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Abstract

Budgeting of time or system resources is a possible approach to achieving performance

targets for communications software. The role of any kind of budgeting is to allocate the

available resources to different activities or different parts of a system. Here, the total

permitted time to complete a response is being divided among the activities that must be

completed. However, because allowances must be made for environment delays,

overheads, latencies and so on, a performance model is essential. The model integrates

the various sources of delay, including the execution delay of each activity executed by

the system. Activities are given a budget for resources such as CPU time, which a

developer can track for the activity in isolation, using well-known tools such as profilers.
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1.0 Introduction

1.1 Motivation
When designing the software architecture of a complex distributed software

system, an important consideration is the performance of the resulting system. The

abilities to estimate the future performance of a large and complex distributed software

system at design time, and to iteratively refine these estimates can significantly reduce

the overall cost and time.

Different approaches to performance analysis are available to achieve

performance targets of any software system. These approaches involve steps to ensure

that a software system meets its performance objectives. Satisfactory performance

achievement is a significant problem for any software system. This thesis describes a new

approach to performance, which is applied throughout the lifecycle of software system.

What is Performance Analysis?
IEEE and C. U. Smith give two useful definitions of performance.

The definition of performance given in the IEEE Standard Glossary of Software

Engineering Terminology is:

“The degree to which a system or component accomplishes its designated functions

within given constraints, such as speed, accuracy, or memory usage” [IEEE-610.12].

Smith describes the increasing importance of performance analysis of software

systems:

“Performance refers to system responsiveness: either the time required to respond to

specific events, or the number of events processed in a given time interval. For traditional

information systems, performance considerations are associated with usability issue such

as response time for user commands. For ‘soft’ real-time systems, performance

considerations relate to the ability to adequately handle the external load placed on the

system. In ‘hard’ real-time systems, performance concerns can become correctness

issues. In these systems, failure to meet deadlines or throughput requirements is

equivalent to producing incorrect results” [Smith93].
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1.1.1 Performance Analysis Approaches
Smith documents several instances where such an analysis would be useful. The

analysis may make use of fix-it-later versus predictive, early modeling approaches.

The first and simplest approach of performance analysis is ‘fix-it-later’. This is a

very common and risky approach. It is applied after the design and development of a

software system. The goal of this approach is to save time, expense, and maintenance

cost. It advocates the correctness of software and defers performance consideration to the

integration-testing phase. If performance problems are detected then corrective measures

are applied in the form of additional hardware or software tuning/optimization. The most

serious flaw is, because it is late, it is costly and may have limited capability. It is

might be possible that corrective measures would not correct such a performance

problem at all.

The second approach to performance analysis called Software Performance

Engineering (SPE) is performance modeling by C.U. Smith. Smith introduces the

approach of performance prediction by modeling. This technique is used in the early

stages of a system design. It pinpoints and rectifies key problem areas before system

development and implementation. It is less laborious and more flexible than taking post-

development measurements because the model operates on the key aspects of the system

[Smith01].

The third approach to performance analysis is a possibility midway between these

two approaches is to measure different components and prototypes of the system as

development progress. Instead of a building a model, use common sense. The main

drawback of this technique is lack of predictive power.

In summary, all three approaches mentioned in this section can be applied at any

stage of software development.  However, a major drawback to these approaches is that

performance analysis is done on the overall system where as the approach discussed in

this thesis enables the analyst to do a performance analysis at the component as well as

the overall system level throughout the lifecycle of a software system. If a software

system consists of many software components and some of the components are already

used in some other systems and the performance of these components are already

analyzed then this can easily speed up the performance analysis process for the new
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system. The performance analysis of the new system will be based on the budgeted

values of the existing software components with new budgets for new software

components. The budgeted values of new components will be based on intuition,

experience and sensitivity analysis. This supports the idea of time and performance

budgeting of any software system.

1.2 Objective
The objective of the thesis work is a budgeting approach using a “divide and

conquer” policy. First divides the problem into parts that correspond to system

responsibilities, and to the work of separate developer groups, then estimates (using a

model) the overall performance that will result if all the budgets are met. The model also

estimates the effects of contention, overheads and latencies.

This division gives developer targets, which he or she can understand and attempt

to achieve, without having to understand the entire system. The understanding of the

entire system is focused where it should be, at the managerial level, perhaps with some

specialist participation in working with the model. The tools minimize the effort on a

single project, since information about components and the execution environment can be

stored, and re-used in later work.

The objective of this research is:

To describe a performance analysis approach for the development of

software systems, which is based on budgets or estimated figures for the

resource demands of all the parts and operations of the system before the

design and development. The budget or estimated figure may be based on

prediction, intuition or results of past experiments. The key elements of this

approach are the planning of budgets for the resource demands of each the

parts and operations of system and validation check for the required

performance.

1.3 Overview of the thesis work
The primary effort in this study is the development of an approach, which is based

on UCMs, resource demand budgets, system completions, and derived performance



Time/Performance Budgeting for Software Designs

4

models. UCM notation is used to describe design specification. The UCM captures the

system specification as a set of scenarios, at a suitable level of abstraction, and defines

software components and responsibilities. The use of UCMs is described in Chapter 2.

Budgeted value estimation is based on guess, intuition, prediction and sensitivity

analysis. The term “completion” defines “completion” for a system in the form of

additional hardware and software components or different performance parameters.

These “completions” can be defined in the UCM domain as well as in the form of

additional “completions” in LQN domain. This leads to a suitable performance model.

The performance model can be constructed by hand or can be obtained by some

automation. An automated tool, UCM2LQN converter, is available for UCM to LQN

conversion. This model is solved and results are analyzed to check whether the budgeted

values achieve satisfactory performance goals or not. If the results are not satisfactory

then it is required to make some changes in parameters or in the architecture at the

hardware or software level as. The road map elaborating these analysis steps is shown in

Figure 3.1.

A challenge is to create the budget values for the demands on individual

responsibilities. It can be done in the same way that financial budget values are created

under uncertainty, using experience and a reserve for contingencies [McNamara99]. To

assist the budgeting, prototyping experiments can be done to refine the estimates, and the

demand value can be tracked during development. Model experiments can be done to

estimates the effects of different kinds of overshoots. If a particular responsibility needs

more time, taking time from other responsibilities, changing the design, or boosting the

hardware capability can accommodate it.

It is essential to use a model because we are analyzing a system, which has not yet

been built. The challenge for practical modeling is to reduce the effort and cost of

building a model, which is done here by model generation based on Use Case Maps

(UCM) described in Chapter 2. The generation process is mostly automated, apart from

steps to define the various kinds of “completions”. These include descriptions of software

components that are to be included “as is”, of protocols, middleware, file systems and

operating systems overheads, of hardware properties, and of competing workloads that

may impact the performance.
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Performance models are the natural way to provide predictions for a range of

environmental conditions or design alternatives. These predictions can be used to detect

problems and suggest corrections. The Layered Queuing Network (LQN) model is a kind

of queuing model based on the UCM and its parameters, and on the expected execution

environment. In defining the environment, additional components are added to the

system, and these may be held in a component sub-model library. The Layered Queuing

Network Solver (LQNS) offers a variety of output measures, which need to be tailored to

the analysis, to make it easy to use.

The approach integrates work from two different research areas: Software

Performance Engineering approaches and distributed communication software systems

engineering.

1.4 Contributions
The main contributions of this work are:

•  The approach of Performance Budgeting process with Road Map described in

Chapter 3. Performance Budgeting provides different steps to carry out

performance analysis before the development and implementation of any software

system to meet performance goal.

•  Definition of the term “completion” to overcome the incompleteness of a design

specification. We suggest and provide ways to add missing components and

parameters to an incomplete specification of a software design. An incomplete

specification shows the thinking of a software designer at some early stage of

development. The specification is very abstract and may omit some necessary

details, which are important for a suitable performance model.

•  Demonstration of the “completion” described in Chapter 5. The development of

four network filters provides automation to the “completion” at LQN level only

(model level). Different network components are incorporated in different

examples in the form of a single LQN task representing a simple message passing

network component (a single network component), a generalized protocol suite

(LQN network subsystem), a shared resource server LQN task and a multicast

network LQN task.
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•  Measurements and modeling of tuple spaces.  Measurements are done on J-Spaces

(J-Space Technologies Inc.) [JSpaces] and the performance model of J-Spaces is

constructed and analyzed described in Chapter 6.

•  Two end-to-end Case Studies on UCM design examples from industry, described

in Chapter 7.

The significance of these contributions is:

•  They can be used with several software development methodologies, and support

an iterative software development cycle.

•  They provide component based performance analysis as well as overall system

based performance analysis. Every component is given a separate budget. If the

budgets are met then performance goals are achieved. If not then derive the

equipment performance required to achieve for given budgeted values to obtain

satisfactory performance. For example, what processor speeds will make it work?

Hardware or software architectural adjustment is another option to achieve

performance targets. This permits the analyst to focus on the principle of Software

Performance Engineering rather than model building.

•  They provide a framework to allow for the reuse of performance information

•  A process for tracking and correcting performance attributes of designer driven

the project.

1.5 Thesis Outline

Chapter 2 provides background material for the topics, which are fundamental

developing the performance budgeting approach.

Chapter 3 is an overview of the performance budgeting approach.

Chapter 4 describes the “completion” to complete an incomplete specification of

a software design and a number example to elaborate the “completion”.

Chapter 5 describes the designs and implementations of four network component

filters: Single Network Component Task (SNCT) filter, Network Subsystem (NSS) filter,
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Shared Resource Server Task (SRST) filter and Multicast Network Task (MCNT) filter,

to demonstrate the “completion” in the LQN domain (model level) only.

Chapter 6 describes measurements and performances modeling of commercially

available tuple spaces called J-Spaces by J-Space Technology Inc [JSpaces].

Chapter 7 introduces two case studies, a UCM Pattern Example based on SX-

2000 UCM design style of Mitel Networks Inc. and Plain Old Telephone System (POTS)

UCM Design.

Chapter 8 describes architecture adjustment using Plain Old Telephone System

(POTS) UCM Design.

Chapter 9 provides conclusions and recommendation for future research where this

work can be extended.

1.6 Summarry
This chapter provided a brief overview of the following:

1. Motivation for the research work including various approaches to performance

analysis,

2. The objective of the research,

3. The overview of the thesis,

4. The contributions to the research, and

5. The outline of each chapter of the thesis.
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2.0 Background

2.1 Introduction
This chapter will describe background material for the understanding of this

thesis. This includes descriptions of Software Performance Engineering (SPE), Use Case

Maps (UCMs), Layered Queuing Network (LQN) Modeling, Performance Budgeting,

automated tool support for Performance Budgeting, and tuple spaces.

2.2 Software Performance Engineering (SPE)
Software Performance Engineering (SPE) refers to a set of methods for designing

and constructing software systems to meet some performance objectives. SPE methods

include performance data collection, quantitative analysis techniques, prediction

strategies, and management of uncertainties, data presentation, and tracking, model

verification and validation, critical successes factors, and performance design principles

[Smith01].

SPE prevents and solves performance problems by analyzing a software system

and suggesting corrective measures when necessary. One of the SPE approaches uses a

performance model of the system during the analysis. Gathering information about a

system’s structure and execution is challenging but necessary for constructing a

performance model. Various approaches are available to develop the structure and

parameters of a performance model and two main approaches are empirical and

predictive.

The empirical approach is based on obtaining performance measurements from a

prototype of a software system.  Performance measurements include response times,

system throughputs and network delays.  If these measurements do not meet performance

requirements, the system is fine-tuned to obtain better results [Smith 90].

The predictive approach characterizes software execution patterns, constructs a

performance model to generate performance estimates, and then uses the predictions to

guide modifications. It provides earlier warnings and supports more effective

adjustments. The weakness of the predictive approach arises in determining the model

structure and parameters without an implementation as guide.
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Analysts while creating a model have to review software descriptions, design

documents or source code design descriptions.  Important end-to-end system behavior,

the involved software components, device usage by each component, and the interaction

between components are identified and this information converted into a performance

model.  This large quantity of information becomes unwieldy even for a moderate-size

system.  Consequently, models become expensive to develop and validate.

Various approaches to SPE applied over the span of software design and

development cycle are briefly mentioned in the next section, leading towards software

performance modeling.

2.3 Various SPE Approaches
Software performance engineering may use a variety of techniques for

performance evaluation such as fix-it-later, performance models, and performance

measurement. The use of these techniques is heavily dependent on the architecture of the

computer system being analyzed.

2.3.1 Fix-it-Later
Fix-it-later is the simplest approach of performance analysis. Smith describes this

approach in [Smith01]. It is very common and usually applied after the design and

development of software system. The rationale of this approach is to save time, expense,

and maintenance cost. It emphasis the correctness of software and defers performance

consideration to the integration-testing phase. If performance problems are detected then

corrective measures are applied in the form of additional hardware or software

tuning/optimization. The obvious drawback to this approach is that it is extremely

difficult to change any major components or redesign the system, once it is implemented

and performance difference is almost unsubstantial. This approach is suitable when there

are fewer users and systems competing for the resources or when the resource demand is

not high. This approach is not suitable for mission critical systems and embedded systems

which require critical performance.
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2.3.2 Performance Modeling
Software performance predicted by modeling is described by Smith [Smith01].

This technique is used in early stages of a system design. It pinpoints and rectifies key

problem areas before system development and implementation. It eliminates the need of

redesigning the software system after it is operational. This is especially important in

mission critical systems and real time systems where all operations should meet strict

performance requirements.

This technique is based on the performance model of a system. A model should

describe the key aspects of a system. It should include behavioral structural aspects of

workload elements in terms of resource usage. Performance predictions can be developed

using this information. These predictions can be analyzed for different system

configurations and workload conditions. Performance modeling seems to be a suitable

technique of SPE. It certainly achieves the goal of SPE in a feasible manner.

2.3.3 Performance Measurement
Performance measurement is a possible approach to SPE, which falls between the

two approaches discussed in previous subsections. In this technique, the performance

metrics are used as a criterion to evaluate the performance of the system. Metrics may be

obtained by performing a number experiments [Jain91]. Smith divides this technique into

sub techniques: recording the events and observing and monitoring the states [Smith01].

The measurement of environmental factor such as workload, the time of day and the

duration of measurements need to be controlled. This technique may reveal bottlenecks

of the system.

It provides reliable, statistical and accurate measurements of the system. The main

drawback of this technique is that it takes time to do the measurements and the system

must be operational during the experiments. It is also possible to change the design of the

system to improve the accuracy of measurements. This may involve the redesigning of

the whole system or a component of the system, which is not feasible from performance

viewpoint. It is also a problem to choose a real workload, which will provide the exact

measurements for certain operating conditions.
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In the next section, we will discuss Use Case Maps (UCM) notations, which are

playing an important role in performance modeling and also in system specification.

2.4 Use Case Maps (UCMs) Notation
This section is intended to provide an overview of Use Case Maps (UCMs)

[Buhr95] [Buhr98].  UCMs capture the system specifications as a set of scenarios, at a

suitable level of abstraction, and define software components and responsibilities. Within

an early architecture definition based on Use Case Maps (UCMs), demand budgets are

allocated to responsibilities and verified by a semi-automated performance analysis using

Layered Queuing Network (LQN) Models.

UCMs are defined as causal scenarios, architectural entities or behavior patterns.

They help us to describe and understand emerging behavior of complex and dynamic

systems. The notation is intended to be useful for requirement specification, design,

testing, maintenance, adaptation and evolution. UCMs notation aims to link behavior and

structure in an explicit and visual way.

UCM paths are architectural entities that describe causal relationships between

responsibilities, which are bound to underlying organizational structures of abstract

components [Buhr98]. These paths represent scenarios that intend to bridge the gap

between requirements and detailed design.

With UCMs, scenarios are expressed above the level of messages exchanged

between components; hence they are not necessarily bound to a specific organizational

structure. This feature promotes the evaluation of architectural alternatives early in the

design process. UCMs provide a bird eye view of system functionality, they allow for

dynamic behavior and structures to be represented and evaluated, and they improve the

level of reusability of scenarios.

The UCM methodology is based on the concept of describing end-to-end

scenarios through a system as a causal flow of events, and actions through an underlying

component substrate. Details of inter-component communications are considered lower

level detail, which can be determined at a later stage. The UCM methodology allows end-

to-end causal scenarios to be described at any level of abstraction allowing the behavior
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of complex systems to be described with ease. Support for design scalability is built into

the UCM methodology into two forms, support for the concept of stubbing which allows

path segments to be expanded as separate diagrams and support for the concept of

layering where a UCM of a certain layer describes certain behavior and considers other

operations to be lower level detail, to be described by a UCM of a lower layer. A

complex system described properly with a set of UCMs allows for much greater

understanding by all designers and implementers resulting in increased efficiency for a

software system.

2.4.1 Requirements for the Construction of UCMs
UCMs can be extracted from informal requirements if they are available.

Responsibilities should be stated or can be extracted from these requirements. UCMs can

be created for individual system functionalities or even for individual scenarios for

illustration purpose.  However, the strength of this notation mainly resides in the

integration of scenarios. It is important to clearly define the interface between the

environment and the system under description. This interface will lead to the start points

and end points of the UCM paths, and it also corresponds to the messages exchanged

between the system and its environment. Designers are often the ones who create UCMs,

some design information may be relevant. In theory, UCM can be composed of paths

where responsibilities are not allocated to any component. However, designers are likely

to include architectural elements such as internal components. In this case, the description

of these components, their nature, and some relationships, e.g., components that include

sub-components, are required. Communication links between components are usually not

required, but they can be added.

2.4.2 UCM Components
Components can be of different natures, allowing for a better and more

appropriate description of some entities in a system. Figure 2.1 shows the component

used in UCM and also shows the detail of components. There are different types of

components and they have different types of attributes. Buhr suggested several types of

components and attributes for complex systems. These systems can be real-time, object-

oriented, dynamic or agent based etc [Buhr95, Buhr98 and UCMOrg].
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Figure 2.1: UCM components and components attributes

Team: A generic component, which may be of any
type and structurally contain any other component

Object: A passive low level component, which may
not other components

Process: An active component, which has its own
thread of control. May contain passive objects

ISR: Active object representing any interrupt service
routine

Pool: A storage area for operationally inactive
dynamic components. Content of pools must be move
into slots to become visible and active

A stack of components indicates a set of
operationally identical but separate components

A slot of a particular component type indicates a
placeholder for a dynamic component and is indicated
by dashed outline

Anchored: in a plug-in, refers to a component
defined in another map

UCM Components

UCM Components Attribute

Protected: For mutual exclusion
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Figure 2.2 (a): UCM Path Elements

Start Point: Starting delimiter for a UCM path,
which signifies the starting of a scenario when
appropriate stimulus is received.

End Point: Terminating delimiter for a UCM path,
which signifies the end of a scenario

OR-Fork: Indicates routes that share common
causal segments, Alternative may be identified by
labels or by conditions

OR-Join: Indicates that many concurrent paths are
synchronized to one path

AND-Fork: Indicates that a single path split into
many concurrent forks.

AND-Join: Indicates that numerous concurrent
paths synchronize into a single path.

Static Stub: An element of decomposition in UCMs
where a sub map may be defined. This is a static stub
with a single sub map.
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Figure 2.2

Waiting Place: Specifies a synchronization point
for a scenario where a scenario pauses until a
triggering event is received.

R

S

Responsibility: Specifies an action to be performed
by the end system that point of the path. May be bound
to of software component.

D
U
d
d
u

Shared Stub:  Specifies that the sub map will be
shared by different paths.
Time Waiting Place: A waiting place, which may
have a timeout period, defined at which point an
exception action is taken.
ynamic Stub: An element of decomposition in
CMs where a sub map may be defined. This is a
ynamic stub with many sub maps. The selection can be
etermined at run-time according to a selection policy
sually describe as pre-conditions.
15

 (b): UCM Path Elements

endezvous: N:1 and 1:N

ynchronize: N:N
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map into small sub maps. A top-level UCM is referred as a root map, which can include

containers called stubs, which are replaced by sub-maps called plug-in maps. Figure 2.2

(a) and 2.2(b) show two kinds of stubs with their descriptions.  Figure 2.3 shows the type

of calls or interactions, which can be implemented in UCM scenarios.  The next two

sections will describe examples for simple and complex UCM scenarios.

2.4.4 Example: Simple UCM Scenario
This section will discuss how a UCM scenario looks like and how to incorporate

UCM components and path elements into a UCM scenario. Figure 2.4 shows a very

basic, simple and abstract UCM scenario. There are two paths in this scenario. These

paths are distinguished by their colors. It shows how the paths start and how they end.

The respected responsibilities associated with each path are labeled as ‘x’. The

components are shown as rectangular boxes, which can be different task of a software

system. The ‘Start Point’ is represented as filled circles, which show pre-conditions or

triggering causes of a path.
Start Point
Figure 2.4: S

End point
Component
17

imple UCM Scenario

Responsibility

Path
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An  ‘End Point’ is represented as a small vertical line, which can show post-

conditions or the resulting effect of a path. The lines connecting ‘Start Point’, ‘End Point’

and responsibilities are the paths.

A responsibility is bound to a component when the cross is inside the component.

In this case, the component is responsible to perform the action, task, or function

represented by responsibility. Start points may have preconditions attached, while

responsibilities and end points can have post conditions. This route, which traverses paths

and associated responsibilities from a start point to an end point, is known as scenario.

The black color path shows one component/task is interacting with another

component/task synchronously. The first component or task waits for the reply of other

component/task. Gray color path shows that one component/task is interacting with other

component/task.  The other component/task forwards the request to another component

/task which reply back to first component/task. During this period first component/task

was blocked because it was waiting for the reply.

2.4.5 Example: Complex UCM Scenario
Figure 2.5 shows a complex UCM scenario. The big complex map is called the

root map. The small rectangular boxes at the top show sub maps or plug-in maps. This is

paradigm of a backup process. When a user requests to perform a backup process, first it

is validated whether the user is an authentic user or not. If it is not then the request is

rejected other wise the request is accepted for backup and forwarded it to backup process.

The first rectangular box of root map is “User Process”, backup user uses this task to

make a request to perform backup on a device. “User Process” sends this request to

“Authentication Process”. “Authentication Process” has solid line diamond. This

diamond is a static stub, which represents sub map or a plug-in map. Since this is a static

stub that’s why only one sub map is associated with it.

The plug-in map of “Authentication Process” is an OR path. It accepts user

request at “in” at static stub and checks whether the use is authentic user or not. The

corresponding responsibilities are labeled for “Authorized User” and “Unauthorized

User”. The resulting paths from plug-in map are labeled as “out 1” and “out2” outside the

static stub in root map.
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labeled for each device. User selects one of the devices according to his choice for the

backup.

The last rectangular box in root map is a “Backup Process”. This component

decides whether backup is available or not. If it is not then the request is return to “User

Process” that backup is not available. The corresponding responsibility is labeled, as

“Backup not available” in “User Process” component. If backup is available then

“Backup available” is forked into two processes. These are concurrent processes.

“Backup Process” informs “User Process” about successful back up process. The

corresponding responsibility is labeled as “exit”. The other process is the backup process,

which starts a backup. The corresponding responsibility is labeled as “Backup”.

2.5 Layered Queuing Network (LQN) Modeling
A Layered Queuing Network (LQN) Model [Woodside95] is proposed for the

evaluation because it is closely matched to a wide range of software design styles, and it

is also a generalization of well known, and robust queuing network models. It is a new

adaptation of extended queuing models for software systems proposed by Woodside

[Rolia95, Woodside89, and Woodside95b]. It can be solved by analytic or simulation

techniques; other analytic or simulation models could also be used. It is capable of

modeling most of the features the are important from performance point of view such as

multi-threaded processors, devices, locks, communication and so on [Franks99].

The LQN model is a kind of queuing model based on the UCM and its

parameters, and on the expected execution environment. In defining the environment,

additional components are added to the system, and these may be held in a component

sub-model library. Layered Queuing Network Solver (LQNS) offers a variety of output

measures, which need to be tailored to the analysis, to make it easy to use

[Woodside95c].

LQN model represents software resources in a natural way so that they are the

parts of the framework and thus approximations do not have to be developed for every

system. The model is closely linked to software descriptions and provides a transparent

representation of the software architecture, which makes models easy to develop and
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understand. The model is well suited for parallel processes running on a multiprocessor

or on a network, such as client-server system.

LQN is used to build model in order to analyze the performance of software

system.  The models consist of tasks with associated entries and lists of activities.   The

tasks are organized in conceptual layers interacting with each other through synchronous,

asynchronous, or forwarding calls.  The entries represent the call reception points for

tasks and are linked to activities that make service requests to lower level tasks and/or to

resources such as processors, disks, and/or other underlying services.

A LQN model is a generalization of queuing networks that represents these in

terms of requests for service between tasks and the queuing of messages at an actor. An

LQN can represent any queuing model as special case. In LQN, tasks can accept service

request messages at an LQN entry. An entry describes and models a service provided by

an actor, and also the associated resource demand. If a task is a kind of object, an entry is

a kind of method. Requests for service are characterize as entry-to-entry interactions sent

in a synchronous (i.e. send-wait-reply), or asynchronous (i.e. send-and-continue) fashion.

The interaction types affect performance because they affect task blocking, queuing

delays at devices.

Hardware and software objects are represented as tasks in LQN model, which

may execute concurrently. There are three categories of tasks in LQN model. The first

categories of tasks are referred as pure server tasks. These tasks are used to model

hardware devices such as processors or disks. They receive requests form other tasks but

cannot make their own requests. The second categories of tasks are referred as client

tasks. These tasks only send requests and are used to model input sources such as users

and so on. The third categories of tasks are referred as active server tasks. These tasks can

receive requests, and make their own requests.

The interaction or call types are also very important in LQN model. There are

three types of calls in LQN model. These are synchronous, asynchronous and forwarding

calls. The description of each call will be discussed next.
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In an asynchronous call, a task that requests service from other tasks does not wait

for the reply of the request. The requesting task resumes its execution after making its

request to other task. Asynchronous call pattern is shown in Figure 2.6 (b).

Forwarding call can be considered as special case of an asynchronous call. When

a task sends a request to the other task that responding task sends this request to some

other task and does not reply back to the blocked task that initiated the request. The last

task in the chain sends reply back to the task that initiated the request. Forwarding call

pattern is shown in the Figure 2.7 (c).

In a synchronous protocol type there may be two phases of execution.  It can be

seen in Figure 2.6(a) and Figure 2.6(c). During first phase the task accepts the request

from other task and reply back or forward the request. The task, that reply back or

forward the request, continue its execution in another phase, this is called phase2. The

second phase identifies resource contention between the initiating task and the continuing

responding task.

Figure 2.7: Simple U
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be made available from a repository of resource functions. Resource functions will not be

discussed in this thesis.

The interaction or call types are distinguished by different type of arrows. A filled

arrow represents the synchronous call, asynchronous call by normal arrow while

forwarding call by dotted line arrow. This is the best way to represent different types of

call in a LQN model.

Figure 2.8: A Layered Qu
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Performance Budgeting is another approach to achieve the performance targets of

any software system. The idea behind the performance budgeting is to derive the

estimates for the resource demands for a software system before the design. The

estimated figure may be based on past experiments and results. The best thing before the

design of software system is to plan the budgets for the resource demands of all the parts

and operations then perform a validation check for the required performance.  The real

time system requirements such as timeliness, predictibility, dependendibility, and

deadline scheduling are discussed in [Halang91]. The idea of validation of resource

budgets is discussed in [Woodside99].

Performance budgeting allocates resources based on achieving specific

measurable resource demands (i.e. CPU execution demand, disk operation demand and

network demand etc) rather than the required resources selection and other costs to carry

out an operation or activity. Resource demand target can be a starting point. Thus

performance budgeting first asks not how many resources do we expect to put through

for a software system but rather, how many resources do we need for software system.

The numbers of resources required are resource demands and they are the basis of

performance budgets. Resource demands are defined through a strategic planning process

that considers the critical issues like predictions and past experiences etc.

Associated tools, which are available for performance budgeting, will be

discussed in next section.

