Automation Support for Software Performance

Engineering
Hesham El-Sayed, Don Cameron Murray Woodside
Nortel Networks, Ltd, Ottawa, Canada Carleton University, Ottawa, Canada
{helsayed | dcameron}@nortelnetworks.com cmw@sce.carleton.ca
ABSTRACT cost platform, or to evaluate a design that will be deployed on

To evaluate the performance of a software design one must create qnany platforms.

model of the software, together with the execution platform and Much of the previous work on software performance evaluation
configuration. Assuming that the “platform”: (processors, net- requires that the configuration should be specified first. C.U.
works, and operating systems) are specified by the designer, aSmith, in a series of works defining a discipline of software per-
good “configuration” (the allocation of tasks to processors, priori- formance engineering, always assumes that the configuration is
ties, and other aspects of the installation) must be determined.known [19][23]. Authors such as Kahkipuro [12] and Hoeben [9],
Finding one may be a barrier to rapid evaluation; it is a more seri- deriving models from UML specifications of software, have simi-
ous barrier if there are many platforms to be considered. This larly required that the deployment be fully specified.

paper describes an automated heuristic procedure for configuring a|gorithms to optimize the configuration have been studied exten-
software system described by a layered architectural software sj,ely for some kinds of real-time systems with hard deadlines and
model, onto a set of processors, and choosing priorities. The proce-simple taskseach of which encapsulates a single activity. Many
dure attempts to meet a soft-real-time performance specification, yegyits are also limited to independent periodically activated tasks
in which any number of scenarios have deadlines which must be yith no predecessor-successor relationships. The classic results on
realized some percentage of the time. It has been successful in conyaie-monotonic scheduling [13][14] give priorities only for a single

figuring large systems with both soft and hard deadlines. processor; but they were incorporated by Dhall and Liu into a
method for assignment and scheduling on a number of processors
1.0 INTRODUCTION [4]. Storch and Liu described heuristics for including communica-

A software design cannot be evaluated for performance by itself. tions costs [20], and Hou and Shin used a branch and bound
Other factors in determining the performance can be grouped into approach to optimally allocate and schedule tasks, so as to mini-
the platform, meaning the processors, networks, operating system mize the probability of missed deadlines [10].

and middleware, and theonfiguration meaning the allocation of |5 more complex scenarios with precedence relationships and sim-
processes to processors, with their priorities. The software, plat- pje tasks (one activity per task), Garcia and Harbour [8] developed
form and configuration together make a description that can be 4 heyristic iterative algorithm for assigning fixed priorities, given
modelled, simulated and evaluated against delay specifications. Itan gliocation, and Etemadi et al. [6] improved on it. Allocation
is difficult to create a good configuration quickly if there are many g4 priorities together were determined by Tindell et al. [22] and
processes with complex interactions, executing many scenariosgangos et al. [18] for multiple periodic scenarios, each with a hard

with delay specifications, and if there are many alternative plat- geadline equal to its period, using heuristic approaches.

forms to be evaluated. ) . . . . I
Configurations which consist of allocations and a periodic sched-

The automatic configurer described here attempts to find a satisfacje (a timing cycle) have also been studied. Ramamritham [16]

tory configuration, given the software, a platform, and optional gescribed an intelligent exhaustive search, exploiting prior cluster-

configuration constraints. This makes it easier to search for a low jq of tasks based on communications. Peng, Shin and Abdelzaher
[15] gave a branch-and-bound approach for similar systems, which
they say is better because it does not require the clustering step.

The present research was part of a project on automated software
design by scenarios. The software design is created from the speci-
fications of a set of scenarios, a layered performance model is
derived automatically as described in [5], and the model is used to
evaluate the performance and generate a feasible configuration, as
described in the present paper. The present configuration step is
self-contained, provided one puts the design into a suitable form.



