
Heuristic Optimization of Scheduling and Allocation
for Distributed Systems with Soft Deadlines

Tao Zheng, Murray Woodside

Dept. of Systems and Computer Engineering,
Carleton University, 1125 Colonel By Drive

Ottawa, Ontario, Canada K1S 5B6
{zhengtao, cmw} @ sce.carleton.ca

Abstract. This paper studies optimal deployment and priorities for a class of
distributed real-time systems which have complex server tasks, many
concurrent scenarios, operations with deterministic or stochastic execution
demands, arbitrary precedence between operations, and hard or soft deadline
requirements. The soft deadlines take the form of a required percentage of
responses falling within the deadline. This work improves on an earlier
optimization approach which was only applied to hard deadlines. As before,
heuristic measures derived from solutions of layered queueing models are used
to guide step-by-step improvement of the priorities and allocation, searching for
a feasible solution which meets the soft deadline requirements. Effectiveness is
demonstrated on a range of examples including thousands of individual cases.

1. Introduction

Performance specifications in many systems take the form of a soft deadline for each
class s of responses, which execute a scenario also labeled s. A soft deadline is
defined here as a requirement that the response time Rs for scenario s should satisfy a
deadline Ds with some probability αs. This may be written as:

Ps = Prob (Rs > Ds) ≤ αs (αs ≥ 0) (1)

A zero value for αs defines a hard deadline; greater than zero a soft deadline.
This work describes a method for adjusting the priorities and allocations of the

tasks in a distributed system, to satisfy such requirements. Unlike most work that
simultaneously addresses priorities, allocation and deadlines, this work considers
systems with some degree of randomness in their CPU demands, and with a complex
task structure as described in [4]. The structure can include layers of servers to satisfy
parts of the responses, with contention for service. Such systems and requirements are
common in telecommunications systems, and in business systems. Examples include
directory servers and proxy servers with layered structure, and e-commerce servers.

A great deal of work has been done on systems with hard deadlines (αs = 0) and a
flat task structure. Priority assignment and task (process) allocation were found as two
important issues to meet deadline requirements for hard real-time systems deployed

on multiprocessors. Unfortunately, it has been shown that the problem of assigning
priority to end-to-end tasks [1], which have a chain of subtasks in a distributed
system, and the problem of allocating tasks to processors [11] are both NP-hard
problems. Efficient optimal solutions are not likely available, and heuristic algorithms
must be created to find out feasible solutions. In previous related work, Tindel, Burns
and Wellings used simulated annealing to find priority assignments and task
allocations at the same time [19]. Garcia and Gonzalez Harbour proposed a Heuristic
Optimized Priority Assignment (HOPA) algorithm which schedules transactions
consisting of a chain of actions (subtasks) in a distributed system, to meet end-to-end
hard deadlines [8]. Peng, Shin et al. proposed two branch-and-bound algorithms to
allocate periodic tasks with precedence constraints to minimize the maximum
response time [13]. Hou and Shin proposed an algorithm to find an assignment which
maximizes the probability of meeting deadlines, and also to schedule the tasks, called
the Module Allocation Algorithm [10].

To evaluate Ps for soft deadlines (αs > 0) and stochastic execution patterns, the
distribution of the response time Rs must be found. Dingle, Harrison and Knottenbelt
presented a technique for the numerical determination of response time densities in
Generalized Stochastic Petri Net (GSPN) models [2]. Simulation methods can also be
used, although they are more expensive in run-time.

 El-Sayed et al in [4] considered the same problem, but for hard deadlines only.
That paper described a heuristic optimization technique called the Planner, which
used measures computed from a layered performance model to identify promising
moves in the priority values and the allocations. The Planner met or surpassed other
algorithms on test cases from the literature, and solved a large number of randomly
generated problems of moderate size (with 16 tasks in four layers). The Planner, like
this work, used simulation to determine Ps. Its application to soft deadlines was
proposed in [4] but was not attempted.

