
n

n
U.
r-

is
],
i-

n-
nd
y
ks

s on
e
a
ors

a-
nd
ini-

im-
ed
n
n
d
rd

d-
6]
er-
her
ich
p.

are
eci-
l is
to
, as
p is
m.
ABSTRACT
To evaluate the performance of a software design one must create a
model of the software, together with the execution platform and
configuration. Assuming that the “platform”: (processors, net-
works, and operating systems) are specified by the designer, a
good “configuration” (the allocation of tasks to processors, priori-
ties, and other aspects of the installation) must be determined.
Finding one may be a barrier to rapid evaluation; it is a more seri-
ous barrier if there are many platforms to be considered. This
paper describes an automated heuristic procedure for configuring a
software system described by a layered architectural software
model, onto a set of processors, and choosing priorities. The proce-
dure attempts to meet a soft-real-time performance specification,
in which any number of scenarios have deadlines which must be
realized some percentage of the time. It has been successful in con-
figuring large systems with both soft and hard deadlines.

1.0 INTRODUCTION
A software design cannot be evaluated for performance by itself.
Other factors in determining the performance can be grouped into
the platform, meaning the processors, networks, operating system
and middleware, and theconfiguration, meaning the allocation of
processes to processors, with their priorities. The software, plat-
form and configuration together make a description that can be
modelled, simulated and evaluated against delay specifications. It
is difficult to create a good configuration quickly if there are many
processes with complex interactions, executing many scenarios
with delay specifications, and if there are many alternative plat-
forms to be evaluated.

The automatic configurer described here attempts to find a satisfac-
tory configuration, given the software, a platform, and optional
configuration constraints. This makes it easier to search for a low

cost platform, or to evaluate a design that will be deployed o
many platforms.

Much of the previous work on software performance evaluatio
requires that the configuration should be specified first. C.
Smith, in a series of works defining a discipline of software pe
formance engineering, always assumes that the configuration
known [19][23]. Authors such as Kahkipuro [12] and Hoeben [9
deriving models from UML specifications of software, have sim
larly required that the deployment be fully specified.

Algorithms to optimize the configuration have been studied exte
sively for some kinds of real-time systems with hard deadlines a
simple tasks, each of which encapsulates a single activity. Man
results are also limited to independent periodically activated tas
with no predecessor-successor relationships. The classic result
rate-monotonic scheduling [13][14] give priorities only for a singl
processor; but they were incorporated by Dhall and Liu into
method for assignment and scheduling on a number of process
[4]. Storch and Liu described heuristics for including communic
tions costs [20], and Hou and Shin used a branch and bou
approach to optimally allocate and schedule tasks, so as to m
mize the probability of missed deadlines [10].

In more complex scenarios with precedence relationships and s
ple tasks (one activity per task), Garcia and Harbour [8] develop
a heuristic iterative algorithm for assigning fixed priorities, give
an allocation, and Etemadi et al. [6] improved on it. Allocatio
and priorities together were determined by Tindell et al. [22] an
Santos et al. [18] for multiple periodic scenarios, each with a ha
deadline equal to its period, using heuristic approaches.

Configurations which consist of allocations and a periodic sche
ule (a timing cycle) have also been studied. Ramamritham [1
described an intelligent exhaustive search, exploiting prior clust
ing of tasks based on communications. Peng, Shin and Abdelza
[15] gave a branch-and-bound approach for similar systems, wh
they say is better because it does not require the clustering ste

The present research was part of a project on automated softw
design by scenarios. The software design is created from the sp
fications of a set of scenarios, a layered performance mode
derived automatically as described in [5], and the model is used
evaluate the performance and generate a feasible configuration
described in the present paper. The present configuration ste
self-contained, provided one puts the design into a suitable for

Automation Support for Software Performance

Engineering

Hesham El-Sayed, Don Cameron
Nortel Networks, Ltd, Ottawa, Canada

{helsayed | dcameron}@nortelnetworks.com

Murray Woodside
Carleton University, Ottawa, Canada

cmw@sce.carleton.ca

ects,
ft-
m,
s
e

2
dif-
nt
om
s

The advantage of the integrated automation process is that the def-
initions flow from stage to stage without manual translation.

As far as we know the present work is the first to configure systems
which combine precedence relationships in multiple scenarios
with complex tasks. Complex tasks implement multiple activities
through multiple entries, can be revisited during a scenario, and
may have entries which are involved in different scenarios. These
complex tasks are representative of real software tasks in many
systems. Examples are server tasks that are used in several scenar-
ios, interface management tasks, and tasks that make remote pro-
cedure calls (with activities before and after). The Configuration
Planner described below provides a static allocation and fixed pre-
emptive priorities, using a heuristic iterative improvement algo-
rithm following an intelligent initial configuration. It is adaptable
to a variety of types of performance requirements, including hard
real-time, soft real-time and average delay specifications.

2.0 THE SOFTWARE DESIGN

2.1 Representation of the design
The initial state of the software design, before configuration
begins, can be in various forms; here it will be described by a set of
Message Sequence Charts (MSCs) showing the scenarios, and
alternatively by a Collaboration Diagram (part of UML [1]) show-
ing the interacting objects. In either case it will be captured in a
model with architectural and performance features, called a Lay-
ered System Model, which corresponds closely to a performance
model called a Layered Queuing Network or LQN [7][17][24][26].