The advantage of the integrated automation process is that the def-

initions flow from stage to stage without manual translation. ENV Control Monitor I/FControl Actuator
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As far as we know the present work is the first to configure systems %

which combine precedence relationships in multiple scenarios &% it

with complex tasksComplex tasks implement multiple activities

through multiple entries, can be revisited during a scenario, and init_donE)zl

may have entries which are involved in different scenarios. These

complex tasks are representative of real software tasks in many E@

systems. Examples are server tasks that are used in several scenar- log

ios, interface management tasks, and tasks that make remote pro- E’E ckpt

cedure calls (with activities before and after). The Configuration i

Planner described below provides a static allocation and fixed pre- actuate I:|:|

emptive priorities, using a heuristic iterative improvement algo- lf]

rithm following an intelligent initial configuration. It is adaptable E‘:’j c2 sample

to a variety of types of performance requirements, including hard

real-time, soft real-time and average delay specifications. return_sanfple_value EIH
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2.1 _R_epresentatlon of the de,SIQn i ) FIGURE 1. Message Sequence Chart for the Remote
The initial state of the software design, before configuration Interface Controller scenario

begins, can be in various forms; here it will be described by a set of
Message Sequence Charts (MSCs) showing the scenarios, and
alternatively by a Collaboration Diagram (part of UML [1]) show-

ing the interacting objects. In either case it will be captured in a
model with architectural and performance features, called a Lay-
ered System Model, which corresponds closely to a performance
model called a Layered Queuing Network or LQN [7][17][24][26].

The scenario illustrated by the MSC in Figure 1 “Control”

describes a Remote Interface Controller which activates a remote
interface with a monitor and an actuator, which in turn takes a sam-
ple value of an environmental measure and returns it, as well as
logging the request locally. The vertical bars represent locations or

objects in the system, the arrows are for messages between objects,
and the boxes are for activities executed within an object. The left-
most bar in the Figure represents the environment of the system,
sending a start event to the Control task which in turn initializes
the Monitor, triggers its logging function, and commands the
remote interface task to take the sample.

The Layered Queueing Network Model (LQN) shown in Figure 2

describes the software at the level of concurrent tasks that offer dif-
ferent services, or (equally) as active objects that offer different
methods to their client objects. It embeds the sequence detail from
the MSC or the collaboration diagram within the objects, redraws
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FIGURE 2. Layered Queueing Network Model for the Remote Interface Controller
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FIGURE 3. LQN model for an example with two scenarios

them asconcurrent tasksepresented by parallelograms, and iden- to be the same task). A separate entry is included for each different
tifies an entry within each task for each different message it message received by a task, illustrated here by the two entries C1
accepts during the scenario. The activities in the MSC (labelled a1, and C2.

b2, etc.) are attached in Figure 2 to the entry which triggers them . . .

within each task, along with dummy activities (labelled m1, m2, 2.2 Evaluation of configuration performance

etc.) which are introduced to send messages and receive repliesThe Configuration Planner takes the software description and a
The activities are connected by predecessor/successor arcs into thdescription of the execution environment, and configures the soft-
LQN connectors, so for instance the path in Control forks three ware into the environment. The present version assumes a set of
ways after m3, one path being an asynchronous message to Monifrocessors (not necessarily homogeneous) connected by a single
tor, the other two triggering a3 and m5. This is an AND-fork. Itis communications fabric with a characteristic delay. It assumes
also possible to have an AND-join, OR-fork connectors such that known CPU demands for communications overhead, which is a
one of the output paths is triggered, OR-join connectors, and function of the messages being passed, and of whether the message
loops, although these are not shown in the example. The notationis local or remote. Tasks will have fixed pre-emptive priorities, a
used in Figure 2 for sequences of operations is conventional, and iscommonly used priority strategy in real-time kernels.

much like the execution graph defined in [19] or the task graph The goal of configuration is to satisfy response time constraints for
defined in [22] and many other works. The only unusual aspect is gach scenario. The response deTayo each arrival event in sce-
that activities may send messages to other tasks, but here we hav%arios should be less than a desired defy in at least a given
kept message activities separate from activities which do work. . .
percentage of cases. In the MSC the response completion will

The intertask arrows represent three kinds of interactions, labelled o . -
always be indicated by a reply to the environment (even if the soft-

on Figure 2: synchronous (send-reply) interactions have solid d t actuall d hich should arri ithi
arrowheads (with the replies indicated by incomplete short arrows ware does not actually send a message), whic should arrive within
delayDs. The LQN was evaluated for the probabikty

with open heads), asynchronous messages have open arrowhead
and forwarding interactions have a dashedstyle of line and a solid
arrowhead. Forwarding interactions are a feature of the LQN
framework which describe a task which sends a message and waits
for a reply, but the request is forwarded from one server to the next
before a reply is sent directly back to the originator. An example could b&; = Prob {T; > 300 msec } < 0.05, for a sce-