2.7 Automated tools support for Performance Budgeting
Automation plays an important role for any complex system. Many tools can be

developed to provide automation. Tool support is desired for two main reasons, the

increased ease of manipulation of designs and the desire to use design specifications as

input to other tools. Proper tool support would provide a platform for designers to study

the issues of large systems. Some tools are already available to automate completion

process and new tools can also be designed and implemented. Research and development

work is required in this direction to enhance this research work in future.
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2.7.1 UCM Navigator (UCMNav)
The specification of large, complex distributed communication software systems

often overwhelms designers with low level details but often does not provide a high level

view at which the behavior of a system may be understood. These complex systems are

complex to understand and difficult to modify and extend. This results in increased

development costs and greater unreliability of software as systems, which cannot be

understood, cannot be modified without introducing new bugs. The high level

visualization of system is very necessary. The UCM methodology is developed to fill a

void in the specification of software systems in that it aims to provide a high level

overview of the behavior of a system. UCM Navigator (UCMNav) is a graphical editor,

which is designed for this purpose [Miga98]. It supports the UCM methodology and

provides support for multilevel designs, for description of the performance for its use as a

front end for performance simulations and for the generation of a linear textual

representation of entered designed allowing the UCM methodology to be used as frond

end for other software engineering tools. UCM Navigator can be used to provide

completion at UCM level. We will discuss in a detailed section, how this tool can be used

to provide completion at UCM level.

2.7.2 Layered Queueing Network Solver (LQNS)
The LQNS is a tool that solves LQN models and returns performance parameters

for the system [Woodside95c].  It can also be used to detect contention for certain

services or devices, and conditions such as deadlocks, races, and/or bottlenecks. This tool

can be used to provide completion at LQN level. The LQN model is a kind of queuing

model based on the UCM and its parameters, and on the expected execution environment.

In defining the environment, additional components are added to the system, and these

may be held in a component sub-model library, which facilitate the “completion”. The

LQNS offers a variety of output measures, which need to be tailored to the analysis, to

make it easy to use.

2.7.3 Java Layered Queuing Network Definition tool (JLQNDef)
JLQNDef is a tool that provides an LQN editor with LQNS, as well as providing a

graphical output of the layered architecture.  This tool can be very helpful for the
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“completion”, which will be described in next chapter. It can further be enhanced. New

features can be introduced to provide completion at LQN level graphically. Features like

one component/task replacement with multiple component/tasks by mouse drag and drop.

Another feature, which will introduce disk, file server, and tuple space server in the

system graphically. These components can be selected from the window menu and would

be introduced at mouse click.

2.7.4 LQN Components Filter
LQN have been used to model and evaluate performance of many different

systems such as web servers and network file systems. Many of these components may

occur as parts of larger systems. If the same system occurs many times within the larger

systems, it must be modeled repeatedly. As a result, building a LQN model of a large

system that has number of identical or similar subsystems becomes tedious, especially if

the subsystems are also large or have complex interactions with their environments.

Evaluating alternative LQN models where particular subsystems are replaced by other

subsystems requires the larger model to be reconstructed for each alternative. This is also

tedious. To address these concerns, the concept of LQN components is introduced in

[McMullan00]. This tool automates the process of component replacement. This is not a

graphical tool. It replaces one task with a set of tasks. It is certainly helpful for the

“completion” when it is required to replace one task with a set of tasks. It demonstrated

two examples for task replacement in [McMullan00], which could be a kind of

“completion”. In first example, LinuxNFS component instance was replaced with two

tasks NFS1 and NFS2. In second example, one instance of LinuxNFS component with its

service interface was replicated to accommodate four different client tasks.

2.7.5 UCM to LQN Converter (UCM2LQN)
An automated generative tool UCM to LQN (UCM2LQN) Converter for creating

performance models from UCMs is described in [Petriu01a] [Petriu01b]. This converter

automates the transition from the UCM design model to a corresponding LQN model.

The transition is based on certain interaction relationships between the UCM

components, which are implicit in the UCM representation.  This is really helpful for the

“completion” because it automates the process of UCM to LQN conversion. UCM to
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LQN conversion is done by hand for this thesis. The question is how advanced is this

tool? Will it convert any new style set of UCMs or only works for any specific set of

UCMs. At this time it does not have capability to handle dynamic stubs and complex

UCM. It does not handle the looping problem of the UCM design.

2.7.6 Latency and Message Overhead Filter
The LQNS had some limitations. It lacked parameter values to describe the

communication delay between pairs of processors. Ideally, there is no delay between a

sender and receiver during message passing. In fact, there is always a delay between

sender and receiver as messages passing due to priority for execution, or delay associated

with acknowledgement.

This tool also facilitates the process of completion in the form of latency and

message overheads [Lee01]. It provides “completion” at LQN level. It does this by

incorporating the user think time as latency between the processors and message

overheads in execution time between the entries. If processors are located on the same

machine then latency will be zero. If they are located remotely then there will be some

delay. At this time this tool handles synchronous calls only. Asynchronous and

forwarding calls can be implemented in future to improve this tool.

2.8 Tuple Space
This section will describe tuple space communication that is used in different

examples showing “completion” based on tuple space network components.

Network operating systems provide three basic mechanisms that are used to

support the services provided by the operating system and applications. These

mechanisms are Message Passing, Remote Procedure Call (RPC) and Distributed Shared

Memory (DSM) [Dasgupta98]. These mechanisms support a feature called Inter Process

Communication (IPC). While Message Passing and RPC are the mainstays of distributed

programming, and are available on all network operating systems, DSM is not at all

ubiquitous. DSM is a feature by which two or more processes on two or more machines

can map a single shared memory segment to their address spaces. This shared segment

behaves like real shared memory, that is, any change made by any process to any byte in

the shared segment is instantaneously seen by all the processes that map the segment.
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Tuple Space is one of the shared memory paradigms [Roberts92, Foster95, Walkner95,

Gelerntner97, Dasgupta98 and Matloff99]. Tuple Space is also a coordination mechanism

like any other coordination mechanism such as direct, meeting-oriented [Peine97] or

blackboard. Tuple Space uses a Linda like coordination mechanism [Roberts92,

Walkner95 and Dasgupta98].

In Linda-like coordination, accesses to a local blackboard are based on associative

mechanisms. Linda generalizes the concept of the communication via common variables

by offering an associative shared memory or a global mailbox called “tuple space”,

through which concurrently acting processes can cooperate and communicate. The data

objects inside tuple space are referred to as "tuples”. A tuple is an ordered sequence of

data or messages.

Linda-based tuples are unstructured, therefore selection from multiple matches is

arbitrary and implementation-dependent. To share data, generate a tuple. To request data,

request a tuple.  It provides many features such as destination uncoupling, space

uncoupling and time uncoupling. In destination uncoupling, the receiver does not know

the sender and the sender does not know the receiver. Space uncoupling provides

associative versus physical addressing and it is machine and platform independent. In

time uncoupling, tuple life span is independent of both creators and readers. It supports

time-disjoint processes. The original Linda model defines four basic operators:

•  out inserts a tuple, composed of an arbitrary mix of actual and formal fields, into

a tuple space. This tuple becomes visible to all processes with access to that tuple

space.

•  in extracts a tuple from a tuple space, with its argument acting as the template, or

anti-tuple, against which to match. Actual match tuple fields if they are of equal

type and value; formals match if their field types are equal. If all corresponding

fields of a tuple match the template the tuple is withdrawn and any actual it

contains are assigned to formals in the template. Tuples are matched non-

deterministically and in operations block until a suitable tuple can be found.

•  rd is syntactically and semantically equivalent to in except that a matched tuple is

copied, not withdrawn, from the tuple space and hence remains visible to other

processes.
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•  eval is similar to out, except it creates active rather than passive tuples. The tuple

is active because separate processes are spawned to evaluate each of its fields.

The tuple subsequently evolves into a passive tuple resident in the tuple space.

In addition to the basic model described above more than a decade of research by the

parallel programming community has led to a number of refinements and extensions to

the paradigm. For example, many implementations support two new operators, inp and

rdp which are non-blocking versions of in and rd.

Figure 2.9 shows a tuple space and different operations associated to it. Tuples are

like vectors, except that their components can be of various mixed types, i.e. integers,

floating-point numbers, character strings, and so on. For example, a tuple could consist of

("abc", 1.5, 12). The tuple (‘array x’, 5, [1 4 2 7 9]) is a tuple consisting of a string, an

integer, and an array of integers. In Linda, processes only interact through the tuple

space, and routines are provided for placing tuples into, and extracting tuples from, tuple

space. The out operation places the tuple into tuple space. Linda is well suited for

handling dynamic load balancing by treating tuple space as a “bag of tasks.” Tasks to be

performed can be placed into tuple space with eval, and on the “completion” of a task the

results are put back into tuple space.

Figure 2
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There are many advantages of tuple space such as flexibility and scalability.

Flexibility does not restrict format of tuples nor types of data contained. Scalability

provides facility of anonymity of tuple operations.

Figure 2.10 shows a generalized tuple space UCM scenario in which ProcessA

places a tuple in tuple space using out operation and ProcessB remove tuple from tuple

space with in operation. The responsibilities show respective operation of each process

and tuple space.
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3.0 Performance Budgeting in a Software Design
Process

3.1 Introduction
This chapter will describe idea of performance budgeting, budget analysis road

map, the steps involved in this road map, the concepts and terminology associated with

the road map and an example, which will walk through this road map step by step.

3.2 Performance Budgeting
Budgets are a general approach to break a large problem down into manageable

pieces; common examples are financial budgets and time budgets for projects. This

section will describe a budgeting approach to deal with time in software design. It does

two things: It establishes processing demands for separate parts that are performed by

separate system components or activities, and which are the responsibilities of separate

developer groups. It uses a model to estimate the resulting time delays, which have two

parts, first part due to the execution of the software being developed which is measurable

by the developer as it emerges and second part due to contention delays, environment

overheads and system latencies, which are outside the designers’ control.

What this breakdown achieves is, to give developer targets, which he or she can

understand and attempt to achieve, without having to understand the entire system. The

understanding of the entire system is focused where it should be, at the managerial level,

perhaps with some specialist participation in working with the model. It also supports the

re-use of information about the environment, in models of successive or evolving

projects.

In evaluating the budget, time delays can be estimated from the budgeted

demands using the performance model. The analysis can go in a forward direction, from

execution demands to delays, or in a reverse direction from permitted delays to permitted

values for execution demands. In the forward direction, execution demands in terms of

CPU seconds, network or storage operations are allocated to each activity e.g. each

responsibility in UCM. The model results are computed and examined to see if they are

consistent with requirements. If adjustments are made to the budgets, they can be
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similarly evaluated. The forward direction is easy to understand, but it may require

iteration to find suitable budget values. In the reverse direction, an automated search is

carried out to find the budgets, which satisfy the delay requirements and any other

necessary criteria and constraints. This thesis focuses on the forward direction, which can

then be a key component in the larger operations in the reverse direction.

Performance models are the natural way to provide predictions for a range of

environmental conditions or design alternatives and these predictions can be used to

detect problems and suggest corrections. For many software design environments there

are significant uncertainties in the execution demands/processing time and

communication messages delays. The UCM model does not discuss the uncertainty

issues, although it can specify variances for resource needs. These uncertainties will also

be incorporated in the budgets and will be gradually resolved in the process of

development.

Performance requirements and predictions may be stated as mean values, mean

values with a given variance, or as percentile values (such as 95% of response should be

completed within a given delay). Hard deadlines are a special case of percentiles (100%

of responses in the given delay) but are rare in telecommunications. In evaluating models,

simulation techniques can give average or percentile values while analytical models

usually only give mean values. Preliminary analysis may be based on analytic results, and

more careful analysis on simulations.

The difficulties in applying this budgeting idea fall into two groups: making a

suitable performance model from the UCM and creating, evaluating and modifying the

budget values. In the second category there are questions such as, how do we assign a

budget to a developer? And what will be the largest possible budget? Intuition is a poor

guide because there are so many factors, which are applicable to certain situations and

data configurations only. The budgeting for performance can be question of trial and

error where the intuition and experience of the design team will play a key role. Putative

configurations can be proposed, the corresponding performance models can be derived

and evaluated, and the prediction results can be compared against requirements and

previous results. Budget can be varied. The question here is, how we go systematically?
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If we have a time shortfall, how do we respond? It can be by a balanced budget change, a

software design change, or a hardware change.

In previous research, there has been frequent mention of budgeting of time in

software, particularly in designing for hard-real-time deadlines. In these systems,

schedule analysis plays the role of the model; to verify that timing constraints can be met

deterministically (see, e.g. [Halang91]). For soft real-time, the discussion has been rather

general and solid techniques are scarce.

This work is different in that it starts from designer intentions expressed in the

UCMs, and that it addresses budgeting issues in soft-real-time systems.

3.3 Budget Analysis Road Map
Figure 3.1 illustrates the process for analyzing budgets. The boxes represent

design artifacts or libraries used in the analysis, while the arrows show operations carried

out either by the analysis, or by some automated transformation. There are seven steps.

3.3.1 Step1:  Designer UCM
The designer UCM is a document, which describes the system specification as a set of

scenarios, at a suitable level of abstraction, and defines software components and

responsibilities. It shows the idea of software designer at some early stage of

development.

UCMs are used to capture user (functional) requirements when very little design

detail is available, without reference to messages or component states. With UCMs,

scenarios are expressed above the level of messages exchanged between components. A

software designer creates UCMs and he may include some design information but not all

of them. UCM can be composed of paths where responsibilities are not allocated to any

component. However, software designers are likely to hide architectural elements such as

internal components. In this case, the description of these components, their nature, and

some relationships, e.g., components that include sub-components, are required.

Communication links between components are required. If they are not included in the

map they have to be added. They can be incorporated in the form of a component, static

(single scenario) or dynamic (multiple scenarios) stubs.
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small compact abstract description of the architecture, which can be created before these

others and can lead into them  [Petriu01a]. The next chapter will describe the idea of

Designer UCM in detail before describing the process of “completion”.

The designer UCM may or may not define the components and infrastructure that

will be included in the final system; these are the subjects of Step 3, the “completions”, of

road map.

3.3.2 Step2: Demand Budgets
The budgets are values for workload demands by the responsibilities in the UCM.

Demands may include CPU operations and storage and communications operations, and

may be in units of operation counts, or CPU-seconds on a known processor.  Different

performance patterns can be described for the users for choosing first budgeted values for

the CPU demands or improving these budgeted values for the desired performance. Smith

describes performance patterns in [Smith01].

Various performance patterns are described for choosing the initial budget values. These

are:

Assumed budgets

If a software system consists of the components, which are new, unfamiliar types

or used first time in the budget analysis then CPU demand budgets of such components

are assumed or guessed by the design team.

Derived budgets

If the system components are new but of familiar types then the budgeted demand

values can be derived from the performance requirements themselves (dividing up the

allowed delay into parts allocated to different responsibilities). Or the data for the CPU

time demands of the system component is not available then the sensitivities of the

performance metrics can be considered as targets to budget the CPU demand for each

responsibility.
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Reused budgets

If the system components have already used in the some experiments then the

CPU demands of the components can be determined, which would be based on the past

experiments and results.

 If the initial budgets are unable to provide satisfactory performance then budgets

can be revised to provide satisfactory performance.  The performance patterns for

revising the budget are described as under:

Budgets revision

If the desired performance targets are not met then it is required to refine the

budgets. It can be done make by making adjustments in the CPU demand of one

operation by reducing the CPU demand time and by allowing more time to other

operations. Since every operation is time bounded that’s why time reduction must be

within allowable limit. The example of such systems is mission critical or real time

system where the operation CPU demands are time restricted and the operations finish

their jobs within the specified time constraint. Therefore, if the budget revisions are not

possible in such system then the architecture adjustment can be an alternate option for

achieving desired performance goal. Time allowance from one operation to the other

operation is acceptable in non-real time systems for the budget revision and refinement

where one operation time is reduced and the other operation is allocated more time to

finish its job for the desired performance.

3.3.3 Step3: Completion at the UCM level
The software design normally does not fully define the system to be deployed.

There may even be multiple deployments in different environments, and with different

components. For performance analysis some of these deployments must be defined at

least approximately; the amount of detail to be included is a matter of judgment. The

missing detail can be supplied at the UCM level, if it arises at particular points in the

scenario, or at the LQN level, if it describes a service or infrastructure operation that is
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used by the system. Often a given “completion” can be added at either level; there is no

hard rule.

UCM “completions” are taken from a library of UCM specifications and are

added as stubs to the designer UCM. A stub represents an operation with detail defined in

a hidden sub-map. Thus the analyst must explicitly indicate where they are to be added.

In future it might be possible to add these stubs automatically guided by rules or

preferences input by architecture team. Chapter 4 will describe “completion” of an

incomplete software specification in details.

3.3.4 Step4: Create the Performance Model
The fourth step of road map is LQN model extraction from the “complete” UCM.

The detail of LQN model and available LQN tool are already described in previous

chapter.

3.3.5 Step5: Completion of the LQN Model
The LQN model is completed by adding details of the execution environment in

the form of hardware as well as software. Examples of “completions” include file servers,

protocol stacks, web servers, network latencies, network mechanisms, and processor

speeds. These may be defined at this step if it was not done earlier.  Chapter 5 will

describe LQN Completion Filter. This tool is used to insert network components that

handle a call between tasks. The inserted elements are bound to the source and

destination tasks of the call, and either to existing processors or to new devices of their

own. The LQN Completion Filter has four variations:

•  Single Network Component Task (SNCT) filter inserts a single network component

LQN task representing a network by replacing single call,

•  Network Subsystem (NSS) filter inserts a LQN subsystem by replacing a single call,

•  Shared Resource Server Task (SRST) filter inserts a server LQN task by replacing

multiple calls, and

•  Multicast Network Task (MCNT) filter inserts a single entry LQN task by replacing

multiple calls.
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3.3.6 Step6: Evaluation
The performance model is solved and the results are compared to the required

values. One modality is to use the performance results to verify that, if the budgets are

met, the performance will be adequate. A second modality is to derive equipment

capacities (such as processor speeds) that, given the budgeted demand values, will allow

the performance goals to be met.

3.3.7 Step7: Feedback
Feedback depends on the evaluation results. If they are not satisfactory then some

changes are required. If predictions show inadequate performance, one approach is to

tighten the budgets until the predictions are in the green zone. Alternatively one could

adjust the design in the UCM domain, or the implementation options in terms of

“completions” and the environment.

The next section will describe a Simple Call Agent Use Case example, which will

walk through budget analysis road map.

3.4 Example: Simple Call Agent Use Case Map (UCM)

3.4.1 Step1: Designer UCM
Figure 3.2 shows the Designer UCM of a Simple Call Agent UCM [Siddiqui00].

It shows two scenarios, one for a Simple Call Agent (SCA) and the other for the Name

Service (NS). The first scenario is a call connection from Call Agent A to Call Agent B.

x1, x5 and x9 show the responsibilities and operations of the respective components. The

second scenario is of Name Service; it is from Call Agent A to Name Service. This UCM

is not complete from the point of view of performance model. It lacks some necessary

details and component.

3.4.2 Step 2: Budgets
The CPU time demand of each responsibility is chosen as 1.0 msec in beginning

of the budgeting process. Since components used in this example are new and unfamiliar

types, therefore, sensitivity of system response time and throughput are considered as

targets to budget CPU time demand for each responsibility.
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3.4.3 Step 3: UCM Completion and Infrastructure Components
The analysis of Designer UCM reveals that the missing component for this

scenario might be a communication infrastructure. Communication infrastructure may

involve a point-of-point communication, Remote Procedure Call (RPC), Inter Process

Communication (IPC), a black board system, or tuple space between Call Agent A and

Call Agent B.

In order to generalize communication component insertion, a point-to-point

communication infrastructure is considered for this scenario and network delay and

protocol agents are introduced between these parties. In Figure 3.3, the UCM is

“completed” by adding infrastructure components (protocol agents at Party A and Party

B, and a network delay) and their responsibilities, just for the call connection scenario.

The protocol agents carry out low-level functions (connection, data checking, flow

control). There could be additional completions to describe the message exchanges in

greater detail, in both scenarios, but this is sufficient for illustration.

Figure 3.2: S
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3.4.4 Step 4: LQN Model of Simple Call Agent
Figure 3.4 shows the performance model of Simple Call Agent, which is

extracted, from “complete” UCM. It shows that some components are additional to the

information provided by “complete” UCM. These are systems and environment

components, which are essential for a performance model of a system.

There are four user tasks representing the external participants in the scenarios,

namely “NSUser”, “RemoteUser”, “WLUserA” and “WLUserB”. “NSUser” is a source

of name service user requests, “RemoteUser” indicates request of those users who are

simply trying to connect from Call Agent A to Call Agent B. “WLUserA” and

“WLUserB” have been added to represent sources of competing workload at the nodes

executing the scenarios and will be explained in next step.
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Call Agent A is represented by an LQN task “CallAgentA”. This task has two

entries. “CallAgentAL” entry handles Name Service users and “CallAgentAR” handles

requests for call connection to Call Agent B. The two threads of this task are considered

for LQN model. The “CallAgentAL” entry also calls the “NameService” task, which

processes name service requests. In order to process Name Service request it accesses the

disk. The disk or file service is shown as “Disk”.

3.4.5 Step 5: Additional Completions, Environment and Assumptions
“Additional completions” are introduced in the form of environment components.

In Simple Call Agent performance model, these environment components are introduced

as competing workloads. These workload components are added in the form of

competing workload users “WLUserA”, “WLUserB”, “CompetingWLA”,

“CompetingWLB, “CresourceA”, and “CresourceB” task.

The “CallAgentAR” entry processes the calling scenario by calling the

“ProtocolAgentA” and “NetworkDelay” tasks. At the same time it is competing for the

node resource “CResourceA” with “ProtocolAgentA” and “CompetingWLA” tasks.

“CompetingWLA” is an abstract workload, which represents all the competing

workload at node A, driven by the source  “WLUserA”. It can be adjusted to represent

different environments and levels of business of the entire system.

For the example, we need to create budget values for the parameters:

•  CPU time demand for each responsibility except those shown in the network

delay

•  Disk demand (how many accesses) for the name server responsibility x11

•  Network latency values as demands for x3 and x7.

In doing this, we are interpreting responsibilities in the UCM as operations. If a

responsibility in the UCM is really an abstract representation of work done by several

tasks together, it needs to be refined to a point where it is executed by one component.

The analysis assumes this has already been done.

Notice that choosing a budget value is different from making a prediction. If the

component being budgeted is of a familiar type, the budget value may be a prediction

based on experience; if it is a new and unfamiliar type, then the budget value is properly
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seen as a target or a commitment. The difference between a prediction and a commitment

is subtle but important; anyone may refuse to make a prediction if they lack data, but

anyone beginning a project is making all kinds of commitments, and this is just one more.

Figure 3.4: LQN Model of Simple Call Agent
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3.4.6 Step 6: Experimental Results Evaluation
The LQN analytical model gave the throughput and response time of the remote

users, calculated for a range of remote users, for different numbers of name server users.

“CallAgentA”and “CallAgentB” tasks are multithreaded. The numbers of threads for

both tasks were two. Tools, which exist to make the analysis easier, are the LQNS solver

for LQNs, and the SPEX program for sequencing repeated runs over ranges of parameter

values. The LQN file of the model is included in Appendix A.The capacity and delay of

the system were monitored in term of throughput and response time respectively. Figure

3.5 shows that as the number of name service users increases the performance of the

system for call connections decrease. Other runs showed how, when the service time

(representing the CPU time budget) of any task increased then the utilization of that task

was increased and the remote user performance decreased.

Figure 3.5: Response Time (msec) of Remote Users for Different NS
Users
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the system. The bottlenecks of this task also cause bottleneck for upper layers. This effect

was observed by increasing the service time of tasks “CallAgentA”, “CallAgentB”,

“ProtocolAgentA” and ”ProtocolAgent B”.

Remote Users NS User =1 NS User =5 NS User =9 NS User =13 NS User =17

1 19.7408 28.5517 40.9504 54.6051 68.7478
11 128.744 133.914 142.47 153.887 167.006
21 260.053 261.985 266.631 273.513 282.212
31 391.934 393.136 396.198 400.923 407.123

Table 1: Response Time (msec)

The throughput was also analyzed and shows the effect on system capacity of changes in

numbers of users, in Figure 3.6. The same data is shown in numerical form in Tables 1

and 2.

Figure 3.6: Throughputs (Users/ms) of Remote Users for Different NS
Users
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Remote Users NS User =1 NS User =5 NS User =9 NS User =13 NS User =17

1 0.025 0.021 0.016 0.013 0.011

11 0.074 0.071 0.068 0.063 0.059

21 0.075 0.074 0.073 0.072 0.069

31 0.075 0.075 0.074 0.074 0.073

41 0.075 0.075 0.075 0.074 0.074

51 0.075 0.075 0.075 0.075 0.074

Table 2: Throughputs (Users/ms)

3.5 Summary
This chapter explains in detail the Budget Analysis Road Map with an example,

which highlights the key steps of the performance budgeting approach. These are as

follows:

1. Designer UCM as one of the high level specifications of a software design. Any

specification can be used a starting point of the performance budgeting road map,

2. Resource demand budgets,

3. “Completion” of an incomplete specification of software design,

4. Creation of the performance model,

5. Additional ”completion” at performance model,

6. Evaluation, and

7. Feedback
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4.0 Completion of an Incomplete Software
Specification

4.1 Introduction
A software specification does not include all the information, which is necessary

for the performance evaluation of a software design, because of its level of abstraction.

The information can be some missing software components or operations depending on

the performance evaluation requirements and the nature of the system. This thesis uses

the term "completion" to mean additional elements, which are required for the

performance evaluation of a software system specification, and will be incorporated in an

incomplete software specification. Although the addition of the components and

operation will result in the modification of software design but it will describe all of the

expected components and operations necessary for the performance evaluation.

The performance model requires knowledge of different components and operations

of the system. The components can represent software entities such as objects, processes,

databases, servers, and networking components (tuple space or blackboard system) as

well as non-software entities e.g. or hardware etc. The operations can be CPU operations

(associated execution costs) and communications operations, which are required for the

workload demands. The chapter will discuss the following issues for the “completion”:

•  How should a “completion” be specified?

•  Alternatives for the “completion”

•  “Completions” at different stages

•  Automation for the “completion”

•  An example will be discussed in this chapter to elaborate the “completion” and

alternatives for the “completion”. The “completion” will be incorporated first and

the “additional completion” introduced later if one required for this example.

4.2 How should a “completion” be specified?
 “Completion” can be specified at UCM level while the “additional completion”

introduced at LQN level. The software designer can insert missing components and
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operations at UCM level for the “completion”, which are not shown explicitly but can be

inferred. These components can be some existing software components, represented in

the specification by design stubs and will be used as re-used software components. For

example, a “completion” might refer to a missing network component used in

communication between different objects. It can be single or multiple components.

Network components may not be important for a software design scenario but are

required for a performance model. Components and operations can also be incorporated

at LQN level. These can be introduced in the form of software components or

performance parameter such latency (adding think time in latency) or message overhead

for execution demands depending on the requirement of system.

The “completion” can be a replacement of some components in a specification or

model with some other components e.g. a plug-in map replace a stub in a UCM

specification or a task replacement with subsystem in LQN model.

The “completion” can also be a pattern that can be instantiated or transformed in

specification e.g. adapting a plug-in to a use or adapt the scenario to the plug-in in a

UCM specification or the communication pattern transformation, which will be described

in next chapter.

Since, the “completion” and the “additional completion” may be approximate in

both functional and structural terms, or may define workload and demand abstractions,

and are for the performance evaluation of a software design therefore they are different

from the functional refinements of a specification, elaborations by generative

programming [Czarnecki01], or software components in component-based software

engineering [Szyperski98].

In this chapter, some examples of the “completion” will be described in UCM

domain as well as the “additional completion” in LQN domain and some examples will

be described only as the “additional completions” in the LQN domain in next chapter.

At this stage, the “completions” are introduced manually. Since all the tools are

not available for the “completion” and the “additional completion” that’s why semi-

automation, which refers to manual work and available tools help, is preferable at this

stage.
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4.3 Alternative “completions” for Inter-component Communication
There can be alternatives for the “completion” of inter-component

communication. The selection of missing components and operations is also important

from the “completion” and performance model viewpoint. It depends on the scenarios

and nature of a software system. It can be understood with a paradigm of two parties

communication system shown in Figure 4.1.

