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Abstract

Budgeting of time or system resources is a possible approach to achieving performance
targets for communications software. The role of any kind of budgeting is to allocate the
available resources to different activities or different parts of a system. Here, the total
permitted time to complete a response is being divided among the activities that must be
completed. However, because allowances must be made for environment delays,
overheads, latencies and so on, a performance model is essential. The model integrates
the various sources of delay, including the execution delay of each activity executed by
the system. Activities are given a budget for resources such as CPU time, which a

developer can track for the activity in isolation, using well-known tools such as profilers.
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Time/Performance Budgeting for Software Designs

1.0 Introduction

1.1 Motivation
When designing the software architecture of a complex distributed software

system, an important consideration is the performance of the resulting system. The
abilities to estimate the future performance of a large and complex distributed software
system at design time, and to iteratively refine these estimates can significantly reduce
the overall cost and time.

Different approaches to performance analysis are available to achieve
performance targets of any software system. These approaches involve steps to ensure
that a software system meets its performance objectives. Satisfactory performance
achievement isa significant problem for any software system. This thesis describes a new

approach to performance, which is applied throughout the lifecycle of software system.

What is Perfor mance Analysis?
IEEE and C. U. Smith give two useful definitions of performance.

The definition of performance given in the IEEE Standard Glossary of Software
Engineering Terminology is:
“The degree to which a system or component accomplishes its designated functions
within given constraints, such as speed, accuracy, or memory usage’ [IEEE-610.12].

Smith describes the increasing importance of performance analysis of software
systems:
“Performance refers to system responsiveness: either the time required to respond to
specific events, or the number of events processed in a given time interval. For traditional
information systems, performance considerations are associated with usability issue such
as response time for user commands. For ‘soft’ real-time systems, performance
considerations relate to the ability to adequately handle the external load placed on the
system. In ‘hard’ red-time systems, performance concerns can become correctness
issues. In these systems, failure to meet deadlines or throughput requirements is

equivalent to producing incorrect results’ [ Smith93].
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1.1.1 Performance Analysis Approaches
Smith documents several instances where such an anaysis would be useful. The

analysis may make use of fix-it-later versus predictive, early modeling approaches.

The first and simplest approach of performance analysis is ‘fix-it-later’. Thisis a
very common and risky approach. It is applied after the design and development of a
software system. The goal of this approach is to save time, expense, and maintenance
cost. It advocates the correctness of software and defers performance consideration to the
integration-testing phase. If performance problems are detected then corrective measures
are applied in the form of additional hardware or software tuning/optimization. The most
serious flaw is, because it is late, it is costly and may have limited capability. It is
might be possible that corrective measures would not correct such a performance
problem at all.

The second approach to performance analysis caled Software Performance
Engineering (SPE) is performance modeling by C.U. Smith. Smith introduces the
approach of performance prediction by modeling. This technique is used in the early
stages of a system design. It pinpoints and rectifies key problem areas before system
development and implementation. It is less laborious and more flexible than taking post-
devel opment measurements because the model operates on the key aspects of the system
[SmithO1].

The third approach to performance analysisis a possibility midway between these
two approaches is to measure different components and prototypes of the system as
development progress. Instead of a building a model, use common sense. The main
drawback of thistechniqueislack of predictive power.

In summary, al three approaches mentioned in this section can be applied at any
stage of software development. However, a mgor drawback to these approaches is that
performance analysis is done on the overall system where as the approach discussed in
this thesis enables the analyst to do a performance analysis at the component as well as
the overal system level throughout the lifecycle of a software system. If a software
system consists of many software components and some of the components are already
used in some other systems and the performance of these components are aready

analyzed then this can easily speed up the performance anaysis process for the new
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system. The performance analysis of the new system will be based on the budgeted
values of the existing software components with new budgets for new software
components. The budgeted values of new components will be based on intuition,
experience and sensitivity analysis. This supports the idea of time and performance

budgeting of any software system.

1.2 Objective
The objective of the thesis work is a budgeting approach using a “divide and

conquer” policy. First divides the problem into parts that correspond to system
responsibilities, and to the work of separate developer groups, then estimates (using a
model) the overall performance that will result if all the budgets are met. The model also
estimates the effects of contention, overheads and latencies.