The present work improves on the Planner in several ways, to be more effective on
hard deadlines. The new version, called Planner2, is then evaluated on many small
and large systems with hard and soft deadlines. On a large set of randomly generated
stochastic systems, it was used to discover a property or characterization which
indicates cases which are feasible for soft-deadline schedulability. The
characterization takes account of the average processor utilizations, a latency factor,
and the coefficient of variation of the execution demands of the tasks. The latency
requirement increases with the variance of the demands.

This paper is organized as follows. Section 2 briefly introduces the Layered
Queueing Networks (LQN) model which is used as the performance model in this
paper. Section 3 provides the optimization algorithm of the Planner2 based on the
LQN simulation results and shows how it works. Section 4 applies the optimization
approach to soft real-time systems with stochastic execution demands. Section 5 gives
the conclusions.

2. The Layered Queueing Networks (LQN) Model

The layered queueing networks (LQN) model, presented by Woodside et al and
others, is a performance model for systems with distributed software servers
[5][6][17][20][22]. It extends queueing networks to model software servers and
logical resources in a canonical way, including hardware devices, software processes,
nested services, precedence constraints and multithreaded tasks.

Env2Env1

EnvP1 EnvP2

CPU2

CPU1

Net wor k Del ay: 1. 3

The deadl i nes can' t be met j ust
under pr i or i t y adj ust ment .
The deadl i nes wi l l be met when
TaskE i s r eal l ocat ed t o CPU1.

TaskB

en_b1

TaskA

en_a1
a1 a2

TaskC

en_c1
c1 c2

TaskD

en_d1
d1 d2

3

TaskE

en_e1 en_e2

1 (10)

Execut i on Demands:
 a1: 12
 a2: 0
 en_b1: 6
 c1: 9
 c2: 0
 d1: 9
 d2: 0
 en_e1: 1. 1
 en_e2: 1. 1

Per i ods and Deadl i nes(95%) :
 Env1: 50
 Env2: 50

I ni t i al Pr i or i t i es:
 TaskA: 2
 TaskB: 1
 TaskC: 3
 TaskD: 2
 TaskE: 1

Task Task (or Pr ocess) : pr ogr am i n execut i on

ent r y

a

Ent r y: ser vi ce por t

Act i vi t y: uni t of execut i on

CPU CPU: r esour ce

Synchr onous Cal l

Asynchr onous Cal l

For war di ng Cal l

Fig. 1. An Example of an LQN model

In an LQN model, a task represents a software or hardware object which may
execute concurrently, such as the tasks in a real-time system. A task has one or more

entries which define its different services and are equivalent to classes in a queueing
network. When a single-threaded task is busy serving a request to one entry, it cannot
serve any other requests. An entry consists of some activities or phases which are the
smallest execution units. Activities may have arbitrary precedence relationships (e.g.
AND fork or join, OR fork or join) [7].

LQN tasks, entries, activities and interactions provide a description which is quite
close to software architecture models. Figure 1 shows an example LQN model, with
parallelograms representing tasks, rectangles on their interfaces for entries, internal
rectangles for activities and their precedence, and arrows to denote interactions. Three
types of interactions are described in LQNs: a synchronous call (shown in diagrams
by a solid line with a filled arrowhead), an asynchronous call (a solid line with an
open arrowhead), and a forwarding call (a dashed line with a filled arrowhead).

Both analytic and simulation solvers may be useful. In this paper, all the results are
produced by an LQN simulation tool. The confidence interval for every result is no
more than ±10%, meaning that all the results should be accurate within ±10% with
95% confidence. In most cases the actual results are much more accurate, of the order
of 1%.

There are several ways to create LQN models. Petriu and Shen proposed a method
to derive an LQN model from a Unified Modelling Language (UML) design model of
the software, using the UML Profile for Schedulabilty, Performance and Time [16].
Petriu and Woodside described an algorithm to transform Use Case Maps (UCM)
scenario models into LQN performance models [15]. El-Sayed generated LQN
models and also guided the optimization from a model in a proprietary scenario
language which is no longer available [3] (the lack of the inputs needed to use the
Planner was one of the motivations behind this work).