4.3.1 Example: Two-Party Communication
Two parties, “Party A” and “Party B”, are interacting each other in a UCM

scenario. “Party A” sends a request to “Party B”. “Party B” accepts the request. The

responsibilities associated with each party are labeled as “x1” and “x2”. These

responsibilities represent generic processing (actions, activities, operations or tasks etc.).

This scenario is illustrated in Figure 4.1. This information is not sufficient for two parties

to communicate with each other. The communication type is also unknown. It is

important to know whether they are located on same machines or different machines. It is

desired to choose a suitable a network component between them.

Different type of communications can be possible between these two parties. It

can be a point-to-point communication, Inter Process Communication (IPC), Remote

Procedure Call (RPC), an Object Request Broker (ORB) [Mowbray97 and OMG95], a

blackboard system [Cabri98 and Spruit97], or a tuple space communication. The choice

of network components depends on the location of components whether they are located

locally or remotely and their interaction type such as synchronous, asynchronous or

forwarding.

It can also be anonymous communication i.e. one party does not have to know the

other party. If both parties are on local machines then IPC is a good choice, if they are

remote machines then RPC is a good choice, if both parties have dissimilar operating

systems or hardware then ORB will be a good choice. Tuple space communication will

be a suitable choice of communication when both parties are on local or remote machines

and interacting anonymously. Tuple space server can be a meeting point for both parties.

The choice of tuple space server is also important whether it is centralized or distributed.
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Figure 4.1: Two-Party Communicatio

4.3.2 Alternative: “Completion” by Simple Network Mes
Consider simple network messaging case for the “com

component is added between two parties for the “completion”. It 

are located remotely. The root map is shown in Figure 4.2.

Figure 4.2: “Completion” with network me

Network component has a static stub, which represents a s

in map associated with this sub map is shown in Figure 4.3.

Sub scenario shows “Protocol Agent A” for “Party A”, “

“Party B” and “Network Delay” component.  The choice of protoc

network message system. It is assumed that the protocol agents of 

network component and this is sufficient for the “completion’ illus

Party A Party B

2x

Party A

o

x
1
ns

saging
pletion”. The network

is assumed that parties

ssagin

ub scen

Protoco

ol is als

both pa

tration.

Party B

2
x
x1

in
Network
ut
50

g

ario. The plug-

l Agent B” for

o important for

rties are part of



Time/Performance Budgeting for Software Designs

Figure 4.3: Sub-scenario for network 
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“Party A” places its tuple in tuple space server using out operation. The tuple

space server notifies “Party B” about the tuple. It is assumed “Party B” would be blocked

if the tuple is not available in the tuple space. “Party B” will remove the tuple from the

tuple space server using in operation. If the tuple found in tuple space then “Party B” will

remove it. If the tuple is not in tuple space then “Party B” will not wait for the tuple and

will continue its normal execution. When the tuple will arrive in tuple space, tuple space

server will notify “Party B”. “Party B” will remove the tuple from tuple space.

4.3.4 Alternative: Completion by Remote Procedure Call (RPC)
Consider Remote Procedure Call (RPC) case for the “completion”. RPC

mechanism is implemented at both parties for the “completion”. It is a generalized case

for communication while ORB is a special case of RPC, which will be discussed in next

section. It is assumed that “Party A” is communicating with “Party B”, this is one-way

communication and both parties are remote parties. RPC mechanism is coordinating

communication between these parties. RPC is a client server mechanism. “Party A” is

acting as client and “Party B” is acting as server. The non-blocking RPC mechanism is

chosen for this example because “Party A” is not blocked after sending the request to

“Party B”. Athena RPC at MIT [Arons], Concert-C [Auerbach94] and ASTRA

[Ananda91] are examples of non-blocking or asynchronous RPC.

Figure 4.5: 
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Before introducing non-blocking RPC for “completion” some components

associated with RPC will be discussed.

Client Stub: It performs packing and unpacking of data. Packing refers to the

conversion of procedure names and parameters into a message. It is called marshaling of

data. Unpacking refers to conversion of message coming from server into results. At link

time client is statically bounded to a procedure that spans address space over the network

to communicate with the remote server. It takes help from name server.

Client Transport Mechanism: It refers to communication network software. It

converts the call into send operation. In non-blocking RPC case the client continues its

normal execution after making request to server.

Server Stub: It performs packing and unpacking of data. Packing refers to the

conversion of results into message. It is called marshaling of data. Unpacking refers to

conversion of message into procedure arguments i.e. un-marshaling of data.

Server Transport Mechanism: It refers to communication network software. It

receives message from client.

Server Process: It’s surrogate process that executes the procedure. The process

accepts call from appropriate client and makes local call.

Two party-communications example is not completed from the point of view of

RPC communication. RPC components of both client and server are not shown in Figure

4.1 “Designer UCM”. RPC components are implemented in the form of static stub at both

parties as shown in Figure 4.5.
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Figure 4.6 shows the client side RPC sub-scenario, which is introduced as part of

“completion” at “Party A”. The associated responsibility with client interface is labeled

as “xui”, which shows user interaction with the client side object. The responsibility

“marshaling” at stub provides marshaling of data at “Party A”. The third rectangular box

shows Client Transport Mechanism and the network protocol associated with it. This

provides network communication facility to “Party A”.
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communication it is assumed that “Party A” is acting like as a client and “Party B” is

acting like as a server. It is also assumed that both parties are running same vender ORB

though it can be from different venders.

Figure 4.8: “Completion” with ORB
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Usually ORB is implemented as runtime library. Client and server both have these

libraries. Client implements the link to server through communication port using standard

ORB protocol.  Client calls the stub, marshals the data and send the request to client side

ORB.  Client side ORB connects server side ORB though communication port using

standard ORB protocol.

Figure 4.10: ORB Sub-scenario at Pa
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Figure 4.12: LQN Model of RPC
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incorporated in the form of additional “completion” at LQN level. Latencies can be

incorporated in the form the User Think time and message overheads in execution

demand. Figure 4.12 shows completion at LQN level.

4.4.1 Example: Additional Completion for RPC
Figure 4.13 shows the LQN model with additional “completion”. Each task has

single entry. The detail of each task is as follows:

RPCUser Task: It shows the user task at “Party A” to make an RPC request.

ClientUserInterface Task: It shows the user interface at “Party A”, through which user

will make request for the connection.

ClientStub Task: It shows the stub responsibility at “Party A”. It performs marshaling of

data.

ClientProtocol Task: It shows the Network Protocol responsibility at “Party A”. It

provides communication mechanism for “Party A”.

ServerProtocol Task: It shows the Network Protocol responsibility at “Party B”. It

provides communication mechanism for “Party B”.

ServerStub Task: It shows the stub responsibility at “Party B”. It performs un-marshaling

of data.

ServerProcess Task: It performs the request of the client at “Party B”.

WLUser C Task: It shows the client side users, which are competing for the resources at

client.

CompetingWLC Task: It shows the client side competing workload task. WLUserC

accesses this task to the resource.

ClientResource Task: It shows the competing resource at client side

WLUserS Task: It shows the server side users, which are competing for the resources at

server.

CompetingWLS Task: It shows the server side competing workload task. WLUserS users

use this task to access server side resources.

ServerResource Task: It shows the competing resource at client side

NameService Task:  This task shows a name server. A RPC process is associated with

name space.  If process would like to access a procedure in another name space a special
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name to address binding is required. Name server aids in this binding by producing the

name to process mapping. The RPC server registers each procedure with name server so

the client can locate it at call time.

Disk Task: Name Server accesses the disk.

Figure 4.13: LQN Model of RPC
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It can be seen from the performance model of RPC example that Name Service

task and competing workload tasks are included. The name server is very important for

RPC mechanism. This may not be important for a software designer because this

information is not important for a RPC mechanism but for performance model it is. The

name server accesses the disk, which can affect the performance of the system. The

workload users were also not important to show RPC mechanism but they are important

for a performance model. Because, there will be some users on client side as well as

server side, which will be using both the machines or some other processes will be

running at the same time on both machines. These processes will compete for the

resources with different RPC processes, which will really affect the overall performance

of the system.

In RPC performance model, only network delay was introduced but the execution

overheads were not considered. These can also be included as additional “completion” in

order to get satisfactory performance result.

4.5 Automation for the “completion”
Different tools can be designed to provide automation for the “completion” at

specification level as well as model level. Some of the tools which are already available

to introduce “completions” at specification level e.g. UCM Navigator introduces

“completions” at UCM level in the form of software component or a UCM plug-in map

as a software subsystem. In addition to this, each software component has a performance

related window for the information, which includes arrival rates at start points, path

choice probabilities, deployment of processes to processors and the workload demands of

responsibilities.

Some of the tools, which are already available, insert the “completion” after the

model is built e.g. LQN Components Filter and Latency and Message Overhead filter

insert the “completions” at LQN level.

These tools do not provide integrated automation for the “completion”. Research

and development required in this direction to combine and integrate all the tools to

introduce different types of “completions” at specification level as well as model level.

All previously available tools can also be combined into UCM Navigator to provide an
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integrated environment for the “completion”. UCM2LQN Converter is already integrated

in UCM Navigator.

This thesis’ contribution for the “completion” is the development of LQN

Component Filter tool. It has four variations. This tool introduces additional

“completion” in the form of network communication components at LQN level. The

mechanism of the design and algorithm will be discussed in next chapter.

4.6 Summarry
This chapter explains in detail one of the important steps of the budgeting road

map, the “completion” of an incomplete specification of a software design. The following

issues are discussed in this chapter:

1. How should a “completion” be specified?,

2. Alternative “completions” for inter-component communication,

3. “Completions” at different stages, and

4. Automation for the “completion”.
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5.0 LQN Component Filter

5.1 Introduction
This chapter will describe the design of LQN Component Filter, which provides

automation to the “completion” at model level. The idea of the “completion” is already

discussed in previous chapter. There are four variants of the LQN Completion filter.

These filters define the “completion” at LQN level. This is done for a call replacement

with a network component. It is implemented in form of Single Network Component

Task (SNCT) filter, Network Subsystem (NSS) filter, Shared Resource Server Task

(SRST) filter and Multicast Network Task (MCNT) filter.

5.2 Motivation for the Design
Distributed and communication software involve many network components.  A

network mechanism usually involves some latency and delay communication associated

with these network components. These network components can be single e.g. a router or

multiple e.g. a chain of routers, local e.g. LAN or remote e.g. a RPC client-server

connection through Internet, single threaded or multi threaded, depending on the

communication types and systems. It is possible to replace a call with a network

component by hand but automation will enhance the process of replacement. LQN

requires new features such as a call replacement with a particular type of network

component by automation.

The definition and type of calls in LQN performance model are discussed in detail

in Chapter 2. They represent simple messages from one task to another task (from one

entry to another entry) but there are some cases when message passing or simple call

representation is not sufficient for a performance model. So, it is required to replace a

simple call or a number of calls with one or several network components depending on

the type of communication.
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5.3 Basic Concept of Network Component Filter
In LQN model, a call is bound with source and destination tasks (source and

destination entries) and tasks are bound to processors. These tasks can be on the same

processor or separate processors depending on the system requirements.
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depending on the component definition. Therefore, third argument is either the name of

the task, if the network component is a single task, or a file name representing a network

subsystem. It replaces the desired call with network component and generate output file.

The design of the filter is shown in Figure 5.1.

Many network component filters can be designed to achieve different types of

“completions” at network components level. Three particular network filters design will

be discussed in next sections, which will define different types of “completions”. The

sections will cover simple Single Network Component Task (SNCT) filter, Network

Subsystem (NSS) filter, Shared Resource Server Task (SRST) filter, and Multicast

Network Task (MCNT) filter.

5.4 Single Network Component Task (SNCT) Filter

5.4.1 Motivation For The Design
There are some cases in which a single call represents a single network

component. This component might share a processor with some other tasks, which exist

in the input LQN file or it might have its own separate processor, which will be

incorporated with this task in the input LQN file during the execution of the filter. So, it

is required to design such a filter, which will read a set of pairs of source entry with the

associated task, destination entry with the associated task, and a processor if the

component share the processor, which exists in the input LQN file. It can be a

replacement of single call or multiple calls depending on “completion” definitions. For

multiple call replacement, all the replaced network components can be of similar or

dissimilar types. The example of the former is many routers with same configurations

having their own separate processors. In the later case some of the network components

would be sharing some processors, which exist in the input LQN file e.g. a modem and

some of them would have their own separate processors inserted by the filter e.g. routers.

Single Network Component Task (SNCT) filter defines such a “completion” for a

distributed communication software system in the form of single network component

task.
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5.4.2 Design Of The Filter
The design of Single Network Component Task (SNCT) filter assumes that each

task will have one or multiple entries and each single network component to be

incorporated will share a processor exist in the input LQN model or have a separate

processor.

The design of SNCT filter is based on Network Component filter design shown in

Figure 5.1. The SNCT filter also accepts three arguments from the user from command

line. The first two arguments are the name of two separate files, and the third argument is

used to specify network component task name. The first argument is the input LQN file,

which is already described in section 5.3.  The second argument is a file called

EntryTaskDataFile.txt with an added <Processor name> field. The modified syntax of the

file is shown below:

<Source Entry> <Source Task> <Destination Entry> <Destination Task> <Processor

name>

<Processor name> is the name of the processor, which is optional. If processor

name is defined in the EntryTaskData.txt file then it is assumed that this processor is one

of the processors, which exist in the input LQN model and the single component will

share this processor with other tasks. If processor name is not defined then the filter will

insert a separate processor in the input LQN file for the single network component during

the execution.

LQN model does not allow two tasks having a common name. The name of each

task should be unique.  Since, network component is incorporated at run time and it

might be possible after inserting one network component in a model the user would like

to insert another component, therefore, network component name is specified as third

argument on the command line to provide uniqueness to network component task. This

will differentiate network component task with other components in a model.  Thus the

complete command line has the following syntax.

$java SNCT model.lqn EntryTaskData.txt NetworkTaskName
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If there might be a case when it is required to replace number of calls with

number of network components at the same time and each network component must be

distinguished from other network components. Index will be used with each network

component name to differentiate it from other network components. For example, if it is

required to replace three calls with three network components e.g. three routers and the

task name entered from command line is ‘nt’ then network components to be

incorporated will be ‘nt0’, ‘nt1’, and ‘nt2’. Moreover, if the names of processors are not

defined in the TaskEntryData.txt file then each network component will have a separate

processor since each router is a stand-alone device having its own processor; therefore, in

this case, respective processors will be ‘pnt0’, ‘pnt1’, and ‘pnt2’.

5.4.3 SNCT Filter Algorithm
This section provides the algorithm for the SNCT filter for the replacement of

synchronous, asynchronous and forwarding calls. Since only one call will be replaced by

single task therefore the type of the call is not important. The role of the task is important

whether the task will share a processor of the input LQN file or will have a its own

separate processor.

The execution steps of the SNCT filter are described as under:

1. The SNCT filter reads the input LQN file, EntryTaskData.txt file and the name of

the single task modeling the network and checks the validity of both files and the

presence of the LQN task representing a network component in the input LQN

file.

2. (a) If another task is already present with the same name in the input LQN file

then the filter will generate an exception and halt.

(b) The relation of the entry and the associated task in the EntryTaskData.txt file

is verified for each entry and task pair in the file whether the entry belongs to this

associated task. If not then the filter will generate an exception and halt.

(c) The validity of the call between source and destination entries, defined in the

EntryTaskData.txt file, is determined.  If there is no such call in the input LQN

file then the filter will generate an exception and halt.
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(d) If a processor is defined with the pair of entries and the associated tasks

(source and destination) in the EntryTaskData.txt file then the validity of the

processor is determined in the input LQN file. If no such processor is available in

the input LQN file then filter will generate an exception and halt.

3. The filter creates the processor if necessary

4. A LQN task, representing the network, is created with a default delay (network

service time) of one unit and will generate output LQN file.

Figure 5.2: Input LQN Model

5.4.4 Example
An input LQN model is shown in Figure 5.2. Each box represents a task in which

gray part represents the name of the task and white part represents the entry or entries of

the task. Each task has its own processor. All the tasks are interacting synchronously. It is

required to replace all the calls between entries Ae1 (associated with task tA) and Xe1

(associated with task tX), Ae3 (associated with task tA) and Ye2 (associated with task

tY), and Ce1 (associated with task tC) and Ze1 (associated with task tZ) with single

network components.

The following command is executed to incorporate single network task.

<khs@sunbird>java SNCT SingleEntryTaskData.txt Nt

The output LQN model is shown in Figure 5.3. Three calls are replaced by three

network component tasks Nt0, Nt1, and Nt2.

Ae1 Ae2 Ae3 tA Be1 tB Ce1 tC

Xe1 tX Ye1 Ye2 tY Ze1 tZ
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Figure 5.3: Output LQN Model

5.5 Network Subsystem (NSS) Filter

5.5.1 Limited Goals For The Design
There are some cases in which a single call is handled by multiple network

components, which are the parts of a network subsystem. These multiple network

components have associated network delay and execution over heads which might affect

the over all performance of a distributed and communication software. Each component

may have its own processor or sharing a processor with some other tasks. For example a

network subsystem may consist of replicated tasks having a separate processor for each

task e.g. a series of routers connected between a client and server and some other tasks

with shared processors e.g. an ORB agent etc.  So, it is required to design such a filter,

which will replace a single call with a network subsystem.

In SNCT filter design, it was assumed that similar or dissimilar type of network

components would be incorporated during a multiple calls replacement and each network

component would replace a call while in NSS filter design a network subsystem replaces

a single call with multiple replicated and shared tasks.

5.5.2 Design Of The Filter
The design of NSS filter is based on the design of network component filter

shown in Figure 5.1. In addition to the three arguments described in Network Component

filter design, NSS filter uses a fourth argument on command line. The first three

Nte0 Nt0 Nte1 Nt1 Nte2 Nt2

Ae1 Ae2 Ae3 tA Be1 tB Ce1 tC

Xe1 tX Ye1 Ye2 tY Ze1 tZ
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arguments are the names of three separate files and the fourth argument is the name of the

processor shared by some tasks of the network subsystem and the input LQN file. The

first argument is an input LQN file, the second argument is the EntryTaskData file, and

the third argument is network subsystem LQN file. The input LQN file and the

EntryTaskData file are already described in section 5.3 while the network component

LQN file is used to specify a network subsystems consisting of multiple network tasks. It

is already mentioned in the previous section that a network subsystem may consist of

some replicated tasks and some shared processor tasks. A shared processor task is

distinguished from other tasks by using three letters ‘KHS’ at the end of task name in the

network subsystem LQN file. If a processor name is specified in the fourth argument and

the processor exists in the input LQN file then the shared processor task will share the

processor, which is defined as the fourth argument on the command line, with other tasks

of the input LQN file otherwise the NSS filter will generate an exception and halt. Thus

the complete command line has the following syntax.

$java NSS model.lqn EntryTaskData.txt SubsystemModel.lqn SharedProcessor

In this filter, the type of the call, which will be replaced by network subsystem, is

important. The call will or will not affect the calls inside the network subsystem. When a

network subsystem “completion” is defined in a software system then this subsystem

maintains the type of call between the sender and the receiver of the replacing call. For

example, if a call, which is to be replaced by network subsystem, is synchronous then

sender gets the reply from receiver. When the network subsystem replaces the call then

sender gets the reply from the receiver not from any of the tasks of network subsystem.

An example explains this effect in section 5.5.4.

A network subsystem may consist of one or multiple tasks. These tasks can be on

a separate processor or on common processor depending on the design of network

subsystem. The type of call between each pair of tasks may be similar or dissimilar. For

example, a network subsystem consists of three tasks nt0, nt1 and nt2. It is assumed that

the call type between each pair of tasks is asynchronous. In similar call type case, nt0 will

be interacting with nt1 asynchronously and nt1 will be interacting with nt2
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asynchronously. In dissimilar call type case, nt0 will be interacting with nt1

asynchronously and nt1 will be interacting with nt2 synchronously or vice versa.

5.5.3 NSS Filter Algorithm
This section provides the algorithm for the NSS filter for the replacement of

synchronous, asynchronous and forwarding calls. The validity check for the set of pair of

entry and the associated task (source and destination), call between source and

destination for the EntryTaskData.txt file described for the SNCT filter are same for the

NSS filter the only difference is the processor definition. In NSS filter, the shared

processor is defined as the fourth argument instead of defining it in the EntryTaskData.txt

file. Three letters “KHS” are appended with the name of the task in the network

subsystem file which will share the processor with the other task of the input LQN model.

If the fourth argument is not defined at the time of the execution, the NSS filter will

generate an exception.

In NSS filter, the call to be replaced between sender and the receiver in the input

LQN file important. Since the type of the call will affect the calls inside the network

subsystem, which will replace this call therefore, each call replacement will be described

separately.

1.  Asynchronous Call Replacement

If the call, which is to be replaced, is an asynchronous call then there will be no

affect on network subsystems calls. The NSS filter will simply plug-in the network

subsystem in the input LQN file by introducing asynchronous call between the sender

task and the first task of the network subsystem and between the last task of the network

subsystem and the receiver task. The filter will generate an output LQN file.

2.  Synchronous Call Replacement

If the call, which is to be replaced, is a synchronous call then the NSS filter will

introduce a synchronous call between the sender task and the first task of the network

subsystem and the call between the last task of the network subsystem and the receiver

task will be converted according to type of the network subsystem because the
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synchronous call replacement affects the calls inside the network subsystem. The effect

of the call can be described as under:

•  If the call between each pair of the tasks of a network subsystem is also

synchronous then there will be no affect of replacing call on network subsystem

calls. The NSS filter will simply plug-in such a network subsystem in the input

LQN model by introducing a synchronous call between last call of the network

subsystem and the receiver task and generate an output LQN file.

•  If the call between each pair of tasks of the network subsystem is asynchronous

then these asynchronous calls will be replaced by forwarding calls. For such a

network subsystem the NSS filter will convert all the asynchronous calls of the

network subsystem into forwarding calls and introduce a forwarding call between

the last task of the network subsystem and the receiver task. The filter maintains

type of interaction between the sender and the receiver and the receiver gets the

reply from the receiver.

•  If there is a forwarding call interaction in the network subsystem then the NSS

filter will introduce a synchronous call between the last task of the network

subsystem and the receiver task. After the insertion of the network subsystem the

sequence of interactions between the sender task and the receiver task can be

described as follows.  The sender will send the message and wait for the reply to

the first task of the network subsystem, which will send this message to the

second task and wait for the reply. This message will be forwarded to the last task

of the network subsystem, which will send this message to the receiver and wait

for the reply. The receiver will reply to the last task of the network subsystem.

The last task will reply to the first task of the network subsystem, which will

eventually reply to the sender.

3.  Forwarding Call Replacement

If the call, which is to be replaced, is a forwarding call then the NSS filter will

introduce a forwarding call between the sender and the first task of the network

subsystem and a forwarding call between the last task of the network subsystem and the

receiver. The effect of the call can be described as under:
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•  If the call between each pair of tasks of a network subsystem is also forwarding

then there will be no affect of replacing call on network subsystem calls. The NSS

filter will simply plug-in network subsystem in the input LQN file and generate

output LQN file.

•  If the call between each pair of tasks of a network subsystem is asynchronous then

the NSS filter will convert all the asynchronous calls to the forwarding calls and

generate an output LQN file.

•  The filter will generate an exception if there is a synchronous call in network

subsystem.

•  The filter will generate an exception if a forwarding call is followed by an

asynchronous call in network subsystem.

5.5.4 Example (See Also Appendix Fi)
To understand the effect of a call, which will be replaced by a network subsystem,

consider a simple Input LQN Model shown in Figure 5.2. It is required to replace the call

between the entries Ae3 (tA) and Ye2 (tY). The Input LQN File is included in Appendix

G1 and the EntryTaskData.txt file in Appendix G2.

A network subsystem consists of three single entry replicated tasks and a shared

processor task, which is distinguished by, letters ”KHS”. The network subsystem file is

included in Appendix G3.

Synchronous Call Replacement

Since the call, which is to be replaced, is a synchronous call therefore the interactions

between the tasks inside the network subsystem will be affected.  Three cases are

described as under:

Case 1: The call between each pair of tasks of a network subsystem is synchronous

therefore will be no effect of replacing call on network subsystem calls. The network

subsystem is included in Case S1 of Appendix F2. The output LQN model is included in

Case S1 of Appendix F2. When the fourth argument is defined as processor p3 then the
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filter replaces the shared task processor np2 with p3. The output LQN file is included in

Appendix G4.

Case 2: The call between each pair of tasks of network subsystem is asynchronous and

these asynchronous calls will be replaced by forwarding calls. The network subsystem is

included in Case S2 of Appendix F2. The source entry Ae3 will interact with the entry of

first task of network subsystem synchronously and all other entries in network subsystem

will forward this call to the destination entry and the destination entry Ye2 will reply to

the source entry Ae3. The output LQN model is included in Case S2 of Appendix F2.

Case 3: A forwarding call network subsystem is included in Case S3 of Appendix F2.

The output LQN model is included in Case S3 of Appendix F2.

Forwarding Call Replacement

To understand the effect of a forwarding call, which will be replaced by a network

subsystem, consider a simple input LQN model included in Appendix F3. The possible

forwarding call replacement cases are described as under:

Case1: All the tasks are interacting asynchronously in the network subsystem and all the

calls will be converted to forwarding calls. The network subsystem and output LQN

model are included in Case F1 of Appendix F4.

Case2: All the tasks are forwarding the request and there will be no effect. The network

subsystem and output LQN model are included in Case F2 of Appendix F4.

5.6 Shared Resource Server Task (SRST) Filter

5.6.1 Motivation For The Design
There are some cases in which a many clients are interacting with one server.  The

server may have the capability to serve unlimited number of client requests. Server

handles each client request independently with a separate thread. For example, this might

be a web server or a tuple space server.  Shared Resource Server Task (SRST) filter
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introduces such a “completion” in LQN model. In this type of “completion”, a call is

replaced by an entry of a shared resource (threaded) server LQN task. If there are number

of calls and it is required to replace these calls with a threaded server task then a single

entry of this server will replace a single call.

5.6.2 Design Of The Filter
The design of SRST filter is based on the design on network component filter

shown in Figure 5.1. It accepts three arguments from user on command line. The first two

arguments are files names, and third argument is a server task name, which provides

uniqueness to server task name. The details of input LQN file and EntryTaskData.txt file

are discussed in section 5.2. Thus the complete command line has the following syntax.

$java SRST model.lqn EntryTaskData.txt ServerTaskName

5.6.3 SRST Filter Algorithm
This section provides the algorithm for the SRST filter for the replacement of

synchronous, asynchronous and forwarding calls. The type of the call is not important

because each call will be replaced by the single entry of the share resource server task.

Since, this is a server task therefore it is assumed that it will have a separate processor.

The execution steps of the SRST filter are described as under:

1. The step1 to 4 described in section 5.4.3 for the SNCT filter are same for the

SRST filter as well.

2. After the validity of the input LQN file, EntryTaskData.txt file and task name, the

relation between entry and the associated task (source and destination), and

presence of the call the filter will incorporate a multiple entries shared resource

server. Each entry of the task will replace a call. The SRST filter will insert a

separate processor with the task in the input LQN file and will generate output

LQN file.

5.6.4 Example
Tuple space server task can be incorporated as a shared resource task. This

network component is used when tuple space communication is used among different
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tasks. It is assumed that there is one centralized tuple space server, which is coordinating

communication among between many tasks.

Figure 5.4: Input LQN Model

Consider an LQN model shown in Figure 5.4 as input LQN model. It is required

to introduce tuple space server task in the model. Each call will be replaced by each entry

of tuple space server task. The output model is shown in Figure 5.5.

Figure 5.6: Output LQN Model

5.6.5 Design Limitations
•  If a user would like to replace more LQN calls with a server task which is already

incorporated in a LQN model. New entries cannot be incorporated in server task

once the server task is created. This can be done by hand but automation does not

support it.
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•  Multiple server tasks cannot be incorporated at a time for distributed server

systems. In order introduce the idea of distributed server tasks; the filter program

will be executed as many times as the number of server tasks are required.

5.7 Multicast Network Task (MCNT) Filter

5.7.1 Motivation For The Design
There are some cases in which the information is sent from one or more senders

to a set of other receivers e.g. a multicast network.  Multicast Network Task (MCNT)

filter introduces such a “completion” in LQN model. In this type of “completion”, a call

is replaced by single entry LQN task. If there are number of calls and it is required to

replace these calls with a single entry LQN task.