This division gives developer targets, which he or she can understand and attempt
to achieve, without having to understand the entire system. The understanding of the
entire system is focused where it should be, at the managerial level, perhaps with some
specialist participation in working with the model. The tools minimize the effort on a
single project, since information about components and the execution environment can be
stored, and re-used in later work.

The objective of thisresearchis:

To describe a performance analysis approach for the development of
software systems, which is based on budgets or estimated figures for the
resource demands of all the parts and operations of the system before the
design and development. The budget or estimated figure may be based on
prediction, intuition or results of past experiments. The key elements of this
approach are the planning of budgets for the resource demands of each the
parts and operations of system and validation check for the required

per for mance.

1.3 Overview of thethesiswork
The primary effort in this study is the development of an approach, which is based

on UCMs, resource demand budgets, system completions, and derived performance
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models. UCM notation is used to describe design specification. The UCM captures the
system specification as a set of scenarios, at a suitable level of abstraction, and defines
software components and responsibilities. The use of UCMs is described in Chapter 2.
Budgeted value estimation is based on guess, intuition, prediction and sensitivity
anaysis. The term “completion” defines “completion” for a system in the form of
additional hardware and software components or different performance parameters.
These “completions’” can be defined in the UCM domain as well as in the form of
additional “completions’ in LQN domain. This leads to a suitable performance model.
The performance model can be constructed by hand or can be obtained by some
automation. An automated tool, UCM2LQN converter, is available for UCM to LOQN
conversion. This model is solved and results are analyzed to check whether the budgeted
values achieve satisfactory performance goals or not. If the results are not satisfactory
then it is required to make some changes in parameters or in the architecture at the
hardware or software level as. The road map elaborating these analysis steps is shown in
Figure 3.1.

A challenge is to create the budget values for the demands on individua
responsibilities. It can be done in the same way that financial budget values are created
under uncertainty, using experience and a reserve for contingencies [McNamara99]. To
assist the budgeting, prototyping experiments can be done to refine the estimates, and the
demand value can be tracked during development. Model experiments can be done to
estimates the effects of different kinds of overshoots. If a particular responsibility needs
more time, taking time from other responsibilities, changing the design, or boosting the
hardware capability can accommodate it.

It is essential to use amodel because we are analyzing a system, which has not yet
been built. The challenge for practica modeling is to reduce the effort and cost of
building a model, which is done here by model generation based on Use Case Maps
(UCM) described in Chapter 2. The generation process is mostly automated, apart from
steps to define the various kinds of “completions’. These include descriptions of software
components that are to be included “as is’, of protocols, middieware, file systems and
operating systems overheads, of hardware properties, and of competing workloads that
may impact the performance.
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Performance models are the natural way to provide predictions for a range of
environmental conditions or design alternatives. These predictions can be used to detect
problems and suggest corrections. The Layered Queuing Network (LQN) model isakind
of queuing model based on the UCM and its parameters, and on the expected execution
environment. In defining the environment, additional components are added to the
system, and these may be held in a component sub-model library. The Layered Queuing
Network Solver (LQNS) offers a variety of output measures, which need to be tailored to
the analysis, to make it easy to use.

The approach integrates work from two different research areas. Software
Performance Engineering approaches and distributed communication software systems
engineering.

1.4 Contributions
The main contributions of thiswork are:

» The approach of Performance Budgeting process with Road Map described in
Chapter 3. Performance Budgeting provides different steps to carry out
performance analysis before the devel opment and implementation of any software
system to meet performance goal.

» Definition of the term “ completion” to overcome the incompleteness of a design
specification. We suggest and provide ways to add missing components and
parameters to an incomplete specification of a software design. An incomplete
specification shows the thinking of a software designer at some early stage of
development. The specification is very abstract and may omit some necessary
details, which are important for a suitable performance model.

