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Abstract. This paper studies optimal deployment and priorities for a class of 
distributed real-time systems which have complex server tasks, many 
concurrent scenarios, operations with deterministic or stochastic execution 
demands, arbitrary precedence between operations, and hard or soft deadline 
requirements. The soft deadlines take the form of a required percentage of 
responses falling within the deadline. This work improves on an earlier 
optimization approach which was only applied to hard deadlines. As before, 
heuristic measures derived from solutions of layered queueing models are used 
to guide step-by-step improvement of the priorities and allocation, searching for 
a feasible solution which meets the soft deadline requirements. Effectiveness is 
demonstrated on a range of examples including thousands of individual cases. 

1. Introduction 

Performance specifications in many systems take the form of a soft deadline for each 
class s of responses, which execute a scenario also labeled s. A soft deadline is 
defined here as a requirement that the response time Rs for scenario s should satisfy a 
deadline Ds with some probability αs. This may be written as: 

 
Ps = Prob ( Rs > Ds) ≤ αs (αs ≥ 0)     (1) 

A zero value for αs defines a hard deadline; greater than zero a soft deadline. 
This work describes a method for adjusting the priorities and allocations of the 

tasks in a distributed system, to satisfy such requirements. Unlike most work that 
simultaneously addresses priorities, allocation and deadlines, this work considers 
systems with some degree of randomness in their CPU demands, and with a complex 
task structure as described in [4]. The structure can include layers of servers to satisfy 
parts of the responses, with contention for service. Such systems and requirements are 
common in telecommunications systems, and in business systems. Examples include 
directory servers and proxy servers with layered structure, and e-commerce servers. 

A great deal of work has been done on systems with hard deadlines (αs = 0) and a 
flat task structure. Priority assignment and task (process) allocation were found as two 
important issues to meet deadline requirements for hard real-time systems deployed 



on multiprocessors. Unfortunately, it has been shown that the problem of assigning 
priority to end-to-end tasks [1], which have a chain of subtasks in a distributed 
system, and the problem of allocating tasks to processors [11] are both NP-hard 
problems. Efficient optimal solutions are not likely available, and heuristic algorithms 
must be created to find out feasible solutions. In previous related work, Tindel, Burns 
and Wellings used simulated annealing to find priority assignments and task 
allocations at the same time [19]. Garcia and Gonzalez Harbour proposed a Heuristic 
Optimized Priority Assignment (HOPA) algorithm which schedules transactions 
consisting of a chain of actions (subtasks) in a distributed system, to meet end-to-end 
hard deadlines [8]. Peng, Shin et al. proposed two branch-and-bound algorithms to 
allocate periodic tasks with precedence constraints to minimize the maximum 
response time [13]. Hou and Shin proposed an algorithm to find an assignment which 
maximizes the probability of meeting deadlines, and also to schedule the tasks, called 
the Module Allocation Algorithm [10]. 

To evaluate Ps for soft deadlines (αs > 0) and stochastic execution patterns, the 
distribution of the response time Rs must be found. Dingle, Harrison and Knottenbelt 
presented a technique for the numerical determination of response time densities in 
Generalized Stochastic Petri Net (GSPN) models [2]. Simulation methods can also be 
used, although they are more expensive in run-time.  

 El-Sayed et al in [4] considered the same problem, but for hard deadlines only. 
That paper described a heuristic optimization technique called the Planner, which 
used measures computed from a layered performance model to identify promising 
moves in the priority values and the allocations. The Planner met or surpassed other 
algorithms on test cases from the literature, and solved a large number of randomly 
generated problems of moderate size (with 16 tasks in four layers). The Planner, like 
this work, used simulation to determine Ps. Its application to soft deadlines was 
proposed in [4] but was not attempted. 

The present work improves on the Planner in several ways, to be more effective on 
hard deadlines. The new version, called Planner2, is then evaluated on many small 
and large systems with hard and soft deadlines. On a large set of randomly generated 
stochastic systems, it was used to discover a property or characterization which 
indicates cases which are feasible for soft-deadline schedulability. The 
characterization takes account of the average processor utilizations, a latency factor, 
and the coefficient of variation of the execution demands of the tasks. The latency 
requirement increases with the variance of the demands. 