Figure 1 is an example LQN model with two scenarios, both of which require 95%
of the responses to meet the deadline. There are five tasks running on two CPUs,
joined by a network (which is not shown). The activities and the network delays are
stochastic, with exponential delays. TaskE is initially allocated on CPU2. The initial
allocation and priorities are infeasible. Because there is higher communication cost
between TaskA (on CPU1) and TaskE (3 calls per request) than between TaskD (on
CPU2) and TaskE (1 call per request), the Planner2 reallocates TaskE to CPU1,
giving a feasible solution.

3. The Optimization Algorithm

The goal of Planner2 can be stated as the minimization of a penalty function V(A,P)
over a set A of task allocations and a set P of priorities for the tasks:

V(A,P) = ∑

s
Criticalitys

Criticalitys = 0 Ps ≤ αs
Criticalitys = eβ(Ps-αs) Ps > αs (2)

V(A,P) is defined to be zero if the performance goal is met for all scenarios, or
positive otherwise.

Briefly, A and P are initialized using heuristic algorithms, and the model of the
system is solved. A set of scoring functions are computed to rank the scenarios, tasks
and processors according to how they will contribute to improvement. These scores
are used to select a change in priority or allocation. The search succeeds if V(A,P) = 0
or fails if V(A,P) > 0 and no step can be found that gives an improvement.

The original Planner is described in [3][4], and Planner2 follows the same outline
with changes in important details. For reasons of space, only the modified Planner2
algorithm will be described, and the changes.

Algorithm
1. Initialize the configuration:

a) Use the Multifit-Com algorithm [21] for the initial allocation,
b) Give higher initial priority to tasks with fewer threads, on the same

processor. Break ties by the Proportional-Deadline-Monotonic algorithm
[18].

2. Check termination; use the V(A,P) metric defined by Eq. (2) to estimate the
solution quality. If it is zero, go to 5. Otherwise go to 3.

3. Use the TaskWaitingMetric metric defined by Eq. (3) below to select a task
with the largest value for priority increase. Estimate the solution quality. If
V(A,P) is zero, go to 5. Otherwise go to 4.

4. Restore the configuration which has the smallest V(A,P) metric so far. Use the
ComGainMetric metric defined in Eq. (4) below to select a task with the
largest value, and a new CPU for it to move to. Estimate the solution quality.
If V(A,P) is zero, go to 5. If failure conditions (on maximum total steps or on
running out of alternatives to try) are satisfied, go to 6. Otherwise, go to 3.

5. Stop. A feasible solution is found.
6. Failed

The improvements over the Planner in [4] include:

• A different method for initializing the priorities based on the number of threads
(higher priority to a task with fewer threads), and breaks ties by applying the
Proportional-Deadline-Monotonic (PDM) algorithm. The original uses PDM
entirely. The change was found to improve the success rate of the optimization.

• The V(A,P) metric in Planner used eβPs if Ps > αs , giving a step at Ps = αs whose
height depends on αs; here it is always a unit step. This normalizes the components
of V(A,P) and balances the importance of violations in all scenarios.

• Planner used a single scoring function TaskMetric to identify the best task for
changes, and this was the sum of two functions which are used separately in
Planner2:

TaskWaitingMetric(t) = 1/U(t) ∑
s

Criticalitys W(s,t) (3)

where U(t) is the utilization by task t of its processor, and W(s,t) is the total waiting
time of task t in scenario s (these values are obtained from the LQN simulation
report), and
 ComGainMetric(t, c) = ∑ CommOV(m) - ∑ CommOV(m) (4)

 ∀m∈ nonLocalMsgs(c) ∀m ∈LocalMsgs(t)

where nonLocalMsgs(c) is the set of non-local physical messages of task t
between CPU c and the local CPU of task t, LocalMsgs(t) is the set of local
physical messages of task t and CommOV(m) is the overhead caused by the
message m, plus the change in network delay.

In Planner2 the first function is used for priority adjustment, and the second for
task re-allocation.