» Demonstration of the “ completion” described in Chapter 5. The development of
four network filters provides automation to the “completion” at LQN level only
(model level). Different network components are incorporated in different
examples in the form of asingle LQN task representing a simple message passing
network component (a single network component), a generalized protocol suite
(LON network subsystem), a shared resource server LOQN task and a multicast
network LQN task.
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Measurements and modeling of tuple spaces. Measurements are done on J-Spaces
(J-Space Technologies Inc.) [JSpaces] and the performance model of J-Spaces is
constructed and analyzed described in Chapter 6.

Two end-to-end Case Sudies on UCM design examples from industry, described

in Chapter 7.

The significance of these contributionsis:

They can be used with several software development methodologies, and support
an iterative software development cycle.

They provide component based performance analysis as well as overall system
based performance analysis. Every component is given a separate budget. If the
budgets are met then performance goals are achieved. If not then derive the
equipment performance required to achieve for given budgeted values to obtain
satisfactory performance. For example, what processor speeds will make it work?
Hardware or software architectural adjustment is another option to achieve
performance targets. This permits the analyst to focus on the principle of Software
Performance Engineering rather than model building.

They provide a framework to allow for the reuse of performance information

A process for tracking and correcting performance attributes of designer driven

the project.

ThesisOutline

Chapter 2 provides background material for the topics, which are fundamental

devel oping the performance budgeting approach.

Chapter 3 is an overview of the performance budgeting approach.
Chapter 4 describes the “completion” to complete an incomplete specification of

a software design and a number example to elaborate the “completion” .

Chapter 5 describes the designs and implementations of four network component

filters. Single Network Component Task (SNCT) filter, Network Subsystem (NSS) filter,
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Shared Resource Server Task (SRST) filter and Multicast Network Task (MCNT) filter,
to demonstrate the “ completion” in the LQN domain (model level) only.

Chapter 6 describes measurements and performances modeling of commercialy
available tuple spaces called J-Spaces by J-Space Technology Inc [JSpaces].

Chapter 7 introduces two case studies, a UCM Pattern Example based on SX-
2000 UCM design style of Mitel Networks Inc. and Plain Old Telephone System (POTYS)
UCM Design.

Chapter 8 describes architecture adjustment using Plain Old Telephone System
(POTS) UCM Design.

Chapter 9 provides conclusions and recommendation for future research where this
work can be extended.

16 Summarry
This chapter provided a brief overview of the following:

1. Motivation for the research work including various approaches to performance
anaysis,

The objective of the research,

The overview of the thesis,

The contributions to the research, and

o b~ W DN

The outline of each chapter of the thesis.
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2.0 Background

2.1 Introduction
This chapter will describe background material for the understanding of this

thesis. This includes descriptions of Software Performance Engineering (SPE), Use Case
Maps (UCMs), Layered Queuing Network (LQN) Modeling, Performance Budgeting,
automated tool support for Performance Budgeting, and tuple spaces.

2.2  Software Performance Engineering (SPE)
Software Performance Engineering (SPE) refers to a set of methods for designing

and constructing software systems to meet some performance objectives. SPE methods
include performance data collection, quantitative analysis techniques, prediction
strategies, and management of uncertainties, data presentation, and tracking, model
verification and validation, critical successes factors, and performance design principles
[Smith01].

SPE prevents and solves performance problems by analyzing a software system
and suggesting corrective measures when necessary. One of the SPE approaches uses a
performance model of the system during the analysis. Gathering information about a
system’'s structure and execution is chalenging but necessary for constructing a
performance model. Various approaches are available to develop the structure and
parameters of a performance model and two main approaches are empirical and
predictive.

The empirical approach is based on obtaining performance measurements from a
prototype of a software system. Performance measurements include response times,
system throughputs and network delays. If these measurements do not meet performance
reguirements, the system is fine-tuned to obtain better results [ Smith 90].

The predictive approach characterizes software execution patterns, constructs a
performance model to generate performance estimates, and then uses the predictions to
guide modifications. It provides earlier warnings and supports more effective
adjustments. The weakness of the predictive approach arises in determining the model

structure and parameters without an implementation as guide.
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Analysts while creating a model have to review software descriptions, design
documents or source code design descriptions. Important end-to-end system behavior,
the involved software components, device usage by each component, and the interaction
between components are identified and this information converted into a performance
model. This large quantity of information becomes unwieldy even for a moderate-size
system. Consequently, models become expensive to develop and validate.

