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Abstract: As software development cycles become shorter, it is more important 
to evaluate non-functional properties of a design, such as its performance (in the 
sense of response times, capacity and scalability). To assist users of UML (the 
Unified Modeling Language), a language extension called Profile for 
Schedulability, Performance and Time has been adopted by OMG. This paper 
demonstrates the use of the profile to describe performance aspects of design, and 
to evaluate and evolve the design to deal with performance issues, based on a 
performance model in the form of a layered queueing network. The focus is on 
addressing different kinds of performance concerns, and interpreting the results 
into modifications to the design and to the planned run-time configuration. 

 

1. Introduction  
The Unified Modeling Language (UML) [2] is the most widely used design notation 
for software at this time, unifying a number of popular approaches to specifying 
structure and behaviour. To enable users to capture time and performance 
requirements, and to evaluate those properties from early specifications, a language 
extension called the UML Profile for Schedulability, Performance and Time has been 
defined and adopted (the SPT Profile)[7]. In [18], the process of specifying a system 
with the SPT Profile was described, together with a layered queueing model created 
from it. The example was a building security system called BSS. This paper considers 
how to use the same model to study several performance questions, and to improve 
the design. The goal of the study is to provide a blueprint to users of the SPT Profile 
for exploring how performance issues are related to features of a software design, and 
to gain experience with use of the Profile. This is the first step towards a methodology 
for guiding design changes and explorations, based on UML and layered modeling, 
and previous work such as view navigation [19], optimal configuration [4], and 
performance patterns and anti-patterns [16]. 

The use of the SPTProfile can be envisaged as in Figure 1, with a process to 
interpret performance estimates made by a model, and to suggest changes to the 
design or to the configuration in the intended environment. If there is a performance 
shortfall, the process could iteratively improve the design until is satisfactory. 
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Figure 1.  Performance measures: targets, input and output, and improvement process 

The SPT profile extends UML by providing stereotypes and tagged values to 
represent performance requirements, the resources used by the system and some 
behaviour parameters, to be applied to certain UML behaviour models. The selected 
behaviour models describe scenarios (e.g. sequence diagrams and activity diagrams), 
because performance is usually specified and analyzed relative to selected scenarios 
(which in turn represent system responses). Some examples of the Profile stereotypes 
are shown below, for the example system. The performance model used in this work 
is a layered queueing network (LQN) model, just one of several possible target 
formalisms. LQNs are particularly well suited to analyzing software performance 
because they model layered resources and logical resources in a natural way, and they 
scale up well for large systems [6]. The concepts and notation for LQNs will be 
briefly introduced for the example, below. 

The process for improving designs will be explored using a Building Security 
System (BSS), which is intended to control access and to monitor activity in a 
building like a hotel or a university laboratory. Scenarios derived from two Use Cases 
will be considered, related to control of door locks by access cards, and to video 
surveillance. In the Access Control scenario a card is inserted into a door-side reader, 
read and transmitted to a server, which checks the access rights associated with the 
card in a data base of access rights, and then either triggers the lock to open the door, 
or denies access. In the Aquire/Store Video scenario, video frames are captured 
periodically from a number of web cameras located around the building, and stored in 
the database. The system must implement other Use Cases as well, such as operations 
for administration of the access rights, for sending an alarm after multiple access 
failures, or for viewing the video frames, but for simplicity we assume that the main 
performance concerns relate to the two Use Cases described above. 

Both scenarios have delay requirements. The access control scenario has a target 
completion time of one second, and the surveillance cycle has a target of one second 
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or less between consecutive polls of a given camera. In both cases we will suppose 
that 95% of responses, or of polling cycles, should meet the target delay. Further, it is 
desired to initially handle access requests at about 1 per 2 second on average, and to 
deploy about 50 cameras. Additional camera capacity would be desirable, and a 
practical plan for scaling up the system to larger buildings and higher loads is to be 
created. 

 

2. Behaviour Specification of BSS and its Performance Annotations 
The BSS has the planned deployment shown in Figure 2, with one application 
processor, a separate database processor, and peripheral devices accessed over a 
LAN. 
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Figure 2.  Deployment of the Building Security System 

 
The access and surveillance scenarios will be described through sequence 

diagrams, using stereotypes and tagged values defined in the SPT Profile [7]. Some of 
the key stereotypes seen in these diagrams are a performance context defining a 
scenario made up of steps and driven by a workload, and a resource, with a special 
host resource for a processor. These stereotypes are, respectively, <<PAcontext>>, 
<<PAstep>>, <<PAopenLoad>> and <<PAclosedLoad>> for workloads, 
<<PAresource>> and <<PAhost>>. 