5.7.2 Design Of The Filter
The design of MCNT filter is based on the design on network component filter

shown in Figure 5.1. It accepts three arguments from user on command line. The first two

arguments are files names, and third argument is single entry LQN task name, which

provides uniqueness to task name with the other tasks of input LQN model. The details of

input LQN file and EntryTaskData.txt file are discussed in section 5.2. Thus the complete

command line has the following syntax.

$java MNCT model.lqn EntryTaskData.txt MulticastNetowrkTaskName

5.7.3 MCNT Filter Algorithm
This section provides the algorithm for the MCNT filter for the replacement of

synchronous, asynchronous and forwarding calls. Since multiple calls will be replaced by

the single entry of the task therefore the type of the call not important. It is assumed that

this task will have a separate processor.

The execution steps of the MCNT filter are described as under:

1. The step1 to 4 of the SNCT filter described in section 5.4.3 are same for the

MCNT filter.

2. After checking the validity of the input LQN file, the EntryTaskData.txt file and

the task name, the relation between entry and the associated task (source and
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destination), and presence of the call, the filter will incorporate a single entry task.

The MCNT filter will insert a separate processor with the task in the input LQN

file and will generate output LQN file.

Figure 5.7: Output LQN Model

5.7.4 Example
Consider an LQN model shown in Figure 5.7 as the input LQN model. It is

required to introduce a multicast network task in the model. The calls, which will be

replaced by single entry multicast network (MCast) task, are shown with gray colors. The

output model is shown in Figure 5.8.

Figure 5.8: Output LQN Model
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5.8 Future Work
All the filter designs discussed in this chapter support call replacement for a call between

source and destination entries, not the call between a source activity and a destination

entry. So, the designs can be extended for call replacement between source activity and

destination entry.

5.9 Summarry
This chapter demonstrated the idea of an automated tool for the “completion”,

LQN Component Filter, which filter insert the “completion” at LQN level only. The LQN

Component Filter has four variations and the design and  implementation of each filter is

described with a example. These are as follows:

1. Single Network Component Task (SNCT) filter,

2. Network Subsystem (NSS) filter,

3. Share Resource Server Task (SRST) filter, and

4. Multicast Network Task (MCNT) filter.
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6.0 Tuple Space Measurements and Modeling

6.1 Introduction
This chapter describes the measurements done on a particular vendor specific

tuple space called J-Spaces. J-Spaces Technologies Ltd. releases J-Spaces as The J-

Spaces Platform 1.0. The J-Spaces Platform 1.0 is the first commercial implementation of

the JavaSpaces specification. JavaSpaces is a powerful Jini service specification. In order

to understand J-Spaces measurements environment, brief descriptions of Jini network

technology, JavaSpaces and The J-Spaces Platform 1.0 will be discussed.  Measurements

results are analyzed using PerfAnal [Mayers00].

6.2 Jini Network Technology
Jini network technology provides simple mechanisms, which enable devices to

plug together to form a community. Each device provides services that other devices in

the community may use. These devices provide their own interfaces, which ensures

reliability and compatibility. Sun Microsystems introduces this network technology. The

details of Jini Specification are described in [Oaks00, Arnold00, Edwards00, and

Arnold99a].

Jini technology uses a lookup service with which devices and services are

registered. When a device plugs in, it goes through an add-in protocol, called discovery

and join-in. The device first locates the lookup service (discovery) and then uploads an

object that implements all of its services' interfaces (join).

6.3 JavaSpaces
JavaSpaces is an integral part of Jini1.1 Starter Kit of SUN Microsystems Inc.

[Waldo98]. JavaSpaces is a powerful Jini service specification that provides a simple, yet

powerful infrastructure for building distributed applications. The JavaSpaces

specification defines a reliable distributed repository for objects, along with support for

distributed transactions, events and leasing. Applications are viewed as a group of

processes in JavaSpaces programming model, cooperating via the flow of objects into

and out of "spaces” [Arnold99b].
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JavaSpaces is based on the concept of tuple spaces first described in 1982 in the

Linda programming language and system, originally propounded by Dr. David

Gelerntner at Yale University [Roberts92, Foster95, Walkner95, Gelerntner97,

Dasgupta98 and Matloff99]. The public-domain Linda system is a coordination language

for expressing parallel processing algorithms without reference to any specific computer

or network architecture and provides inter-process coordination via virtual shared

memories, or tuple-spaces, that can be accessed associatively.

The tuple-space model is especially useful for concurrent algorithms. Although

JavaSpaces technology is strongly influenced by the Linda system, it differs from it in

several ways, like Java's richer typing, object orientation, subtype matching and

transactional support spanning multiple spaces, leasing and events.

6.3.1 JavaSpaces API
The JavaSpaces API is very simple and elegant, and it provides software

developers with a simple and effective tool to solve coordination problems in distributed

systems, especially in domains like parallel processing and distributed persistence. The

developer designs the solution as a flow of objects rather than a traditional request/reply

message based scenario. Combined with the fact that a Java Space is a Jini service, thus

inheriting the dynamic nature of Jini, JavaSpaces is a good model for programming

highly dynamic distributed applications.

Each object, which implements the interface net.jini.core.entry.Entry, corresponds

to a tuple. The public instance variables of these objects are the components of the tuple.

The JavaSpaces API consists of 4 main method types discussed in [Waldo98 and

Arnold99b]:

•  Write()   : writes an entry to a space.

•  Read()    : reads an entry from a space.

•  Take()    : reads an entry and deletes it from a space.

•  Notify()  : registers interest in entries arriving at a space.

 JavaSpaces enables full use of transactions, leveraging the default semantic of the

Jini Distributed Transactions model. This enables developers to build transactional-secure

distributed applications using JavaSpaces as a coordination mechanism. Since Jini
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transactions can span more than one Jini Service, and a JavaSpace instance is a Jini

Service, a transaction may span more than one space.

The API itself provides non-blocking versions, where a read() or take() operation

may take a maximum timeout to wait before returning to the caller. This is very important

for applications that cannot permit themselves to block for long times or in the case that

the space itself is in some kind of a deadlock.

 JavaSpaces also makes extensive use of Jini leases, as it mandates that entries in

the space be leased (and thus expire at a certain time unless renewed by a client). This

prevents out-of-date entries, and saves the need for manual cleanup administration work.

6.4 The J-Spaces platform 1.0
The J-Spaces Platform [JSpaces] was designed initially for enterprise-scale

mission-critical applications that require the extensive use of the JavaSpaces API.

A J-Spaces platform is an intelligent connectivity network service. It consists of a

server or a set of servers, which are located somewhere in the network, and allows

applications to share and exchange information in a transparent and spontaneous manner.

Upon demand, the space server allocates a space (distributed shared memory), into which

the user can start sending information objects. The information objects in the space can

be shared with other applications. Unlike other solutions, the space doesn't need to know

anything about the information it stores, or about the identity and location of the sender

and receiver. The application, on the other hand, can use the space immediately without

any need for specific integration or modifications.

6.4.1 J-Space server
J-Spaces server is the actual entity (JVM) that has a J-Spaces container instance

among other Jini services. The J-Spaces server provides the ability to control whether or

not to launch in-memory Jini services. By default all the services, including the HTTP

daemon, RMID, reggie, Jini Lookup Service (LUS) and mahalo (Jini Transaction

Service) are launched.

The LUS is an active-able service. A client will first access the activation service

(RMID) and the RMID will provide them with the reference for the actual LUS. This is
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done only once in the life cycle of client/service communication. After the client gets a

reference to the LUS from the RMID it access the LUS directly not through the RMID.

J-Spaces supports dynamic code loading of its proxy classes. This means that

when a client gets a reference to the space its application needs to know nothing about its

underlining implementation. The proxy loads dynamically all the relevant classes it

requires from the HTTP server and this is the reason why HTTPD is required in J-Spaces

Platform. A proxy is not a server it is an object, which contains the client implementation

of the space and can be obtained via the LUS.

6.5 Measurements Using PerfAnal Tool
The measurements results are analyzed using a tool called PerfAnal.

Measurements are done using Java Development Kit (JDK) 1.3.0_01 version on

Windows NT 4.0 platform.

PerfAnal is selected for the following reasons:

•  It is easy to use and provides reasonable results

•  The measurement tool provided by JDK is called hprof. hprof is actually an agent,

which can be helpful to provide information about CPU time, heap usage etc. by

using JVM profiler. It is difficult to get and analyze the results from hprof.

PerfAnal reads the results from a file coming from hprof, it analyzes data and

provides a graphical display for CPU time of threads, methods and lines on behalf

of caller and callee.

•  PerfAnal is used for analysis when process is terminated that’s why it does not

occupy too much memory when process is executing.

This tool has some drawbacks. These are as under:

•  It inherits drawback of hprof.

•  It does not provide elapsed time (wall clock time). The time it takes for a task to

finish its job.

•  Concurrent measurements are not possible. PerfAnal is used when process is

terminated that’s why it is not possible to monitor a process during its execution.

It is not possible to get the snapshot of some interesting point during process

execution.
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•  CPU time is measured in tick, so it is required to calibrate the tick for of machine

and JDK.

6.6 A Brief Description of Master/Workers Example
This example is used to do measurements on J-Spaces. Asaf Kariv,

the Vice President R&D of J-Spaces Technologies Limited, developed this example.

The example is based on a Master and Workers processes. Master process writes

an integer on the space. Workers read this integer from the space. Each worker finds the

divisor of the integer from a specified range of integers allocated by Master and writes

the result back to the space. Master takes this result from the space and determines

whether the result is a prime number.

The sequence of operation in terms of J-Spaces can be described as follows:

Workers wait for the data from the Master. The Master writes the data on the space and

the space notifies the Workers proxy about that event and handles the Workers proxy

actual data. This causes Workers to return from their blocking read operations and

continue to write its result and the same goes to the Master. The space does not block for

this amount of time, only the Master and Workers proxies. The space woke up the

proxies via a callback that it triggers for those clients.

This example consists of five Java classes. The descriptions of three core classes

are described in separate sub sections.

Main.java class
Main.java class sets RMI Security Manager. It gets references to the space and

transaction services. It calls Master.java class and displays the result test whether the

result is a prime number.

Master.java class
This class is responsible for splitting the task of checking a prime candidate into

sub tasks, gathering the partial results and returns the final result.

The following steps are involved to determine whether a given integer is prime.

Master.java class

•  creates a new transaction
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•  breaks task into several tasks and write them to space in one transaction

•  commits transaction

•  creates and starts worker threads wait for any result. If the result indicates that is

not a prime number, return false. If all results indicate a prime return true. It

creates a new transaction

•  finds divisor whether the candidate is prime number

Master.java class uses two classes CheckIfPrimeTask.java and

CheckIfPrimeResult.java.

CheckIfPrimeTask object encapsulates a task entry in space. It writes the result as a

CheckIfPrimeResult object. CheckIfPrimeResult object encapsulates the result of a

CheckIfPrimeTask entry.

Worker.java class
A worker is a thread that is responsible for taking CheckIfPrimeTask tasks from a

space, performing these tasks and put back a CheckIfPrimeResult objects. Worker.java

class

•  creates a new transaction

•  takes a task from space

•  checks result

•  commits transaction

6.7 Scenario for the Measurement
The measurements are done on Windows NT 4.0 Workstation operating system using

Sun Utlra 5 machine through SunPC card. The scenario for the measurements is simple

and consists of the following steps:

•  The J-Spaces Platform Installation: The installation of the J-Spaces Platform set

up all the services, including the HTTP daemon, RMID, reggie, Jini Lookup

Service (LUS) and mahalo (Jini Transaction Service) because they are embedded

in the J-Spaces Platform.

•  The Installation Verification:  Upon completion of the installation it is necessary

to run the J-Spaces Server. The J-Spaces Server is installed by default in “C:\J-
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SPACES>”. The server is run from Windows NT console as well from “Start”

menu.  The utilities are configured to work on the default space named

“JavaSpaces” which is created upon installation.

•  Testing the J-Spaces Server: Before running the J-Spaces Server it is

recommended to check the parameters in the setenv.bat file. To run the server the

JSpacesServer.bat file is executed and the following result is obtained on the

console:

C:\J-SPACES\bin>setenv

C:\J-SPACES\bin>JSpacesServer

Verifing license key...OK

J-Space server starting...

C:/J-Spaces\lib\jaxp.jar

C:/J-Spaces\lib\parser.jar

C:/J-Spaces\lib\JSpaces.jar

C:/J-Spaces\lib\JSpaces-dl.jar

C:/J-Spaces\lib\jini-core.jar

C:/J-Spaces\lib\jini-ext.jar

C:/J-Spaces\lib\jini-core.jar

C:/J-Spaces\lib\reggie-dl.jar

C:/J-Spaces\lib\mahalo-dl.jar

C:/J-Spaces\lib\jini-examples-dl.jar

C:/J-Spaces\lib\space-examples-dl.jar

Web server is up...

RMID is up and running...

/reggie-dl.jar requested from sunbird-pc.sce.carleton.ca:3073

Reggie is up...

/mahalo-dl.jar requested from sunbird-pc.sce.carleton.ca:3079

Mahalo is up...

...
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•  To verify a successful installation run the ping.bat utility and the following result

is obtained on the console:

C:\J-SPACES\bin>ping sunbird-pc JavaSpaces -r localhost

Looking for sunbird-pc container...

Started to READ from <JavaSpaces> space with

TIMEOUT: FOREVER

BUFFERSIZE: 100

ITERATIONS: 5

AVERAGE TIME = 118 milliseconds

•  Measurement with the Master/Worker example: The run.bat, which is a script file,

contains the following command and options to record traces of the example for

J-Spaces measurements.  The run.bat file contains the following:

@call ../../bin/setenv.bat

@java -Xrunhprof:cpu=samples,depth=12,thread=y,file=f150.txt

-Djava.security.policy=%POLICY%

-classpath../../lib/jini-core.jar;../../lib/jini-ext.jar;

classes;../utilities/classes primes.Main localhost 150

where,

1. -Xrunhprof is an option used to record traces of a Java program and

file=f150.txt is an ASCII file where the traces are recorded.

2. classes;../utilities/classes primes.Main localhost 150 is an option where the

name of a java class file, of  which measurements are obtained, is specified.

•  After recoding the traces in f150.txt file the measurements results are analyzed

using PerfAnal program, which is written in Java and is a separate program,

which is not included in J-Spaces Platform. The following is a command to

execute the PerfAnal program.

C: \PerfAnal>java -cp pa.jar com.macmillan.nmeyers.PerfAnal f150.txt
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6.8 Master/Workers Example Performance Model
The performance model of Master/Workers example is essentially a queuing

model expressed in layered queuing, a driver task called “RefTask1” stimulating the

execution of operations of software entities. The performance model is shown in Figure

6.1.

The configuration that was modeled and analyzed for the measurements was one

Master and 12 Workers. Master registers service to Lookup Service (LUS task) using

RMID Server (RMID task) and Transaction Manager (TM task) and places data on the

space (Jspaces task) using HTTP Daemon (HTTPD task).

Operation Name CPU Demand (ms) per operation

Read 3.92

Write 3.92

Take 3.92

Table 3: Measured CPU Demands for Operations

Workers read the integer from the space using same sequence of operations, find

the divisors of the integer and write the results on the spaces. Masters takes the results

from the space. The LQN file of J-Spaces model is included in Appendix B.

The CPU demands measured and calculated for each entry of operation and

component (server) in milliseconds is shown in Table 3 and 4 respectively.

The measured CPU demands show that it would take 12.25 ms for Master or

Worker to do a read, write or take operation in J-Spaces.

Component Name CPU Demand (ms) per operation

RMID 131.5

TSM 8.33

LUS 31.83

HTTPD 56.42

Table 4: Measured CPU Demands for Components
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Figure 6.1: LQN Model of J-Spaces
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6.9 Model Results
The simulation model gave the throughput, response time and processor

utilization of Workers, calculated for a range of Workers, for different numbers RefTask1

users.

Figure 6.2 shows the curves of the response time (msec) for different number of

RefTask1 users for a range of Workers. The range of Reftask1 users do not affect the

repose time of the system as much as the different number of the workers. The response

time of the system increases with number of workers. The same data is shown in

numerical form in Table 5.

Figure 6.3 shows that as the number of Workers increases the performance of the

system decreases. The host processor utilization was 97.17% for 12 workers when

throughput was around 0.00143 response cycles for 1 RefTask1 users. The bottleneck of

the system is RMID Server, when the utilization of RMID server was 52.55% the over all

processor utilization of system was 97.8%.

The throughput and host processor utilization are shown on graphs in Figure 6.3

and 6.4. The same data is shown in numerical form in Table 6 and 7.

The results are obtained with 95% confidence level  (error ranges from and 1% to

10%).

6.10 Summary
This chapter describes the measurements and modeling of a commercially

available tuple space, J-Spaces, with an example. It describes the following:  

1. Jini Network Technology overview,  

2. JavaSpaces overview,

3. J-Spaces platform 1.0 necessary details for the measurement,

4. Measurements using PerfAnal tool, and

5. Brief description of Master/Workers example, scenario for the measurement,

performance model for the Master/Workers example and the model results.
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Figure 6.2: Response Time (msec) to the Number of Workers

Figure 6.3: Throughput (Response Cycles) to the Number of Workers
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Figure 6.4: Host Processor Utilization to the Number of Workers

RefTask1
Workers

1 3 5 7 9 11 13 15

1 526.058 526.243 526.8 527.619 528.018 527.478 526.603 526.242

3 1055.54 1044.8 1052.83 1057.42 1052.71 1051.55 1057.09 1057.04

6 1840.01 1842.61 1845.41 1837.15 1852.35 1840.62 1854.15 1839.57

9 2632.12 2645.87 2647.81 2648.9 2624.1 2638.84 2631.71 2622.91

12 3433 3431.41 3417.62 3410.1 3438.37 3404.59 3398.54 3425.99

Table 5: Response Time (msec) to the No. of Workers

RefTask1
Workers

1 3 5 7 9 11 13 15

1 0.00798 0.00796 0.00797 0.00799 0.00797 0.00797 0.00798 0.00796

3 0.00433 0.00434 0.00434 0.00433 0.00434 0.00435 0.00434 0.00433

6 0.00257 0.00258 0.00258 0.00258 0.00257 0.00257 0.00257 0.00257

9 0.00183 0.00183 0.00183 0.00183 0.00183 0.00183 0.00183 0.00183

12 0.00143 0.00142 0.00142 0.00142 0.00142 0.00142 0.00142 0.00142

Table 6: Throughput (Response Cycles) to the No. of Workers
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RefTask1
Workers

1 3 5 7 9 11 13 15

1 0.84008 0.84009 0.84066 0.84057 0.84113 0.84082 0.84050 0.84033

3 0.91345 0.91256 0.91318 0.91386 0.91315 0.91329 0.91308 0.91323

6 0.94844 0.94854 0.94845 0.94841 0.94858 0.94842 0.94866 0.94849

9 0.96324 0.96376 0.96365 0.96371 0.96295 0.96332 0.96349 0.96323

12 0.97179 0.97178 0.97190 0.97137 0.97173 0.97144 0.97140 0.97146

Table 7: Processor Utilization to the No. of Workers



Time/Performance Budgeting for Software Designs

94

7.0 Case Studies

7.1 Introduction
This chapter will demonstrate performance budgeting approach by presenting two

case studies; one describing Distributed Hand-off Protocol UCM design and one

describing Plain Old Telephone System (POTS) UCM design.

 Two case studies are described to demonstrate different aspects of the usability of

the approach. Distributed Hand-off Protocol UCM design case study involves all the

necessary steps mentioned in budget analysis road map, the usability of LQN Component

filters and tuple spaces. Plain Old Telephone System (POTS) UCM design case study

involves only the budgeting of the CPU demands for the system. For POTS UCM design,

it is assumed that the available UCM is a “complete” UCM and LQN model is extracted

from UCM2LQN tool mentioned in Chapter 2.

7.2  Case Study A - Distributed Hand-Off Protocol UCM Design

7.2.1 Overview
This case study describes a UCM design of a distributed hand-off protocol, based

on a tutorial example by Gunter Mussbacher at Mitel Networks, which illustrates a

particular style of drawing UCMs, to teach designers the UCM notation [Mussbacher01].

The original UCM example has been simplified and used as Designer UCM for the case

study.

7.2.2 Step1: Designer UCM
•  Figure 7.1 shows a Designer UCM for a distributed hand-off protocol. The

protocol described in this specification is used to coordinate the execution

of some arbitrary duty by two tasks, Process_A and Process_B, in a

distributed environment.

In Figure 7.1, the scenario is shown in three stages:

•  Party_A initiates the execution of the duty, which is forwarded to

Process_A via Device_A and  Main_Controller, with a confirmation to

Party_A.
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•  Later, Party_A initiates a request to hand off the duty to Process_B, which

goes via Device_A and the Main_Controller to Process_A, and then to

Process_B. Process_B interrogates Party_B. Party_B forwards a

confirmation via Device_B and Main_Controller to Process_B, which then

begins to execute the duty.

•  While doing so it sends a synchronous storage request to Process_Backup,

which carries out the request and replies back to Process_B.

Responsibilities in the UCM are interpreted for performance analysis as

operations.

Figure 7.1: Distributed Hand-Off Protocol U

Party_A Device_A Main_Controller

Party_B Device_B

Process_B

ptyA_e12

ptyA_e11 devA_e11
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p
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Process_A
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7.2.3 Step 2: Budgets
Since, this is an artificial example, the execution demands of the responsibilities

have been arbitrarily chosen as unity, also the sensitivity of system response time and

throughput are considered as targets to budget CPU time demand of each responsibility.

7.2.4 Step 3: UCM Completion and Infrastructure Components
The Designer UCM shown in Figure 7.1 does not describe the communication

infrastructure between different communicating processes. Communication infrastructure

might consist of protocol stacks, middleware, etc. Here, it was decided to use a tuple

space communication mechanism, which is already described in Chapter 2. Other

communications such as protocol stacks are needed but will not be shown here, for

simplicity of explanation. The tuple space communications is provided by a server task,

which handles and stores messages.

In this example, it is assumed that there are anonymous communications between

Process_A and Process_B, and Process_B and Process_Backup.  Tuple space provides

anonymous communication feature among different communicating processes, as

described in Chapter 2. Figure 7.2 shows a distributed tuple space server with two server

processes. The process Tuple_Space_A provides communications between Process_A

and Process_B, Tuple_Space_B process provides communication between Process_B and

Process_Backup.  All other processes are using address based socket communications.

The scenario illustrates that Process_A performs an “out” operation and places

data in Tuple_Space_A, and Process_B performs an “in” operation, which removes it.

Process_B and Party_B forward this request to Device_B.  Device_B replies back to

Main_Controller, which sends asynchronous message to Process_B. Process_B performs

“out” operation and places tuple in Tuple_Space_B. Process_Backup removes tuple from

Tuple_Space_B by performing “in” operation, it performs a backup operation and replies

back to Process_B through Tuple_Space_B. The number shown in small gray box along

UCM path provides sequence of operation for UCM scenario.

7.2.5 Step 4: LQN Model of Distributed Hand-off Protocol
The LQN model of Distributed Hand-off Protocol Complete UCM was generated

by the LQN2UCM converter. This converter maps every task of UCM to an LQN task,
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every crossing to an entry, and every responsibility to an LQN activity. Figure 7.3 shows

the model, with many activities suppressed. In Figure 7.3, every rectangle represents a

task, with a gray color box showing the task name. White boxes besides this are the

entries of the task. Boxes shown in a second row below the task are activities. The entry,

which contains these activities, is just above the first activity from the left. The

messaging arrows with a filled head represent synchronous service calls while the other

arrows represent asynchronous service calls. The dashed line arrows with a filled head

represent forwarded service calls.
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Figure 7.3 shows that the scenario begins with:

1. the Party_A_User task initiates the scenario by making a synchronous request

through entry ptyA_User to entry ptyA_tae of the Party_A task.

2. the activity PtyA_e11 handles this request and makes a synchronous request to entry

dev_e11 of the Device_A task.

3. this request is forwarded by mc_e11 entry of Main_Controller to psA_e11 entry of

Process_A, which replies back to ptyA_tae entry. Eventually, Party_A task replies

back to Party_A_User task.

The scenario continues as Party_A task makes an asynchronous request to

Device_A through ptyA_e12 activity. devA_e12 makes an asynchronous request to

mc_tae entry of Main_Controller. This request is handled by mc_e12 activity of mc_tae

entry. It makes a synchronous request to psA_e12 entry of Process_A task.

Tuple_Space_A, Process_B, and Party_B forward this request to Device_B, which

replies back to Main_Controller.

Finally Main_Controller initiates an asynchronous request through mc_e13

activity to psB_e12 entry of Process_B task, which requests Process_Backup for back up

operation through Tuple_Space_B task. Process_Backup performs a backup operation

and replies back to Prcoess_B.

The number shown in gray color box under each task provides mapping of UCM

path in LQN model.

7.2.6 Step 5: Additional Completions, Environment and Assumptions
Additional “completions” are introduced in the form of environment components i.e.

Party_ A_User, ts_Central, Cs_opA and Cs_opB tasks. All of these tasks are added as to

achieve suitable performance model. Party_A_User task, which is a reference task, will

initiate the scenario. Since, communication infrastructure is based on a distributed tuple

space server with two server processes therefore a centralized tuple space server is

required to synchronize these processes.
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Figure 7.3: Distributed Hand-off Protocol Layered Queuing Network
(LQN) Model
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ts_Central  task, which is acting as centralized server for distributed tuple space

servers, will provide synchronization for Tuple_Space_A process through Cs_opA task

and Tuple_Space_B process through Cs_opB task.

To follow the analysis a little further, the performance model was created with

workload values, and the following assumptions:

•  The CPU demands were considered as unity for all entries and activities in the

beginning

•  The probabilities for the path traversing were considered as 100 % (i.e. value ‘1’

from one entry of a task to entry of another task).

•  All the requests for in and out operations of tuple space are handled by one entry.

•  All the tasks are on separate processors.

7.2.7 Step 6: Experimental Results Evaluation
The Distributed Hand-off Protocol LQN model is solved by ParaSRVN simulator.

Figure 7.4 shows the model predictions for the delay of the system, giving the sensitivity

of response time vs. different number of users for the “Full Demand” or base case

(labeled FDMC, with 1 msec for all demands) and for other budget values. The number

of threads of the Main_Controller, denoted as m, was also varied with values 1, 2, 6 and

10. Thus, for instance, FDMC(m=1) is a base case with single Main_Controller thread

and CPU demands of 1.0 for all the entries and activities. The LQN file of FDMC(m=1)

is included in Appendix C1.

The sensitivity of response times and throughputs vs. different number of users

for the “Full Demand” with different threads of Main_Controller are shown as

FDMC(m=2), FDMC(m=6), and FDMC(m=10) in Figure 7.4 and 7.5 respectively and

same data is shown in numerical form in Table 8(a) and 9(a) respectively.

The results are obtained with 95% confidence level  (error ranges from and 1% to

5%). Other values of demands were modeled with 10 threads (m = 10):

•  the MC(0.05, 0.15, 0.15) curve is  obtained with the CPU demand value of 0.05 msec

for the entry mc_e11, 0.15 msec for the activity mc_e12, and 0.15 msec for the

activity mc_e13 of Main_Controller. The CPU demands of rest of the system are 1.0

msec.
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•  the DVD(0.1, 0.1) curve is obtained by budgeting the CPU demands to 0.1 msec for

the entries of Device_A and Device_B, the CPU demand values for the rest of the

system are same as described for the MC(0.05, 0.15, 0.15) curve.

•  the PABD (0.1, 0.1) curve is obtained by budgeting the CPU demand values of 0.1

msec for the entries of Process_A and Process_B, the CPU demand values for the rest

of the system are same as described for the DVD(0.1, 0.1) curve.

•  the PAB (m = user) curve is for multiple threads in Process_A and Process_B, equal

to the number of users) with budget CPU demands described for the PABD (0.1, 0.1)

curve.

Table 8 (a): Response Time (msec) With Full CPU Demands

The sensitivity of response times and throughputs vs. different number of users

for the “budgeted demands” with different 10 threads of Main_Controller are shown as

MC(0.05, 0.15, 0.15), DVD(0.1, 0.1), PABD (0.1, 0.1), and PAB (m = User) in Figure

7.4 and 7.5 respectively and same data is shown in numerical form in Table 8(b) and 9(b)

respectively.