An Environment task is provided to drive the scenario, and to nario numbered as 1. For hard deadlines the probajplity set to

receive the response at the end, and this task is driven by a streanf€ro- For soft deadlines, characteristic of telecommunications sys-
of input events as shown in Figure 2. tems, it might be 0.05 or 0.01. For hard deadlines a valuBgof
greatter than 0 indicates that the response targets have not (yet)
been met and further search is needed to get a satisfactory configu-
ration. This work will consider only hard deadlines, but the Plan-
er is adaptable to soft deadlines as well, by using a larger value of

Delay Requirement: Py = Probf{ T> Ds} <pg (1)

An LQN may combine several scenarios from several MSCs. Fig-
ure 3 shows a system with two scenarios, driven by environment
tasks ENV-1 and ENV-2. The rest of the tasks are merged (that is,
if a task with the same name appears in two scenarios it is assumed'
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FIGURE 4. A 16-node optical ring and protection swtiching system, showing the two processors for node 1, and
the activities they perform. The dashed arrows in this diagram show parts of Scenario 1 propagated around the
ring from the right (solid arrows, from the left).

Ps: 3.1 Initial Allocation

There is a stream of arrival events for each scenario, with a known 1€ initial allocation of tasks to processors was found using MUL-

average arrival rate. These arrivals may be periodic, with a fixed 1'FIT-COM [25], an algorithm for optimal allocation of tasks with
arrival period, or may have a random inter-arrival interval. execution and communications demands, to a homogeneous set of

processors. MULTIFIT-COM was used because it was shown in
2.3 A Protection Switching System [25] to be robust and quick compared to competing algorithms,
A typical application is the protection switching software for a and to scale well. It balances the load between processors, which is
BLSR (Bidirectional Line Switching Ring, an optical ring configu- ~ agreed to be generally favorable to schedulability [3][11][18]. It
ration), shown in Figure 4. It has 16 nodes with two processors €xtends the bin-packing approach of MULTIFIT [2] to account for
each, and 256 activities altogether, although the 16 nodes may becommunications costs.
assumed to be symmetrical. For a single failure on a ring with less MULTIFIT-COM requires knowledge of the execution demand of
than 1200 km. of fiber, the protection operation should propagate each task and of the communications overhead between each pair
knowledge of the failure, and re-route all traffic to use the remain- of tasks (when not co-located), in executing one scenario. The
ing connectivity, in less than 50 msec. Although nodes react in a present situation is a little more complex, since there are multiple
symmetrical fashion, there were three different scenarios to be scenarios being executed concurrently. Here the scenarios are com-
considered depending on how far from the node the failure occurs bined, taking advantage of the fact that the rates of activation of the
(the nearest neighbour in the traffic direction, giving Scenario 1 scenarios are all assumed to be known. The averagé.mitenes-
shown in Figure 4, nearest in the other direction, and elsewhere). sages to each entgycan be found by summing up the number of
The LQN for a fault occurring to the left of Node 1 is shown in messages to entgywithin each scenario, times the activation rate
Figure 5. Space does not permit showing the full model, however of the scenario. Then the processor utilizatidggimposed by the
the Figure does show that there are many complex tasks, and taskentry is f, times the sum of the activity demands for engryand

which participate in multiple scenarios. the processor utilization of tasks the sum of the entry values:
3.0 THE INITIAL CONFIGURATION Ug = fq g Ep U= % Ug
The initial configuration is an allocation of tasks to processors, alle ellt

determined by a simple heuristic allocator, and an initial set of pri-

orities determined by a simple heuristic rule. Once established andSimilarly the CPU utilization to send or to receive messages that

evaluated, the configuration is then iteratively improved, as go between entried ande (when they are on separate processors)