Figure 3 shows the scenario for access control. The User provides an open 
workload, meaning a given arrival process. The tagged values define it as a Poisson 
process with a mean interarrival time of 0.5 seconds, and state a percentile 
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requirement on the response time (95% of responses under 1 second). They also 
define a variable name $UserR for the resulting 95th percentile value, to be 
estimated. Each step is defined as a focus of control for some component, and the 
stereotype can be applied to the focus of control or to the message that initiates it; it 
can also be defined in a note. The steps are tagged with a demand value for 
processing time (tag PAdemand) which is the CPU demand for the step. The request 
goes from the card reader to the Access Controller software task, to the 
database and its disk, and then back to execute the check logic and either allow the 
entry or not. openDoor is a conditional step which can be tagged with a probability 
(PAprob) which here is set to unity.  
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Figure 3.  Annotated Sequence Diagram for the Access Control Scenario 

The devices are stereotyped as <<PAresource>>, as in the deployment diagram, 
and so are the software tasks AccessController and Database; this is because 
a task has a queue and acts as a server to its messages. A resource can be tagged as 
having multiple copies, as in a multiprocessor or a multithreaded task. The Database 
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process is tagged with 10 threads, by {PAcapacity = 10}, and its disk 
subsystem is tagged as having two disks. 
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Figure 4.  Annotated Sequence Diagram for the Acquire/Store Video Scenario 

The scenario for the video surveillance is shown in Figure 4. There is a single 
VideoController task which commands the acquisition of video frames from $N 
cameras in turn, by a process AcquireProc. The initial step is the focus of control 
of VideoController which is stereotyped as a closed workload source with one 
instance, with a required cycle time having 95% of cycles below 1 second, and a 
predicted value $Cycle to represent the model result. AcquireProc is a 
concurrent process (<<PAresource>>). It acquires a Buffer resource by a step 
allocBuf which is also stereotyped as <<GRMacquire>>, indicating a resource 
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acquisition. Buffer is a passive resource shown in the deployment diagram with a 
multiplicity $Nbuf, managed by BufManager. In the sequence diagram the use of 
Buffer is indicated by a note and by the stereotype <<GRMacquire>>. In the base 
case, $Nbuf is set to 1. Once a buffer is acquired, AcquireProc requests the 
image from the camera, receives it and passes the full buffer to a separate process 
StoreProc, which stores the frame in the database and releases the buffer. The 
writeImg operation on the Database has a tag PAextOp to indicate that it calls 
($B times) for an operation writeBlock, which is not defined in the diagram. This 
operation can be filled in, in the performance model, by a suitable operation to write 
one block of data to disk. 

3. LQN Model  
A layered queueing model was derived from the concurrent processes and their 
interactions, using the principles of scenario traversal described in [11]. The resulting 
model is shown in Figure 5. Each process is represented by a “task” rectangle with 
one or more “entry” rectangles attached to its left. A “task” models an active object, 
process, thread or any other logical resource that requires mutual exclusion (such as 
the buffer pool described below). An “entry” models the operation which processes a 
distinct class of messages received by the task, For example, if a “task” models an 
object, an “entry” models a method. Arrows to other entries indicate requests made by 
an operation to other components. A solid arrowhead shows a synchronous call 
(where the caller expects a reply, and is blocked until receiving it), as from the User 
to the CardReader in Figure 5; it may be shown as a call and its corresponding 
return in the sequence diagram. An open arrowhead shows an asynchronous message, 
and a dashed arrow shows a synchronous request which is forwarded to another task. 

A server task can carry out part of its work after replying to its client; this is 
termed a “second phase” of service, and may have its own workload. For each entry 
the host demand is represented by [s1, s2] for first and second phase CPU 
demand in time units. For each request arc the mean number of calls in the two phases 
are represented by (y1, y2); the second phase value is optional. For example, the 
entry admit of the task AccessControl logs a message to the database and has 
some execution in second phase. 