The scenario illustrated by the MSC in Figure 1 “Control”
describes a Remote Interface Controller which activates a remote
interface with a monitor and an actuator, which in turn takes a sam-
ple value of an environmental measure and returns it, as well as
logging the request locally. The vertical bars represent locations or

objects in the system, the arrows are for messages between obj
and the boxes are for activities executed within an object. The le
most bar in the Figure represents the environment of the syste
sending a start event to the Control task which in turn initialize
the Monitor, triggers its logging function, and commands th
remote interface task to take the sample.

The Layered Queueing Network Model (LQN) shown in Figure
describes the software at the level of concurrent tasks that offer
ferent services, or (equally) as active objects that offer differe
methods to their client objects. It embeds the sequence detail fr
the MSC or the collaboration diagram within the objects, redraw

FIGURE 1. Message Sequence Chart for the Remote
Interface Controller scenario

init

init_done

Control Monitor

b1

actuate

return_sample_value

sample

log

ENV Actuator

a2

ckpt

I/FControl

b2

get_sample

sample_done

a1

a4

a3
c2

c1

d1

a4
a1 a2

a3

d1

c2c1

ENV

Control Task

I/F Control

Actuator Task

get_sample

m1

m2

m6

sample_done, reply to ENV

m7 (reply to start entry,

start entry

entry ckpt

actuate entry

sample entry

b2b1

Monitor Task

m3

init entry

log entry

m4

m5

Synchronous request

Forwarded request

Asynchronous message

Legend

x

Reply message

Computation activity

Communication activity
activity m5)

FIGURE 2. Layered Queueing Network Model for the Remote Interface Controller

input stream

(the reply to get_sample
 arrive within Ds sec.)

m0

m8

 should

init init_done

ckpt

actuate

sample

ent
C1

a
ft-
t of
ngle
es
a

sage
a

for

will
ft-
hin

ys-

yet)
gu-

n-
of
them asconcurrent tasksrepresented by parallelograms, and iden-
tifies an entry within each task for each different message it
accepts during the scenario. The activities in the MSC (labelled a1,
b2, etc.) are attached in Figure 2 to the entry which triggers them
within each task, along with dummy activities (labelled m1, m2,
etc.) which are introduced to send messages and receive replies.
The activities are connected by predecessor/successor arcs into the
LQN connectors, so for instance the path in Control forks three
ways after m3, one path being an asynchronous message to Moni-
tor, the other two triggering a3 and m5. This is an AND-fork. It is
also possible to have an AND-join, OR-fork connectors such that
one of the output paths is triggered, OR-join connectors, and
loops, although these are not shown in the example. The notation
used in Figure 2 for sequences of operations is conventional, and is
much like the execution graph defined in [19] or the task graph
defined in [22] and many other works. The only unusual aspect is
that activities may send messages to other tasks, but here we have
kept message activities separate from activities which do work.
The intertask arrows represent three kinds of interactions, labelled
on Figure 2: synchronous (send-reply) interactions have solid
arrowheads (with the replies indicated by incomplete short arrows
with open heads), asynchronous messages have open arrowheads,
and forwarding interactions have a dashedstyle of line and a solid
arrowhead. Forwarding interactions are a feature of the LQN
framework which describe a task which sends a message and waits
for a reply, but the request is forwarded from one server to the next
before a reply is sent directly back to the originator.

An Environment task is provided to drive the scenario, and to
receive the response at the end, and this task is driven by a stream
of input events as shown in Figure 2.

An LQN may combine several scenarios from several MSCs. Fig-
ure 3 shows a system with two scenarios, driven by environment
tasks ENV-1 and ENV-2. The rest of the tasks are merged (that is,
if a task with the same name appears in two scenarios it is assumed

to be the same task). A separate entry is included for each differ
message received by a task, illustrated here by the two entries
and C2.

2.2 Evaluation of configuration performance
The Configuration Planner takes the software description and
description of the execution environment, and configures the so
ware into the environment. The present version assumes a se
processors (not necessarily homogeneous) connected by a si
communications fabric with a characteristic delay. It assum
known CPU demands for communications overhead, which is
function of the messages being passed, and of whether the mes
is local or remote. Tasks will have fixed pre-emptive priorities,
commonly used priority strategy in real-time kernels.

The goal of configuration is to satisfy response time constraints
each scenario. The response delayTs to each arrival event in sce-

nario s should be less than a desired delayDs, in at least a given

percentage of cases. In the MSC the response completion
always be indicated by a reply to the environment (even if the so
ware does not actually send a message), which should arrive wit
delayDs. The LQN was evaluated for the probabilityPs:

Delay Requirement: (1)

An example could beP1 = Prob {T1 > 300 msec } < 0.05, for a sce-

nario numbered as 1. For hard deadlines the probabilityps is set to

zero. For soft deadlines, characteristic of telecommunications s
tems, it might be 0.05 or 0.01. For hard deadlines a value ofPs

greatter than 0 indicates that the response targets have not (
been met and further search is needed to get a satisfactory confi
ration. This work will consider only hard deadlines, but the Pla
ner is adaptable to soft deadlines as well, by using a larger value

ENV-1

Task A

Task C

stim1

m1 m2

m3

entry C1 entry C2

c2

a1

c1

b1

Task B

CPU1

m4
d1

ENV-2

Task D
stim2

Task E

entry E1

e1

CPU2

prio(A) = 1
prio(B) = 1
prio(C) = 1
prio(D) = 2
prio(E) = 2

Activity Cost
a1=12 b1=15 c1=30
c2=15 d1=18 e1=10

Period(stim1) = 70 period(stim2) = 70

Perf. Requirements:
deadline(stim1) = 60 deadline(stim2) = 70

Synchronous request

Forwarded RPC

Asynchronous message

Legend

a1 Computation activity

Communication activity

Message Cost:
stim1=0, stim2=0
m1=0, m2=0
m3=0, m4=0

FIGURE 3. LQN model for an example with two scenarios

Ps Prob Ts Ds>{ } ps<=

L-

et of
in
s,
h is
It
r

f
pair
he
le
om-

the

f
e

at
s)
-

d

ps.