described in Section 4. is the product of the frequencfy of these messages, and the exe-
cution demandEy, per message. The communications load
between tasks is the sum over the entries at both ends. Thus:
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tistical evaluation in [25] were used, plus one more which
= = appeared to be useful for this variation of the problem (as identi-
Uge = faeFde Yt Ude PP P (

ddtedu

Now suppose the value dfy, found for local communications
(whent andu are allocated to the same processok)fg,, and the
value for remote communications i&* ,. The penalty for sepa-
rate allocation is thedUy, = U** y, - U*,. In these calculations
each individual activity has its own execution demdggdwhich
contributes tdJ, and thus tdJ;, and each message has its own size

parameters which determine its contribution to the execution
demandEge and thus tdJy, and toAUy,. There is no restriction to

homogeneous activities or messages.

With this notation the MULTIFIT-COM algorithm is adapted to
the present problem as follows:

* the “execution cost” of a tagkvas taken ab; +
¥, U*y, the expected total utilization of its entries by all

scenarios plus the local communications overhead (the
minimum value for communications overhead),

® the “communications cost” between a pair of taskad

u, when they are allocated to different processors, was
taken af\Uy,.

MULTIFIT-COM combines the results of a variety of policies to

fied in [25], these are strategies numbered 2,4,6,8,10,12,13 and
19).

It should be noted that, unlike some other methods (including the
methods of [18] and [22]), MULTIFIT-COM does not take into
account memory size constraints. Memory is not as important as
fact or as it was once, and we feel that additional memory can be
added if the configuration demands it.

3.2 Initial Priorities

Given an initial allocation, the initial priorities on each processor
were determined by the proportional deadline method of Sun et al.
[21]. The deadline value of an entry is a part of the deadline of its
scenario, proportional to the average execution demand of the
entry per scenario repetition. The task deadline value is a weighted
average of entry values weighted by their relative frequency.

The task priority is based on the estimated laxity, calculated as the
difference between the deadline value and the weighted average
demand (in which entry demands are weighted in the same way, by
entry frequency).

3.3 Evaluation of the Initial Configuration
Given the initial configuration, the ability of the system to meet its
deadlines can be evaluated. The approach taken was to simulate

order the tasks and the bins (processors) and to decide how to packhe system, record the occurrence of deadline hits and misses, and

the bins. In this work eight different policies were used. Instead of
just taking the best solution as in [25], eight possibly different
starting points were passed to the improvement algorithm

estimate the metriQ, as follows.

Deadline misses are measured by a quargif),which captures
how far scenario s is from its delay targ&{(s)is zero for a sce-

described below. The seven policies selected by the extensive stanario which meets its specification, and increaseBgadefined in



Eqg. (1) increases; in this work the function usedS{®)was sages, which might become inter-processor messages.
This sum is then multiplied by the casbf an inter-

S(9 =0, Ps<pg processor message:
c
m
) AC(s ) = _mO Remote) - Z ‘m
Nremotd } mO Localt

S(3 = exp (BPY, (Ps>py)
with P being the number of processoixcal(t) being the set of
o ) ) - messages between tasind all other tasks on the same processor,
The definition of$(s)(W|th some arbltrary positive valge @Dwas Remote(tpeing the set of messages involving el other proc-
chosen to penalize all misses, and to give accelerating importancegssors, andNremote(t)being the number of processors with tasks
to the penalty as the probability of missed deadlines increasesihat communicate with task The costc, of a message may be
beyond the permitted level different for each message for instance from the message size.
The overall quality of a configuration is then measured by the sum The tasks WittRragi > O are now ranked in order of the value of

Rrask With the Candidate task being the one satisfying:

Q= 9 3) max
5 Rrast) = " {Rrasit}
and a configuration which meets its timing requirements for all This task has the greatest potential to improve the overall meeting
scenarios ha® = 0. of deadlines. If only one scenario fails to meet its deadline, only
] tasks which participate in that scenario will have a non-zero score
3.4 Task ranking R, and one of them will be the Candidate task.

The goal of improvement is to satisfy the timing constraint of Eq.