A request arc in the model can have a mean number of calls per entry invocation, 
or a deterministic integer number. Here all the calls are mostly given as averages, 
however $N is the exact number of calls in a polling cycle, and each one leads to 
exactly one buffer request, one getImage, one passImage, one storeImage, 
and one writeImage operation. Similarly one User leads to one readRights 
and one unlock operation. 
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Figure 5.  Layered Queueing Network model for the Building Security System 

 
Since logical resources are represented by “tasks” in an LQN, the buffer pool is 

modeled by a task which is shaded in Figure 5 (we can think of it as a virtual task). It 
has an “entry” bufEntry which makes synchronous virtual calls to invoke the 
operations which are carried out holding the buffer (in [20] these operations were 
identified with the resource context of the buffer). Although the Sequence Diagram 
shows that these operations are in the same AcquireProc task in the software, they 
are separated in the model into a nested pseudo task AcquireProc2, which 
executes while AcquireProc is blocked. This only breaks a calling cycle which 
would otherwise appear around Buffer, and does not affect the behaviour of the 
model. Passing the buffer to Store is also modeled as a call from the Buffer 
virtual task to Store. It is a second phase call because the reference task 
VideoController, the originator of the chain of requests, is not supposed to wait 
for the storing of the frame in the database, only Buffer must wait for it. Store 
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finally calls the BufferManager task to release the buffer; however, to avoid 
another calling cycle in the model, the release is again modeled as an entry of a 
pseudo task BufMgr2.  

Task multiplicities represent the number of identical replicated processes (or 
threads) that work in parallel serving requests from the same queue, or the number of 
logical resources of the same type (e.g., buffers). The parameter values for $P, 
packets per video frame and $B, disk operations to store a video frame, are both set to 
8. The number of buffers $NBuf for the buffer pool was set to 1. 

 

4. Performance Evaluation and Improvement 
The model was solved by simulation to obtain the percentile values for delays, giving 
results for the user response times, throughputs, service times of entries and tasks, 
utilizations and waiting times for software or hardware resources, and probabilities of 
missing the deadlines. As mentioned above, the performance requirements are to meet 
a 1-second-deadline for both the Access Control scenario and the Acquire/Store 
Video scenario, with a 95% confidence level. In the LQN model, these requirements 
are translated to requiring the service time of the Video Controller task (also called its 
cycle time) and the response time of the User task to be less than 1 second with 
probability of 95%. 

4.1. Base case for performance evaluation 
At the very beginning we did not know if the performance of the system could be 
satisfied and if there were some bottleneck or design pitfalls in the system. Therefore, 
we started the evaluation with a base case, which is using a single copy for all 
software and hardware resources, except for the network, database and disk (whose 
multiplicities were set according to the system design).  

Table 1 shows the LQN results for the base case. It lists the cycle time for polling 
all cameras, the response time for a human user accessing the door, the normalized 
utilizations of the software and hardware resources and the probabilities of missing 
deadlines. Here we list only the normalized utilizations of the most heavily loaded 
resources. The normalized utilization is the ratio of the mean number of busy 
resources to the total number of the corresponding resources. A resource with a 
normalized utilization of 100% is fully saturated. By using normalized utilization, we 
can assess at a glance the actual usage of a resource without worrying about the total 
number of resources. 

Checking the simulation results for the base case, we can see that the internal 
throughputs and utilizations are constant, and the cycle time to poll all cameras grows 
linearly, as the number of cameras is increased. This follows from the design polling 
the cameras one at a time. No new polling request is generated before the 
AcquireProc completes the polling of a camera and returns. 
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Table 1. Simulation results for the base case 
Average 

Response 
Time 

Normalized Utilizations Prob of Missing 
Deadline Ncam 

Cycle 
(sec) 

User 
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser 

10 0.327 0.127 0.960 0.9998 0.582 0.549 0 0.031 
20 0.655 0.138 0.963 0.9999 0.582 0.545 0.0007 0.036 
30 0.983 0.133 0.964 0.9999 0.582 0.544 0.4196 0.038 
40 1.310 0.129 0.965 0.9999 0.582 0.544 0.9962 0.034 
 
 
The results show the performance requirement for the Access Control scenario can 

be achieved in all cases, with about 3%-4% probability of missing the deadline. 
However, the other requirement for the Video Acquire scenario cannot be fulfilled for 
50 cameras, or even for 30. The probability of missing the deadline jumps from 
0.07% for 20 cameras to 42.96% for 30 cameras, and to 99.62% for 40 cameras. This 
is clearly unsatisfactory.  