This paper is organized as follows. Section 2 briefly introduces the Layered 
Queueing Networks (LQN) model which is used as the performance model in this 
paper. Section 3 provides the optimization algorithm of the Planner2 based on the 
LQN simulation results and shows how it works. Section 4 applies the optimization 
approach to soft real-time systems with stochastic execution demands. Section 5 gives 
the conclusions. 



2. The Layered Queueing Networks (LQN) Model 

The layered queueing networks (LQN) model, presented by Woodside et al and 
others, is a performance model for systems with distributed software servers 
[5][6][17][20][22]. It extends queueing networks to model software servers and 
logical resources in a canonical way, including hardware devices, software processes, 
nested services, precedence constraints and multithreaded tasks. 
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Fig. 1. An Example of an LQN model 

In an LQN model, a task represents a software or hardware object which may 
execute concurrently, such as the tasks in a real-time system. A task has one or more 



entries which define its different services and are equivalent to classes in a queueing 
network. When a single-threaded task is busy serving a request to one entry, it cannot 
serve any other requests. An entry consists of some activities or phases which are the 
smallest execution units. Activities may have arbitrary precedence relationships (e.g. 
AND fork or join, OR fork or join) [7].  

LQN tasks, entries, activities and interactions provide a description which is quite 
close to software architecture models. Figure 1 shows an example LQN model, with 
parallelograms representing tasks, rectangles on their interfaces for entries, internal 
rectangles for activities and their precedence, and arrows to denote interactions. Three 
types of interactions are described in LQNs: a synchronous call (shown in diagrams 
by a solid line with a filled arrowhead), an asynchronous call (a solid line with an 
open arrowhead), and a forwarding call (a dashed line with a filled arrowhead).   

Both analytic and simulation solvers may be useful. In this paper, all the results are 
produced by an LQN simulation tool. The confidence interval for every result is no 
more than ±10%, meaning that all the results should be accurate within ±10% with 
95% confidence. In most cases the actual results are much more accurate, of the order 
of 1%. 

There are several ways to create LQN models. Petriu and Shen  proposed a method 
to derive an LQN model from a Unified Modelling Language (UML) design model of 
the software, using the UML Profile for Schedulabilty, Performance and Time [16]. 
Petriu and Woodside described an algorithm to transform Use Case Maps (UCM) 
scenario models into LQN performance models [15]. El-Sayed generated LQN 
models and also guided the optimization from a model in a proprietary scenario 
language which is no longer available [3] (the lack of the inputs needed to use the 
Planner was one of the motivations behind this work). 

Figure 1 is an example LQN model with two scenarios, both of which require 95% 
of the responses to meet the deadline. There are five tasks running on two CPUs, 
joined by a network (which is not shown). The activities and the network delays are 
stochastic, with exponential delays. TaskE is initially allocated on CPU2. The initial 
allocation and priorities are infeasible. Because there is higher communication cost 
between TaskA (on CPU1) and TaskE (3 calls per request) than between TaskD (on 
CPU2) and TaskE (1 call per request), the Planner2 reallocates TaskE to CPU1, 
giving a feasible solution.   

3. The Optimization Algorithm 

The goal of Planner2 can be stated as the minimization of a penalty function V(A,P) 
over a set A of task allocations and a set P of priorities for the tasks: 

 
V(A,P) = ∑

s
Criticalitys 

Criticalitys = 0     Ps ≤ αs 
Criticalitys = eβ(Ps-αs)   Ps > αs    (2) 

 



V(A,P) is defined to be zero if the performance goal is met for all scenarios, or 
positive otherwise. 

Briefly, A and P are initialized using heuristic algorithms, and the model of the 
system is solved. A set of scoring functions are computed to rank the scenarios, tasks 
and processors according to how they will contribute to improvement. These scores 
are used to select a change in priority or allocation. The search succeeds if V(A,P) = 0 
or fails if V(A,P) > 0 and no step can be found that gives an improvement. 

The original Planner is described in [3][4], and Planner2 follows the same outline 
with changes in important details. For reasons of space, only the modified Planner2 
algorithm will be described, and the changes. 

 

Algorithm 
1. Initialize the configuration: 

a) Use the Multifit-Com algorithm [21] for the initial allocation,  
b) Give higher initial priority to tasks with fewer threads, on the same 

processor. Break ties by the Proportional-Deadline-Monotonic algorithm 
[18]. 