Main_Controller
(d=1.0, 1.0, 1.0)

Device_A (d=1.0, 1.0)
Device_B (d=1.0, 1.0)

Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)

Other system  Components (d=1.0)

Users

Main_Controller
Threads (m=2)

Main_Controller
Threads (m=6)

Main_Controller
Threads (m=10)

1 10.518 7.936 6.825

31 21.951 12.976 8.021

61 64.308 25.569 12.600

91 263.789 77.915 29.326

121 689.314 258.030 108.101

151 1061.060 594.883 336.250

181 1542.470 882.566 594.886

211 1927.360 1177.000 875.489

241 2336.310 1509.870 1136.060
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Main_Controller
Threads (m=10)

Users

MC(0.05, 0.15, 0.15)
Main_Controller

 (d=0.05, 0.15, 0.15)
Device_A (d=1.0, 1.0)
Device_B (d=1.0, 1.0)

Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)

Other system
Components (d=1.0)

DVD(0.1, 0.1)
Main_Controller

(d=0.05, 0.15, 0.15)
Device_A (d=0.1, 0.1)
Device_B (d=0.1, 0.1)
Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)

Other system
Components (d=1.0)

PABD (0.1, 0.1)
 Main_Controller

(d=0.05, 0.15, 0.15)
Device_A (d=0.1, 0.1)
Device_B (d=0.1, 0.1)
Process_A (d=0.1, 0.1)
Process_B (d=0.1, 0.1)

Other system
components (d=1.0)

PAB (m = User)
Main_Controller

(d=0.05, 0.15, 0.15)
Device_A (d=0.1, 0.1)
Device_B (d=0.1, 0.1)
Process_A (d=0.1, 0.1)
Process_B (d=0.1, 0.1)

Other system
components (d=1.0)

Party_A Thread (m=User)
Party_B Thread (m=User)

1 6.388 5.610 4.417 3.122

31 7.090 5.993 4.928 3.650

61 9.670 8.805 6.948 4.314

91 22.374 19.993 13.359 6.144

121 112.250 105.530 47.920 11.100

151 331.773 321.029 200.679 25.578

181 597.021 593.844 428.956 78.589

211 847.206 846.439 664.890 202.736

241 1138.340 1112.520 914.523 372.236

Table 8 (b):  Response Time (msec) with Budgeted CPU Demands

The LQN files of MC(0.05, 0.15, 0.15), DVD(0.1, 0.1), PABD (0.1, 0.1), PAB (m

= User) are included in Appendices C2, C3, C4, and C5 respectively.

From the graphs we can see that the performance starts to degrade around 90

simultaneously active users, for m = 1, but that with 10 threads in the Main Controller

this is improved to about 120 users. The detailed inspection of the model outputs confirm

that the Main_Controller is a software bottleneck, which requires multi-threading, but the

improvement is slight beyond m=10. Main controller demand reduction has only slight

effect; device demand reduction has a modest effect; Process_A and Process_B demand

reductions have a large effect, and Process_A and Process_B multithreading has a very

large effect, roughly doubling the capacity when m=10 for the Main_Controller. The

sensitivity of the throughput was also analyzed and shows the effect on system capacity

of changes in numbers of users. We can see that throughput saturates after 151 users for

MC(0.05, 0.15, 0.15), DVD(0.1, 0.1), and PABD (0.1, 0.1) and after 211 users for PAB

(m = User).  The same data is shown in numerical form in Tables 8(b) and 9(b).
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Main_Controller
(d=1.0, 1.0, 1.0)

Device_A (d=1.0, 1.0)
Device_B (d=1.0, 1.0)

Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)

Other system components (d=1.0)

Users

Main_Controller
Threads (m=2)

Main_Controller
Threads (m=6)

Main_Controller
Threads (m=10)

1 0.0010 0.0010 0.0010

31 0.0304 0.0305 0.0306

61 0.0575 0.0595 0.0601

91 0.0720 0.0847 0.0883

121 0.0718 0.0957 0.1092

151 0.0732 0.0949 0.1130

181 0.0712 0.0960 0.1135

211 0.0721 0.0970 0.1126

241 0.0722 0.0959 0.1129

Table 9 (a): Throughput (Users/msec) with Full CPU Demands

Main_Controller
Threads (m=10)

Users

MC(0.05, 0.15, 0.15)
Main_Controller

 (d=0.05, 0.15, 0.15)
Device_A (d=1.0, 1.0)
Device_B (d=1.0, 1.0)

Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)

Other system
Components (d=1.0)

DVD(0.1, 0.1)
Main_Controller

(d=0.05, 0.15, 0.15)
Device_A (d=0.1, 0.1)
Device_B (d=0.1, 0.1)
Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)

Other system
Components (d=1.0)

PABD (0.1, 0.1)
 Main_Controller

(d=0.05, 0.15, 0.15)
Device_A (d=0.1, 0.1)
Device_B (d=0.1, 0.1)
Process_A (d=0.1, 0.1)
Process_B (d=0.1, 0.1)

Other system
components (d=1.0)

PAB (m = User)
Main_Controller

(d=0.05, 0.15, 0.15)
Device_A (d=0.1, 0.1)
Device_B (d=0.1, 0.1)
Process_A (d=0.1, 0.1)
Process_B (d=0.1, 0.1)

Other system
components (d=1.0)

Party_A Thread (m=User)
Party_B Thread (m=User)

1 0.0009 0.0010 0.0010 0.0010

31 0.0308 0.0307 0.0307 0.0308

61 0.0602 0.0604 0.0606 0.0610

91 0.0890 0.0891 0.0896 0.0903

121 0.1088 0.1094 0.1156 0.1198

151 0.1134 0.1146 0.1258 0.1470

181 0.1135 0.1136 0.1265 0.1678

211 0.1143 0.1141 0.1268 0.1759

241 0.1127 0.1141 0.1258 0.1759

Table 9 (b):  Throughput (Users/msec) with Budgeted CPU Demands
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Figure 7.4: Sensitivity of Response (msec) Time to the Number of Users

Figure 7.5: Sensitivity of Throughputs (Users/msec) to the Number of
Users
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7.3 Case Study B – Plain Old Telephone System (POTS) UCM Design

7.3.1 Overview
This case study describes Plain Old Telephone System (POTS) call connection

UCM design example, which provides a base UCM design for traditional telephony

system. Daniel Amyot originally developed this UCM in[Amyot99b and Amyot00].

7.3.2 Step1: Designer UCM
The root map of POTS UCM Design is shown in Figure 7.6.  The scenario consists of

five rectangular boxes labeled as SCP, OS, Switch, Orig, and Term, referring to UCM

components and three diamond-shaped objects PreDial, PostDial, and Billing, referring to

static stubs.

The system components are described as under:

•  Orig component refers to caller’s telephone set

•  Term component refers to callee’s telephone set

•  Multiple copies of Orig indicate multiple user connections

•  Switch provides connectivity to both

•  Operations System (OS) component provides billing facility to system

•  Service Control Point (SCP) component is used to processes IN features but this

component is not used in POTS scenario.

The stubs of UCM path are described as under:

•  PreDial stub refers to features that are activated before the number is dialed.

•  PostDial stub refers to features that are activated after the number is dialed.

•  The Billing has a straight path connecting its input and output. The path has a

single responsibility to log the start time of the connection between the caller and

callee.

•  PreDial stub has a default plug-in that merely connects the input and output paths.

PostDial map has provides more functionality. It has associated plug-in map

shown in Figure 7.7. The PostDial plug-in either connects caller to callee or

notifies the caller that callee is busy.

•  ProcessCall stub refers to features dealing with making a connection; the

associated plugin map is shown in Figure 7.8. NumberDisplay and ProcessBusy
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stubs have default plug-in without any responsibilities. Former displays the

caller’s number while the later has features associated with the callee being busy.

•  ProcessCall plug-in checks whether the callee is idle. If the callee is idle then its

status is changed to busy and the process of making the connection is started

otherwise the process of notifying the caller, that the callee is busy, starts. The

starting point of a call is bound to IN1 input while the idle and busy end points are

bound to stub’s OUT1 and OUT2 outputs respectively.

Figure 7.6
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For an unsuccessful call connection scenario, if the switch checks the status of

callee and finds that the callee is busy then the caller gets a busy tone and connection is

not made.

7.3.3 Step2: Budgets
The CPU time demand of each responsibility of the Switch is chosen 0.25 msec

and for the rest of system responsibilities 1.0 msec in beginning of the budgeting process.

Though the components used in this example are familiar types but due to lack of

availability of data for CPU time demands, sensitivity of system response time and

throughput are considered as targets to budget CPU time demand for each responsibility.
Swicth
Figure 7.8: ProcessCall Plug-in map
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7.3.4 Step 3: UCM Completion and Infrastructure Components
POTS UCM Design is taken from Dorin B. Petriu thesis  [Petriu01a]. He

experimented developed a generative tool, LQN2UCM converter, for LQN model

extraction. It is assumed that POTS UCM Design is a “complete” UCM for model

extraction.

7.3.5 Step 4: POTS LQN Model
The UCM2LQN converter generated a large number of default activities in order

to create activity connections and calling relationships that correspond to the UCM input.

Every fork and join leads to the creation of as many default activities as there are path

segments leading into or away from the given fork and join. Thus an AND fork with one

input and three output branches will lead to the creation of four default activities to

represent it. The POTS UCM design features two AND forks shown in Figure 7.7 in

Term and Switch, two AND join shown in Figure 7.7 in Orig and Term, and one OR fork

shown in Figure 7.8 in Switch.

The LQN model for POTS shown in Figure 7.9 as jLQNDef graphic, with many

activities suppressed. The Figure 7.8 includes one new task, RefTask1, which has been

introduced as additional “completion” which will be described in next step. The LQN file

for POTS is included in Appendix A.

The starting point of the scenario is RefTask1 task, which sends a synchronous

message to Orig task. It indicates that the receiver is picked up and RefTask1 task waits

for the reply from Orig task. Orig task interacts with the Switch synchronously.

Orig task first requests a dial tone, then that a connection be established with the

other party whose number is dialed, and finally that the connection be enabled so the two

parties can talk.  The Switch in turn first makes a call to the Term process to create the

call. After the callee picks up, Switch sends an asynchronous message to Term process to

confirm that the two parties can now talk to each other. Switch also sends an

asynchronous message to log the start time of the connection to OS.
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Figure 7.9: POTS reduced Layered Queuing Network (LQN) Model
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7.3.6 Step 5: Additional “Completions”, Environment and Assumptions
The UCM2LQN converter introduced additional “completion” in the form of

environment components i.e. RefTask1 and one common processor for all the tasks in

extracted LQN model. RefTask1 task and processor are added to achieve suitable

performance model. RefTask1 task, which is a reference task, will initiate the scenario.

  Since, the end of the UCM path did not come back to the start point and the system

had open arrivals, the UCM2LQN converter derived it as asynchronous interaction

between RefTask1 task and Orig task. The sensitivities of response time (mean delay)

and throughput (capacity) of overall system can only be observed when RefTask1 waits

for the reply from Orig, therefore, the asynchronous call between RefTask1 and Orig is

replaced with synchronous. Performance model was created with workload values and

the following assumptions:

•  RefTask1 and Orig tasks interact synchronously

•  The number of Orig and Term tasks are equal to the number of RefTask1 tasks

•  The Switch and the OS share a common processor while all the other tasks have

their own separate processors

•  The CPU demands were considered as unity for all entries and activities in the

beginning

•  The probabilities for the path traversing were considered as 100 % (i.e. value ‘1’

from one entry of a task to entry of another task)

The model is solved by ParaSRVN simulator, SPEX tool made the analysis easier for

sequencing repeated runs over ranges of parameter values.  The model gave the

sensitivity of throughput and response time of overall system for a range of RefTask1,

Orig and Term tasks, and for different budgeted CPU time demands of system

components.

7.3.7 Step 6: Experimental Results Evaluation
The predictions of the simulation model for delay (the sensitivity of average

response time) and capacity (the sensitivity of throughput) of overall system are plotted

to the number of call connections i.e. different number of RefTask1 users for the

budgeted CPU demand values with exponential scale in Figures 7.10 and with
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logarithmic scale 7.11. The Figures 7.12, 13 and 15 are the plots of processor utilization

for the Switch, the Orig and the Term with exponential scale.  The simulation results

showed that multiple Switch threads degraded system performance. So, only one switch

thread was used for all the simulation models. The case Switch (CPUd=0.25 msec) is

considered as the base case. In this case, the CPU demands for all the activities of the

Switch are 0.25 msec and for the rest of the system 1 msec. The LQN file of Switch

(CPUd=0.25 msec) is included in Appendix D1. Other values of budgeted demands with

single Switch thread and CPU demand of 0.25 msec of Switch.

•  Orig  (CPUd=0.5 msec) curve is obtained by budgeting the CPU demands to

value 0.5 msec for all the activities of Orig, the CPU demand values for the rest of

the system are same as described for the Switch (CPUd=0.25 msec) curve.

•  Term (CPUd=0.1 msec) curve is obtained by budgeting the CPU demands to 0.1

msec for all the activities of Term, the CPU demand values for the rest of the

system are same as described for the Orig (CPUd=0.25 msec) curve.

Case Orig (CPUd=0.5 msec)

From the graphs we can see that the performance is somewhat better when the

CPU demand of Orig was budgeted to 0.5 msec with the CPU demand of the Switch of

0.25 msec and the rest of system of 1.0 msec. This case is plotted as Orig (CPUd=0.5

msec). Detailed inspection of the model outputs shows that the processor utilization of

the switch reached to maximum 51.8% for 500 users. The mean delay and the throughput

of the system were 95.258 msec and 0.193 Users/msec respectively for 500 users.  The

LQN file of Orig (CPUd=0.5 msec) is included in Appendix D2.

Case Term (CPUd=0.1 msec)

From the graphs we can see that the performance starts to degrade when the CPU

demand of term was budgeted to 0.1 msec with the CPU demand of the Switch of 0.25

msec, Orig of 0.5 msec and the rest of system of value 1.0 msec. This case is plotted as

Term (CPUd=0.1 msec). Detailed inspection of the model outputs shows that the

processor utilization of the switch reached 84.0% at 500 users. The LQN file of Term
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(CPUd=0.1 msec) is included in Appendix D3. The same data is shown in numerical

form in Tables 10, 11, 12, 13 and 14.
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Figure 7.14: Term Processor Utilization to the No of RefTask1 Users

User Switch(CPUd=0.25 msec) Orig(CPUd=0.5 msec) Term(CPUd=0.1 msec)

50 26.567 51.952 92.393

100 28.981 4.223 28.340

150 46.187 106.062 44.447

200 57.955 56.493 35.113

250 70.674 49.039 47.341

300 94.426 101.169 83.227

350 104.711 97.045 69.533

400 147.914 102.024 70.317

450 157.298 115.066 60.966

500 186.520 95.258 87.266

Table 10: POTS Response Time (msec)
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User Switch(CPUd=0.25 msec) Orig(CPUd=0.5 msec) Term(CPUd=0.1 msec)

50 0.025 0.029 0.034

100 0.048 0.048 0.042

150 0.080 0.069 0.079

200 0.104 0.104 0.103

250 0.101 0.127 0.135

300 0.153 0.137 0.145

350 0.139 0.172 0.179

400 0.162 0.178 0.196

450 0.165 0.186 0.221

500 0.166 0.193 0.264

Table 11: POTS Throughputs (Users/msec)

User Switch(CPUd=0.25 msec) Orig(CPUd=0.5 msec) Term(CPUd=0.1 msec)

50 0.110 0.085 0.124

100 0.170 0.105 0.137

150 0.237 0.263 0.218

200 0.342 0.294 0.317

250 0.365 0.362 0.386

300 0.465 0.506 0.461

350 0.479 0.519 0.626

400 0.470 0.508 0.676

450 0.483 0.524 0.658

500 0.492 0.518 0.840

Table 12: Switch Processor Utilization

User Switch(CPUd=0.25 msec) Orig(CPUd=0.5 msec) Term(CPUd=0.1 msec)

50 0.191 0.099 0.142

100 0.345 0.152 0.172

150 0.475 0.296 0.262

200 0.660 0.374 0.373

250 0.785 0.455 0.452

300 0.933 0.592 0.560

350 0.968 0.634 0.685

400 0.976 0.648 0.802

450 0.991 0.652 0.796

500 0.991 0.672 0.961

Table 13: Orig Processor Utilization
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User Switch(CPUd=0.25 msec) Orig(CPUd=0.5 msec) Term(CPUd=0.1 msec)

50 0.137 0.110 0.016

100 0.240 0.140 0.016

150 0.300 0.330 0.030

200 0.389 0.350 0.039

250 0.408 0.445 0.047

300 0.550 0.610 0.060

350 0.565 0.650 0.072

400 0.585 0.649 0.089

450 0.559 0.629 0.081

500 0.619 0.640 0.103

Table 14: Term Processor Utilization

7.4 Budget Revision
Sensitivity analysis provides the variation in the output of a model qualitatively or

quantitatively to different sources of variation. It can be used as a guide for the revision

of budgets when the budgeted resource demands are unable to meet the performance

targets. It might be possible that the analysis results reveal the bottleneck of the system,

which points to most profitable change in the budgeted values. The values of the resource

demand can be selected in such a manner that it would reduce the bottleneck of the

system and provide the desired performance. If the budgeted values are unable to meet

the satisfactory performance then the architecture adjustment can be done as another

option for the desired performance goal.

7.5 Conclusions
Performance budgeting approach for an incomplete software design specification

has been presented, using Distributed Hand-Off Protocol and Plain Old Telephone

System (POTS) UCMs case studies. The approach presented the idea of “completion” for

an incomplete software specification and budgeting of CPU time demands for different

system components. Several simulation models are developed and analyzed for the

sensitivity of average response time as mean delay and the sensitivity throughput as the

capacity of overall system. The experimental results are presented, involving tables and

graphs for budgeted CPU time demands of different systems components.
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In POTS, the Term demand reduction has a large effect and Orig budget demand

reductions have a small effect to the overall of the performance of system; OS demand

reductions have no effect on the performance of the system. Further performance

improvement might be possible with architecture adjustment, which will be discussed in

next chapter.

In Distributed Hand-Off Protocol, the “completion” was introduced in the form of

tuple space at UCM level. It could be inserted at LQN level by using The LQN

Component Filter, which would significantly reduce the effort by introducing

“completion” as tuple space as single network component LQN task. The inserted

components are bound to the source and destination tasks of the call, and either to

existing processors or to new devices of their own. The semi-automated model building

significantly reduced the effort to construct a model for from an high-level specification

of a software design. The approach should easily scale to larger systems.

7.6 Summary
This chapter describes two industry relevant case studies which walk through

various steps of budget analysis road map. The are as follows:

1. Distributed Hand-Off Protocol UCM design covers most of the steps of the road map

and

2. Plain Old Telephone System (POTS) UCM design is a “complete’ specification. It

covers the road map steps from the model extraction through an automated tool to the

result evaluation.
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8.0 Architecture Adjustment

8.1 Introduction
This chapter presents an approach to deal with performance shortfalls by

adjusting the system design. The approach depends on the evaluation results. If the

results are not satisfactory then some changes are required. If predictions show

inadequate performance, one approach is to tighten the budgets until the predictions are

in the green zone. Alternatively one could adjust the design in the UCM domain, or the

implementation options in terms of “completions” and the environment. Architecture

adjustment can be suggested at software level as well as hardware level. Here, the

adjustments will be presented by modifying the completions representing the system

environment in the Plain Old Telephone System (POTS) example described in previous

chapter.

8.2 Architecture Adjustment in POTS

8.2.1 POTS Architecture
It is assumed that POTS performance results evaluated in previous chapter show

that the budgeted CPU time demands of components are unable to achieve satisfactory

performance due to the fact that the Switch and the OS were sharing a processor.

POTS call connection UCM design is based on real world telephone system. It is

not feasible to suggest adjustments in POTS UCM design because it provides the base

UCM of overall telephony system. The necessary adjustments are can be provided in

POTS LQN model. The model reveals that POTS architecture consists of five tasks

including a Switch, which acts like a server task. It provides call connectivity to caller

(originator) and callee (receiver). The Switch hardware architecture details are beyond

the scope of this research but it is possible to suggest and demonstrate architecture

adjustments in the LQN environment in POTS for desired performance targets.

8.2.2 POTS Architecture Adjustment Options
Numbers of options are available to make changes in POTS LQN model. One

possibility is to make some changes in activity connections. If, there are number of
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activities in a given task and the operation does not depend on sequence the activities

then by introducing parallelism in activities connection might improve the performance

of the system.  POTS call connection depends on sequence of operation for a particular

call and all the activities operations are inter-related with each other.

8.2.3 Processors Adjustment in POTS Model
Another possibility is to make hardware level adjustments in the model by

introducing new hardware. Although hardware adjustment is expensive, tradeoff should

be made between system performance and the cost. Since there is only processor in

POTS LQN model and more processor can be introduced to achieve the desired

performance.

The POTS LQN model described in previous chapter reveals that there is only one

processor allocated to all the tasks and it becomes a bottleneck when number of users

increases to a certain limit. So, it is desired to remove this bottleneck by introducing a

separate processor for each task.

Following assumptions are made for the new model after budgeting all the values of

CPU demands for different components:

•  All the tasks are on separate processors

•  The CPU time demands of value

o  “1.0 msec” for all entries and activities of the OS

o  “0.5 msec” for all the entries and activities of the Orig

o “0.25 msec” for all the entries and activities of the Switch

o “0.1 msec” for all the entries and activities of the Term

The model is solved by ParaSRVN simulator using SPEX for sequencing repeated

runs over ranges of parameter values.  The model gave the sensitivity of throughput and

response time of overall system for a range of RefTask1 and for different budgeted CPU

time demands of components with new hardware.

8.2.4 Results Evaluation
The comparison of sensitivity analysis graphs of response time to the number of

users for the systems with shared and separate processors are shown in Figure 8.1 and

numerical data for above graphs is given in Table 15.  For the system with shared
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processor, OS and Switch share a processor.  Dark curves in Figure 8.1 represent system

with the shared processor whereas the system with separate processors is represented by

light curves.  These curves are plotted with exponential scales.
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Figure 8.1: Sensitivity of Response Time to the No of Users

Table 15 is divided in three main columns: Users, Separate Processors and Shared

Processors. Each sub column shows mean delays values for different budged CPU

demand values of the Switch, the Orig, the Term, and the OS. As predicted, the response

times for the system with separate processors are reduced compared to the response times

of the system with shared processor.  The maximum percentage improvement is 63.08%

for 50 users when the Switch, the Orig, the Term and the OS have the budgeted CPU

demands of values 0.25 msec, 0.5 msec, 0.1 msec, and 1.0 msec respectively. The LQN

files of separate processor systems are included in Appendices E1, E2, E3. The

percentage improvement is greater for a lighter load because of small number of users.
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Separate Processors Shared Processor

Users
 Switch(d=0.25)
 OrigO(d=1.0)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 Orig(d=0.5)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=0.1)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=1.0)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=0.1)
 OS(d=1.0)

50 2.29 74.68 20.91 26.57 51.95 92.39

100 100.70 43.80 35.89 28.98 4.22 28.34

150 42.79 77.89 67.22 46.19 106.06 44.45

200 128.21 46.71 50.04 57.95 56.49 35.11

250 57.80 65.49 47.36 70.67 49.04 47.34

300 100.99 98.38 81.10 94.43 101.17 83.23

350 126.54 78.05 101.55 104.71 97.05 69.53

400 156.14 64.25 63.12 147.91 102.02 70.32

450 205.71 130.33 83.30 157.30 115.07 60.97

500 174.81 139.65 76.89 186.52 95.26 87.27

Table 15: POTS Mean Delays with processor adjustment

The comparison of sensitivity analysis graphs of throughputs to the number of users for

systems with shared and separate processors were also analyzed and shown in Figure 8.2

with logarithmic scale and numerical data for the mentioned graphs is given in Table 16.
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Figure 8.2: Sensitivity of Throughputs to the No of Users



Time/Performance Budgeting for Software Designs

123

The throughput of the system with processor adjustment does not improve as

much as the mean delays values. This is due to the fact that when the OS does not utilize

processor whether it shares the processor with the Switch.  There was no change in

throughput when the maximum mean delay was improved to 63.08% for 50 users when

the budgeted CPU demands of values of 0.25 msec, 0.5 msec, 0.1 msec, and 1.0 msec for

the Switch, the Orig, the Term and the OS respectively. The maximum percentage in

throughput improvement is 7.69% for 100 users when the budgeted CPU demands of the

values of 0.25 msec, 1.0 msec, 1.0 msec, and 1.0 msec were for the Switch, the Orig, the

Term and the OS respectively.

Separate Processors Shared Processor

Users
 Switch(d=0.25)
 OrigO(d=1.0)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 Orig(d=0.5)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=0.1)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=1.0)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=0.1)
 OS(d=1.0)

50 0.026 0.023 0.034 0.025 0.029 0.034

100 0.056 0.053 0.055 0.048 0.048 0.042

150 0.073 0.076 0.076 0.080 0.069 0.079

200 0.091 0.122 0.109 0.104 0.104 0.103

250 0.133 0.117 0.127 0.101 0.127 0.135

300 0.135 0.150 0.146 0.153 0.137 0.145

350 0.146 0.172 0.188 0.139 0.172 0.179

400 0.170 0.202 0.216 0.162 0.178 0.196

450 0.176 0.201 0.239 0.165 0.186 0.221

500 0.187 0.218 0.265 0.166 0.193 0.264

Table 16: POTS Throughputs with processor adjustment

Figure 8.3 shows the comparison of the Switch processor utilization for the shared

processor system and separate processors system with logarithmic scale. When separate

processors were assigned to the OS and the Switch, the processor utilization of the

Switch was reduced from 12.4% to 4.3 % when the maximum mean delay was improved

to 63.08% for 50 users when the budgeted CPU demands of values of 0.25 msec, 0.5

msec, 0.1 msec, and 1.0 msec for the Switch, the Orig, the Term and the OS respectively.

For the same values of budgeted CPU demands the maximum processor utilization was

84% for 500 users for the shared processor system and it reduced to 45.3% for the

separate processors system.  Table 17 shows the same result in numerical form.
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Figure 8.3: Switch Processor Utilization the No of Users

Separate Processors Shared Processor

Users
 Switch(d=0.25)
 OrigO(d=1.0)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 Orig(d=0.5)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=0.1)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=1.0)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=1.0)
 OS(d=1.0)

 Switch(d=0.25)
 OrigO(d=0.5)
 Term(d=0.1)
 OS(d=1.0)

50 0.027 0.056 0.043 0.110 0.085 0.124

100 0.110 0.084 0.097 0.170 0.105 0.137

150 0.136 0.140 0.168 0.237 0.263 0.218

200 0.159 0.157 0.148 0.342 0.294 0.317

250 0.209 0.191 0.197 0.365 0.362 0.386

300 0.250 0.288 0.276 0.465 0.506 0.461

350 0.261 0.278 0.358 0.479 0.519 0.626

400 0.267 0.329 0.376 0.470 0.508 0.676

450 0.263 0.332 0.400 0.483 0.524 0.658

500 0.256 0.348 0.453 0.492 0.518 0.840

Table 17: Switch Processor Utilization with processor adjustment
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8.3 Summary
The chapter describes the architecture adjustment as mean of satisfactory

performance results when the budgets are failed to meet the performance targets. His

chapter covers the following:

1. POTS example with possible architecture adjustment and

2. The performance results comparison with and without adjustments for POTS example
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9.0 Conclusions and Future Work

9.1 Conclusions

9.1.1 Objectives and Requirements
The main focus of the thesis was to describe a performance analysis approach for

the software design (especially for the UCM designs), which is based on budgets or

estimated figures for the resource demands of all the parts and operations of the system.

The budget or estimated figure may be based on prediction, intuition or past experiment

results. The key element of this approach is the planning of budgets for the resource

demands of all the parts and operations of system and validation check for the required

performance.