In this paper, we use the term capacity to indicate the maximum number of 
cameras the system can support while still meeting the 5% deadline miss requirement. 
From the simulation results, we learn the capacity for the base case is just above 20, 
which is far from satisfactory. Therefore, we have to analyze more deeply the LQN 
performance results, in order to identify bottlenecks and to eliminate design pitfalls. 

We can see that in the base case two tasks are nearly fully saturated, 
AcquireProc and Buffer. This is a typical example of the bottleneck push-back 
phenomenon described in [8]. Here Buffer can be deemed as a server, which 
provides services to AcquireProc. In spite of being saturated, AcquireProc is 
not the bottleneck, because its underlying server Buffer is also saturated. On the 
other hand, Buffer is the real bottleneck, because it is saturated while its direct or 
indirect servers are not saturated. 

As suggested in [8], a standard inexpensive way of relieving a software bottleneck 
is by cloning (i.e., making multiple identical copies of the constrained server that 
share the same incoming request queue).  In the case of the buffer pool, clones take 
the form of additional buffers. We also expect that by relieving one bottleneck, 
another bottleneck may appear, and that we can repeat the process until the bottleneck 
is either pushed down to the hardware resources (hardware saturation), or up to the 
client end (adequate capacity for the offered load). Hardware bottlenecks can also be 
solved by cloning in the form of multiple devices such as multiprocessors. 

There are other ways of solving bottlenecks, such as changing the scenario design, 
using more efficient strategies for scheduling, modifying the deployment, etc. 
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Furthermore, when all bottlenecks are eventually solved or have been pushed to client 
end, we have to depend on other methods for further improving the performance, as 
discussed in the next section.  

 

4.2.  Strategy for improving the performance 
Our strategy for improving the system performance is sketched in Figure 6. We start 
with the base case of the performance model, which is translated directly from the 
design. Solving the model by simulation, we can get the performance result data from 
which we can identify the performance problems. If the performance requirements 
were satisfied, that means the current design is fine. Otherwise, we further explore the 
performance results, looking for bottlenecks. If a bottleneck is found, we can solve it 
by cloning the bottleneck resource, such as using multiple buffers, multi-threading 
software processes or using multiple processors. We can achieve this by modifying 
the performance model, then solving it with new parameters and repeating the same 
procedure.  

Get LQN 
Results 

Performance 
Satisfied? 

Yes 

No 

Bottleneck 
Found? 

Clone 
Bottleneck 
Resource 

Other 
solutions 

Yes 

No 

Initial 
design 

Feedback 
to design 

 

Figure 6.  Strategy of performance improving for BSS 

In [8] utilization measures are used to locate the bottleneck in client-server systems 
and rendezvous networks. In this paper, we use the normalized utilization, which has 
been defined in section 4.2, as one of the indicators. The most saturated resource has 
the greatest potential to be the bottleneck. However, to decide whether it is the real 
bottleneck, the system architecture should also be considered, because a client 
resource may be blocked by a server resource, which is in fact the real bottleneck. 
(Please note that a resource that requests a service is called a client resource, whereas 
one that provides the service is called a server resource.) Usually, a resource with a 
large number of outgoing (fan-outs) calls, second phase service, or incoming 
asynchronous calls can become easily the bottleneck.  
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Using multiple identical copies of resources is a straightforward way to solve the 
bottleneck. Usually, resolving one bottleneck in this way will push the bottleneck to 
another resource, either to a lower layer or to a higher one. Repeatedly, by adjusting 
the number of copies for different resources within the system, the bottleneck will 
move around, until is finally eliminated. In this paper, we call this procedure system 
configuration tuning. At that point, in open systems there is no saturated resource, and 
in closed systems the saturation is pushed back to the external client end.  

There is a second path in the strategy given in Figure 6, which is seeking other 
solutions for performance improvement when no bottleneck could be identified. If the 
performance requirements still cannot be satisfied after tuning the system 
configuration, it is not because of limited resources. The cause may be heavy 
execution demand, long scenario paths, or lack of concurrency in the system. In this 
case, we take the second path of the strategy, for which there is no standard approach. 
The solution is usually project specific. Typical solutions include changing the 
scenario design, shortening long scenarios, decomposing large components, using 
more efficient scheduling strategies, and modifying the deployment.  