2. Check termination; use the V(A,P)  metric defined by Eq. (2) to estimate the 
solution quality. If it is zero, go to 5. Otherwise go to 3. 

3. Use the TaskWaitingMetric metric defined by Eq. (3) below to select a task 
with the largest value for priority increase. Estimate the solution quality.  If 
V(A,P) is zero, go to 5. Otherwise go to 4. 

4. Restore the configuration which has the smallest V(A,P) metric so far. Use the 
ComGainMetric metric defined in Eq. (4) below to select a task with the 
largest value, and a new CPU for it to move to. Estimate the solution quality. 
If V(A,P)  is zero, go to 5. If failure conditions (on maximum total steps or on 
running out of alternatives to try) are satisfied, go to 6. Otherwise, go to 3. 

5. Stop. A feasible solution is found. 
6. Failed 
 
The improvements over the Planner in [4] include:  

• A different method for initializing the priorities based on the number of  threads 
(higher priority to a task with fewer threads), and breaks ties by applying the 
Proportional-Deadline-Monotonic (PDM) algorithm. The original uses PDM 
entirely. The change was found to improve the success rate of the optimization. 

• The V(A,P) metric in Planner used  eβPs  if Ps > αs  , giving a step at Ps = αs whose 
height depends on αs; here it is always a unit step. This normalizes the components 
of V(A,P) and balances the importance of violations in all scenarios. 

• Planner used a single scoring function TaskMetric to identify the best task for 
changes, and this was the sum of two functions which are used separately in 
Planner2: 

TaskWaitingMetric(t) =  1/U(t)    ∑
s

Criticalitys  W(s,t)  (3) 

                   



where U(t) is the utilization by task t of its processor, and W(s,t) is the total waiting 
time of task t in scenario s  (these values are obtained from the LQN simulation 
report), and  
       ComGainMetric(t, c) =        ∑ CommOV(m)  -     ∑ CommOV(m)  (4) 

                         ∀m∈ nonLocalMsgs(c)      ∀m ∈LocalMsgs(t)  
 
where  nonLocalMsgs(c) is the  set of non-local physical messages of task t 
between CPU c and the local CPU of task t, LocalMsgs(t)  is the set of local 
physical messages of task t and CommOV(m) is the overhead caused by the 
message m, plus the change in network delay. 

In Planner2 the first function is used for priority adjustment, and the second for 
task re-allocation. 

• The priority levels of tasks are all forced to be distinct in Planner2, while equal 
priorities were allowed in [4]. Distinct priority levels decrease the sources of 
uncertainty in the response time. 

• The priority adjustment strategy is simple in the Planner. The priority of the task 
with the worst TaskMetric metric will be raised one level higher. If the failure 
condition is met (i.e. the maximum step is reached), the priority adjustment stops. 
This strategy can hang up in a loop and fail to reach a better solution when one is 
available. To avoid this problem, the new priority adjustment strategy raises the 
priority level of the task with the largest TaskWaitingMetric by one level. If this 
priority combination occurred before (i.e., if a loop is found), then the priority level 
of this task will be raised to the highest priority level among all the tasks. If the 
new priority combination occurred twice before, then the priority adjustment stops 
and the Planner2 considers task reallocation. This strategy is heuristic, but it 
worked well in the evaluations of section 4.1.  

 
The table shown in Figure 2 follows the steps in the algorithm for the model shown 

in Figure 1. Rs, Ps and V(A,P) are given for the two scenarios. 

4. Evaluation and Demonstration 

Three sets of results will be described to demonstrate the success of the new 
version. 

4.1 Evaluation of the New Priority Adjustment Strategies for Hard Deadlines 

The new priority adjustment strategies were evolved partly to improve the 
optimization for hard deadlines. The improvement compared to [4] was evaluated by a 
battery of randomly generated cases with between two and eight independent periodic 
tasks on one processor. These test cases satisfy the requirements for rate monotonic 
scheduling [12], so the results could be compared with an exactly optimal solution. 
The fraction of the results found by Planner or Planner2 over which are exactly 
optimal is called its “success ratio” in the results shown in Figure 3 below. 