9.1.2 Thesis Contributions
Different concepts are used from software performance engineering and

distributed communication software systems engineering during the development of this

approach. The main contributions of this thesis are:

•  The approach of Performance Budgeting process with based on the Road Map

described in Chapter 3. Performance Budgeting provides different steps to carry

out performance analysis before the development and implementation of any

software system to meet performance goal.

•  Definition of the term “completion” to overcome the incompleteness of a design

specification. We suggest and provide ways to add missing components and

parameters to an incomplete specification of a software design. An incomplete

specification shows the thinking of a software designer at some early stage of

development. The specification is very abstract and may omit some necessary

details, which are important for a suitable performance model.

•  Demonstration of the “completion” described in Chapter 5. The development of

four network filters provides automation to the “completion” at LQN level only

(model level). Different network components are incorporated in different

examples in the form of a single LQN task representing a simple message passing

network component (a single network component), a generalized protocol suite
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(LQN network subsystem), a shared resource server LQN task and a multicast

network LQN task.

•  Measurements and modeling of tuple spaces.  Measurements are done on J-Spaces

(J-Space Technologies Inc.) [JSpaces] and the performance model of J-Spaces is

constructed and analyzed described in Chapter 6.

•  Two end-to-end Case Studies on UCM design examples from industry, described

in Chapter 7.

These contributions provide a framework to allow for the reuse of performance

information, a process for tracking and correcting performance attributes of designer

driven the project, components based performance analysis as well as overall system

based performance analysis.

Two case studies demonstrated different aspects of the usability of the approach

in Chapter 7.0. Distributed Hand-off Protocol UCM design case study involved all the

necessary steps mentioned in the budget analysis road map, the usability of the LQN

Component filters and tuple spaces. Plain Old Telephone System (POTS) UCM design

case study involved only the budgeting of the CPU demands for the system assuming

already available “complete” UCM and extracted LQN model for the system.

An approach, to deal with performance shortfall by adjusting the system design in

the implementation options in terms of environment, is described in Chapter 8.  The

problem of adjusting the system design to meet the performance goal is addressed in

chapter 8 with an example.

9.2 Future Work

9.2.1 LQN Component Filter
This thesis’ contribution for the “completion” is the development of LQN

Component Filter tool with four variants. More communication filters can be designed

and developed to support other types of communication mechanisms and components at

LQN level.

At this time, LQN Component Filter tool does not have the capability to support

activity based LQN models.  It can be enhanced to support activity based LQN models.
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9.2.2 Graphical User Interface (GUI) for budgeted CPU demands
A Graphic User Interface (GUI) can be designed to provide ease in changing CPU

demands of different entries and activities of a LQN model. This will help a user to keep

track of CPU demands of entries and activities of a LQN model for a satisfactory

performance response. This might be helpful in a case where budget adjustments are

required for a desired performance target.

9.2.3 Integrated Environment for UCM based Budget Analysis Road Map
This thesis described a UCM design based budget analysis road map. An

integrated environment is required to provide automation for the UCM design based

budget analysis road map. Different tools are already described in Chapter 2, which are

available for the “completion” at UCM level as well as for additional “completion” at

LQN level. Each tool supports a different type of the “completion”. These tools do not

provide integrated automation for the “completion” as well as budget analysis road map.

Further research and development is required in this direction to combine and integrate

all the tools to introduce different types of “completions” at UCM level as well as LQN

level.

If all the available tools are combined into one integrated tool then it will increase

ease of manipulation of designs and development. A short-term goal could be the

integration of all these tools into UCM Navigator to provide an integrated environment

for UCM based software designs.

9.2.4 Budget Analysis Road Map for Different Specifications
A UCM is not the only possible starting point for budget analysis road map.

Another form of specification, which identifies the scenarios, the components, and the

activities for which code is to be developed, could be used. For instance an executable

state-machine specification in ObjecTime described in [Hrischuk95], SDL described in

[El-Syed98], or a UML specification can be used. A profile for UML has recently been

defined to support such an analysis [OMG01].

Further research and development is required to apply budget analysis road map on these

specifications to exploit the benefits of this software performance engineering approach.
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9.3 Summary
This chapter highlighted the conclusions of the research describing the

contributions of the research. The future work suggested many issues which are as

follows:

1. Further improvement of LQN Component filter,

2. Graphical User Interface (GUI) for budgeted CPU demands,

3. Integrated environment for UCM based Budget Analysis Road Map, and

4. Budget Analysis for different specifications such as UML and SDL etc.



Time/Performance Budgeting for Software Designs

130

References
[Aho98] A. Aho, S. Gallagher, N. Griffeth, C. Scheel, and D.Swayne, “Sculptor with

Chisel: Requirements Engineering for Communication Services,” Fifth International

Workshop on Feature Interaction in Telecommunications and Software Systems

(FIW’98), IOS Press, Amsterdam, pp. 45-63, October 1998.

[Amyot98] Daniel Amyot, “Use Case Maps for the Design and Validation of

Interactions-Free Telephony Features,” CITO Report # 1430, Ottawa, 1998

[Amyot99a] D.Amyot and R. Andrade, “Description of Wireless Intelligent Network

Service with Use Case Maps,” 17th Brazillian Symposium on Computer Networks

(SBRC’99), Salvador, Brazil, May 1999

[Amyot99b] D. Amyot, L. Logirippo, R.J.A. Buhr, and T. Gray, “Use Case Maps for the

Capture and Validation of Distributed Systems Requirements,” Fourth International

Symposium on Requirements Engineering (RE’99), Limerick, Ireland, June 1999

[Amyot00] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logirippo, J. Sincennes, B.

Stepien, and T. Ware, “Feature Description and Feature Interaction Analysis with Use

Case Maps and LOTOS,” Sixth International Workshop on Feature Interactions in

Telecommunications and Software Systems (FIW’00), Glasgow, Scotland, May 2000

[Auerbach94] J. Auerbach, S. Demion, G. Goldszmidt, J. R. Rao, and J. Russell,

“Concert/C Rel 3.1: Availability of a language for distributed C programming,”

Technical Report, IBM Research, July 1994

[Ananda91] A. L. Ananda, B. H. Tay, and E. K. Koh, “Astra, An asynchronous remote

procedure call facility.” In Proceedings of 11th International Conference on Distributed

Computing Systems, Arlington, Texas, pages 172-179, May 1991

[Arnold99a] K. Arnold. B, O'Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath, The

Jini[tm] Specification, Addison-Wesley Press, June 1999

[Arnold99b] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces[tm] Principles, Patterns,

and Practice, Addison-Wesley Press, June 1999

[Arnold00] K. Arnold, The Jini[tm] Specifications, Addison-Wesley Press, 2nd Edition,

December 2000



Time/Performance Budgeting for Software Designs

131

[Arons] B. Arons, “Tools for Building Asynchronous Servers to Support Speech and

Audio Applications,” In Proceedings of the ACM Symposium on User Interface Software

and Technology (UIST'92), Monterey, California, USA, pages 71-78, November 15-18,

1992

[Buhr95] Buhr, R.J.A. and Casselman, R.S.: Use Case Maps for Object-Oriented

Systems, Prentice-Hall, USA, 1995.

[Buhr98] Buhr, R.J.A, “Use Case Maps as Architectural Entities for Complex Systems,”

In: Transactions on Software Engineering, IEEE, Vol. 24, No. 12, pp. 1131-1155,

December 1998.

[Cabri98] G. Cabri, L. Leonardi, and F.  Zambonelli, “Reactive Tuple Spaces for Mobile

Agent Coordination,” 2nd International Workshop on Mobile Agents, Stuttgart (D),

Lecture Notes in Computer Science, No. 1477, pp. 237-248, Sept. 1998.

[Czarnecki01] K. Czarnecki and U. W. Eisenecker, Generative Programming. Addison-

Wesley, 2001

[Dasgupta98] P. Dasgupta, “Network Operating Systems,” A comprehensive article in

Encyclopedia of Electrical Engineering, John Wiley, Department of Computer Science

and Engineering, Arizona State University, Tempe AZ 85287-5406, USA, 1998.

[Edwards00] W. K. Edwards, Core Jini[tm], Prentice-Hall Press, 2nd Edition, December

2000

[El-Sayed98] H. El-Sayed, D. Cameron, C. M. Woodside, "Automated Performance

Modeling from Scenarios and SDL Designs of Telecom Systems," In Proc. of the Int.

Symposium on Software Engineering for Parallel and Distributed Systems (PDSE98),

Kyoto, April 1998.

[Foster95] I. Foster, Designing and Building Parallel Programs, Addison-Wesley Press,

Department of Computer Science, University of Chicago, Illinois, USA, 1995

[Franks99] G. Franks, PhD., "Performance Analysis of Distributed Server Systems", Ph.

D.  Thesis, Department of Systems and Computer Engineering, Carleton University,

Ottawa, Canada, December 1999.

[Gelerntner97] A. Smith, D. Gelerntner and N. Carriero, “Towards Wide-Area Network

Piranha: Implementing Java-Linda,” Department of Computer Science, Yale University,

New Haven, USA, Technical Report, November 1997.



Time/Performance Budgeting for Software Designs

132

[Halang91] W. Halang and A. Stoyenko, Constructing Predictable Real-Time Systems,

Kluwer Academic Publishers, Boston, 1991

[Hrischuk95] C. Hrischuk, J. Rolia and C.M. Woodside, "Automatic Generation of a

Software Performance Model Using an Object-Oriented Prototype," Proceedings of the

Third International Workshop on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pp. 399-409, Durham, NC, January 1995.

[IEEE-610.12] Institute of Electrical and Electronic Engineers. "IEEE Standard Glossary

of Software Engineering Terminology." IEEE Standards Collection. New York, NY:

Institute of Electrical and Electronics Engineers, 1993.

[Jain91] R. Jain, The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling, Wiley Publisher, New

York, NY, April 1991.

[JSpaces] J-Spaces™ Platform 1.0 documentation

http://www.j-spaces.com/

[Kawai88] S. Kawai and S. Matsuoka., “Using Tuple Space Communication in

Distributed Object Oriented Languages,” Proc. of the OOPSLA '88,  pages 276-283,

1988.

 [Lee01] K. C. Lee, “Software Modeling Tools and Studies,” Technical Report,

Department of Systems and Computer Engineering, Carleton University, Ottawa,

Canada, April 2001

[Matloff99] N. Matloff, “TupleDSM: An Educational Tool for Software Distributed

Shared Memory,” Workshop on Computer Architecture Education (WCAE-99), Orlando,

Florida, USA, January 9-13, 1999

[Mayers00] N. Mayers, Java Programming on Linux, Waite Group Press, 2000

[McMullan00] D. McMullan, “Components in Layered Queuing Networks,” Technical

Report, Department of Systems and Computer Engineering, Carleton University, Canada,

April 2000

[McNamara99] C. McNamara, Business Report on “Basic Guide to Non-Profit Financial

Management”, 1999



Time/Performance Budgeting for Software Designs

133

[Miga98] A. Miga, “Application of Use Case Maps to System Design with Tool

Support,” M. Eng. Thesis, Department of Systems and Computer Engineering, Carleton

University, Ottawa, Canada, July 1998

 [Mowbray97] T. J. Mowbray, W. A. Ruth, Inside CORBA: Distributed Object Standards

and Applications, Published by Addison Wesley Longman Inc, 1997

[Mussbacher01] G. Mussbacher and D. Amyot, A Collection of Patterns for Use Case

Maps – 3rd Draft, Mitel Networks, 350 Legget Dr., Kanata (ON), Canada, K2K 2W7,

PRIVATE COMMUNICATION

[Oaks00] S. Oaks and H. Wong, Jini in a Nutshell, O'Reilly & Associates Publisher,

March 2000

[OMG95] Object Management Group, Common Object Request Broker Architecture and

Specification (CORBA), Revision 2, New York,: John Wiley, August 1995

[OMG01] OMG document "UML Profile for Schedulability, Performance, and Time,"

Revised submission, June 2001, available from OMG at www.omg.org.

[Peine97] H. Peine, T. Stolpmann, “The Architecture of the Ara platform for Mobile

Agents,” Proceedings of the Ist International Workshop on Mobile Agents, Berlin (D),

Lecture Notes in Computer Science, No. 1219, Springer-Vaerlag(D), pp, 50-61, April

1997

[Petriu01a] D. B. Petriu, “Layered Software Performance Models Constructed from Use

Case Map Specifications,” M. Eng. Thesis, Department of Systems and Computer

Engineering, Carleton University, Ottawa, Canada, 2001.

[Petriu01b] D. B. Petriu and C.M. Woodside, “Generating A Performance Model From A

Design Specification,” The 6th Mitel Workshop (MICON2001), Mitel Networks, Ottawa,

August 2001

[Roberts92] John Roberts, Introduction to Parallel Processing and the Transputer,

published by Van Nostrand Reinhold, New York, U. S. A, 1992, ISBN 0-442-00872-4

[Rolia95] J.A. Rolia and K.C. Seveik, “The Method of Layers,” IEEE Trans. on Software

Engineering, vol. 21, no.8, August 1995, pp.689-700.

[Siddiqui00] K H. Siddiqui and C.M. Woodside, “A Description of Time/Perfomrance

Budgeting for UCM Desgin,” The 5th Mitel Workshop (MICON2000), Mitel Networks,

Ottawa, August 2000



Time/Performance Budgeting for Software Designs

134

[Siddiqui01] K H. Siddiqui and C.M. Woodside, “Performance Aware Software

Development (PASD) Using Execution Time Budgets,” The 6th Mitel Workshop

(MICON2001), Mitel Networks, Ottawa, August 2001

[Spruit97] C. M.C. Spruit, L. P. J. Groenewegen and I. G. Sprinkhuizen-Kuyper,

“Blackboard Systems modeled in SOCCA”, Technical Report, Department of Computer

Science, Leiden University, The Netherlands, 1997

[Smith93] C.U. Smith and L.G. Williams, “Software Performance Engineering” A case

study including performance comparison with design alternatives.” IEEE Transactions on

Software Engineering, 19(7): 720-741, July 1993.

 [Smith95] Smith, C. U. & Williams, L. G., “A Performance Model Interchange Format,”

Performance Engineering Services, Feb. 1995.

[Smith01] Smith, C. U. & Williams, L. G., Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software, Addison-Wesley Publishing Company, 2001.

[Szyperski98] C. Szyperski, Component Software; Beyond Object-Oriented

Programming. New York: ACM Press, 1998

[UCMorg] Use Case Maps Web Page and UCM User Group (since March 1999)

http://www.UseCaseMaps.org

[Waldo98] Waldo, J., JavaSpacesTM Specification 1.0, SUN Microsystems Inc.,

Technical Report, March 1998

[Walkner95] David W. Walker, “An Introduction To Message Passing Paradigms,” In

Proceedings of the 1995 CERN School of Computing, CERN 95-05, pages 165-184, ed.

C. E. Vandoni, held August 20 - September 2, 1995, in Arles, France, 1995.

[Woodside89] C.M.Woodside, “Throughput calculation for basic stochastic rendezvous

networks,” Performance Evaluation, Vol. 9, No. 2, pp.143-160, 1989

[Woodside95] C.M. Woodside J.E. Neilson, S. Majumdar, and D. C. Petriu, “The

Stochastic Rendezvous Network Model for Performance of Synchronous Client-Server-

like Distributed Software,” IEEE Trans. on Computers, vol. 44, no. 1, January 1995, pp

20-34.

[Woodside95c] C.M. Woodside, R.G. Franks, A. Hubbard, S. Majumdar, J.E. Neilson, D.

C. Petriu, and J.A. Rolia, “A Toolset for Performance Engineering and Software Design

of Client-Server Systems,” Performance Evaluation, vol-24, no 1-2, 1995, pp.117-136.



Time/Performance Budgeting for Software Designs

135

[Woodside95b] C.M.Woodside and G. Ragunath, “General Bypass Architecture for

High- Performance Distributed Algorithms,” Proc. 6th IFIP Conference on Performance

of Computer Networks, Istanbul, Oct.23-26, 1995,  In “Data Communication and their

Performance”, eds. S. Fdida and R.U. Onvural, Chapman and Hall, pp51-65,

[Woodside98] C.M. Woodside, C. Hrischuk, B. Selic, S. Bayarov, “A Wideband

Approach to Integrating Performance Prediction into a Software Design Environment,”

Proc. First Int. Workshop on Software and Performance (WOSP98), pp. 31-41, October

1998.

[Woodside99] C.M. Woodside and C. U. Smith, "Performance Validation at Early Stages

of Development", Position paper, Performance 99, Istanbul, Turkey, October 99

[Woodside01] C. M. Woodside, A. Miga, D. Amyot, F. Bordeleau, and D. Cameron,

“Deriving Message Sequence Charts from Use Case Maps Scenario Specifications”,  In

Tenth  SDL Forum (SDL'01), Copenhagen, Denmark, June 2001.



Time/Performance Budgeting for Software Designs

136

APPENDIX A – Simple Call Agent LQN File
# Khalid H. Siddiqui
# Student #256847
# August 05. 2000
# File name: sample.xlqn
# *** For 1 20 20 Name Service User ****
# *** For 1 to 200 Remote Users ****
# <khs@markab> spex -F mat sample.xlqn

G "Call Agent Model: Name Service, Two Users Call Connection, first
phases only" .000001 100 1 0.5 -1

$nRemoteUser= 1:200,10
$nNSUser=1:20,4
$hosts = sunset,sunspot,sunrise,markab,homefree

P 7
p NSUserProc f  i #infinite processors (one per user)
p RemoteUserProc f i #infinite processors (one per user)
p WorkLoadUserProc f i #infinite processors (one per user)
p NodeA f
p NodeB f
p CompetingWL f
p Network f i
p Disk f
-1

T 15
t NSUser r NSUser -1 NSUserProc m $nNSUser
t RemoteUser r RemoteUser -1 RemoteUserProc m  $nRemoteUser %f
$RemoteUserThruput
t WLUserA r WLUserA -1 WorkLoadUserProc m 10
t WLUserB r WLUserB -1 WorkLoadUserProc m 10
t CompetingWLA n CompetingWLA -1 CompetingWL
t CompetingWLB n CompetingWLB -1 CompetingWL
t CallAgentA n CallAgentAL CallAgentAR -1 NodeA m 2
t ProtocolAgentA n ProtocolAgentA -1 NodeA
t CResourceA n  CResourceA -1 NodeA
t NameServeice n  NameService -1 NodeA
t CallAgentB n CallAgentB -1 NodeB m 2
t ProtocolAgentB n ProtocolAgentB -1 NodeB
t CResourceB n  CResourceB -1 NodeB
t NetworkDelay n NetworkDelay -1 Network
t Disk n Disk -1 Disk

-1

E 37
s NSUser 1 0 0 -1 # NS User
Z NSUser 10 0 0 -1
s RemoteUser 1 0 0 -1 %s $RemoteUserEntryTime # Remote User
Z RemoteUser 20 0 0 -1
s WLUserA 1 0 0 -1 # WorkLoad User A
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Z WLUserA 10 0 0 -1
s WLUserB 1 0 0 -1 # WorkLoad User B
Z WLUserB 10 0 0 -1
y NSUser CallAgentAL 1 0 0 -1
s CallAgentAL 1 0 0 -1
y CallAgentAL NameService 1 0 0 -1
s NameService 1 0 0 -1
y NameService Disk 1 0 0 -1
s Disk 1 0 0 -1
y RemoteUser CallAgentAR  1 0 0 -1
s CallAgentAR 1 0 0 -1
y CallAgentAR NetworkDelay 1 0 0 -1
s NetworkDelay 1 0 0 -1
y CallAgentAR ProtocolAgentA 1 0 0 -1
s ProtocolAgentA 1 0 0 -1
y ProtocolAgentA ProtocolAgentB 1 0 0 -1
s ProtocolAgentB 1 0 0 -1
y ProtocolAgentB CallAgentB 1 0 0 -1
s CallAgentB 1 0 0 -1
y WLUserA CompetingWLA  1 0 0 -1
y CallAgentAR CResourceA 1 0 0 -1
y CompetingWLA  CResourceA 1 0 0 -1
y ProtocolAgentA  CResourceA 1 0 0 -1
s CompetingWLA 1 0 0 -1
s CResourceA 1 0 0 -1
y WLUserB CompetingWLB  1 0 0 -1
y CallAgentB CResourceB 1 0 0 -1
y CompetingWLB  CResourceB 1 0 0 -1
y ProtocolAgentB  CResourceB 1 0 0 -1
s CompetingWLB 1 0 0 -1
s CResourceB 1 0 0 -1
-1

R 0
$0 = $nRemoteUser
$RemoteUserThruput
$RemoteUserResponseTime  = $RemoteUserEntryTime - 20

-1
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APPENDIX B – J-Spaces LQN File

# Khalid H. Siddiqui
# Student #256847
# Sept 14, 2001
# File name: JSPacesModelv1012.xlqn
# Number of Workers =6
G "JSpaces Model: Master, Worker, Prime Demo Exmaple" .000001 1000 1
0.5 -1

$solver=parasrvn
$nUser= 1:15,1

P 0
p jP f %u $Putil
-1

T 0
t RefTask1 r RefTask1 -1  jP
t Master n Mwrite Mtake Mrmid Mlus Mhttpd  -1 jP m $nUser  %f $Thruput
t Workers1 n Wwrite1 Wread1 Wrmid1 Wlus1 Whttpd1 -1 jP
t Workers2 n Wwrite2 Wread2 Wrmid2 Wlus2 Whttpd2 -1 jP
t Workers3 n Wwrite3 Wread3 Wrmid3 Wlus3 Whttpd3 -1 jP
t Workers4 n Wwrite4 Wread4 Wrmid4 Wlus4 Whttpd4 -1 jP
t Workers5 n Wwrite5 Wread5 Wrmid5 Wlus5 Whttpd5 -1 jP
t Workers6 n Wwrite6 Wread6 Wrmid6 Wlus6 Whttpd6 -1 jP
t Workers7 n Wwrite7 Wread7 Wrmid7 Wlus7 Whttpd7 -1 jP
t Workers8 n Wwrite8 Wread8 Wrmid8 Wlus8 Whttpd8 -1 jP
t Workers9 n Wwrite9 Wread9 Wrmid9 Wlus9 Whttpd9 -1 jP
t Workers10 n Wwrite10 Wread10 Wrmid10 Wlus10 Whttpd10 -1 jP
t Workers11 n Wwrite11 Wread11 Wrmid11 Wlus11 Whttpd11 -1 jP
t Workers12 n Wwrite12 Wread12 Wrmid12 Wlus12 Whttpd12 -1 jP
t RMID n eRMID -1 jP
t TSM n  eTSM -1 jP
t LUS n eLUS -1 jP
t HTTPD n eHTTPD -1 jP
t JSpaces n JSread JSwrite -1 jP
-1

E 0
s RefTask1 1.000000 -1  %s $UserEntryTime
Z RefTask1 100 -1
s Mwrite 3.92 0 0 -1
s Mtake 3.92 0 0 -1
s Wwrite1 3.92 0 0 -1
s Wread1 3.92 0 0 -1
s Wwrite2 3.92 0 0 -1
s Wread2 3.92 0 0 -1
s Wwrite3 3.92 0 0 -1
s Wread3 3.92 0 0 -1
s Wwrite4 3.92 0 0 -1
s Wread4 3.92 0 0 -1
s Wwrite5 3.92 0 0 -1
s Wread5 3.92 0 0 -1
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s Wwrite6 3.92 0 0 -1
s Wread6 3.92 0 0 -1
s Wwrite7 3.92 0 0 -1
s Wread7 3.92 0 0 -1
s Wwrite8 3.92 0 0 -1
s Wread8 3.92 0 0 -1
s Wwrite9 3.92 0 0 -1
s Wread9 3.92 0 0 -1
s Wwrite10 3.92 0 0 -1
s Wread10 3.92 0 0 -1
s Wwrite11 3.92 0 0 -1
s Wread11 3.92 0 0 -1
s Wwrite12 3.92 0 0 -1
s Wread12 3.92 0 0 -1
s eRMID 131.5 0 0 -1
s eLUS 31.83 0 0 -1
s eTSM 8.33 0 0 -1
s eHTTPD 56.42 0 0 -1
s JSread 3.92 0 0 -1
s JSwrite 3.92 0 0 -1
s Mrmid 1 0 0 -1
s Wrmid1 1 0 0 -1
s Wrmid2 1 0 0 -1
s Wrmid3 1 0 0 -1
s Wrmid4 1 0 0 -1
s Wrmid5 1 0 0 -1
s Wrmid6 1 0 0 -1
s Wrmid7 1 0 0 -1
s Wrmid8 1 0 0 -1
s Wrmid9 1 0 0 -1
s Wrmid10 1 0 0 -1
s Wrmid11 1 0 0 -1
s Wrmid12 1 0 0 -1
s Mlus 1 0 0 -1
s Wlus1 1 0 0 -1
s Wlus2 1 0 0 -1
s Wlus3 1 0 0 -1
s Wlus4 1 0 0 -1
s Wlus5 1 0 0 -1
s Wlus6 1 0 0 -1
s Wlus7 1 0 0 -1
s Wlus8 1 0 0 -1
s Wlus9 1 0 0 -1
s Wlus10 1 0 0 -1
s Wlus11 1 0 0 -1
s Wlus12 1 0 0 -1
s Mhttpd 1 0 0 -1
s Whttpd1 1 0 0 -1
s Whttpd2 1 0 0 -1
s Whttpd3 1 0 0 -1
s Whttpd4 1 0 0 -1
s Whttpd5 1 0 0 -1
s Whttpd6 1 0 0 -1
s Whttpd7 1 0 0 -1
s Whttpd8 1 0 0 -1
s Whttpd9 1 0 0 -1
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s Whttpd10 1 0 0 -1
s Whttpd11 1 0 0 -1
s Whttpd12 1 0 0 -1
y RefTask1 Mwrite 1.000000 -1
y RefTask1 Mtake 1.000000 -1
y RefTask1 Wwrite1 1.000000 -1
y RefTask1 Wread1 1.000000 -1
y RefTask1 Wwrite2 1.000000 -1
y RefTask1 Wread2 1.000000 -1
y RefTask1 Wwrite3 1.000000 -1
y RefTask1 Wread3 1.000000 -1
y RefTask1 Wwrite4 1.000000 -1
y RefTask1 Wread4 1.000000 -1
y RefTask1 Wwrite5 1.000000 -1
y RefTask1 Wread5 1.000000 -1
y RefTask1 Wwrite6 1.000000 -1
y RefTask1 Wread6 1.000000 -1
y RefTask1 Wwrite7 1.000000 -1
y RefTask1 Wread7 1.000000 -1
y RefTask1 Wwrite8 1.000000 -1
y RefTask1 Wread8 1.000000 -1
y RefTask1 Wwrite9 1.000000 -1
y RefTask1 Wread9 1.000000 -1
y RefTask1 Wwrite10 1.000000 -1
y RefTask1 Wread10 1.000000 -1
y RefTask1 Wwrite11 1.000000 -1
y RefTask1 Wread11 1.000000 -1
y RefTask1 Wwrite12 1.000000 -1
y RefTask1 Wread12 1.000000 -1
y RefTask1 Mrmid 1.000000 -1
y RefTask1 Wrmid1 1.000000 -1
y RefTask1 Wrmid2 1.000000 -1
y RefTask1 Wrmid3 1.000000 -1
y RefTask1 Wrmid4 1.000000 -1
y RefTask1 Wrmid5 1.000000 -1
y RefTask1 Wrmid6 1.000000 -1
y RefTask1 Wrmid7 1.000000 -1
y RefTask1 Wrmid8 1.000000 -1
y RefTask1 Wrmid9 1.000000 -1
y RefTask1 Wrmid10 1.000000 -1
y RefTask1 Wrmid11 1.000000 -1
y RefTask1 Wrmid12 1.000000 -1
y RefTask1 Mlus 1.000000 -1
y RefTask1 Wlus1 1.000000 -1
y RefTask1 Wlus2 1.000000 -1
y RefTask1 Wlus3 1.000000 -1
y RefTask1 Wlus4 1.000000 -1
y RefTask1 Wlus5 1.000000 -1
y RefTask1 Wlus6 1.000000 -1
y RefTask1 Wlus7 1.000000 -1
y RefTask1 Wlus8 1.000000 -1
y RefTask1 Wlus9 1.000000 -1
y RefTask1 Wlus10 1.000000 -1
y RefTask1 Wlus11 1.000000 -1
y RefTask1 Wlus12 1.000000 -1
y RefTask1 Mhttpd 1.000000 -1
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y RefTask1 Whttpd1 1.000000 -1
y RefTask1 Whttpd2 1.000000 -1
y RefTask1 Whttpd3 1.000000 -1
y RefTask1 Whttpd4 1.000000 -1
y RefTask1 Whttpd5 1.000000 -1
y RefTask1 Whttpd6 1.000000 -1
y RefTask1 Whttpd7 1.000000 -1
y RefTask1 Whttpd8 1.000000 -1
y RefTask1 Whttpd9 1.000000 -1
y RefTask1 Whttpd10 1.000000 -1
y RefTask1 Whttpd11 1.000000 -1
y RefTask1 Whttpd12 1.000000 -1
y Mwrite eTSM 1.000000 -1
y Mtake eTSM 1.000000 -1
y Wwrite1 eTSM 1.000000 -1
y Wread1 eTSM 1.000000 -1
y Wwrite2 eTSM 1.000000 -1
y Wread2 eTSM 1.000000 -1
y Wwrite3 eTSM 1.000000 -1
y Wread3 eTSM 1.000000 -1
y Wwrite4 eTSM 1.000000 -1
y Wread4 eTSM 1.000000 -1
y Wwrite5 eTSM 1.000000 -1
y Wread5 eTSM 1.000000 -1
y Wwrite6 eTSM 1.000000 -1
y Wread6 eTSM 1.000000 -1
y Wwrite7 eTSM 1.000000 -1
y Wread7 eTSM 1.000000 -1
y Wwrite8 eTSM 1.000000 -1
y Wread8 eTSM 1.000000 -1
y Wwrite9 eTSM 1.000000 -1
y Wread9 eTSM 1.000000 -1
y Wwrite10 eTSM 1.000000 -1
y Wread10 eTSM 1.000000 -1
y Wwrite11 eTSM 1.000000 -1
y Wread11 eTSM 1.000000 -1
y Wwrite12 eTSM 1.000000 -1
y Wread12 eTSM 1.000000 -1
y Mrmid eRMID 1.000000 -1
y Wrmid1 eRMID 1.000000 -1
y Wrmid2 eRMID 1.000000 -1
y Wrmid3 eRMID 1.000000 -1
y Wrmid4 eRMID 1.000000 -1
y Wrmid5 eRMID 1.000000 -1
y Wrmid6 eRMID 1.000000 -1
y Wrmid7 eRMID 1.000000 -1
y Wrmid8 eRMID 1.000000 -1
y Wrmid9 eRMID 1.000000 -1
y Wrmid10 eRMID 1.000000 -1
y Wrmid11 eRMID 1.000000 -1
y Wrmid12 eRMID 1.000000 -1
y Mlus eLUS 1.000000 -1
y Wlus1 eLUS 1.000000 -1
y Wlus2 eLUS 1.000000 -1
y Wlus3 eLUS 1.000000 -1
y Wlus4 eLUS 1.000000 -1
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y Wlus5 eLUS 1.000000 -1
y Wlus6 eLUS 1.000000 -1
y Wlus7 eLUS 1.000000 -1
y Wlus8 eLUS 1.000000 -1
y Wlus9 eLUS 1.000000 -1
y Wlus10 eLUS 1.000000 -1
y Wlus11 eLUS 1.000000 -1
y Wlus12 eLUS 1.000000 -1
y Mhttpd eHTTPD 1.000000 -1
y Whttpd1 eHTTPD 1.000000 -1
y Whttpd2 eHTTPD 1.000000 -1
y Whttpd3 eHTTPD 1.000000 -1
y Whttpd4 eHTTPD 1.000000 -1
y Whttpd5 eHTTPD 1.000000 -1
y Whttpd6 eHTTPD 1.000000 -1
y Whttpd7 eHTTPD 1.000000 -1
y Whttpd8 eHTTPD 1.000000 -1
y Whttpd9 eHTTPD 1.000000 -1
y Whttpd10 eHTTPD 1.000000 -1
y Whttpd11 eHTTPD 1.000000 -1
y Whttpd12 eHTTPD 1.000000 -1
y eTSM JSread 1.000000 -1
y eTSM JSwrite 1.000000 -1
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$Putil
-1
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APPENDIX C1 – FDMC(m=1) LQN File
G
"        Comment: ''
        TSW101.xlqn
        Author: Khalid H. Siddiqui
        Model with
        -100% Probabilities for all the users
        - Think Time: Z= 1000 ms
        - Main Controller Threads: m=1
        July 29, 2001
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100000 -m logjul28
$nUser= 1:300,30