After applying these solutions, bottlenecks usually appear again in the system, 
because such solutions lead to a more efficient, and therefore more intense, usage of 
the existing resources. Thus we are back on the main path of the strategy. By 
repeating the strategy, we will eventually reach a point where the performance 
requirements can be met (assuming that the requirements are reasonable). Then we 
translate the changes that were applied to the performance model in terms of system 
configuration information and software design description, and give feedback to the 
designer. 

 

4.3. Using multiple copies or clones of resources  
This section describes efforts to solve the software and hardware bottlenecks by 

using multiple copies of resources (i.e., by cloning). As discussed in the base case 
evaluation (section 4.1), the first bottleneck is the Buffer. Therefore, our first 
solution step is to use multiple buffers. Many cases were solved for the system under 
different configurations, i.e. with different numbers of cameras and buffers. Table 2 
lists the data for 40 cameras and different numbers of buffers.  

As seen in Table 2, the performance improvement due to multiple buffers is 
obvious. The probability of missing the cycle time deadline drops greatly, from 99% 
for 1 buffer to 9.35% for 10 buffers, but the requirement of a 5% probability for 
missing the deadline is still not achieved. We can see that now there is a newly 
saturated resource, namely StoreProc, which is the real bottleneck in the case with 
10 buffers. We notice that the normalized utilization of Buffer drops at first as 
NBuf grows from 1 to 4, then raises slightly afterwards. However, the normalized 
utilization of Buffer is only high (over 84%) in the case with 10 buffers, because it 
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is blocked by its server resource StoreProc. The bottleneck is pushed to a lower 
layer in the model. 

Table 2. LQN Results for using multiple Buffers (40 cameras) 
Average 

Response 
Time 

Normalized Utilizations Prob of Missing 
Deadline NBuf 

Cycle 
(sec) 

User 
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser 

1 1.309 0.137 0.965 0.9999 0.583 0.544 0.9961 0.034 
2 1.016 0.132 0.975 0.8762 0.800 0.702 0.5503 0.032 
3 0.941 0.132 0.980 0.8235 0.893 0.756 0.2506 0.036 
4 0.911 0.131 0.983 0.8042 0.936 0.782 0.1597 0.032 
7 0.879 0.132 0.986 0.8136 0.984 0.810 0.0948 0.033 
10 0.872 0.129 0.987 0.8437 0.995 0.817 0.0935 0.034 
 
Therefore, the second solution step is to clone the StoreProc task. Table 3 

shows the results for the case of 40 cameras with 4 buffers. We can see that with 2 
StoreProc threads, the probability of missing the deadline has dropped to a 
satisfying level. The system capacity is now above 40 cameras, about double that for 
the base case. 

Table 3. LQN Results for multi-threading StoreProc (40 cameras, 4 Buffers) 
Average 

Response Time Normalized Utilizations Prob of Missing 
Deadline 

No.  
of 

Store 
Proc 

Cycle 
(sec) 

User 
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser 

1 0.911 0.131 0.983 0.8042 0.936 0.782 0.1597 0.032 
2 0.756 0.137 0.946 0.5805 0.616 0.940 0.0022 0.035 
3 0.743 0.139 0.932 0.5484 0.441 0.956 0.0015 0.039 
 
According to the same reasoning, the new bottleneck is ApplicationCPU. The 

bottleneck was pushed from software resources to hardware resources. This 
bottleneck can be relieved by using a multi-processor, giving the results in Table 4.  

The simulation results show that 2 ApplicationCPUs are enough for solving the 
hardware bottleneck here. Using a double-processor is a typical configuration 
strategy. The system capacity is now 50 cameras, with 4 Buffers, 2 StoreProc 
threads and 2 ApplicationCPUs. This is 2.5 times higher than the base case and 
achieves our initial goal of system capacity. 

The point has been reached where, except for the reference task 
VideoController, there is only one saturated resource in the system, namely 
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AcquireProc. We may consider it as the bottleneck. However, LQN results show 
that cloning it gives no improvement. In fact, its queue contains at most one request at 
any time and never grows. The performance is not limited by a lack of resources now, 
but by design limitations. 

 

Table 4. LQN Results for using multiple processors for ApplicationCPU  
(40 cameras, 4 Buffers, 2 StoreProc threads) 
Average 

Response 
Time 

Normalized Utilizations Prob of Missing 
Deadline No.  

of 
CPU Cycle 

(sec) 
User 
(sec) AcqProc Buffer StoreProc AppCPU Cycle RUser 

1 0.756 0.137 0.946 0.5805 0.616 0.94 0.0022 0.035 
2 0.648 0.127 0.995 0.6111 0.653 0.549 0 0.035 
3 0.644 0.128 0.997 0.6105 0.652 0.368 0 0.033 
 
 
Now we take the second path of our performance-improving strategy.  