There is a stream of arrival events for each scenario, with a known
average arrival rate. These arrivals may be periodic, with a fixed
arrival period, or may have a random inter-arrival interval.

2.3 A Protection Switching System
A typical application is the protection switching software for a
BLSR (Bidirectional Line Switching Ring, an optical ring configu-
ration), shown in Figure 4. It has 16 nodes with two processors
each, and 256 activities altogether, although the 16 nodes may be
assumed to be symmetrical. For a single failure on a ring with less
than 1200 km. of fiber, the protection operation should propagate
knowledge of the failure, and re-route all traffic to use the remain-
ing connectivity, in less than 50 msec. Although nodes react in a
symmetrical fashion, there were three different scenarios to be
considered depending on how far from the node the failure occurs
(the nearest neighbour in the traffic direction, giving Scenario 1
shown in Figure 4, nearest in the other direction, and elsewhere).

The LQN for a fault occurring to the left of Node 1 is shown in
Figure 5. Space does not permit showing the full model, however
the Figure does show that there are many complex tasks, and tasks
which participate in multiple scenarios.

3.0 THE INITIAL CONFIGURATION
The initial configuration is an allocation of tasks to processors,
determined by a simple heuristic allocator, and an initial set of pri-
orities determined by a simple heuristic rule. Once established and
evaluated, the configuration is then iteratively improved, as
described in Section 4.

3.1 Initial Allocation
The initial allocation of tasks to processors was found using MU
TIFIT-COM [25], an algorithm for optimal allocation of tasks with
execution and communications demands, to a homogeneous s
processors. MULTIFIT-COM was used because it was shown
[25] to be robust and quick compared to competing algorithm
and to scale well. It balances the load between processors, whic
agreed to be generally favorable to schedulability [3][11][18].
extends the bin-packing approach of MULTIFIT [2] to account fo
communications costs.

MULTIFIT-COM requires knowledge of the execution demand o
each task and of the communications overhead between each
of tasks (when not co-located), in executing one scenario. T
present situation is a little more complex, since there are multip
scenarios being executed concurrently. Here the scenarios are c
bined, taking advantage of the fact that the rates of activation of
scenarios are all assumed to be known. The average ratefe of mes-

sages to each entrye can be found by summing up the number o
messages to entrye within each scenario, times the activation rat
of the scenario. Then the processor utilizationUe imposed by the

entry is fe times the sum of the activity demands for entrye, and

the processor utilization of taskt is the sum of the entry values:

Similarly the CPU utilization to send or to receive messages th
go between entriesd ande (when they are on separate processor
is the product of the frequencyfde of these messages, and the exe

cution demandEde per message. The communications loa

between tasks is the sum over the entries at both ends. Thus:

FH PFSM CTRL SM

SQM

AM

MH
MH

AM

SQM

SM CTRL PFSM FH

RT RT

Sub-node A Sub-node B

Node 1
Node 2

Node 3

Node 16

Node 15

Shows flow of messages if protection request comes from left (I.e. from Node 16)

Shows flow of messages if protection request comes from right (I.e. from Node 2)

FIGURE 4. A 16-node optical ring and protection swtiching system, showing the two processors for node 1, and
the activities they perform. The dashed arrows in this diagram show parts of Scenario 1 propagated around the

ring from the right (solid arrows, from the left).

Ue f e Ea Ut Ue
e t∈
∑=,

a e∈
∑=

h
ti-
and

he

as
be

r
al.
its
the
ted

the
age
, by

ts
late
and
Now suppose the value ofUtu found for local communications

(whent andu are allocated to the same processor) isU*tu, and the

value for remote communications isU** tu. The penalty for sepa-

rate allocation is then∆Utu = U** tu - U* tu. In these calculations

each individual activity has its own execution demandEa which

contributes toUe and thus toUt, and each message has its own size

parameters which determine its contribution to the execution
demandEde and thus toUtu and to∆Utu. There is no restriction to

homogeneous activities or messages.

With this notation the MULTIFIT-COM algorithm is adapted to
the present problem as follows:

• the “execution cost” of a taskt was taken asUt +

ΣuU* tu, the expected total utilization of its entries by all

scenarios plus the local communications overhead (the
minimum value for communications overhead),

• the “communications cost” between a pair of taskst and
u, when they are allocated to different processors, was
taken as∆Utu.

MULTIFIT-COM combines the results of a variety of policies to
order the tasks and the bins (processors) and to decide how to pack
the bins. In this work eight different policies were used. Instead of
just taking the best solution as in [25], eight possibly different
starting points were passed to the improvement algorithm
described below. The seven policies selected by the extensive sta-

tistical evaluation in [25] were used, plus one more whic
appeared to be useful for this variation of the problem (as iden
fied in [25], these are strategies numbered 2,4,6,8,10,12,13
19).

It should be noted that, unlike some other methods (including t
methods of [18] and [22]), MULTIFIT-COM does not take into
account memory size constraints. Memory is not as important
fact or as it was once, and we feel that additional memory can
added if the configuration demands it.

3.2 Initial Priorities
Given an initial allocation, the initial priorities on each processo
were determined by the proportional deadline method of Sun et
[21]. The deadline value of an entry is a part of the deadline of
scenario, proportional to the average execution demand of
entry per scenario repetition. The task deadline value is a weigh
average of entry values weighted by their relative frequency.