(1) for all the deadline targets. If some target is not met, the 3.5 Making the configuration change steps
improvement algorithm ranks the tasks, and then attempts to makeHaving found the highest ranking task the following changes
changes, beginning with the highest ranking task. After one suc- are considered, in this order:

cessful change, the constraints are checked and if necessary,

A i thﬁ) increase the priority of* by one step, on its processor, as
ranking is done again.

described in Section 3.6.
The ranking metrirasy(t) indicates the contributions of tasko b) re-allocate it to another processor, the one that is least stressed,
delay in all the scenarios that miss their deadlines, by way of the according to the CPU metriRep, defined below in Section
following sum: 3.7; reset the priorities on this processor using the Initial Pri-
ority rule in Section 3.2.
- 1 . - . . . . .
Rrasidh = [UTASK('[)-JZ S(9w,(s 1) c) split the task, dividing its functionality between two tasks, as
3 described in Section 3.8. This may then permit priorities to

discriminate between critical and non-critical functions of the

in which Utag?) is the utilization by task of its processor, and same task, and indicates that the clustering of these functions
S(s)is given in Eq. (2). The factor Wiagdt) was introduced within the same task is a poor choice at least for performance

because experience showed it is useful to raise the rank of lightly riasons. No(;e t.hatthdlwdlr(]jg lthe éask I|| ketthc;s 'Sa hyr;qth(itlcal
loaded tasks. The weight;(s,t) is roughly the delay that task change, made in the modet and evaluated as an Iindication to

. . ; . . . the designer; in fact the task may not be divisible in this way.
introduces into scenaris, which might be reduced by changing 9 ! y MISIDIE In TIS way

the priorities and allocations. It was found as These three changes are considered in the order of difficulty
required to achieve them in practice. A priority change is relatively
wl(s, t) = W(s ) +AC(s 1) simple to carry out, an allocation change is more difficult but at
least keeps the design intact, and a task splitting requires some
where software redesign.

*  W(s,b)is the contribution to the critical path of scenario  The Planner algorithm can be summarized as follows:
s, made by the waiting time of taskor its processor 1.
(expressed as mean wait time per response)

* AC(s,t)estimates the decrease thaghtoccur in delays
due to communications overheads, if taglere moved
to another processor, and local messages on the same
processor are taken as “free”. It does this by counting the
number of remote messages froper response, and per
other processor, which might conceivably disappearina 3. Try a priority change as in a) above, followed by step 2, unless
reallocation, and subtracting the number of local mes- the Candidate Tagk already has the highest priority, or six

Initialize the configuration

2. Evaluate the configuration by simulating the model, and if the
deadline requirements are met, the algorithm stops with condi-
tion SUCCESS. If the requirements are not met but the solu-
tion quality metricQ has decreased, the previous step is said to
have succeeded.



successive priority changes have failed to give any improve-
ment inQ. In these cases pass on to step 4.

Try re-allocation of task*, as in b) above, followed by step 2,
unless

®* t* has already been re-allocated (with no successful pr
ority steps since then),
it is not permissible to re-allocat®, due to allocation
constraints,
the target processor utilization would then exceed 0.95.
If re-allocation is not permitted pass on to step 5.

5. Splitt* as in ¢) above, followed by step 2; if this is impossible
(for instance it may have only one entry), pass on to step 6

6. Consider the next-ranked task totheand go to step 3. If the
list of tasks withRrask > O is exhausted, exit the algorithm

with condition FAILURE.

TABLE 1. Priority changes for the system of

3.6 Priority changes

One task priority is changed at a time, by increasing the priority of
the highest ranking task by one step. A step is related to the prior-
ity groups on each processor, within which the tasks have equal
priority. When a task is moved up one priority step, if it is in a
group with other tasks then it moves into a new group created to
hold it, between its old group and the one above. If it is in a group
by itself, it joins the next group up.

To show the operation of the priority change steps, the example of
Figure 3 was adjusted to have a poorly chosen initial set of priori-
ties, which gave unsatisfactory delays (after the actual initializa-
tion step produced a satisfactory configuration at once). In this
case priority change steps alone were enough to give a satisfactory
configuration, as shown in Table 1.