 
 
 
 
 
 

Step Candidate 
Task 

Actions And States R s P s V(A,P) 

0  CPU1: TaskA > TaskB 
CPU2: TaskC > TaskD > TaskE 

33.781 
23.405 

0.092917 
0.0444 

1.903615 

1 TaskE Raise priority of TaskE 
CPU1: TaskA > TaskB 
CPU2: TaskC > TaskE > TaskD 

27.953 
24.165 

0.0294 
0.05095 

1.014352 

2 TaskD The priority combination 
occurred before. Raise priority 
of TaskD to the highest level 
CPU1: TaskA > TaskB 
CPU2: TaskD > TaskC > TaskE 

33.801 
23.436 

0.093402 
0.04505 

1.917514 

3 TaskE Raise priority of TaskE  
CPU1: TaskA > TaskB 
CPU2: TaskD> TaskE > TaskC 

29.015 
24.168 

0.044317 
0.051117 

1.016896 

4 TaskE Raise priority of TaskE  
CPU1: TaskA > TaskB 
CPU2: TaskE > TaskD > TaskC 

25.031 
24.728 

0.014767 
0.054333 

1.067153 

5 TaskD 
 
 
 
 
 
TaskE 

The priority combination 
occurred before. 
TaskD has the highest priority, 
its priority can’t be raised any 
more.  
The best configuration is 
restored (step1).  
The TaskE has best benefit to be 
reallocated to CPU1 with the 
highest priority. 
CPU1: TaskE > TaskA > TaskB 
CPU2: TaskC > TaskD 

18.138 
25.225 

0.0066833 
0.049467 

0 

Fig. 2. Optimization steps of LQN model in Figure 1 

Fourteen sets of cases were constructed with different combinations of the number 
of tasks and the total utilization (the utilization is the sum, over the tasks, of  CPU 
time divided by the period). 50 cases were generated for each combination, giving 700 
cases in total. To increase the difficulty of these cases, the initial priorities of the tasks 
were set to the reverse order to that assigned by the rate monotonic algorithm (thus, a 
task with a shorter period was given a lower priority). The results from the original 
Planner algorithm [4] and the new priority adjustment strategies are compared in 
Figure 3.   

 
 
 



 
 
 
 
 

 
Number Of 

Tasks 
Utilization Success Ratio  % 

(Original [4]) 
Success Ratio % 

(New) 
2 0.82 100 100 
2 0.90 100 100 
3 0.77 100 100 
3 0.90 100 100 
4 0.75 98 100 
4 0.90 91.67 100 
5 0.74 94 100 
5 0.90 80 100 
6 0.73 98 100 
6 0.90 40 100 
7 0.72 96 100 
7 0.90 42.86 100 
8 0.72 94 100 
8 0.90 33.33 100 

  Fig. 3. Test cases and results 

The new strategies are a definite improvement. They have found a feasible solution 
in every case which is feasible under rate monotonic scheduling, whereas the original 
algorithm had a significant number of failures, especially with larger task numbers 
and utilizations.  

4.2 Evaluation of Planner2 with Soft Deadlines 

The Planner2 was equally successful with random CPU demands and soft deadlines, 
and on more complex systems with layered servers. Two evaluations are described 
here, first for a large set of randomly generated layered systems, and second for an 
application case study with a realistic architecture.  

4.2.1 Layered Randomly-generated Cases with Stochastic Demands 

Figure 4 shows an LQN introduced in [4] to demonstrate the robustness of 
optimization on hard real-time applications with deterministic CPU demands that 
were selected randomly. The evaluation is extended here to soft deadlines and 
stochastic execution demands. 

The main characteristics of the randomly generated parameters are: 
• Every scenario has a fixed period and deadline,  

Deadlines =  Demands * L     (6) 
where L is the laxity factor, taking values between 1.9 and 6  



• The deadline requirement is that the deadline miss rate is no more than 5% 
• The average utilization of all the processors is adjusted to take a selected fixed 

value for a given case, chosen between 0.4 and 0.8 
• The coefficient of variation CV of the execution demand was fixed, taking values 

0.0 (deterministic), 0.1, 0.5 or 1.0 (exponential) for all the tasks. 
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  Fig. 4. Random statistical models 
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 Fig. 5. Minimum laxity factor value providing feasibility for different combinations 

of the  coefficient of variation and the processor utilization  



 
There were altogether 240 different combinations for the coefficient of variation, 

laxity factor and utilization. 50 cases were generated for each combination, and all 
12000 cases were optimized by the Planner2. Figure 5 shows some of the results.  