The task priority is based on the estimated laxity, calculated as
difference between the deadline value and the weighted aver
demand (in which entry demands are weighted in the same way
entry frequency).

3.3 Evaluation of the Initial Configuration
Given the initial configuration, the ability of the system to meet i
deadlines can be evaluated. The approach taken was to simu
the system, record the occurrence of deadline hits and misses,
estimate the metricQ, as follows.

Deadline misses are measured by a quantityS(s),which captures
how far scenario s is from its delay target.S(s)is zero for a sce-
nario which meets its specification, and increases asPs defined in

Fault
Generator

FH T1FH

CTRL

SM

AM

SQM

FH

CTRL

SM

AM

SQM

MH MH

T1FH

CTRL

SM

AM

SQM

MH MH

Node1 Node2 - Node15 Node16

Subnode A Subnode ASubnode A Subnode BSubnode BSubnode B

Legend

Synchronous message

Asynchronous message

Forwarding message

PFSM PFSM

FHFH

CTRL CTRL CTRL

MH MH

SM SM SQMSQMSQM

AM AM AM

SM
RT RT

Reply message

PFSM PFSM PFSM PFSM

FIGURE 5. The Layered System Model for the Protection Switching Software.

Ude f deEde Utu, Ude
d t e u∈,∈

∑= =

.

r,

s

f

ing
ly
re

s

sed,

ri-

s
to
e
ns
ce
al
to

y.

lty
ly
at
me

e
di-
-
to

ss
Eq. (1) increases; in this work the function used forS(s) was

(2)

The definition ofS(s)(with some arbitrary positive value ofβ)was
chosen to penalize all misses, and to give accelerating importance
to the penalty as the probability of missed deadlines increases
beyond the permitted levelps.

The overall quality of a configuration is then measured by the sum

(3)

and a configuration which meets its timing requirements for all
scenarios hasQ = 0.

3.4 Task ranking
The goal of improvement is to satisfy the timing constraint of Eq.
(1) for all the deadline targets. If some target is not met, the
improvement algorithm ranks the tasks, and then attempts to make
changes, beginning with the highest ranking task. After one suc-
cessful change, the constraints are checked and if necessary, the
ranking is done again.

The ranking metricRTASK(t) indicates the contributions of taskt to

delay in all the scenarios that miss their deadlines, by way of the
following sum:

in which UTASK(t) is the utilization by taskt of its processor, and

S(s) is given in Eq. (2). The factor 1/UTASK(t) was introduced

because experience showed it is useful to raise the rank of lightly
loaded tasks. The weightw1(s,t) is roughly the delay that taskt

introduces into scenarios, which might be reduced by changing
the priorities and allocations. It was found as

where

• W(s,t) is the contribution to the critical path of scenario
s, made by the waiting time of taskt for its processor
(expressed as mean wait time per response)

• ∆C(s,t)estimates the decrease thatmightoccur in delays
due to communications overheads, if taskt were moved
to another processor, and local messages on the same
processor are taken as “free”. It does this by counting the
number of remote messages fromt per response, and per
other processor, which might conceivably disappear in a
reallocation, and subtracting the number of local mes-

sages, which might become inter-processor messages
This sum is then multiplied by the costc of an inter-
processor message:

with P being the number of processors,Local(t) being the set of
messages between taskt and all other tasks on the same processo
Remote(t)being the set of messages involving theP-1 other proc-
essors, andNremote(t)being the number of processors with task
that communicate with taskt. The costcm of a message may be

different for each messagem, for instance from the message size.

The tasks withRTASK> 0 are now ranked in order of the value o

RTASK, with the Candidate taskt* being the one satisfying:

This task has the greatest potential to improve the overall meet
of deadlines. If only one scenario fails to meet its deadline, on
tasks which participate in that scenario will have a non-zero sco
R, and one of them will be the Candidate task.

3.5 Making the configuration change steps
Having found the highest ranking taskt* , the following changes
are considered, in this order:

a) increase the priority oft* by one step, on its processor, a
described in Section 3.6.

b) re-allocate it to another processor, the one that is least stres
according to the CPU metricRCPU defined below in Section

3.7; reset the priorities on this processor using the Initial P
ority rule in Section 3.2.

c) split the task, dividing its functionality between two tasks, a
described in Section 3.8. This may then permit priorities
discriminate between critical and non-critical functions of th
same task, and indicates that the clustering of these functio
within the same task is a poor choice at least for performan
reasons. Note that dividing the task like this is a hypothetic
change, made in the model and evaluated as an indication
the designer; in fact the task may not be divisible in this wa

These three changes are considered in the order of difficu
required to achieve them in practice. A priority change is relative
simple to carry out, an allocation change is more difficult but
least keeps the design intact, and a task splitting requires so
software redesign.

The Planner algorithm can be summarized as follows:

1. Initialize the configuration

2. Evaluate the configuration by simulating the model, and if th
deadline requirements are met, the algorithm stops with con
tion SUCCESS. If the requirements are not met but the solu
tion quality metricQ has decreased, the previous step is said
have succeeded.

