, Eds.) Lecture Notes in Computer Science
2324, pp.159-177, Springer Verlag, 2002.

[14] R. Pooley, “Software Engineering and Performance: a Roadmap”, in The Future
of Software Engineering, part of the 22nd Int. Conf. on Software Engineering
(ICSE2000), Limerick, Ireland, June 2000, pp. 189-200.

[15] PUMA (Performance from Unified Model Analysis), www.sce.carleton.ca/rads/puma/.
[16] C. Smith and L. Williams, “Software Performance Antipatterns”, in Proceedings

of the Second International Workshop on Software and Performance
(WOSP2000), Ottawa, Canada, September 17-20, 2000, pp. 127-136.

[17] C. U. Smith and L. G. Williams, Performance Solutions. Addison-Wesley, 2002.
[18] C.M.Woodside, D. Petriu, “Performance Analysis with UML”, Chapter 11 in

“UML for Real: Design of Embedded Real-Time Systems”, Editors: Luciano
Lavagno, Grant Martin, and Bran Selic, Kluwer Academic Publisher, New York,
to be published in 2003.

[19] C.M. Woodside, “A Three-View Model for Performance Engineering of
Concurrent Software”, IEEE Trans. On Software Engineering, Vol. 21, No. 9, pp.
754-767, Sept. 1995

[20] Murray Woodside, “Software Resource Architecture”, Int. Journal on Software
Engineering and Knowledge Engineering (IJSEKE), v 11, pp 407-429, 2001.