• The priority levels of tasks are all forced to be distinct in Planner2, while equal
priorities were allowed in [4]. Distinct priority levels decrease the sources of
uncertainty in the response time.

• The priority adjustment strategy is simple in the Planner. The priority of the task
with the worst TaskMetric metric will be raised one level higher. If the failure
condition is met (i.e. the maximum step is reached), the priority adjustment stops.
This strategy can hang up in a loop and fail to reach a better solution when one is
available. To avoid this problem, the new priority adjustment strategy raises the
priority level of the task with the largest TaskWaitingMetric by one level. If this
priority combination occurred before (i.e., if a loop is found), then the priority level
of this task will be raised to the highest priority level among all the tasks. If the
new priority combination occurred twice before, then the priority adjustment stops
and the Planner2 considers task reallocation. This strategy is heuristic, but it
worked well in the evaluations of section 4.1.

The table shown in Figure 2 follows the steps in the algorithm for the model shown

in Figure 1. Rs, Ps and V(A,P) are given for the two scenarios.

4. Evaluation and Demonstration

Three sets of results will be described to demonstrate the success of the new
version.

4.1 Evaluation of the New Priority Adjustment Strategies for Hard Deadlines

The new priority adjustment strategies were evolved partly to improve the
optimization for hard deadlines. The improvement compared to [4] was evaluated by a
battery of randomly generated cases with between two and eight independent periodic
tasks on one processor. These test cases satisfy the requirements for rate monotonic
scheduling [12], so the results could be compared with an exactly optimal solution.
The fraction of the results found by Planner or Planner2 over which are exactly
optimal is called its “success ratio” in the results shown in Figure 3 below.

Step Candidate
Task

Actions And States R s P s V(A,P)

0 CPU1: TaskA > TaskB
CPU2: TaskC > TaskD > TaskE

33.781
23.405

0.092917
0.0444

1.903615

1 TaskE Raise priority of TaskE
CPU1: TaskA > TaskB
CPU2: TaskC > TaskE > TaskD

27.953
24.165

0.0294
0.05095

1.014352

2 TaskD The priority combination
occurred before. Raise priority
of TaskD to the highest level
CPU1: TaskA > TaskB
CPU2: TaskD > TaskC > TaskE

33.801
23.436

0.093402
0.04505

1.917514

3 TaskE Raise priority of TaskE
CPU1: TaskA > TaskB
CPU2: TaskD> TaskE > TaskC

29.015
24.168

0.044317
0.051117

1.016896

4 TaskE Raise priority of TaskE
CPU1: TaskA > TaskB
CPU2: TaskE > TaskD > TaskC

25.031
24.728

0.014767
0.054333

1.067153

5 TaskD

TaskE

The priority combination
occurred before.
TaskD has the highest priority,
its priority can’t be raised any
more.
The best configuration is
restored (step1).
The TaskE has best benefit to be
reallocated to CPU1 with the
highest priority.
CPU1: TaskE > TaskA > TaskB
CPU2: TaskC > TaskD

18.138
25.225

0.0066833
0.049467

0

Fig. 2. Optimization steps of LQN model in Figure 1

Fourteen sets of cases were constructed with different combinations of the number
of tasks and the total utilization (the utilization is the sum, over the tasks, of CPU
time divided by the period). 50 cases were generated for each combination, giving 700
cases in total. To increase the difficulty of these cases, the initial priorities of the tasks
were set to the reverse order to that assigned by the rate monotonic algorithm (thus, a
task with a shorter period was given a lower priority). The results from the original
Planner algorithm [4] and the new priority adjustment strategies are compared in
Figure 3.

Number Of

Tasks
Utilization Success Ratio %

(Original [4])
Success Ratio %

(New)
2 0.82 100 100
2 0.90 100 100
3 0.77 100 100
3 0.90 100 100
4 0.75 98 100
4 0.90 91.67 100
5 0.74 94 100
5 0.90 80 100
6 0.73 98 100
6 0.90 40 100
7 0.72 96 100
7 0.90 42.86 100
8 0.72 94 100
8 0.90 33.33 100

 Fig. 3. Test cases and results

The new strategies are a definite improvement. They have found a feasible solution
in every case which is feasible under rate monotonic scheduling, whereas the original
algorithm had a significant number of failures, especially with larger task numbers
and utilizations.