3. Try a priority change as in a) above, followed by step 2, unle
the Candidate Taskt* already has the highest priority, or six

S s() 0 Ps ps≤,=

S s() exp βPs() Ps ps>(),=

Q S s()
s

∑=

RTASK t() 1
UTASK t()
--------------------------- S s()w1 s t,()

s
∑=

w1 s t,() W s t,() ∆C s t,()+=

∆C s t,()
cm

m Remote t()∈
∑

Nremote t()--------------------------------------
cm

m Localt∈
∑–=

RTASK t∗()
max

t
RTASK t(){ }=

of
or-
ual
a
to
p

of
ri-
a-
is

tory

on
the
ty
the

for
to
i-

nt
ne
in

per-
e
iven

is
ent
tion
me
n

may
tion.
successive priority changes have failed to give any improve-
ment inQ. In these cases pass on to step 4.

4. Try re-allocation of taskt*, as in b) above, followed by step 2,
unless

• t* has already been re-allocated (with no successful pri-
ority steps since then),

• it is not permissible to re-allocatet* , due to allocation
constraints,

• the target processor utilization would then exceed 0.95.
If re-allocation is not permitted pass on to step 5.

5. Split t* as in c) above, followed by step 2; if this is impossible
(for instance it may have only one entry), pass on to step 6

6. Consider the next-ranked task to bet*, and go to step 3. If the
list of tasks withRTASK > 0 is exhausted, exit the algorithm

with condition FAILURE.

3.6 Priority changes
One task priority is changed at a time, by increasing the priority
the highest ranking task by one step. A step is related to the pri
ity groups on each processor, within which the tasks have eq
priority. When a task is moved up one priority step, if it is in
group with other tasks then it moves into a new group created
hold it, between its old group and the one above. If it is in a grou
by itself, it joins the next group up.

To show the operation of the priority change steps, the example
Figure 3 was adjusted to have a poorly chosen initial set of prio
ties, which gave unsatisfactory delays (after the actual initializ
tion step produced a satisfactory configuration at once). In th
case priority change steps alone were enough to give a satisfac
configuration, as shown in Table 1.

3.7 Re-allocation
A re-allocation step moves only the Candidate taskt* from its
present processor to a target processorp*, which is chosen as hav-
ing the least contribution to deadline failure. The target processor
is found by ranking the processors according to the metric
RCPU(p):

in which U(p) is the utilization of processorp andRTASK(t) is the

ranking measure of a taskt running on processorp. The candidate
processorp* is the one with the smallest value ofRCPU(p):

In this sense, the other tasks onp* contribute the least to deadline
failures and presumably have the greatest tolerance for competi-
tion from t* .

To show how the Configuration Planner arrives at a re-allocati
step, a second poorly chosen starting point was imposed on
system of Figure 3, giving the steps shown in Table 2. Priori
changes are only rejected when no new step can be taken, or
candidate task is the highest in priority already. CPU1 is chosen
the re-allocation because of its utilization. Priority was set equal
the highest-priority task that it communicates with, or to the max
mum priority on the new processor.

3.8 Task Splitting
The rationale for task splitting is that a task may combine urge
operations with others that are not. If the task can only do o
operation at a time, then a more-urgent request may be waiting
the message queue while a less-urgent operation is being
formed, which is a form of priority inversion. Separating th
entries into separate tasks means that a higher priority can be g
to the more urgent operations.

Splitting in this way assumes that the distinction in urgency
associated with different entries in the task. If more and less urg
streams of requests arrive at the same operation, the opera
itself can in some cases be split into two entries, which do the sa
functional operation for different requests. Then the splitting ca
proceed.

Some tasks cannot be split, because for example all the entries
update a single data structure, so the task acts as a critical sec

TABLE 1. Priority changes for the system of Figure 3, from first modified starting point

Step t* Action T1, T2 P1, P2 Q Eq. (3)

Initial configuration as Figure 3 70.004, 28.0 1.0, 0 3269017

1 A CPU1 priorities change from

D > (A, B) to: D > A > B

70.004, 28.0 1.0, 0 3269017

2 A CPU1 priorities to: (D, A) > B 70.004, 28.011 1.0, 0 3269017

3 A CPU1 priorities to: A > D > B 67.0, 40.0 1.0, 0 3269017

4 B CPU1 priorities to: A > (D, B) 67.0, 40.0 1.0, 0 3269017

5 B CPU1 priorities to: A > B > D 67.0, 55.0 1.0, 0 3269017

6 C CPU2 priorities from E>C to (E,C) 57.0, 67.0 0, 0 0: SUCCESS

RCPU p() U p() RTASK t()
t p∈
∑=

RCPU p∗()
min

p
RCPU p(){ }=

n
he
en

the
on
an-
To identify the task to be split and the entry to be split off, the
entries in taskt* were ranked by a measureRENTRY(e) which com-

bines the criticality of the scenario with the delay contribution of
the entry to that scenario.

in which s is the scenario containing the entrye, andW(s,e) is the
processor waiting contributed by activities ofe to the critical path
of scenarios (i.e. that part ofW(s,t)due to entrye). The candidate

entrye* is the one with the largest value ofRENTRY(e):

and a new task is made with one entrye*, and priority one step
above the old taskt* , allocated to the same processor. The taskt*
has the entrye* removed from it.

To show the operation of task splitting, a different poorly chose
starting point was imposed on the example in Figure 3, giving t
evolution shown in Table 3. There are a number of steps tak

before task splitting is forced. First, re-allocation must be rejected,
which happens at step 5 because it leads to excessive utilization.