Various approaches to SPE applied over the span of software design and
development cycle are briefly mentioned in the next section, leading towards software

performance modeling.

2.3 Various SPE Approaches
Software performance engineering may use a variety of techniques for

performance evaluation such as fix-it-later, performance models, and performance
measurement. The use of these techniques is heavily dependent on the architecture of the
computer system being analyzed.

2.3.1 Fix-it-Later
Fix-it-later is the simplest approach of performance analysis. Smith describes this

approach in [Smith01]. It is very common and usually applied after the design and
development of software system. The rationale of this approach is to save time, expense,
and maintenance cost. It emphasis the correctness of software and defers performance
consideration to the integration-testing phase. If performance problems are detected then
corrective measures are applied in the form of additional hardware or software
tuning/optimization. The obvious drawback to this approach is that it is extremely
difficult to change any major components or redesign the system, once it is implemented
and performance difference is almost unsubstantial. This approach is suitable when there
are fewer users and systems competing for the resources or when the resource demand is
not high. This approach is not suitable for mission critical systems and embedded systems

which require critical performance.
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2.3.2 Performance Modeling
Software performance predicted by modeling is described by Smith [Smith01].

This technique is used in early stages of a system design. It pinpoints and rectifies key
problem areas before system development and implementation. It eliminates the need of
redesigning the software system after it is operational. This is especially important in
mission critical systems and real time systems where all operations should meet strict
performance requirements.

This technique is based on the performance model of a system. A model should
describe the key aspects of a system. It should include behaviora structural aspects of
workload elements in terms of resource usage. Performance predictions can be developed
using this information. These predictions can be analyzed for different system
configurations and workload conditions. Performance modeling seems to be a suitable

technique of SPE. It certainly achieves the goal of SPE in afeasible manner.

2.3.3 Performance M easur ement
Performance measurement is a possible approach to SPE, which falls between the

two approaches discussed in previous subsections. In this technique, the performance
metrics are used as a criterion to evaluate the performance of the system. Metrics may be
obtained by performing a number experiments [Jain91]. Smith divides this technique into
sub techniques: recording the events and observing and monitoring the states [ SmithO1].
The measurement of environmental factor such as workload, the time of day and the
duration of measurements need to be controlled. This technique may reveal bottlenecks
of the system.

It providesreliable, statistical and accurate measurements of the system. The main
drawback of this technique is that it takes time to do the measurements and the system
must be operational during the experiments. It is also possible to change the design of the
system to improve the accuracy of measurements. This may involve the redesigning of
the whole system or a component of the system, which is not feasible from performance
viewpoint. It is aso a problem to choose a real workload, which will provide the exact

measurements for certain operating conditions.

10



Time/Performance Budgeting for Software Designs

In the next section, we will discuss Use Case Maps (UCM) notations, which are
playing an important role in performance modeling and aso in system specification.

24 UseCase Maps (UCMs) Notation
This section is intended to provide an overview of Use Case Maps (UCMS)

[Buhr95] [Buhr98]. UCMs capture the system specifications as a set of scenarios, a a
suitable level of abstraction, and define software components and responsibilities. Within
an early architecture definition based on Use Case Maps (UCMs), demand budgets are
allocated to responsibilities and verified by a semi-automated performance analysis using
Layered Queuing Network (LQN) Models.

UCMs are defined as causal scenarios, architectural entities or behavior patterns.
They help us to describe and understand emerging behavior of complex and dynamic
systems. The notation is intended to be useful for requirement specification, design,
testing, maintenance, adaptation and evolution. UCMs notation aims to link behavior and
structure in an explicit and visual way.

UCM paths are architectural entities that describe causal relationships between
responsibilities, which are bound to underlying organizational structures of abstract
components [Buhr98]. These paths represent scenarios that intend to bridge the gap
between requirements and detailed design.