Figure 3, from first modified starting point

Step | t* Action T, To Py, P, QEg. (3)

Initial configuration as Figure 3 70.004, 28.0 1.0,0 3269017

1 A [CPU1 priorities change from 70.004, 28.0 1.0,0 3269017
D>(A,B) tooD>A>B

2 A |CPUL1 priorities to: (D, A) >B 70.004, 28.011 1.0,0 3269017

3 A [CPUL1 priorities to:A>D>B 67.0, 40.0 1.0,0 3269017

4 B [CPUL priorities to: A > (D, B) 67.0, 40.0 1.0,0 3269017

5 B |CPUL1 prioritiesto: A>B>D 67.0, 55.0 1.0,0 3269017

6 C | CPU2 priorities from E>C to (E,C) 57.0, 67.0 0,0 0: SUCCEBS

3.7 Re-allocation

A re-allocation step moves only the Candidate té#skrom its
present processor to a target proceggomwhich is chosen as hav-
ing the least contribution to deadline failure. The target processor
is found by ranking the processors according to the metric

Repu(p):

Repu(P) = U(p) g Rraskt
tlp

in which U(p) is the utilization of processqr andRyasyt) is the

ranking measure of a taskunning on processq. The candidate
processop* is the one with the smallest valueRyp(p):

chu(pq = mF:n{ chu(p)}

In this sense, the other tasks phcontribute the least to deadline
failures and presumably have the greatest tolerance for competi-
tion fromt*.

To show how the Configuration Planner arrives at a re-allocation
step, a second poorly chosen starting point was imposed on the
system of Figure 3, giving the steps shown in Table 2. Priority
changes are only rejected when no new step can be taken, or the
candidate task is the highest in priority already. CPU1 is chosen for
the re-allocation because of its utilization. Priority was set equal to
the highest-priority task that it communicates with, or to the maxi-
mum priority on the new processor.

3.8 Task Splitting

The rationale for task splitting is that a task may combine urgent
operations with others that are not. If the task can only do one
operation at a time, then a more-urgent request may be waiting in
the message queue while a less-urgent operation is being per-
formed, which is a form of priority inversion. Separating the
entries into separate tasks means that a higher priority can be given
to the more urgent operations.

Splitting in this way assumes that the distinction in urgency is
associated with different entries in the task. If more and less urgent
streams of requests arrive at the same operation, the operation
itself can in some cases be split into two entries, which do the same
functional operation for different requests. Then the splitting can
proceed.

Some tasks cannot be split, because for example all the entries may
update a single data structure, so the task acts as a critical section.



TABLE 2. Configuration changes for the system of Figure 3,showing re-allocation, from second modified starting

point
step t* Action Ty, T Py, Py QEq. (3)
70.0, 30.0 1.0,0 3269017
1 A Priority: from D > (A,B)toD>A>B 70.0, 30.0 1.0,0 3269017
2 A Priority: to (D, A) > B 71.36, 30.30 10,0 3269017
3 C Priority: from E > C to (E, C) 70.02, 36.54 1.0,0 3269017
4 C Priority:to C > E 77.50, 77.51 1.0,1.0| 6538034
5 E ... Try priority (E, C), but this has been visited befof&0.02, 40.0 1.0,0 3269017
... Try priority E > C , but this has been visited before;
...t* has highest priority
SO reallocate candidate task E to CPU1
with priority order: (E, D, A) > B
A Priority: to A > (E, D) >B 70.0,41.0 1.0,0 3269017
B Priority: to A> (E, D, B) 70.0, 56.0 10,0 3269017
B Priority: to A > B > (E, D) 59.0, 57.0 0,0 0

To identify the task to be split and the entry to be split off, the

entrye* is the one with the largest valueRgyTr(€):

entries in task* were ranked by a measuRg\Tr\€) Which com-

bines the criticality of the scenario with the delay contribution of
the entry to that scenario.

RENTR¢e) = ZW(S 9S(9
S

in which sis the scenario containing the enteyand\W(s,§ is the
processor waiting contributed by activities@fo the critical path

RenTrYED = m:X{ RenTRY®I(eD O}

and a new task is made with one en&¥, and priority one step
above the old task, allocated to the same processor. The tisk
has the entrg* removed from it.