4.2 Evaluation of Planner2 with Soft Deadlines

The Planner2 was equally successful with random CPU demands and soft deadlines,
and on more complex systems with layered servers. Two evaluations are described
here, first for a large set of randomly generated layered systems, and second for an
application case study with a realistic architecture.

4.2.1 Layered Randomly-generated Cases with Stochastic Demands

Figure 4 shows an LQN introduced in [4] to demonstrate the robustness of
optimization on hard real-time applications with deterministic CPU demands that
were selected randomly. The evaluation is extended here to soft deadlines and
stochastic execution demands.

The main characteristics of the randomly generated parameters are:
• Every scenario has a fixed period and deadline,

Deadlines = Demands * L (6)
where L is the laxity factor, taking values between 1.9 and 6

• The deadline requirement is that the deadline miss rate is no more than 5%
• The average utilization of all the processors is adjusted to take a selected fixed

value for a given case, chosen between 0.4 and 0.8
• The coefficient of variation CV of the execution demand was fixed, taking values

0.0 (deterministic), 0.1, 0.5 or 1.0 (exponential) for all the tasks.

Task1 Task4Task3Task2

Task9Task5 Task6

Task10 Task11

Task8Task7

Task14Task13Task12

Task16Task15

Dr i ver 1 Dr i ver 4Dr i ver 3Dr i ver
2

Per i od1

Deadl i ne1

Per i od2

Deadl i ne2

Per i od3

Deadl i ne3

Per i od4

Deadl i ne4

 Fig. 4. Random statistical models

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

0.4 0.5 0.6 0.7 0.8
Utilization

Lmin

CV = 0.0

CV = 0.1

CV = 0.5

CV = 1.0

 Fig. 5. Minimum laxity factor value providing feasibility for different combinations

of the coefficient of variation and the processor utilization

There were altogether 240 different combinations for the coefficient of variation,

laxity factor and utilization. 50 cases were generated for each combination, and all
12000 cases were optimized by the Planner2. Figure 5 shows some of the results.

For each combination of utilization and CV, Figure 5 shows the minimum laxity
factor value (Lmin) for which a feasible allocation and priority solution was found for
all 50 cases. We observe that:
• For a given utilization, the required minimum laxity factor increases as the

coefficient of variation increases, and as the utilization increases.
• The minimum laxity factor with large coefficient of variation (e.g. 1.0) increases

much faster than that with small coefficient of variation (e.g. 0.0) as the utilization
increases. This indicates the extreme difficulties to meet deadline requirements
with large coefficient of variation and high utilization.

For larger laxity values, the fraction of cases that is found to be infeasible is
positive and increases with laxity value.

The Figure can be interpreted as a heuristic guideline for feasibility of a set of soft
deadlines based on a system’s utilization and coefficient of variation values. For
example, with an average utilization of 0.6 and CV = 1.0, the laxity factor for all tasks
should be at least 3.5. However this guideline is only for a 95% success rate and
provides no guarantees.

4.2.2 RADS Bookstore Model

This example is a simplified e-commerce site described in [14] by Petriu and
Woodside, called the RADS Bookstore model. The model describes a 3-tier client-
server system (client, application and database tiers) with stochastic behaviour. The
customer has 7 scenarios: browsing the stock, viewing a detailed item description,
adding or removing items to or from shopping cart, checking out the items in
shopping cart, registering and logging into the RADS bookstore. The administrator
can update the inventory and fill the outstanding back orders. Figure 6 is the
simplified LQN model of RADS bookstore, originated from a diagram in [14]. The
model has been adapted as follows:
• The set of Customers represented by the Customer task have a random think time

between requests to the system, and a probability for making each type of request.
There is one Administrator task.