With UCMs, scenarios are expressed above the level of messages exchanged
between components; hence they are not necessarily bound to a specific organizational
structure. This feature promotes the evaluation of architectural aternatives early in the
design process. UCMs provide a bird eye view of system functionality, they allow for
dynamic behavior and structures to be represented and evaluated, and they improve the
level of reusability of scenarios.

The UCM methodology is based on the concept of describing end-to-end
scenarios through a system as a causal flow of events, and actions through an underlying
component substrate. Details of inter-component communications are considered lower
level detail, which can be determined at alater stage. The UCM methodology allows end-
to-end causal scenarios to be described at any level of abstraction allowing the behavior

11
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of complex systems to be described with ease. Support for design scalability is built into
the UCM methodology into two forms, support for the concept of stubbing which allows
path segments to be expanded as separate diagrams and support for the concept of
layering where a UCM of a certain layer describes certain behavior and considers other
operations to be lower level detail, to be described by a UCM of a lower layer. A
complex system described properly with a set of UCMs alows for much greater
understanding by all designers and implementers resulting in increased efficiency for a

software system.

2.4.1 Requirementsfor the Construction of UCMs
UCMs can be extracted from informa requirements if they are available.

Responsibilities should be stated or can be extracted from these requirements. UCMs can
be created for individual system functiondities or even for individual scenarios for
illustration purpose. However, the strength of this notation mainly resides in the
integration of scenarios. It is important to clearly define the interface between the
environment and the system under description. This interface will lead to the start points
and end points of the UCM paths, and it also corresponds to the messages exchanged
between the system and its environment. Designers are often the ones who create UCMS,
some design information may be relevant. In theory, UCM can be composed of paths
where responsibilities are not allocated to any component. However, designers are likely
to include architectural elements such asinternal components. In this case, the description
of these components, their nature, and some relationships, e.g., components that include
sub-components, are required. Communication links between components are usually not
required, but they can be added.

24.2 UCM Components
Components can be of different natures, alowing for a better and more

appropriate description of some entities in a system. Figure 2.1 shows the component
used in UCM and also shows the detail of components. There are different types of
components and they have different types of attributes. Buhr suggested several types of
components and attributes for complex systems. These systems can be real-time, object-
oriented, dynamic or agent based etc [Buhr95, Buhr98 and UCMOrg].

12
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UCM Components

Team: A generic component, which may be of any
type and structurally contain any other component

Object: A passive low level component, which may
J not other components

Process. An active component, which has its own
E thread of control. May contain passive objects

| SR: Active object representing any interrupt service

routine

Pool: A storage area for operationally inactive
dynamic components. Content of pools must be move
into slots to become visible and active

UCM Components Attribute

D Protected: For mutual exclusion

A stack of components indicates a set of
operationally identical but separate components

A dlot of a particular component type indicates a
placeholder for a dynamic component and is indicated
""""" ' by dashed outline

Anchored: in a plug-in, refers to a component
defined in another map

Figure2.1: UCM componentsand components attributes

13
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Start Point: Starting delimiter for a UCM path,
. which signifies the starting of a scenario when
appropriate stimulus is received.

End Point: Terminating delimiter for a UCM path,
which signifies the end of a scenario

OR-Fork: Indicates routes that share common
causal segments, Alternative may be identified by
labels or by conditions

>— OR-Join: Indicates that many concurrent paths are
synchronized to one path

AND-Fork: Indicates that a single path split intc
many concurrent forks.

AND-Join: Indicates that numerous concurrent
paths synchronize into a single path.

Static Stub: An element of decomposition in UCMs
where a sub map may be defined. This is a static stub
with asingle sub map.

Figure2.2 (a): UCM Path Elements

14
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-~ Dynamic Stub: An element of decomposition in
UCMs where a sub map may be defined. This is a
—_— — dynamic stub with many sub maps. The selection can be
determined at run-time according to a selection policy

usually describe as pre-conditions.

Responsibility: Specifies an action to be performed
x by the end system that point of the path. May be bound
to of software component.

Shared Stub: Specifies that the sub map will be
shared by different paths.

—— Waiting Place: Specifies a synchronization point
for a scenario where a scenario pauses until a
triggering event is received.