P 8
p PartyA_P f
p PartyB_P f
p TupleSpace_P f
p Device_A f
p Device_B f
p OS_P f
p Process_AB f
p Backup_P f
-1

T 12
t Party_AUser r Party_AUser -1 PartyA_P m $nUser %f $Thruput
t Party_A f ptyA_tae  -1 PartyA_P m $nUser
t Party_B f ptyB_e11  -1 PartyB_P m $nUser
t Device_A f devA_e11 devA_e12 -1 Device_A m $nUser
t Main_Controller f mc_e11 mc_tae -1 OS_P
t Process_A f psA_e11 psA_e12 -1 Process_AB
t Process_B f psB_e11 psB_e12 -1 Process_AB
t Process_Backup f psBk_e11 -1 Backup_P
t Device_B f devB_e11 -1 Device_B
t TS_CriticalSection f ts_cs  -1 TupleSpace_P
t TS_psA_psB f ts_psA_psB -1 TupleSpace_P
t TS_psB_psBk f ts_psB_psBk -1 TupleSpace_P
-1

E 16
s Party_AUser 1 0 0 -1 %s $UserEntryTime
Z Party_AUser 1000 0 0 -1
s ptyB_e11 1.0 0.0 0.0 -1
s devA_e11 1.0 0.0 0.0 -1
s mc_e11 1.0 0.0 0.0 -1
s devB_e11 1.0 0.0 0.0 -1
s devA_e12 1.0 0.0 0.0 -1
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s ts_cs  1.0 0.0 0.0 -1
s ts_psA_psB 1.0 0.0 0.0 -1
s ts_psB_psBk 1.0 0.0 0.0 -1
s psA_e11 1.0 0.0 0.0 -1
s psA_e12 1.0 0.0 0.0 -1
s psB_e11 1.0 0.0 0.0 -1
s psB_e12 1.0 0.0 0.0 -1
s psBk_e11 1.0 0.0 0.0 -1
y Party_AUser ptyA_tae 1 0 0 -1
A ptyA_tae ptyA_e11
A mc_tae mc_e12
F devA_e11 mc_e11 1.0 -1
F mc_e11 psA_e11 1.0 -1
z devA_e12 mc_tae 1.0 0.0 0.0 -1
F psA_e12 ts_psA_psB 1.0 -1
F ts_psA_psB psB_e11 1.0 -1
F psB_e11 ptyB_e11 1.0 -1
F ptyB_e11 devB_e11 1.0 -1
y psB_e12 ts_psB_psBk 1.0 0.0 0.0 -1
y ts_psB_psBk psBk_e11 1.0 0.0 0.0 -1
y psB_e11 ptyB_e11 1.0 0.0 0.0 -1
y ts_psA_psB ts_cs 1.0 0.0 0.0 -1
y ts_psB_psBk ts_cs 1.0 0.0 0.0 -1
-1

A Party_A
s ptyA_e11 1.0
y ptyA_e11 devA_e11 1.0

s ptyA_e12 1.0
z ptyA_e12 devA_e12 1.0

:
ptyA_e11 ->  ptyA_e12;
ptyA_e12[ptyA_tae]
-1

A Main_Controller
s mc_e12 1.0
y mc_e12 psA_e12 1.0

s mc_e13 1.0
z mc_e13 psB_e12 1.0

:
mc_e12 ->  mc_e13;
mc_e13[mc_tae]
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime

-1
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APPENDIX C2 – MC(0.05, 0.15, 0.15) LQN File
G
"        Comment: ''
        TSW107.xlqn
        Author: Khalid H. Siddiqui
        Model with
        -100% Probabilities for all the users
        - Think Time: Z= 1000 ms
        - Main Controller Threads: m=10
         -Changes in demands of MainController 0.05, 0.15 and 0.15
        July 29, 2001
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100000 -m logjul28
$nUser= 1:300,30

P 8
p PartyA_P f
p PartyB_P f
p TupleSpace_P f
p Device_A f
p Device_B f
p OS_P f
p Process_AB f
p Backup_P f
-1

T 12
t Party_AUser r Party_AUser -1 PartyA_P m $nUser %f $Thruput
t Party_A f ptyA_tae  -1 PartyA_P m $nUser
t Party_B f ptyB_e11  -1 PartyB_P m $nUser
t Device_A f devA_e11 devA_e12 -1 Device_A m $nUser
t Main_Controller f mc_e11 mc_tae -1 OS_P m 10
t Process_A f psA_e11 psA_e12 -1 Process_AB
t Process_B f psB_e11 psB_e12 -1 Process_AB
t Process_Backup f psBk_e11 -1 Backup_P
t Device_B f devB_e11 -1 Device_B
t TS_CriticalSection f ts_cs  -1 TupleSpace_P
t TS_psA_psB f ts_psA_psB -1 TupleSpace_P
t TS_psB_psBk f ts_psB_psBk -1 TupleSpace_P
-1

E 16
s Party_AUser 1 0 0 -1 %s $UserEntryTime
Z Party_AUser 1000 0 0 -1
s ptyB_e11 1.0 0.0 0.0 -1
s devA_e11 1.0 0.0 0.0 -1
s mc_e11 0.05 0.0 0.0 -1
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s devB_e11 1.0 0.0 0.0 -1
s devA_e12 1.0 0.0 0.0 -1
s ts_cs  1.0 0.0 0.0 -1
s ts_psA_psB 1.0 0.0 0.0 -1
s ts_psB_psBk 1.0 0.0 0.0 -1
s psA_e11 1.0 0.0 0.0 -1
s psA_e12 1.0 0.0 0.0 -1
s psB_e11 1.0 0.0 0.0 -1
s psB_e12 1.0 0.0 0.0 -1
s psBk_e11 1.0 0.0 0.0 -1
y Party_AUser ptyA_tae 1 0 0 -1
A ptyA_tae ptyA_e11
A mc_tae mc_e12
F devA_e11 mc_e11 1.0 -1
F mc_e11 psA_e11 1.0 -1
z devA_e12 mc_tae 1.0 0.0 0.0 -1
F psA_e12 ts_psA_psB 1.0 -1
F ts_psA_psB psB_e11 1.0 -1
F psB_e11 ptyB_e11 1.0 -1
F ptyB_e11 devB_e11 1.0 -1
y psB_e12 ts_psB_psBk 1.0 0.0 0.0 -1
y ts_psB_psBk psBk_e11 1.0 0.0 0.0 -1
y psB_e11 ptyB_e11 1.0 0.0 0.0 -1
y ts_psA_psB ts_cs 1.0 0.0 0.0 -1
y ts_psB_psBk ts_cs 1.0 0.0 0.0 -1
-1

A Party_A
s ptyA_e11 1.0
y ptyA_e11 devA_e11 1.0

s ptyA_e12 1.0
z ptyA_e12 devA_e12 1.0

:
ptyA_e11 ->  ptyA_e12;
ptyA_e12[ptyA_tae]
-1

A Main_Controller
s mc_e12 0.15
y mc_e12 psA_e12 1.0

s mc_e13 0.15
z mc_e13 psB_e12 1.0
:
mc_e12 ->  mc_e13;
mc_e13[mc_tae]
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime

-1
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APPENDIX C3 – DVD(0.1, 0.1) LQN File
G
"        Comment: ''
        TSW108.xlqn
        Author: Khalid H. Siddiqui
        Model with
        -100% Probabilities for all the users
        - Think Time: Z= 1000 ms
        - Main Controller Threads: m=10
         -Changes in demands of MainController 0.05, 0.15 and 0.15
         -Changes in demands of Device A and Device B 0.1, 0.1
        July 29, 2001
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100000 -m logjul28
$nUser= 1:300,30

P 8
p PartyA_P f
p PartyB_P f
p TupleSpace_P f
p Device_A f
p Device_B f
p OS_P f
p Process_AB f
p Backup_P f
-1

T 12
t Party_AUser r Party_AUser -1 PartyA_P m $nUser %f $Thruput
t Party_A f ptyA_tae  -1 PartyA_P m $nUser
t Party_B f ptyB_e11  -1 PartyB_P m $nUser
t Device_A f devA_e11 devA_e12 -1 Device_A m $nUser
t Main_Controller f mc_e11 mc_tae -1 OS_P m 10
t Process_A f psA_e11 psA_e12 -1 Process_AB
t Process_B f psB_e11 psB_e12 -1 Process_AB
t Process_Backup f psBk_e11 -1 Backup_P
t Device_B f devB_e11 -1 Device_B
t TS_CriticalSection f ts_cs  -1 TupleSpace_P
t TS_psA_psB f ts_psA_psB -1 TupleSpace_P
t TS_psB_psBk f ts_psB_psBk -1 TupleSpace_P
-1

E 16
s Party_AUser 1 0 0 -1 %s $UserEntryTime
Z Party_AUser 1000 0 0 -1
s ptyB_e11 1.0 0.0 0.0 -1
s devA_e11 0.1 0.0 0.0 -1
s mc_e11 0.05 0.0 0.0 -1
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s devB_e11 0.1 0.0 0.0 -1
s devA_e12 0.1 0.0 0.0 -1
s ts_cs  1.0 0.0 0.0 -1
s ts_psA_psB 1.0 0.0 0.0 -1
s ts_psB_psBk 1.0 0.0 0.0 -1
s psA_e11 1.0 0.0 0.0 -1
s psA_e12 1.0 0.0 0.0 -1
s psB_e11 1.0 0.0 0.0 -1
s psB_e12 1.0 0.0 0.0 -1
s psBk_e11 1.0 0.0 0.0 -1
y Party_AUser ptyA_tae 1 0 0 -1
A ptyA_tae ptyA_e11
A mc_tae mc_e12
F devA_e11 mc_e11 1.0 -1
F mc_e11 psA_e11 1.0 -1
z devA_e12 mc_tae 1.0 0.0 0.0 -1
F psA_e12 ts_psA_psB 1.0 -1
F ts_psA_psB psB_e11 1.0 -1
F psB_e11 ptyB_e11 1.0 -1
F ptyB_e11 devB_e11 1.0 -1
y psB_e12 ts_psB_psBk 1.0 0.0 0.0 -1
y ts_psB_psBk psBk_e11 1.0 0.0 0.0 -1
y psB_e11 ptyB_e11 1.0 0.0 0.0 -1
y ts_psA_psB ts_cs 1.0 0.0 0.0 -1
y ts_psB_psBk ts_cs 1.0 0.0 0.0 -1
-1

A Party_A
s ptyA_e11 1.0
y ptyA_e11 devA_e11 1.0

s ptyA_e12 1.0
z ptyA_e12 devA_e12 1.0

:
ptyA_e11 ->  ptyA_e12;
ptyA_e12[ptyA_tae]
-1

A Main_Controller
s mc_e12 0.15
y mc_e12 psA_e12 1.0

s mc_e13 0.15
z mc_e13 psB_e12 1.0

:
mc_e12 ->  mc_e13;
mc_e13[mc_tae]
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
-1
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APPENDIX C4 – PABD (0.1, 0.1) LQN File
G
"        Comment: ''
        TSW109.xlqn
        Author: Khalid H. Siddiqui
        Model with
        -100% Probabilities for all the users
        - Think Time: Z= 1000 ms
        - Main Controller Threads: m=10
         -Changes in demands of MainController 0.05, 0.15 and 0.15
         -Changes in demands of Device A and Device B 0.1, 0.1
         -Changes in demands of Process A and Process B 0.1, 0.1
        July 29, 2001
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100000 -m logjul28
$nUser= 1:300,30

P 8
p PartyA_P f
p PartyB_P f
p TupleSpace_P f
p Device_A f
p Device_B f
p OS_P f
p Process_AB f
p Backup_P f
-1

T 12
t Party_AUser r Party_AUser -1 PartyA_P m $nUser %f $Thruput
t Party_A f ptyA_tae  -1 PartyA_P m $nUser
t Party_B f ptyB_e11  -1 PartyB_P m $nUser
t Device_A f devA_e11 devA_e12 -1 Device_A m $nUser
t Main_Controller f mc_e11 mc_tae -1 OS_P m 10
t Process_A f psA_e11 psA_e12 -1 Process_AB
t Process_B f psB_e11 psB_e12 -1 Process_AB
t Process_Backup f psBk_e11 -1 Backup_P
t Device_B f devB_e11 -1 Device_B
t TS_CriticalSection f ts_cs  -1 TupleSpace_P
t TS_psA_psB f ts_psA_psB -1 TupleSpace_P
t TS_psB_psBk f ts_psB_psBk -1 TupleSpace_P
-1

E 16
s Party_AUser 1 0 0 -1 %s $UserEntryTime
Z Party_AUser 1000 0 0 -1
s ptyB_e11 1.0 0.0 0.0 -1
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s devA_e11 0.1 0.0 0.0 -1
s mc_e11 0.05 0.0 0.0 -1
s devB_e11 0.1 0.0 0.0 -1
s devA_e12 0.1 0.0 0.0 -1
s ts_cs  1.0 0.0 0.0 -1
s ts_psA_psB 1.0 0.0 0.0 -1
s ts_psB_psBk 1.0 0.0 0.0 -1
s psA_e11 0.1 0.0 0.0 -1
s psA_e12 0.1 0.0 0.0 -1
s psB_e11 0.1 0.0 0.0 -1
s psB_e12 0.1 0.0 0.0 -1
s psBk_e11 1.0 0.0 0.0 -1
y Party_AUser ptyA_tae 1 0 0 -1
A ptyA_tae ptyA_e11
A mc_tae mc_e12
F devA_e11 mc_e11 1.0 -1
F mc_e11 psA_e11 1.0 -1
z devA_e12 mc_tae 1.0 0.0 0.0 -1
F psA_e12 ts_psA_psB 1.0 -1
F ts_psA_psB psB_e11 1.0 -1
F psB_e11 ptyB_e11 1.0 -1
F ptyB_e11 devB_e11 1.0 -1
y psB_e12 ts_psB_psBk 1.0 0.0 0.0 -1
y ts_psB_psBk psBk_e11 1.0 0.0 0.0 -1
y psB_e11 ptyB_e11 1.0 0.0 0.0 -1
y ts_psA_psB ts_cs 1.0 0.0 0.0 -1
y ts_psB_psBk ts_cs 1.0 0.0 0.0 -1
-1

A Party_A
s ptyA_e11 1.0
y ptyA_e11 devA_e11 1.0

s ptyA_e12 1.0
z ptyA_e12 devA_e12 1.0
:
ptyA_e11 ->  ptyA_e12;
ptyA_e12[ptyA_tae]
-1

A Main_Controller
s mc_e12 0.15
y mc_e12 psA_e12 1.0
s mc_e13 0.15
z mc_e13 psB_e12 1.0
:
mc_e12 ->  mc_e13;
mc_e13[mc_tae]
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime

-1
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APPENDIX C5 – PAB (m = user) LQN File
G
"        Comment: ''
        TSW110.xlqn
        Author: Khalid H. Siddiqui
        Model with
        -100% Probabilities for all the users
        - Think Time: Z= 1000 ms
        - Main Controller Threads: m=10
         -Changes in demands of MainController 0.05, 0.15 and 0.15
         -Changes in demands of Device A and Device B 0.1, 0.1
         -Changes in demands of Process A and Process B 0.1, 0.1 With
Multiple copies
        July 29, 2001
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100000 -m logjul28
$nUser= 1:300,30

P 8
p PartyA_P f
p PartyB_P f
p TupleSpace_P f
p Device_A f
p Device_B f
p OS_P f
p Process_AB f
p Backup_P f
-1

T 12
t Party_AUser r Party_AUser -1 PartyA_P m $nUser %f $Thruput
t Party_A f ptyA_tae  -1 PartyA_P m $nUser
t Party_B f ptyB_e11  -1 PartyB_P m $nUser
t Device_A f devA_e11 devA_e12 -1 Device_A m $nUser
t Main_Controller f mc_e11 mc_tae -1 OS_P m 10
t Process_A f psA_e11 psA_e12 -1 Process_AB m $nUser
t Process_B f psB_e11 psB_e12 -1 Process_AB  m $nUser
t Process_Backup f psBk_e11 -1 Backup_P
t Device_B f devB_e11 -1 Device_B
t TS_CriticalSection f ts_cs  -1 TupleSpace_P
t TS_psA_psB f ts_psA_psB -1 TupleSpace_P
t TS_psB_psBk f ts_psB_psBk -1 TupleSpace_P
-1

E 16
s Party_AUser 1 0 0 -1 %s $UserEntryTime
Z Party_AUser 1000 0 0 -1
s ptyB_e11 1.0 0.0 0.0 -1
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s devA_e11 0.1 0.0 0.0 -1
s mc_e11 0.05 0.0 0.0 -1
s devB_e11 0.1 0.0 0.0 -1
s devA_e12 0.1 0.0 0.0 -1
s ts_cs  1.0 0.0 0.0 -1
s ts_psA_psB 1.0 0.0 0.0 -1
s ts_psB_psBk 1.0 0.0 0.0 -1
s psA_e11 0.1 0.0 0.0 -1
s psA_e12 0.1 0.0 0.0 -1
s psB_e11 0.1 0.0 0.0 -1
s psB_e12 0.1 0.0 0.0 -1
s psBk_e11 1.0 0.0 0.0 -1
y Party_AUser ptyA_tae 1 0 0 -1
A ptyA_tae ptyA_e11
A mc_tae mc_e12
F devA_e11 mc_e11 1.0 -1
F mc_e11 psA_e11 1.0 -1
z devA_e12 mc_tae 1.0 0.0 0.0 -1
F psA_e12 ts_psA_psB 1.0 -1
F ts_psA_psB psB_e11 1.0 -1
F psB_e11 ptyB_e11 1.0 -1
F ptyB_e11 devB_e11 1.0 -1
y psB_e12 ts_psB_psBk 1.0 0.0 0.0 -1
y ts_psB_psBk psBk_e11 1.0 0.0 0.0 -1
y psB_e11 ptyB_e11 1.0 0.0 0.0 -1
y ts_psA_psB ts_cs 1.0 0.0 0.0 -1
y ts_psB_psBk ts_cs 1.0 0.0 0.0 -1
-1

A Party_A
s ptyA_e11 1.0
y ptyA_e11 devA_e11 1.0

s ptyA_e12 1.0
z ptyA_e12 devA_e12 1.0
:
ptyA_e11 ->  ptyA_e12;
ptyA_e12[ptyA_tae]
-1

A Main_Controller
s mc_e12 0.15
y mc_e12 psA_e12 1.0
s mc_e13 0.15
z mc_e13 psB_e12 1.0
:
mc_e12 ->  mc_e13;
mc_e13[mc_tae]
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime

-1
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APPENDIX D1 – Switch (CPUd =0.25) LQN File
# UCM2LQN output
G
"        Author: Khalid H. Siddiqui
        - 100% Probabilities for all the users
        - CPU demands for Switch 0.25
        - Common Processor for Switch and CPU
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100
$nUser= 50:500,50

P 0
p p1 f %u $OrigUtil
p p2 f %u $SwitchUtil
p p3 f %u $TermUtil
-1

T 0
t RefTask1 r RefTask1 -1  p1 m $nUser  %f $Thruput
t Orig f Orig_E1 Orig_E2 -1  p1 m $nUser
t Switch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
t OS f OS_E1 -1  p2
t Term f Term_E1a Term_E1b Term_E2 -1  p3 m $nUser
-1

E 0
A Switch_E1 Switch_A1
A Switch_E2a Switch_A3
A Switch_E2b Switch_A4
A Switch_E3 Switch_A17
A Orig_E1 Orig_A2
A Orig_E2 Orig_A11
A Term_E1a Term_A1a
A Term_E1b Term_A1b
A Term_E2 Term_A10
A OS_E1 OS_A1
s RefTask1 1.000000  -1 %s $UserEntryTime
Z RefTask1 1000 -1
y RefTask1 Orig_E1 1.000000 -1
-1

A Switch
f Switch_A1 1
s Switch_A1 0.25000000
f Switch_A3 1
s Switch_A3 0.25000000
f Switch_A4 1
s Switch_A4 0.25000000
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f Switch_A6 1
s Switch_A6 0.25000000
f Switch_A8 1
s Switch_A8 0.25000000
f Switch_A8a 1
s Switch_A8a 0.25000000
y Switch_A8a Term_E1a 1.000000
f Switch_A8b 1
s Switch_A8b 0.25000000
y Switch_A8b Term_E1b 1.000000
f Switch_A9 1
s Switch_A9 0.25000000
z Switch_A9 Orig_E2 1.000000
f Switch_A13 1
s Switch_A13 0.25000000
z Switch_A13 OS_E1 1.000000
f Switch_A15 1
s Switch_A15 0.25000000
f Switch_A17 1
s Switch_A17 0.25000000
f Switch_A19 1
s Switch_A19 0.25000000
z Switch_A19 Term_E2 1.000000
:
Switch_A1[Switch_E1];
Switch_A3 -> Switch_A6;
Switch_A6[Switch_E2a];
Switch_A4 -> Switch_A8;
Switch_A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;
Switch_A9 -> Switch_A13 & Switch_A15 & Switch_A19;
Switch_A15[Switch_E2b];
Switch_A17[Switch_E3]
-1

A Orig
f Orig_A2 1
s Orig_A2 1.000000
y Orig_A2 Switch_E1 1.000000
f Orig_A4 1
s Orig_A4 1.000000
f Orig_A4a 1
s Orig_A4a 1.000000
y Orig_A4a Switch_E2a 1.000000
f Orig_A4b 1
s Orig_A4b 1.000000
y Orig_A4b Switch_E2b 1.000000
f Orig_A5 1
s Orig_A5 1.000000
f Orig_A7 1
s Orig_A7 1.000000
f Orig_A9 1
s Orig_A9 1.000000
f Orig_A11 1
s Orig_A11 1.000000
y Orig_A11 Switch_E3 1.000000
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:
Orig_A2 -> Orig_A4;
Orig_A4 -> (0.500000) Orig_A4a + (0.500000) Orig_A4b;
Orig_A4a -> Orig_A5;
Orig_A4b -> Orig_A7;
Orig_A7 -> Orig_A9;
Orig_A9 -> Orig_A11;
Orig_A11[Orig_E1]
-1

A Term
f Term_A1a 1
s Term_A1a 1.000000
f Term_A1b 1
s Term_A1b 1.000000
f Term_A3 1
s Term_A3 1.000000
f Term_A5 1
s Term_A5 1.000000
f Term_A8 1
s Term_A8 1.000000
f Term_A9 1
s Term_A9 1.000000
f Term_A10 1
s Term_A10 1.000000
f Term_A11 1
s Term_A11 1.000000
:
Term_A1a -> Term_A5 & Term_A8;
Term_A1b -> Term_A3;
Term_A3[Term_E1b];
Term_A5 & Term_A8 -> Term_A9;
Term_A9[Term_E1a];
Term_A10 -> Term_A11
-1

A OS
f OS_A1 1
s OS_A1 1.000000
f LogBegin_ABA_t_hid33 1
s LogBegin_ABA_t_hid33 1.000000
f OS_A2 1
s OS_A2 1.000000
:
OS_A1 -> LogBegin_ABA_t_hid33;
LogBegin_ABA_t_hid33 -> OS_A2
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$OrigUtil
$SwitchUtil
$TermUtil
-1
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APPENDIX D2 – Orig  (CPUd= 0.5) LQN File
G
"       - 100% Probabilities for all the users
        - CPU demands for Switch 0.25
        - CPU demands for Orig 0.5
        - RefTask1=Orig=Term=nUser
        - Common Processor for Switch and CPU
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100
$nUser= 50:500,50

P 0
p p1 f %u $OrigUtil
p p2 f %u $SwitchUtil
p p3 f %u $TermUtil
-1

T 0
t RefTask1 r RefTask1 -1  p1 m $nUser  %f $Thruput
t Orig f Orig_E1 Orig_E2 -1  p1 m $nUser
t Switch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
t OS f OS_E1 -1  p2
t Term f Term_E1a Term_E1b Term_E2 -1  p3 m $nUser
-1