To show the operation of task splitting, a different poorly chosen
starting point was imposed on the example in Figure 3, giving the
evolution shown in Table 3. There are a number of steps taken

of scenarics (i.e. that part ofV(s,t)due to entrye). The candidate

TABLE 3. Configuration changes of the system of Figure 3 showing task splitting

Step t* Action Ty, T Py, Py Q, Eq. (3)
0 70.00, 28.00 1.0,0 3269017
1 A Priority: from D>(A,B)toD >A>B 70.00, 28.00 10,0 3269017
2 A Priority: to (D,A) >B 70.004,28.011 10,0 3269017
3 A Priority: to A>D>B 72.41, 32.61 1.0,0 3269017
4 B Priority: to A> (D, B) 72.34,34.52 10,0 3269017
5 B Priority: to A>B>D 72.34,41.26 1.0,0 3269017
6 C Priority: from E > C to (E, C) 62.00, 69.14 1.0, 0,001 3269018
7 C Priority: to C > E 62.00, 69.14 1.0, 0.001 3269018
8 C Task C has highest priority 47.00, 69.14 0, 0.001 1.013

Reallocating task C to CPUL1 gives utilization > 0.95

SO: Split candidate task into C_1, C_2

new priority order: C_1>C_2>E
9 E Priority: to C_1 > (C_2, E) 47.00, 69.14 0, 0.001 1.013
10 E Priority:to C_1>E >C_2 47.00, 57.00 0,0 0

before task splitting is forced. First, re-allocation must be rejected, 4.0 EXPERIENCE

which happens at step 5 because it leads to excessive utilization. Three forms of experience will be described as evidence that the

Configuration Planner is robust and effective: the Protection
Switching system, a system of simple tasks, and a large set of ran-
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FIGURE 6. The 11 scenarios in the system studied by Tindall et al, and Santos et al, showing the
activities (named Ti for i = 0 to 42), their CPU demands in msec, their precedence relationships,
and the message sizes in bytes.

T41[2]

domly chosen systems with complex tasks. In this base case (we may call it Case TSO0) there were 8 processors
. o and communications overhead demand was zero. To extend the
4.1 Protection Switching System results evaluation, the difficulty of the configuration problem was

A realistic set of execution demands for the tasks in Figure 5 were increased in four successive additional experiments:
used in the study. Much of the initial configuration of this system
was constrained by imposed symmetry of the 16 nodes, and of
allocation on the two processors in each node. Only the priorities
remained to be chosen, and the initial priorities chosen by MULTI-
FIT-COM were satisfactory. When a poor set of priorities was Case TS2: The messaging overhead was increased to 3 microsec
imposed as an artificial starting point, the algorithm found a satis- Per byte. Now only 7 out of 8 optimization trials succeeded, and

Case TS1: A CPU overhead of 1 microsec/byte was included for
interprocessor messages, for both the sender and receiver. All eight
trials succeeded, in an average of 16 steps.

factory set of priorities in just three steps. those took an average of 23 steps.
. Case TS3: The number of processors was reduced from 8 to 7 and
4.2 Tindell/Santos example the messaging overhead set to zero. Now 6 out of 8 trials suc-

Asystem of simple tasks of the classic form was described by Tin- ceeded, and those took an average of 26 steps.

dell e_t al. in [22]. They an_d Santos ?t "?1" [18]_described heuristic Case TS4: With 7 processors the messaging overhead was set to 1
algorithms for task allocations and priority assignments. As shown microsec/byte. Now 5 out of 8 trials succeeded, and those took an
in Figure 6 the system has 43 activities in 11 periodic scenarios average of 51 steps.

with deadlines equal to their periods, and eight processors. There ] ) n
is a propagation delay of 1 msec for interprocessor messages, and he Conﬂ_guranon Planner appears to tackle these more difficult
communications overhead demand was set to zero. About half theProblems in a robust way, and does not bog down completely. The
tasks are constrained to allocation to a particular processor, indi- Variety of starting points appears to be a strength.

cated by processor numbers in small boxes to the right of the task.
This system was translated into an LQN with one task per activity,
and with the precedence of activities maintained. Eight initial con-
figurations with five distinct solutions were found.