4.0 EXPERIENCE
Three forms of experience will be described as evidence that
Configuration Planner is robust and effective: the Protecti
Switching system, a system of simple tasks, and a large set of r

TABLE 2. Configuration changes for the system of Figure 3,showing re-allocation, from second modified starting
point

step t* Action T1, T2 P1, P2 Q Eq. (3)

70.0, 30.0 1.0, 0 3269017

1 A Priority: from D > (A, B) to D > A > B 70.0, 30.0 1.0, 0 3269017

2 A Priority: to (D, A) > B 71.36, 30.30 1.0, 0 3269017

3 C Priority: from E > C to (E, C) 70.02, 36.54 1.0, 0 3269017

4 C Priority: to C > E 77.50, 77.51 1.0, 1.0 6538034

5 E ...Try priority (E, C), but this has been visited before;
...Try priority E > C , but this has been visited before;
...t* has highest priority
SO reallocate candidate task E to CPU1
with priority order: (E, D, A) > B

70.02, 40.0 1.0, 0 3269017

6 A Priority: to A > (E, D) > B 70.0, 41.0 1.0, 0 3269017

7 B Priority: to A > (E, D, B) 70.0, 56.0 1.0, 0 3269017

8 B Priority: to A > B > (E, D) 59.0, 57.0 0, 0 0

RENTRY e() W s e,()S s()
s

∑=

RENTRY e∗()
max

e
RENTRY e() e t∗∈(){ }=

TABLE 3. Configuration changes of the system of Figure 3 showing task splitting

Step t* Action T1, T2 P1, P2 Q, Eq. (3)

0 70.00, 28.00 1.0, 0 3269017

1 A Priority: from D>(A,B) to D > A > B 70.00, 28.00 1.0, 0 3269017

2 A Priority: to (D,A) > B 70.004,28.011 1.0, 0 3269017

3 A Priority: to A > D > B 72.41, 32.61 1.0, 0 3269017

4 B Priority: to A > (D, B) 72.34, 34.52 1.0, 0 3269017

5 B Priority: to A > B > D 72.34, 41.26 1.0, 0 3269017

6 C Priority: from E > C to (E, C) 62.00, 69.14 1.0, 0,001 3269018

7 C Priority: to C > E 62.00, 69.14 1.0, 0.001 3269018

8 C Task C has highest priority
Reallocating task C to CPU1 gives utilization > 0.95.
SO: Split candidate task into C_1, C_2
new priority order: C_1 > C_2 > E

47.00, 69.14 0, 0.001 1.013

9 E Priority: to C_1 > (C_2, E) 47.00, 69.14 0, 0.001 1.013

10 E Priority: to C_1 > E > C_2 47.00, 57.00 0, 0 0

sors
the

s

for
ight

osec
d

and
uc-

to 1
an

ult
he

ith
d
ems
ffi-
ch

16
sks
min-
domly chosen systems with complex tasks.

4.1 Protection Switching System results
A realistic set of execution demands for the tasks in Figure 5 were
used in the study. Much of the initial configuration of this system
was constrained by imposed symmetry of the 16 nodes, and of
allocation on the two processors in each node. Only the priorities
remained to be chosen, and the initial priorities chosen by MULTI-
FIT-COM were satisfactory. When a poor set of priorities was
imposed as an artificial starting point, the algorithm found a satis-
factory set of priorities in just three steps.

4.2 Tindell/Santos example
Asystem of simple tasks of the classic form was described by Tin-
dell et al. in [22]. They and Santos et al. [18] described heuristic
algorithms for task allocations and priority assignments. As shown
in Figure 6 the system has 43 activities in 11 periodic scenarios
with deadlines equal to their periods, and eight processors. There
is a propagation delay of 1 msec for interprocessor messages, and
communications overhead demand was set to zero. About half the
tasks are constrained to allocation to a particular processor, indi-
cated by processor numbers in small boxes to the right of the task.
This system was translated into an LQN with one task per activity,
and with the precedence of activities maintained. Eight initial con-
figurations with five distinct solutions were found.

The Planner succeeded in finding successful configurations from
all eight starting points. It took an average of four steps to succeed.
Thus, apart from the fact that it does not respect certain memory
constraints, it is just as successful as the algorithms in [22] and
[18].

In this base case (we may call it Case TS0) there were 8 proces
and communications overhead demand was zero. To extend
evaluation, the difficulty of the configuration problem wa
increased in four successive additional experiments:

Case TS1: A CPU overhead of 1 microsec/byte was included
interprocessor messages, for both the sender and receiver. All e
trials succeeded, in an average of 16 steps.

Case TS2: The messaging overhead was increased to 3 micr
per byte. Now only 7 out of 8 optimization trials succeeded, an
those took an average of 23 steps.

Case TS3: The number of processors was reduced from 8 to 7
the messaging overhead set to zero. Now 6 out of 8 trials s
ceeded, and those took an average of 26 steps.

Case TS4: With 7 processors the messaging overhead was set
microsec/byte. Now 5 out of 8 trials succeeded, and those took
average of 51 steps.

The Configuration Planner appears to tackle these more diffic
problems in a robust way, and does not bog down completely. T
variety of starting points appears to be a strength.