For each combination of utilization and CV, Figure 5 shows the minimum laxity 
factor value (Lmin) for which a feasible allocation and priority solution was found for 
all 50 cases. We observe that: 
• For a given utilization, the required minimum laxity factor increases as the 

coefficient of variation increases, and as the utilization increases.   
• The minimum laxity factor with large coefficient of variation (e.g. 1.0) increases 

much faster than that with small coefficient of variation (e.g. 0.0) as the utilization 
increases. This indicates the extreme difficulties to meet deadline requirements 
with large coefficient of variation and high utilization.  

For larger laxity values, the fraction of cases that is found to be infeasible is 
positive and increases with laxity value. 

The Figure can be interpreted as a heuristic guideline for feasibility of a set of soft 
deadlines based on a system’s utilization and coefficient of variation values. For 
example, with an average utilization of 0.6 and CV = 1.0, the laxity factor for all tasks 
should be at least 3.5. However this guideline is only for a 95% success rate and 
provides no guarantees. 

4.2.2 RADS Bookstore Model 

This example is a simplified e-commerce site described in [14] by Petriu and 
Woodside, called the RADS Bookstore model. The model describes a 3-tier client-
server system (client, application and database tiers) with stochastic behaviour. The 
customer has 7 scenarios: browsing the stock, viewing a detailed item description, 
adding or removing items to or from shopping cart, checking out the items in 
shopping cart, registering and logging into the RADS bookstore. The administrator 
can update the inventory and fill the outstanding back orders. Figure 6 is the 
simplified LQN model of RADS bookstore, originated from a diagram in [14]. The 
model has been adapted as follows: 
• The set of Customers represented by the Customer task have a random think time 

between requests to the system, and a probability for making each type of request. 
There is one Administrator task. 

• Each scenario for the Customer and Administrator is governed by a pseudo task in 
the second layer, running on a pseudo processor ScenarioProc. The pseudo tasks 
are used to collect response times and to set deadlines.  

• The scenario deadlines for Customer are all set to 500ms, and the scenario 
deadlines for Administrator are set to 6000 ms. 

• The deadline miss rates for scenarios are required to be no more than 10%.  
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  Fig. 6. Simplified LQN model of RADS Bookstore 

The model was analyzed with 50, 100, 150, 200, 250, 300 and 350 customers. 
Because there is only one processor in the application tier, there is no task 
reallocation, and priority adjustment is the only optimization option. In the baseline 
model all the tasks on processor BookstoreProc and processor DatabaseProc are 
scheduled by the FIFO discipline (i.e. all the tasks are assigned the same priority).  

The optimized model will be compared to the baseline model. It turns out that the 
Customer scenarios easily meet their deadlines, so the experimental results in Figure 7 
only show the miss rates for the two Administrator scenarios. These are greatly 
improved by the optimization.  In the baseline model, the miss rates for the two 
administrator's scenarios increase rapidly when the number of customers increases, 
and the deadline requirements couldn’t be met when the number of customers is 200 



or more. In the optimized model, the miss rates of the two Administrator scenarios are 
held roughly constant, and the deadline requirements are met for all cases.  

This case study shows how the optimization approach can be usefully applied to 
find a runtime configuration for a complex hierarchical client-server system with soft 
deadlines and stochastic behaviour. The performance of the result is comparable to the 
redesign proposed in [15], which was determined with considerable analysis and 
required restructuring the database subsystem. This is an outstanding success for an 
automated procedure. 
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  Fig. 7. Miss rates of baseline and optimized model for scenario AdmBackorder and 
AdmUpdate 

5.0 Conclusions 

An improved method for optimizing the configuration of a layered real-time system 
has been described. It is intended to be useful to software designers who wish to 
evaluate a software design “at its best”, without the effort of manually tuning the 
deployment. It adjusts the priorities of tasks competing for a processor, and the 
allocation of tasks to processors, searching for a feasible configuration (meaning, one 
that meets soft deadlines on percentiles of responses). It can equally be used to 
configure systems with hard deadlines, to be met by 100% of responses. The 
percentiles can be different for different scenarios. 

The Planner2 is significantly better than its predecessor at finding feasible 
configurations for hard deadlines. It successfully configured thousands of cases with 
soft deadlines as well, with complex task structures. It successfully configured a 
realistic task system for e-commerce, without intervention. 
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