• Each scenario for the Customer and Administrator is governed by a pseudo task in
the second layer, running on a pseudo processor ScenarioProc. The pseudo tasks
are used to collect response times and to set deadlines.

• The scenario deadlines for Customer are all set to 500ms, and the scenario
deadlines for Administrator are set to 6000 ms.

• The deadline miss rates for scenarios are required to be no more than 10%.

Customer Administrator

Cust
Browse

Cust
Register

Cust
Checkout

Cust
LoginCustView Cust

RemoveCustAdd Adm
Update

AdmBack
order

RADSbookstore

Server

ShoppingCart

InventoryMgr

Database

CustomerAccount

BackorderMgr

CustomerDB

CustomerProc AdminProc

ScenarioProc

BookstoreProc

DatabaseProc

 Fig. 6. Simplified LQN model of RADS Bookstore

The model was analyzed with 50, 100, 150, 200, 250, 300 and 350 customers.
Because there is only one processor in the application tier, there is no task
reallocation, and priority adjustment is the only optimization option. In the baseline
model all the tasks on processor BookstoreProc and processor DatabaseProc are
scheduled by the FIFO discipline (i.e. all the tasks are assigned the same priority).

The optimized model will be compared to the baseline model. It turns out that the
Customer scenarios easily meet their deadlines, so the experimental results in Figure 7
only show the miss rates for the two Administrator scenarios. These are greatly
improved by the optimization. In the baseline model, the miss rates for the two
administrator's scenarios increase rapidly when the number of customers increases,
and the deadline requirements couldn’t be met when the number of customers is 200

or more. In the optimized model, the miss rates of the two Administrator scenarios are
held roughly constant, and the deadline requirements are met for all cases.

This case study shows how the optimization approach can be usefully applied to
find a runtime configuration for a complex hierarchical client-server system with soft
deadlines and stochastic behaviour. The performance of the result is comparable to the
redesign proposed in [15], which was determined with considerable analysis and
required restructuring the database subsystem. This is an outstanding success for an
automated procedure.

0

5

10

15

20

25

30

50 100 150 200 250 300 350
User Number

M
is

s
R

at
e

Miss Rate For
AdmBackorder
(baseline)

Miss Rate For
AdmBackorder
(optimized)

Miss Rate For
AdmUpdate
(baseline)

Miss Rate For
AdmUpdate
(optimized)

 Fig. 7. Miss rates of baseline and optimized model for scenario AdmBackorder and
AdmUpdate

5.0 Conclusions

An improved method for optimizing the configuration of a layered real-time system
has been described. It is intended to be useful to software designers who wish to
evaluate a software design “at its best”, without the effort of manually tuning the
deployment. It adjusts the priorities of tasks competing for a processor, and the
allocation of tasks to processors, searching for a feasible configuration (meaning, one
that meets soft deadlines on percentiles of responses). It can equally be used to
configure systems with hard deadlines, to be met by 100% of responses. The
percentiles can be different for different scenarios.

The Planner2 is significantly better than its predecessor at finding feasible
configurations for hard deadlines. It successfully configured thousands of cases with
soft deadlines as well, with complex task structures. It successfully configured a
realistic task system for e-commerce, without intervention.

Acknowledgements
This work was supported by the Natural Sciences and Engineering Council of

Canada through its program of Discovery Grants, and by the Ontario government
through its OGSST program of scholarships.

References

[1] R. Bettati, “End-to-end scheduling to meet deadlines in distributed systems”, Ph.D. thesis,
Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois, USA, March 1994.

[2] N. J. Dingle, P. G. Harrison, W. J. Knottenbelt, “Response time densities in Generalized
Stochastic Petri net models”, In Proceeding of the Third Workshop on Software and
Performance, Rome, July, 2002

[3] H.M. El-Sayed, D. Cameron, and C.M. Woodside, "Automated performance modeling
from scenarios and SDL designs of distributed systems", In Proc. of the Int. Symposium
on Software Engineering for Parallel and Distributed Systems (PDSE'98), Kyoto, April
1998

[4] H.M. El-Sayed, D. Cameron, C. M. Woodside, “Automation Support for Software
Performance Engineering”, Proc. Joint Int. Conf. on Measurement and Modeling of
Computer Systems (Sigmetrics 2001/Performance 2001), Cambridge, MA, 2001, ACM
order no. 488010, pp 301-311.