4.4. Changing the Scenario Design to introduce more concurrency 
As mentioned before, there are two saturated tasks in the model, the reference task 
VideoController, and AcquireProc. A reference task in a closed model 
drives the system by generating workload, and usually represents the behaviour of an 
external client. Its normalized utilization is always 1, because it is always blocked by 
all of the services in the scenario.  

Here VideoController is similar to an external client, although it is a part of 
the system. The VideoController has to wait for the message returned from 
AcquireProc before generating the next polling call. The call from the 
VideoController to AcquireProc is synchronous, and all of the work of 
AcquireProc is finished in its first phase. Therefore, only one instance of 
AcquireProc can be activated at any time.  The system suffers from too much 
serialization, and the system capacity is limited by the duration of the scenario which 
polls one video camera.  

To solve this problem, a change in the system design is required. A key point is to 
enable concurrent activations of the AcquireProc task by multi-threading the 
process. A solution is to move the calls made by AcquireProc for allocating and 
using the buffer into its second phase, and making an early reply to 
VideoController. Then VideoController can generate its next polling call 
earlier.  
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After introducing more concurrency into the system, the software and hardware 
bottlenecks appear again. We come to the main path in our strategy again, tuning the 
system configuration. During the tuning, the bottleneck moves around within the 
system. For example, the bottleneck may move to task AcquireProc or 
StoreProc as well as ApplicationCPU. There are different configuration 
strategies to address these problems. By repeatedly tuning the system configuration 
on software and hardware, the system performance can be improved dramatically. 

 Table 5 shows some system performance results under different configurations. 
Here we aim for a capacity of 100 cameras and increase the number of threads for 
Buffer, AcquireProc, StoreProc and the number of ApplicationCPU 
step by step. Finally, with 3 AcquireProc, 6 StoreProc threads and 3 
ApplicationCPU, we manage to achieve the 1-second-deadline for the cycle time 
for the case with 100 cameras with a probability of 99.95%. This capacity is 5 times 
higher than the base case, and twice the capacity before changing the design. 

Table 5. LQN results for with more concurrency case (100 cameras, 10 Buffers) 
Average 

Response 
Time 

Normalized Utilizations Prob of Missing 
Deadline 

Multiplicity 
(Acquire,  
   Buffer,  
    Store, 

App. CPU) 
Cycle 
(sec) 

User 
(ms) 

Acquire 
Proc Buffer Store 

Proc 

 
App 
CPU 

Cycle RUser 

2, 4, 2, 2 1.250 0.133 0.988 0.923 0.886 0.710 0.9995 0.0332 
2, 10, 6, 3 0.837 0.132 0.988 0.689 0.751 0.707 0.0057 0.0307 
3, 10, 6, 3 0.768 0.134 0.983 0.895 0.910 0.769 0.0005 0.0352 
 

The results also show that AcquireProc and StoreProc tasks are saturated 
again. Therefore, we expect that there is more room for improving the capacity by 
further tuning the system configuration. 

 

4.5. Feedback into the Software Design 
The exploration described above is carried out in the space of LQN models, but the 
final result must be transferred back into the software design. The modified sequence 
diagram in Figure 7 shows two kinds of change: 
? ? suggestions on multithreading of active objects are represented by the tag 

PAcapacity, as in the object AcquireProc and StoreProc.  
? ? the design change to AcquireProc, to put all the buffer processing into a 
second phase. The second phase is incorporated into the specification by changing the 
synchronous message from VideoController to AcquireProc into two 
asynchronous messages, for the VideoController’s request and the 



  - 15 - 

corresponding reply. After sending the reply, AcquireProc invokes its own 
getBuffer operation and everything that follows, as the second phase. 