4.3 Statistical evaluation

The effectiveness of the Planner on more difficult systems with
complex (multi-entry, multi-activity) tasks, which are shared
between scenarios, was evaluated on a large sample of systems
The Planner succeeded in finding successful configurations fromyiin randomly generated parameters and graded levels of diffi-
all eight starting points. It took an average of four steps to succeed.cuny. Two fixed software architectures were designed, of which
Thus, apart from the fact that it does not respect certain memory igure 6 shows one; each architecture had four scenarios and 16
constraints, it is just as successful as the algorithms in [22] and ta5ks (of which 11 participate in more than one scenario), and tasks
[18]. send an average of 1.3 messages during a scenario. The determin-



FIGURE 7. LQN structural template used for half of
the statistical evaluation cases
FIGURE 9. Number of steps required to find a
satisfactory configuration, for those trials which
ended in success, against the CPU utilization factor

istic execution demands were selected randomly for each entry, F and the laxity factor L

from the range [80,120]. Then in each case two factoend U
were chosen to adjust the difficulty of the configuration tésis.a
laxity factor, such that the deadline of each scenario was set to

give: Ds = demangx L , wheredemandestimates the CPU

by largerL and smalletJ, which is only reasonable; they indicate
that a laxity factor of about 3 is enough to give success almost

always, and in a moderate number of steps.
demand of the scenario ahdtook values between 2.1 and 310.

is the average processor utilization, and determined the period of
each scenario a?Periods = deman%x U U took values

It appears from the results that the strategy and heuristics used for
optimization are robust and guide the algorithm efficiently for a
feasible design. For example, the optimization method succeeded
between 0.4 and 0.8. in finding a feasible solution more than 80% of the time when the
Laxity factor was 2.6 or greater, or the average CPU utilization
tion problem; similarly a large value &fmakes deadlines easier to was less than 50%. In a(.1diltion., when the average CPU utilization
' was around 60%, the optimization method only performed 20 steps

achieve. Although the use of teandU factors tends to define on average to find a feasible process allocation and priority assign-
systems whose execution can be fitted into the deadlines, random g P P y 9

. S . -~ 'ment to the software design. Even when the average CPU utiliza-
variation can make a scenario critical path longer than its deadline,

. . o L
and these cases were deleted and replaced. Contention and prect'-on was as high as 80%, the optimization method only performed

) L 5 steps on average to find a feasible solution.
dence can still make some of the remaining cases unschedulable, P 9

however.
5.0 CONCLUSIONS

Five values ol and five ofU gave 25 combinations, and for each - : . . .
. The heuristic Configuration Planner described here determines
of these, 60 cases were generated randomly, to give 1500 cases for - Co . . .
. . : . allocations and priorities and may split tasks, to achieve deadline
each architecture, and 3000 cases in all. The ratio of feasible (suc- . ' . oo
. requirements on delays. It assumes fixed pre-emptive priorities,
cessful) casex out of a giveny cases, (where none of tlyecases o :
. . . - . homogeneous processors, and it ignores memory constraints. It
are obviously infeasible) gives the Success Ratio (SR). ( : ) . . -
executes quickly, and it has succeeded in solving a wide range of
The results in Figure 8 and Figure 9 show that success is favoredconfiguration problems.

A large value ofU gives less contention and an easier configura-

The Planner addresses systems with more realistic software struc-
tures and architectures than heretofore studied, including what are
called complex taskswith multiple entries, which participate in
multiple scenarios. The realistic system for protection switching is
an example of complex tasks, but it turned out to have an easy
solution. A range of synthetic problems were more difficult,
including a large system of simple tasks and many large systems of
complex tasks.

The statistical evaluation suggests that easmafigurabilitymay

be understood in terms of average utilization and a laxity factor.
The results suggest that a combination of an overall utilization
around 0.6 and an average laxity factor of about 2.3 is almost
always configurable. These measures need to be tested on addi-

FIGURE 8. Success Ratio for statistical evaluation, tional architectures, but they provide an interesting direction for
against CPU utilization factor F, for different values further investigation
of the laxity factor L )

The testing of the Planner described here is for hard real-time



response requirements, because of the background of the projectf15] D-T. Peng, K.G. Shin, T.F. Abdelzaher, “Assignment and

and the larger number of studies for comparison. However the
measure of satisfaction of requirements is equally well adapted
to soft real-time deadlines, and the Planner should be equally
effective on them; this is the subject of further work.
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