[5] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, and C.M. Woodside, “A toolset
for performance engineering and software design of client-server systems”, Performance
Evaluation, 24 (1-2):117-135, November 1995.

[6] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and M. Woodside, “Performance
analysis of distributed server systems”, Proceedings of The Sixth International
Conference on Software Quality, Ottawa, Canada, October 28-30, 1996, pp. 15-26.

[7] G. Franks, “Performance analysis of distributed server systems”, Ph.D. thesis, Dept. of
Systems and Comp. Eng., Carleton University, Dec. 1999.

[8] J.J.G. Garcia and M. Gonzalez Harbour, “Optimized priority assignment for task and
messages in distributed hard real-time systems”, Proc. IEEE Workshop on Parallel and
Distributed Real-Time Systems, California, pp. 124-132, April 1995.

[9] Mark K. Gardner, “Probabilistic Analysis and Scheduling of Critical Soft Real-Time
Systems”, Thesis of Doctor of Philosophy, in Computer Science in the Graduate College
of the University of Illinois at Urbana-Champaign, 1999

[10] C.J. Hou and K.G. Shin, “Allocation of periodic task modules with precedence and dead-
line constraints in distributed real-time systems”, in Proc. of the Real Time system
symposium, pp. 146-155, 1992

[11] J.Y.T. Leung, J. Whitehead, “On the complexity of fixed-priority scheduling of periodic
real-time tasks”, Performance Evaluation, 2, (4), pp. 237-250, Dec. 1982.

[12] C.L. Liu, J.W. Layland, “Scheduling algorithms for multiprogramming in a hard real-time
environment”, J. Assoc. Computing. Mach., v 20, pp 46-61, 1973.

[13] D.T. Peng and K.G. Shin, “Static allocation of periodic tasks with precedence constraints
in distributed real-time systems”, In Proc. of the 9th Intl. Conf. On Distributed computing
systems, pp. 190-198, 1989.

[14] Dorin Petriu, Murray Woodside, "Analysing Software Requirements Specifications for
Performance", . Third Int. Workshop on Software and Performance, Rome, July 2002

[15] Dorin C. Petriu, Murray Woodside, "Software Performance Model from System
Scenarios in Use Case Maps” , International Conferences on Modelling Techniques and
Tools for Computer Performance Evaluation, p141-p158, 2002

[16] Dorina C. Petriu, Hui Shen "Applying the UML Performance Profile: Graph Grammar-
Based Derivation of LQN Models from UML specifications, International Conferences
on Modelling Techniques and Tools for Computer Performance Evaluation, p159-p177,
2002

[17] J. R. Rolia and Kenneth Sevcik, “The method of layers”, IEEE Transactions on Software
Engineering, Vol. 21, No. 8, pp. 689-700, 1995.

[18] Jun Sun, “Fixed Periodic Scheduling of Periodic Tasks with End-To-End Deadlines”,
Ph.D. thesis, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois, USA, March 1996.

[19] K.W. Tindel, A. Burns, and A.J. Wellings, “Allocating hard real-time tasks: an NP hard
problem made easy”, Real-Time Systems, 4(2):145-165, June 1992.

[20] C.M. Woodside, “Throughput calculation for basic stochastic rendezvous networks”,
Performance Evaluation, Vol. 9, No. 2, pp. 143-160, 1989.

[21] C.M. Woodside and G.M. Monforton, “Fast allocation of processes in distributed and
parallel systems”, IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 2,
Feb. 1993.

[22] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majumdar, “The stochastic
rendezvous network model for performance of synchronous client server-like distributed
software”, IEEE Transactions on Computers, 44(1):20-34, January 1995.