Time Waiting Place: A waiting place, which may
have a timeout period, defined at which point an
exception action is taken.

@

Rendezvous: N:1 and 1:N

\12 Synchronize: N:N
i

Figure2.2 (b): UCM Path Elements

15
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Asynchronous Call: takl makes
request to task2 and continue it's
executing without waiting for the reply
of taks2.

Synchronous Call: taskl makes
request to task2 and waits for the
reply of task2. taskl is execution is
blocked.

phase2

taskl task?2 task3

Forwarding Call: taskl makes
request to task2 and wait for the
reply. task2 forwards this request to
task3 and continue its execution.
task3 replies back to task 1.

Figure 2.3: Typesof Calls

2.4.3 UCM Path Elements
The basic path notation [WoodsideO1 and UCMOrg] addresses simple operators

for causally linking responsibilities in sequences, as aternatives, and in parallel. More
advanced operators can be used for structuring UCMs hierarchically and for representing
exceptional scenarios and dynamic behavior.

Figure 2.2(a) and 2.2(b) show the UCM path elements with their descriptions.

When UCM scenarios become very complex then it is good to divide a big and complex

16
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map into small sub maps. A top-level UCM is referred as a root map, which can include
containers called stubs, which are replaced by sub-maps called plug-in maps. Figure 2.2
(a) and 2.2(b) show two kinds of stubs with their descriptions. Figure 2.3 shows the type
of calls or interactions, which can be implemented in UCM scenarios. The next two

sections will describe examples for simple and complex UCM scenarios.

2.4.4 Example: Smple UCM Scenario
This section will discuss how a UCM scenario looks like and how to incorporate

UCM components and path elements into a UCM scenario. Figure 2.4 shows a very
basic, simple and abstract UCM scenario. There are two paths in this scenario. These
paths are distinguished by their colors. It shows how the paths start and how they end.
The respected responsibilities associated with each path are labeled as ‘x’. The
components are shown as rectangular boxes, which can be different task of a software
system. The ‘Start Point’ is represented as filled circles, which show pre-conditions or

triggering causes of a path.

Component

& >

Start Point

o —
%~

End point

Path

Responsibility

Figure2.4: Smple UCM Scenario
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An ‘End Point’ is represented as a small vertical line, which can show post-
conditions or the resulting effect of a path. The lines connecting ‘ Start Point’, * End Point’
and responsibilities are the paths.

A responsibility is bound to a component when the cross is inside the component.
In this case, the component is responsible to perform the action, task, or function
represented by responsibility. Start points may have preconditions attached, while
responsibilities and end points can have post conditions. This route, which traverses paths
and associated responsibilities from a start point to an end point, is known as scenario.

The black color path shows one component/task is interacting with another
component/task synchronously. The first component or task waits for the reply of other
component/task. Gray color path shows that one component/task is interacting with other
component/task. The other component/task forwards the request to another component
task which reply back to first component/task. During this period first component/task

was blocked because it was waiting for the reply.

2.4.5 Example: Complex UCM Scenario
Figure 2.5 shows a complex UCM scenario. The big complex map is called the

root map. The small rectangular boxes at the top show sub maps or plug-in maps. Thisis
paradigm of a backup process. When a user requests to perform a backup process, first it
is validated whether the user is an authentic user or not. If it is not then the request is
rejected other wise the request is accepted for backup and forwarded it to backup process.
The first rectangular box of root map is “User Process’, backup user uses this task to
make a request to perform backup on a device. “User Process’ sends this request to
“Authentication Process’. “Authentication Process’ has solid line diamond. This
diamond is a static stub, which represents sub map or a plug-in map. Since thisis a static
stub that’s why only one sub map is associated with it.

The plug-in map of “Authentication Process’ is an OR path. It accepts user
request at “in” at static stub and checks whether the use is authentic user or not. The
corresponding responsibilities are labeled for “Authorized User” and *Unauthorized
User”. The resulting paths from plug-in map are labeled as “out 1” and “out2” outside the
static stub in root map.