4.3 Statistical evaluation
The effectiveness of the Planner on more difficult systems w
complex (multi-entry, multi-activity) tasks, which are share
between scenarios, was evaluated on a large sample of syst
with randomly generated parameters and graded levels of di
culty. Two fixed software architectures were designed, of whi
Figure 6 shows one; each architecture had four scenarios and
tasks (of which 11 participate in more than one scenario), and ta
send an average of 1.3 messages during a scenario. The deter

 T2 [2]

T3 [2] T4 [2] T5 [4]
 T22 [1]

 T23 [1]

T24 [1]

T25 [1]

T26 [1]

T30 [1]

T31 [2]

T0 [4] T7 [2]

T8 [2]

T12 [2]

T13 [2]

T15 [2]

T33 [3] T34 [2]

T9 [8] T10 [14]

T11 [4]

T16 [2]

T17 [2]

T18 [1]

T19 [1]

T20 [1]

T21 [2]

T38 [3]

T40 [2]

 T42 [2]T41 [2]T37 [2]

T35 [2]

T36 [2]

T32 [2]

 T28 [1]T27 [1]

T29 [1]

0

1

2

7

1

1

2

3

0

1

3

2

1

1 3

1,03,22,32,3

7,62,3

7

 6

 Period = 60 Period = 35 Period = 35

T6 [6]

50 150

2060 70
30

Period = 14 Period = 14 Period = 14 Period = 35 Period = 14

Period = 14

Period = 20 Period = 20

T1 [4]

 T14 [2]

T39 [2]

50 30

50

70

60

50

60

50

40 90

150 150

50 50

4050

5050

6060

20

20

40

40
80 60

250

2020

50

FIGURE 6. The 11 scenarios in the system studied by Tindall et al, and Santos et al, showing the
activities (named Ti for i = 0 to 42), their CPU demands in msec, their precedence relationships,

and the message sizes in bytes.

st

for
a
ded
e
n

ion
ps

gn-
za-
ed

es
ine
es,
. It
of

ruc-
are

is
sy

t,
s of

or.
on
st
ddi-
or

e

istic execution demands were selected randomly for each entry,
from the range [80,120]. Then in each case two factorsL andU
were chosen to adjust the difficulty of the configuration task.L is a
laxity factor, such that the deadline of each scenario was set to
give: , wheredemandestimates the CPU

demand of the scenario andL took values between 2.1 and 3.0.U
is the average processor utilization, and determined the period of

each scenario as .U took values

between 0.4 and 0.8.

A large value ofU gives less contention and an easier configura-
tion problem; similarly a large value ofL makes deadlines easier to
achieve. Although the use of theL andU factors tends to define
systems whose execution can be fitted into the deadlines, random
variation can make a scenario critical path longer than its deadline,
and these cases were deleted and replaced. Contention and prece-
dence can still make some of the remaining cases unschedulable,
however.

Five values ofL and five ofU gave 25 combinations, and for each
of these, 60 cases were generated randomly, to give 1500 cases for
each architecture, and 3000 cases in all. The ratio of feasible (suc-
cessful) casesx out of a giveny cases, (where none of they cases
are obviously infeasible) gives the Success Ratio (SR) (x/y).

The results in Figure 8 and Figure 9 show that success is favored

by largerL and smallerU, which is only reasonable; they indicate
that a laxity factor of about 3 is enough to give success almo
always, and in a moderate number of steps.

It appears from the results that the strategy and heuristics used
optimization are robust and guide the algorithm efficiently for
feasible design. For example, the optimization method succee
in finding a feasible solution more than 80% of the time when th
Laxity factor was 2.6 or greater, or the average CPU utilizatio
was less than 50%. In addition, when the average CPU utilizat
was around 60%, the optimization method only performed 20 ste
on average to find a feasible process allocation and priority assi
ment to the software design. Even when the average CPU utili
tion was as high as 80%, the optimization method only perform
35 steps on average to find a feasible solution.

5.0 CONCLUSIONS
The heuristic Configuration Planner described here determin
allocations and priorities and may split tasks, to achieve deadl
requirements on delays. It assumes fixed pre-emptive prioriti
homogeneous processors, and it ignores memory constraints
executes quickly, and it has succeeded in solving a wide range
configuration problems.

The Planner addresses systems with more realistic software st
tures and architectures than heretofore studied, including what
called complex tasks, with multiple entries, which participate in
multiple scenarios. The realistic system for protection switching
an example of complex tasks, but it turned out to have an ea
solution. A range of synthetic problems were more difficul
including a large system of simple tasks and many large system
complex tasks.

The statistical evaluation suggests that ease ofconfigurabilitymay
be understood in terms of average utilization and a laxity fact
The results suggest that a combination of an overall utilizati
around 0.6 and an average laxity factor of about 2.3 is almo
always configurable. These measures need to be tested on a
tional architectures, but they provide an interesting direction f
further investigation.

The testing of the Planner described here is for hard real-tim

FIGURE 7. LQN structural template used for half of
the statistical evaluation cases

Ds demands L×=

Periods demands U×=

FIGURE 8. Success Ratio for statistical evaluation,
against CPU utilization factor F, for different values

of the laxity factor L

FIGURE 9. Number of steps required to find a
satisfactory configuration, for those trials which

ended in success, against the CPU utilization factor
F and the laxity factor L.

g,

e-
d

.

tic
b-

s,

n
,

-
,

.
c

,

-

,

response requirements, because of the background of the project,
and the larger number of studies for comparison. However the
measureQ of satisfaction of requirements is equally well adapted
to soft real-time deadlines, and the Planner should be equally
effective on them; this is the subject of further work.

References

[1] G. Booch, J. Rumbaugh, I. Jacobson,The Unified Modeling
Language User Guide, Addison Wesley, 1998.

[2] E.G. Coffman, M.R. Garey and D.S. Johnson, “An application
of bin-packing to multiprocessor scheduling”, SIAM J.
Comput., vol. 7, pp. 1-17, Feb. 1978.

[3] Wesley W. Chu and L. M. Lau, “Task allocation and prece-
dence relations for distributed real-time systems”, IEEE
transactions on Computers, 36(6):667-679, June 1987.