E 0
A Switch_E1 Switch_A1
A Switch_E2a Switch_A3
A Switch_E2b Switch_A4
A Switch_E3 Switch_A17
A Orig_E1 Orig_A2
A Orig_E2 Orig_A11
A Term_E1a Term_A1a
A Term_E1b Term_A1b
A Term_E2 Term_A10
A OS_E1 OS_A1
s RefTask1 1.000000  -1 %s $UserEntryTime
Z RefTask1 1000 -1
y RefTask1 Orig_E1 1.000000 -1
-1

A Switch
f Switch_A1 1
s Switch_A1 0.25000000
f Switch_A3 1
s Switch_A3 0.25000000
f Switch_A4 1
s Switch_A4 0.25000000
f Switch_A6 1
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s Switch_A6 0.25000000
f Switch_A8 1
s Switch_A8 0.25000000
f Switch_A8a 1
s Switch_A8a 0.25000000
y Switch_A8a Term_E1a 1.000000
f Switch_A8b 1
s Switch_A8b 0.25000000
y Switch_A8b Term_E1b 1.000000
f Switch_A9 1
s Switch_A9 0.25000000
z Switch_A9 Orig_E2 1.000000
f Switch_A13 1
s Switch_A13 0.25000000
z Switch_A13 OS_E1 1.000000
f Switch_A15 1
s Switch_A15 0.25000000
f Switch_A17 1
s Switch_A17 0.25000000
f Switch_A19 1
s Switch_A19 0.25000000
z Switch_A19 Term_E2 1.000000
:
Switch_A1[Switch_E1];
Switch_A3 -> Switch_A6;
Switch_A6[Switch_E2a];
Switch_A4 -> Switch_A8;
Switch_A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;
Switch_A9 -> Switch_A13 & Switch_A15 & Switch_A19;
Switch_A15[Switch_E2b];
Switch_A17[Switch_E3]
-1

A Orig
f Orig_A2 1
s Orig_A2 0.5000000
y Orig_A2 Switch_E1 1.000000
f Orig_A4 1
s Orig_A4 0.5000000
f Orig_A4a 1
s Orig_A4a 0.5000000
y Orig_A4a Switch_E2a 1.000000
f Orig_A4b 1
s Orig_A4b 0.5000000
y Orig_A4b Switch_E2b 1.000000
f Orig_A5 1
s Orig_A5 0.5000000
f Orig_A7 1
s Orig_A7 0.5000000
f Orig_A9 1
s Orig_A9 0.5000000
f Orig_A11 1
s Orig_A11 0.5000000
y Orig_A11 Switch_E3 1.000000
:
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Orig_A2 -> Orig_A4;
Orig_A4 -> (0.500000) Orig_A4a + (0.500000) Orig_A4b;
Orig_A4a -> Orig_A5;
Orig_A4b -> Orig_A7;
Orig_A7 -> Orig_A9;
Orig_A9 -> Orig_A11;
Orig_A11[Orig_E1]
-1

A Term
f Term_A1a 1
s Term_A1a 1.000000
f Term_A1b 1
s Term_A1b 1.000000
f Term_A3 1
s Term_A3 1.000000
f Term_A5 1
s Term_A5 1.000000
f Term_A8 1
s Term_A8 1.000000
f Term_A9 1
s Term_A9 1.000000
f Term_A10 1
s Term_A10 1.000000
f Term_A11 1
s Term_A11 1.000000
:
Term_A1a -> Term_A5 & Term_A8;
Term_A1b -> Term_A3;
Term_A3[Term_E1b];
Term_A5 & Term_A8 -> Term_A9;
Term_A9[Term_E1a];
Term_A10 -> Term_A11
-1

A OS
f OS_A1 1
s OS_A1 1.000000
f LogBegin_ABA_t_hid33 1
s LogBegin_ABA_t_hid33 1.000000
f OS_A2 1
s OS_A2 1.000000
:
OS_A1 -> LogBegin_ABA_t_hid33;
LogBegin_ABA_t_hid33 -> OS_A2
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$OrigUtil
$SwitchUtil
$TermUtil

-1
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APPENDIX D3 – Term (CPUd=0.1) LQN File
G
"
        - CPU demands for Switch 0.25
        - CPU demands for Orig 0.5
        - CPU demands for Term 0.1
       "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100
$nUser= 50:500,50

P 0
p p1 f %u $OrigUtil
p p2 f %u $SwitchUtil
p p3 f %u $TermUtil
-1

T 0
t RefTask1 r RefTask1 -1  p1 m $nUser  %f $Thruput
t Orig f Orig_E1 Orig_E2 -1  p1 m $nUser
t Switch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
t OS f OS_E1 -1  p2
t Term f Term_E1a Term_E1b Term_E2 -1  p3 m $nUser
-1

E 0
A Switch_E1 Switch_A1
A Switch_E2a Switch_A3
A Switch_E2b Switch_A4
A Switch_E3 Switch_A17
A Orig_E1 Orig_A2
A Orig_E2 Orig_A11
A Term_E1a Term_A1a
A Term_E1b Term_A1b
A Term_E2 Term_A10
A OS_E1 OS_A1
s RefTask1 1.000000  -1 %s $UserEntryTime
Z RefTask1 1000 -1
y RefTask1 Orig_E1 1.000000 -1
-1
A Switch
f Switch_A1 1
s Switch_A1 0.25000000
f Switch_A3 1
s Switch_A3 0.25000000
f Switch_A4 1
s Switch_A4 0.25000000
f Switch_A6 1
s Switch_A6 0.25000000
f Switch_A8 1
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s Switch_A8 0.25000000
f Switch_A8a 1
s Switch_A8a 0.25000000
y Switch_A8a Term_E1a 1.000000
f Switch_A8b 1
s Switch_A8b 0.25000000
y Switch_A8b Term_E1b 1.000000
f Switch_A9 1
s Switch_A9 0.25000000
z Switch_A9 Orig_E2 1.000000
f Switch_A13 1
s Switch_A13 0.25000000
z Switch_A13 OS_E1 1.000000
f Switch_A15 1
s Switch_A15 0.25000000
f Switch_A17 1
s Switch_A17 0.25000000
f Switch_A19 1
s Switch_A19 0.25000000
z Switch_A19 Term_E2 1.000000
:
Switch_A1[Switch_E1];
Switch_A3 -> Switch_A6;
Switch_A6[Switch_E2a];
Switch_A4 -> Switch_A8;
Switch_A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;
Switch_A9 -> Switch_A13 & Switch_A15 & Switch_A19;
Switch_A15[Switch_E2b];
Switch_A17[Switch_E3]
-1

A Orig
f Orig_A2 1
s Orig_A2 0.5000000
y Orig_A2 Switch_E1 1.000000
f Orig_A4 1
s Orig_A4 0.5000000
f Orig_A4a 1
s Orig_A4a 0.5000000
y Orig_A4a Switch_E2a 1.000000
f Orig_A4b 1
s Orig_A4b 0.5000000
y Orig_A4b Switch_E2b 1.000000
f Orig_A5 1
s Orig_A5 0.5000000
f Orig_A7 1
s Orig_A7 0.5000000
f Orig_A9 1
s Orig_A9 0.5000000
f Orig_A11 1
s Orig_A11 0.5000000
y Orig_A11 Switch_E3 1.000000
:
Orig_A2 -> Orig_A4;
Orig_A4 -> (0.500000) Orig_A4a + (0.500000) Orig_A4b;
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Orig_A4a -> Orig_A5;
Orig_A4b -> Orig_A7;
Orig_A7 -> Orig_A9;
Orig_A9 -> Orig_A11;
Orig_A11[Orig_E1]
-1

A Term
f Term_A1a 1
s Term_A1a 0.1000000
f Term_A1b 1
s Term_A1b 0.1000000
f Term_A3 1
s Term_A3 0.1000000
f Term_A5 1
s Term_A5 0.1000000
f Term_A8 1
s Term_A8 0.1000000
f Term_A9 1
s Term_A9 0.1000000
f Term_A10 1
s Term_A10 0.1000000
f Term_A11 1
s Term_A11 0.1000000
:
Term_A1a -> Term_A5 & Term_A8;
Term_A1b -> Term_A3;
Term_A3[Term_E1b];
Term_A5 & Term_A8 -> Term_A9;
Term_A9[Term_E1a];
Term_A10 -> Term_A11
-1

A OS
f OS_A1 1
s OS_A1 1.000000
f LogBegin_ABA_t_hid33 1
s LogBegin_ABA_t_hid33 1.000000
f OS_A2 1
s OS_A2 1.000000
:
OS_A1 -> LogBegin_ABA_t_hid33;
LogBegin_ABA_t_hid33 -> OS_A2
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$OrigUtil
$SwitchUtil
$TermUtil

-1
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APPENDIX E1 – Switch (CPUd =0.25) LQN File
G
"        - Common Processor for Switch and OS
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100
$nUser= 50:500,50

P 0
p p1 f %u $OrigUtil
p p2 f %u $SwitchUtil
p p3 f %u $TermUtil
p p4 f %u $OSUtil
-1

T 0
t RefTask1 r RefTask1 -1  p1 m $nUser  %f $Thruput
t Orig f Orig_E1 Orig_E2 -1  p1 m $nUser
t Switch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
t OS f OS_E1 -1  p4
t Term f Term_E1a Term_E1b Term_E2 -1  p3 m $nUser
-1

E 0
A Switch_E1 Switch_A1
A Switch_E2a Switch_A3
A Switch_E2b Switch_A4
A Switch_E3 Switch_A17
A Orig_E1 Orig_A2
A Orig_E2 Orig_A11
A Term_E1a Term_A1a
A Term_E1b Term_A1b
A Term_E2 Term_A10
A OS_E1 OS_A1
s RefTask1 1.000000  -1 %s $UserEntryTime
Z RefTask1 1000 -1
y RefTask1 Orig_E1 1.000000 -1
-1

A Switch
f Switch_A1 1
s Switch_A1 0.25000000
f Switch_A3 1
s Switch_A3 0.25000000
f Switch_A4 1
s Switch_A4 0.25000000
f Switch_A6 1
s Switch_A6 0.25000000
f Switch_A8 1
s Switch_A8 0.25000000
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f Switch_A8a 1
s Switch_A8a 0.25000000
y Switch_A8a Term_E1a 1.000000
f Switch_A8b 1
s Switch_A8b 0.25000000
y Switch_A8b Term_E1b 1.000000
f Switch_A9 1
s Switch_A9 0.25000000
z Switch_A9 Orig_E2 1.000000
f Switch_A13 1
s Switch_A13 0.25000000
z Switch_A13 OS_E1 1.000000
f Switch_A15 1
s Switch_A15 0.25000000
f Switch_A17 1
s Switch_A17 0.25000000
f Switch_A19 1
s Switch_A19 0.25000000
z Switch_A19 Term_E2 1.000000

:
Switch_A1[Switch_E1];
Switch_A3 -> Switch_A6;
Switch_A6[Switch_E2a];
Switch_A4 -> Switch_A8;
Switch_A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;
Switch_A9 -> Switch_A13 & Switch_A15 & Switch_A19;
Switch_A15[Switch_E2b];
Switch_A17[Switch_E3]
-1

A Orig
f Orig_A2 1
s Orig_A2 1.000000
y Orig_A2 Switch_E1 1.000000
f Orig_A4 1
s Orig_A4 1.000000
f Orig_A4a 1
s Orig_A4a 1.000000
y Orig_A4a Switch_E2a 1.000000
f Orig_A4b 1
s Orig_A4b 1.000000
y Orig_A4b Switch_E2b 1.000000
f Orig_A5 1
s Orig_A5 1.000000
f Orig_A7 1
s Orig_A7 1.000000
f Orig_A9 1
s Orig_A9 1.000000
f Orig_A11 1
s Orig_A11 1.000000
y Orig_A11 Switch_E3 1.000000
:
Orig_A2 -> Orig_A4;
Orig_A4 -> (0.500000) Orig_A4a + (0.500000) Orig_A4b;
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Orig_A4a -> Orig_A5;
Orig_A4b -> Orig_A7;
Orig_A7 -> Orig_A9;
Orig_A9 -> Orig_A11;
Orig_A11[Orig_E1]
-1

A Term
f Term_A1a 1
s Term_A1a 1.000000
f Term_A1b 1
s Term_A1b 1.000000
f Term_A3 1
s Term_A3 1.000000
f Term_A5 1
s Term_A5 1.000000
f Term_A8 1
s Term_A8 1.000000
f Term_A9 1
s Term_A9 1.000000
f Term_A10 1
s Term_A10 1.000000
f Term_A11 1
s Term_A11 1.000000
:
Term_A1a -> Term_A5 & Term_A8;
Term_A1b -> Term_A3;
Term_A3[Term_E1b];
Term_A5 & Term_A8 -> Term_A9;
Term_A9[Term_E1a];
Term_A10 -> Term_A11
-1

A OS
f OS_A1 1
s OS_A1 1.000000
f LogBegin_ABA_t_hid33 1
s LogBegin_ABA_t_hid33 1.000000
f OS_A2 1
s OS_A2 1.000000
:
OS_A1 -> LogBegin_ABA_t_hid33;
LogBegin_ABA_t_hid33 -> OS_A2
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$OrigUtil
$SwitchUtil
$TermUtil
$OSUtil
-1
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APPENDIX E2 – Orig (CPUd= 0.5) LQN File
G
"       - CPU demands for Switch 0.25
        - CPU demands for Orig 0.5
        - Common Processor for Switch and OS
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100
$nUser= 50:500,50

P 0
p p1 f %u $OrigUtil
p p2 f %u $SwitchUtil
p p3 f %u $TermUtil
p p4 f %u $OSUtil
-1

T 0
t RefTask1 r RefTask1 -1  p1 m $nUser  %f $Thruput
t Orig f Orig_E1 Orig_E2 -1  p1 m $nUser
t Switch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
t OS f OS_E1 -1  p4
t Term f Term_E1a Term_E1b Term_E2 -1  p3 m $nUser
-1

E 0
A Switch_E1 Switch_A1
A Switch_E2a Switch_A3
A Switch_E2b Switch_A4
A Switch_E3 Switch_A17
A Orig_E1 Orig_A2
A Orig_E2 Orig_A11
A Term_E1a Term_A1a
A Term_E1b Term_A1b
A Term_E2 Term_A10
A OS_E1 OS_A1
s RefTask1 1.000000  -1 %s $UserEntryTime
Z RefTask1 1000 -1
y RefTask1 Orig_E1 1.000000 -1
-1

A Switch
f Switch_A1 1
s Switch_A1 0.25000000
f Switch_A3 1
s Switch_A3 0.25000000
f Switch_A4 1
s Switch_A4 0.25000000
f Switch_A6 1
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s Switch_A6 0.25000000
f Switch_A8 1
s Switch_A8 0.25000000
f Switch_A8a 1
s Switch_A8a 0.25000000
y Switch_A8a Term_E1a 1.000000
f Switch_A8b 1
s Switch_A8b 0.25000000
y Switch_A8b Term_E1b 1.000000
f Switch_A9 1
s Switch_A9 0.25000000
z Switch_A9 Orig_E2 1.000000
f Switch_A13 1
s Switch_A13 0.25000000
z Switch_A13 OS_E1 1.000000
f Switch_A15 1
s Switch_A15 0.25000000
f Switch_A17 1
s Switch_A17 0.25000000
f Switch_A19 1
s Switch_A19 0.25000000
z Switch_A19 Term_E2 1.000000
:
Switch_A1[Switch_E1];
Switch_A3 -> Switch_A6;
Switch_A6[Switch_E2a];
Switch_A4 -> Switch_A8;
Switch_A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;
Switch_A9 -> Switch_A13 & Switch_A15 & Switch_A19;
Switch_A15[Switch_E2b];
Switch_A17[Switch_E3]
-1

A Orig
f Orig_A2 1
s Orig_A2 0.5000000
y Orig_A2 Switch_E1 1.000000
f Orig_A4 1
s Orig_A4 0.5000000
f Orig_A4a 1
s Orig_A4a 0.5000000
y Orig_A4a Switch_E2a 1.000000
f Orig_A4b 1
s Orig_A4b 0.5000000
y Orig_A4b Switch_E2b 1.000000
f Orig_A5 1
s Orig_A5 0.5000000
f Orig_A7 1
s Orig_A7 0.5000000
f Orig_A9 1
s Orig_A9 0.5000000
f Orig_A11 1
s Orig_A11 0.5000000
y Orig_A11 Switch_E3 1.000000
:
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Orig_A2 -> Orig_A4;
Orig_A4 -> (0.500000) Orig_A4a + (0.500000) Orig_A4b;
Orig_A4a -> Orig_A5;
Orig_A4b -> Orig_A7;
Orig_A7 -> Orig_A9;
Orig_A9 -> Orig_A11;
Orig_A11[Orig_E1]
-1

A Term
f Term_A1a 1
s Term_A1a 1.000000
f Term_A1b 1
s Term_A1b 1.000000
f Term_A3 1
s Term_A3 1.000000
f Term_A5 1
s Term_A5 1.000000
f Term_A8 1
s Term_A8 1.000000
f Term_A9 1
s Term_A9 1.000000
f Term_A10 1
s Term_A10 1.000000
f Term_A11 1
s Term_A11 1.000000
:
Term_A1a -> Term_A5 & Term_A8;
Term_A1b -> Term_A3;
Term_A3[Term_E1b];
Term_A5 & Term_A8 -> Term_A9;
Term_A9[Term_E1a];
Term_A10 -> Term_A11
-1

A OS
f OS_A1 1
s OS_A1 1.000000
f LogBegin_ABA_t_hid33 1
s LogBegin_ABA_t_hid33 1.000000
f OS_A2 1
s OS_A2 1.000000
:
OS_A1 -> LogBegin_ABA_t_hid33;
LogBegin_ABA_t_hid33 -> OS_A2
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$OrigUtil
$SwitchUtil
$TermUtil
$OSUtil
-1
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APPENDIX E3 – Term (CPUd=0.1) LQN File
# UCM2LQN output
G
"       - CPU demands for Switch 0.25
        - CPU demands for Orig 0.5
        - CPU demands for Term 0.1
        "
1.0E-5
50
1
0.5
-1

$solver = parasrvn -B 20,100
$nUser= 50:500,50

P 0
p p1 f %u $OrigUtil
p p2 f %u $SwitchUtil
p p3 f %u $TermUtil
p p4 f %u $OSUtil
-1

T 0
t RefTask1 r RefTask1 -1  p1 m $nUser  %f $Thruput
t Orig f Orig_E1 Orig_E2 -1  p1 m $nUser
t Switch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
t OS f OS_E1 -1  p4
t Term f Term_E1a Term_E1b Term_E2 -1  p3 m $nUser
-1

E 0
A Switch_E1 Switch_A1
A Switch_E2a Switch_A3
A Switch_E2b Switch_A4
A Switch_E3 Switch_A17
A Orig_E1 Orig_A2
A Orig_E2 Orig_A11
A Term_E1a Term_A1a
A Term_E1b Term_A1b
A Term_E2 Term_A10
A OS_E1 OS_A1
s RefTask1 1.000000  -1 %s $UserEntryTime
Z RefTask1 1000 -1
y RefTask1 Orig_E1 1.000000 -1
-1
A Switch
f Switch_A1 1
s Switch_A1 0.25000000
f Switch_A3 1
s Switch_A3 0.25000000
f Switch_A4 1
s Switch_A4 0.25000000
f Switch_A6 1
s Switch_A6 0.25000000
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f Switch_A8 1
s Switch_A8 0.25000000
f Switch_A8a 1
s Switch_A8a 0.25000000
y Switch_A8a Term_E1a 1.000000
f Switch_A8b 1
s Switch_A8b 0.25000000
y Switch_A8b Term_E1b 1.000000
f Switch_A9 1
s Switch_A9 0.25000000
z Switch_A9 Orig_E2 1.000000
f Switch_A13 1
s Switch_A13 0.25000000
z Switch_A13 OS_E1 1.000000
f Switch_A15 1
s Switch_A15 0.25000000
f Switch_A17 1
s Switch_A17 0.25000000
f Switch_A19 1
s Switch_A19 0.25000000
z Switch_A19 Term_E2 1.000000
:
Switch_A1[Switch_E1];
Switch_A3 -> Switch_A6;
Switch_A6[Switch_E2a];
Switch_A4 -> Switch_A8;
Switch_A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;
Switch_A9 -> Switch_A13 & Switch_A15 & Switch_A19;
Switch_A15[Switch_E2b];
Switch_A17[Switch_E3]
-1

A Orig
f Orig_A2 1
s Orig_A2 0.5000000
y Orig_A2 Switch_E1 1.000000
f Orig_A4 1
s Orig_A4 0.5000000
f Orig_A4a 1
s Orig_A4a 0.5000000
y Orig_A4a Switch_E2a 1.000000
f Orig_A4b 1
s Orig_A4b 0.5000000
y Orig_A4b Switch_E2b 1.000000
f Orig_A5 1
s Orig_A5 0.5000000
f Orig_A7 1
s Orig_A7 0.5000000
f Orig_A9 1
s Orig_A9 0.5000000
f Orig_A11 1
s Orig_A11 0.5000000
y Orig_A11 Switch_E3 1.000000
:
Orig_A2 -> Orig_A4;
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Orig_A4 -> (0.500000) Orig_A4a + (0.500000) Orig_A4b;
Orig_A4a -> Orig_A5;
Orig_A4b -> Orig_A7;
Orig_A7 -> Orig_A9;
Orig_A9 -> Orig_A11;
Orig_A11[Orig_E1]
-1

A Term
f Term_A1a 1
s Term_A1a 0.1000000
f Term_A1b 1
s Term_A1b 0.1000000
f Term_A3 1
s Term_A3 0.1000000
f Term_A5 1
s Term_A5 0.1000000
f Term_A8 1
s Term_A8 0.1000000
f Term_A9 1
s Term_A9 0.1000000
f Term_A10 1
s Term_A10 0.1000000
f Term_A11 1
s Term_A11 0.1000000
:
Term_A1a -> Term_A5 & Term_A8;
Term_A1b -> Term_A3;
Term_A3[Term_E1b];
Term_A5 & Term_A8 -> Term_A9;
Term_A9[Term_E1a];
Term_A10 -> Term_A11
-1

A OS
f OS_A1 1
s OS_A1 1.000000
f LogBegin_ABA_t_hid33 1
s LogBegin_ABA_t_hid33 1.000000
f OS_A2 1
s OS_A2 1.000000
:
OS_A1 -> LogBegin_ABA_t_hid33;
LogBegin_ABA_t_hid33 -> OS_A2
-1

R 0
$0 = $nUser
$Thruput
$ResponseTime = $UserEntryTime
$OrigUtil
$SwitchUtil
$TermUtil
$OSUtil

-1
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APPENDIX F1 – Synchronous Call Replacement

Input LQN Model
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APPENDIX F2 – Synchronous Call Replacement
Cases

Case S1:

Network Subsystem

Output LQN Model
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Case S2:

Network Subsystem

Output LQN Model
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Case S3:

Network Subsystem

Output LQN Model
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APPENDIX F3 – Forwarding Call Replacement
Cases

Input LQN Model
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APPENDIX F4 – Forwarding Call Replacement
Cases

Case F1:

Network Subsystem

Output LQN Model
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Case F2:

Network Subsystem

Output LQN Model
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APPENDIX G1 – Input LQN File for Network
Subsystem Filter

G
"Network Component Template File, Khalid H. Siddiqui"
1.0E-5
100
1
0.9
-1

P 6
p p1 f
p p2 f
p p3 f
p p4 f
p p5 f
p p6 f
-1

T 6
t tA r Ae1 Ae2 Ae3  -1 p1
t tB r Be1  -1 p2
t tX f Xe1  -1 p3
t tY f Ye1 Ye2  -1 p4
t tZ f Ze1  -1 p5
t tC f Ce1  -1 p6
-1

E 9
s Ae1 1.0 0.0 0.0 -1
y Ae1 Xe1 1.0 0.0 0.0 -1
y Ae1 Ye1 1.0 0.0 0.0 -1
s Ae2 1.0 0.0 0.0 -1
y Ae2 Ze1 1.0 0.0 0.0 -1
s Ae3 1.0 0.0 0.0 -1
y Ae3 Ye2 1.0 0.0 0.0 -1
s Be1 1.0 0.0 0.0 -1
y Be1 Xe1 1.0 0.0 0.0 -1
y Be1 Ze1 1.0 0.0 0.0 -1
s Xe1 1.0 0.0 0.0 -1
s Ye1 1.0 0.0 0.0 -1
s Ye2 1.0 0.0 0.0 -1
s Ze1 1.0 0.0 0.0 -1
s Ce1 1.0 0.0 0.0 -1
y Ce1 Ze1 1.0 0.0 0.0 -1
-1
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APPENDIX G2 – TaskEntryFile.txt for Network
Subsystem Filter

# Khalid H. Siddiqui
# Student #256847
# Sept. 10, 2001
# File name: EntryTaskData.txt
# Network Component Filter
# Usage: SourceEntry SourceTask DestinationEntry DestinationTask

Ae2 tA Ye2 tY

#end
-1
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APPENDIX G3 – Network Subsystem LQN File
G
"Network Component Template File, Khalid H. Siddiqui"
1.0E-5
100
1
0.9
-1

P 4
p np0 f
p np1 f
p np2 f
p np3 f
-1

T 4
t nt0 r ne0  -1 np0
t nt1 f ne1  -1 np1
t nt2KHS f ne2  -1 np2
t nt3 f ne31 ne32  -1 np3
-1

E 5
s ne0 1.0 0.0 0.0 -1
y ne0 ne1 1.0 0.0 0.0 -1
y ne0 ne2 1.0 0.0 0.0 -1
s ne1 1.0 0.0 0.0 -1
y ne1 ne31 1.0 0.0 0.0 -1
s ne2 1.0 0.0 0.0 -1
y ne2 ne32 1.0 0.0 0.0 -1
s ne31 1.0 0.0 0.0 -1
s ne32 1.0 -1
-1
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APPENDIX G4 – Output LQN File with Shared
Processor P3

G
"Network Component Template File, Khalid H. Siddiqui"
1.0E-5
100
1
0.9
-1

P 0
p np0 f
p np1 f
p np3 f
p p1 f
p p2 f
p p3 f
p p4 f
p p5 f
p p6 f
-1

T 0
t nt0 n ne0  -1 np0
t nt1 n ne1  -1 np1
t nt2 n ne2  -1 p3
t nt3 n ne31 ne32  -1 np3
t tA r Ae1 Ae2 Ae3  -1 p1
t tB r Be1  -1 p2
t tC f Ce1  -1 p6
t tX f Xe1  -1 p3
t tY f Ye1 Ye2  -1 p4
t tZ f Ze1  -1 p5
-1

E 0
s Ae1 1.0 0.0 0.0 -1
y Ae1 Xe1 1.0 0.0 0.0 -1
y Ae1 Ye1 1.0 0.0 0.0 -1
s Ae2 1.0 0.0 0.0 -1
y Ae2 ne0 1.0 1.0 1.0 -1
s Ae3 1.0 0.0 0.0 -1
y Ae3 Ye2 1.0 0.0 0.0 -1
s Be1 1.0 0.0 0.0 -1
y Be1 Xe1 1.0 0.0 0.0 -1
y Be1 Ze1 1.0 0.0 0.0 -1
s Ce1 1.0 0.0 0.0 -1
y Ce1 Ze1 1.0 0.0 0.0 -1
s Xe1 1.0 0.0 0.0 -1
s Ye1 1.0 0.0 0.0 -1
s Ye2 1.0 0.0 0.0 -1
s Ze1 1.0 0.0 0.0 -1
s ne0 1.0 0.0 0.0 -1
y ne0 ne1 1.0 0.0 0.0 -1



Time/Performance Budgeting for Software Designs

182

y ne0 ne2 1.0 0.0 0.0 -1
s ne1 1.0 0.0 0.0 -1
y ne1 ne31 1.0 0.0 0.0 -1
s ne2 1.0 0.0 0.0 -1
y ne2 ne32 1.0 0.0 0.0 -1
s ne31 1.0 0.0 0.0 -1
y ne31 Ze1 1.0 1.0 1.0 -1
s ne32 1.0 -1
-1
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