<<PAresource>>
Video

Controller

<<PAresource>>
AcquireProc
{PAcapacity= 3}

<<PAresource>>
BufferManager

<<PAresource>>
StoreProc

{PAcapacity= 6}

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
releaseBuf (b)

freeBuf (b)

<<PAresource>>
Database

{PAcapacity= 10}

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

<<PAcontext>>

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network,

$P)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($B * 0.9, ‘ms’)),,
PAextOp=(writeBlock, $B)}

<<PAclosedLoad>>
{PApopulation = 1,
 PAinterval =((‘req’,’percentile’, 95,

(1, ‘s’)),
 (‘pred’, ‘percentile’, 95, $Cycle))}

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘mean’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

o

This object manages the
resource Buffer

 
Figure 7.  Modified Sequence Diagram for Acquire/Store scenario 

As this example shows, some kinds of feedback can be presented in the design 
model just by using tag values defined in SPT Profile. However, others require deeper 
changes to be made by the designers. For instance, multithreading may require  
changes to synchronize threads or to maintain consistency in data shared by the 
threads; partitioning an object into two concurrent objects would require new classes.  

Techniques to support these changes, possibly based on patterns to solve typical 
problems that arise, will be needed. 

5. Related Work 
Other researchers have developed approaches to convert UML software specifications 
into different kinds of performance models, including Queueing networks (Smith and 
Williams [17]), Petri Net models (Merseguer et al [9], and work surveyed by Pooley 
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[14]), and Stochastic Process Algebras (Canevet et. al. [3]). Layered queueing models 
were produced from UML activity diagrams by Petriu and Shen in [13]. Other kinds 
of specifications have also been converted, for instance LQN models were produced 
by automated transformation of a non-UML scenario specification in [11]. Most of 
these papers focus on the conversion process itself. 

The use of a model to improve a software design is the focus of the “performance 
principles” in Smith's book [17] and of her work with Williams on antipatterns [16]. 
In [10], Menasce and Gomaa modeled an information system and redesigned database 
transactions for performance. In [9] Merseguer et.al. evolved the design of a wireless 
application. Improvements related to software bottlenecks were defined by Neilson et. 
al. in [8], including their systematic removal by introduction of task threads. In [12], 
Petriu and Woodside showed how part of an e-commerce system could be redesigned 
to achieve performance goals.  

The question of how to navigate through the results of a software model, to 
identify the source of performance problems, was discussed in a general way in [19]. 
In a broader context of computer and network systems (not just software designs) 
various kinds of reasoning aids for performance diagnosis have been described. An 
example for distributed computing (with references to other work) is described by 
Hellerstein [5] in the form of a QPD (Quantitative Performance Diagnosis) algorithm. 
It estimates how much certain system attributes such as traffic levels and hardware 
capacities contribute to performance problems, to assist in hardware improvement. 
QPD includes navigation of the measurements, guided by a model-like view of the 
system. 

 

6. Conclusion 
A layered performance model has been used to expose performance problems in a 

software design, and to evaluate design changes, in a case study which combines 
client-server aspects with real-time deadlines including video frame transfer.  

Three kinds of performance issue emerged in this study. First, there was a question 
of video buffers; it is essential to provide multiple buffers, to overlap video 
acquisition from the cameras with the storage of the frames. For a capacity of 50 
cameras, double buffering (with two buffers alternating) is not as good as four buffers 
used in rotation. For a higher capacity of 100 cameras, 10 buffers are needed. Second, 
there are deployment and configuration issues, such as providing multithreaded tasks 
for adequate concurrency. Finally a change in the software execution sequence within 
the video acquisition task was found beneficial. By providing an early reply to the 
control task that manages the acquisition loop, greater concurrency in video 
acquisition could be achieved and a much higher capacity was obtained.  

A notable result here is that the software change could only be identified as 
beneficial, after the thread configuration and buffer questions had been resolved. 
Without the buffers and the threads, the early reply from AcquireProc would not 
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help (the results for that case are not given here, but they are identical to the base 
case). So we have evidence for a general principle for software design improvement: 

Holistic Improvement Principle: Software design improvements can only be 
evaluated in the context of the best possible deployment and configuration 
alternatives. 

The case study shows how drastic changes in the design can be inserted into a 
performance model and evaluated very quickly and inexpensively. Many possible 
changes can be assessed, the best ones are selected, and finally the design is updated 
to incorporate the beneficial changes. 

A question raised and not resolved here is the systematic navigation of the model 
results to identify and rank the potential design changes at each step. This is one 
subject of the PUMA project [15] for integration of UML design and performance 
engineering. An outline of the complete PUMA project is shown in Figure 1, 
including UML model transformation, performance model experimentation, and 
feedback of results. 
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