[4] S.K. Dhall and C.L. Liu, “On a real-time scheduling problem”,
in Operations Research, vol. 26(1), pp. 127-140, Feb. 1978

[5] H.M. El-Sayed, D. Cameron, and C.M. Woodside, “Automated
performance modeling from scenarios and SDL designs of
distributed systems”, In Proc. of the Int. Symposium on
Software Engineering for Parallel and Distributed Systems
(PDSE’98), Kyoto, April 1998.

[6] R. Etemadi, G. Karam, S. Majumdar, “Heuristic algorithms for
priority assignment in flow shops”, Proc. Int Conf. on Per-
formance, Computing and Communications (IPCCC98),
pp 15 - 22, 1998.

[7] G. Franks, A. Hubbard, S. Majumdar, D. Petriu, J. Rolia, and
C.M. Woodside, “A toolset for performance engineering
and software design of client-server systems”, Perform-
ance Evaluation, 24 (1-2):117-135, Nov. 1995.

[8] J.J.G. Garcia and M. Gonzalez Harbour, “Optimized priority
assignment for task and messages in distributed hard real-
time systems”, Proc. of the IEEE Workshop on Parallel
and Distributed Real-Time Systems, California, pp. 124-
132, April 1995.

[9] F. Hoeben, “Using UML Models for Performance Calcula-
tion”, Proc. of Second International Workshop on Soft-
ware and Performance (WOSP2000), pp. 77-82,
September, 2000.

[10] C.J. Hou and K.G. Shin, “Allocation of periodic task modules
with precedence and dead-line constraints in distributed
real-time systems”, in Proc. of the Real-time system sym-
posium, pp. 146-155, 1992

[11] C.E. Houstis, “Module allocation of real-time applications
for distributed systems”, IEEE Transactions on Software
Engineering, vol. 16, pp. 699-709, July 1990.

[12] P. Kahkipuro, “UML Based Performance Modeling Frame-
work for Object-Oriented Distributed Systems”, Proc. of
UML 99, LNCS, Springer Verlag, vol. 1723, pp. 356-371,
1999.

[13] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic sched-
uling algorithms: exact characterization and average case
behavior”, In Proc. of the 10th IEEE Real-Time Systems
Symposium, pp. 166-171, 1989.

[14] C.L. Liu and J.W. Layland, “Scheduling algorithms for multi-
programming in a hard real-time environment”, in Journal
of the Assoc. Computing Mach., vol. 20(1), pp. 46-61,
1973.

[15] D-T. Peng, K.G. Shin, T.F. Abdelzaher, “Assignment and
scheduling communicating periodic tasks in distributed
real-time systems” , IEEE Trans. on Software Engineerin
v 23, n 12, Dec 1997.

[16] K. Ramamritham, “Allocation and scheduling of precedenc
related periodic tasks”, IEEE Transactions on Parallel an
Distributed Systems, 6(4): 412-420, April 1995.

[17] J. R. Rolia and Kenneth Sevcik, “The method of layers”,
IEEE Transactions on Software Engineering, Vol. 21, No
8, pp. 689-700, 1995.

[18] J. Santos, E. Ferro, J. Orozco, and R. Cayssials, “A heuris
approach to the multitask-multiprocessor assignment pro
lem using the empty-slots method and rate monotonic
scheduling”. Real-Time Systems, 13, 167-199 (1997).

[19] C.U. Smith, Performance Engineering of Software System
Addison-Wesley Publishing Co., New York, NY, 1990.

[20] M.F. Storch and J.W.S. Liu, “Heuristic algorithms for peri-
odic job assignment”, In Proceedings of the Workshop o
Parallel and Distributed Real-time Systems, pp. 245-251
Apr. 1993.

[21] Jun Sun, Fixed Periodic Scheduling of Periodic Tasks with
End-To-End Deadlines, Ph.D. thesis, Department of Com
puter Science, University of Illinois at Urbana-Champaign
Urbana, Illinois, USA, 1996.

[22] K.W. Tindell, A. Burns, and A.J. Wellings, “Allocating hard
real-time tasks: an NP-hard problem made easy”, Real-
Time Systems, 4(2):145-165, June 1992.

[23] L. G. Williams, C.U. Smith, “Performance Engineering of
Software Architectures”, Proc of First Workshop on Soft-
ware and Performance (WOSP98), Santa Fe, Oct. 1998

[24] C.M. Woodside, “Throughput calculation for basic stochasti
rendezvous networks”, Performance Evaluation, Vol. 9,
No. 2, pp. 143-160, 1989.

[25] C.M. Woodside and G.M. Monforton, “Fast allocation of
processes in distributed and parallel systems”, IEEE
Transactions on Parallel and Distributed Systems, vol. 4
no. 2, Feb. 1993.

[26] C. M. Woodside, J. E. Neilson, D. C. Petriu, and S. Majum
dar, “The stochastic rendezvous network model for per-
formance of synchronous client-server-like distributed
software”, IEEE Transactions on Computers, 44(1):20-34
January 1995.

	1.0 INTRODUCTION
	2.0 THE SOFTWARE DESIGN
	2.1 Representation of the design
	2.2 Evaluation of configuration performance
	2.3 A Protection Switching System

	3.0 THE INITIAL CONFIGURATION
	3.1 Initial Allocation
	3.2 Initial Priorities
	3.3 Evaluation of the Initial Configuration
	3.4 Task ranking
	3.5 Making the configuration change steps
	3.6 Priority changes
	3.7 Re-allocation
	3.8 Task Splitting

	4.0 EXPERIENCE
	4.1 Protection Switching System results
	4.2 Tindell/Santos example
	4.3 Statistical evaluation

	5.0 CONCLUSIONS