18
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plug-in map plug-in map plug-in map

Authorized User Device A Device B
Start Start

‘Xl‘Xl

start

To Backup Process To Backup Process

Unauthorized User

root map

o Backup Process
User Process Authentication Process
start in outl
o—X S
| out2 ‘\,,
Backup not available

o
.
.
.

...
.
g
.

Backup
. Available
exit
Backup

Figure 2.5: Complex UCM Scenario

Authenticated user request if forwarded to dotted line stub, which is a dynamic
stub. Since it is a dynamic stub more than one sub maps can be attached to it. Here, in
this example two sub maps are attached to this dynamic stub. These sub maps are two

different maps for different devices. The corresponding responsibilities of each map are
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labeled for each device. User selects one of the devices according to his choice for the
backup.

The last rectangular box in root map is a “Backup Process’. This component
decides whether backup is available or not. If it is not then the request is return to “User
Process’ that backup is not available. The corresponding responsibility is labeled, as
“Backup not available” in “User Process’ component. If backup is available then
“Backup available” is forked into two processes. These are concurrent pProcesses.
“Backup Process’ informs “User Process’ about successful back up process. The
corresponding responsibility islabeled as “exit”. The other process is the backup process,
which starts a backup. The corresponding responsibility islabeled as “Backup”.

2.5 Layered Queuing Network (LQN) Modeling
A Layered Queuing Network (LQN) Mode [Woodside95] is proposed for the

evaluation because it is closely matched to a wide range of software design styles, and it
is aso a generalization of well known, and robust queuing network models. It is a new
adaptation of extended queuing models for software systems proposed by Woodside
[Rolia95, Woodside89, and Woodsided5h]. It can be solved by analytic or simulation
techniques; other analytic or simulation models could also be used. It is capable of
modeling most of the features the are important from performance point of view such as
multi-threaded processors, devices, locks, communication and so on [Franks99].

The LON model is a kind of queuing model based on the UCM and its
parameters, and on the expected execution environment. In defining the environment,
additional components are added to the system, and these may be held in a component
sub-model library. Layered Queuing Network Solver (LQNS) offers a variety of output
measures, which need to be tailored to the analysis, to make it easy to use
[Woodside9d5c].

LON model represents software resources in a natural way so that they are the
parts of the framework and thus approximations do not have to be developed for every
system. The model is closely linked to software descriptions and provides a transparent
representation of the software architecture, which makes models easy to develop and
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understand. The model is well suited for parallel processes running on a multiprocessor
or on a network, such as client-server system.

LON is used to build model in order to analyze the performance of software
system. The models consist of tasks with associated entries and lists of activities. The
tasks are organized in conceptual layers interacting with each other through synchronous,
asynchronous, or forwarding cals. The entries represent the call reception points for
tasks and are linked to activities that make service requests to lower level tasks and/or to
resources such as processors, disks, and/or other underlying services.

A LON model is a generalization of queuing networks that represents these in
terms of requests for service between tasks and the queuing of messages at an actor. An
LQON can represent any queuing model as specia case. In LQN, tasks can accept service
request messages at an LQN entry. An entry describes and models a service provided by
an actor, and also the associated resource demand. If atask is akind of object, an entry is
a kind of method. Requests for service are characterize as entry-to-entry interactions sent
in a synchronous (i.e. send-wait-reply), or asynchronous (i.e. send-and-continue) fashion.
The interaction types affect performance because they affect task blocking, queuing
delays at devices.

Hardware and software objects are represented as tasks in LQN model, which
may execute concurrently. There are three categories of tasks in LQN model. The first
categories of tasks are referred as pure server tasks. These tasks are used to model
hardware devices such as processors or disks. They receive requests form other tasks but
cannot make their own requests. The second categories of tasks are referred as client
tasks. These tasks only send requests and are used to model input sources such as users
and so on. Thethird categories of tasks are referred as active server tasks. These tasks can
receive requests, and make their own requests.

The interaction or call types are aso very important in LQN model. There are
three types of callsin LQN model. These are synchronous, asynchronous and forwarding
calls. The description of each call will be discussed next.
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(&) A Synchronous Call
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(c) A Forwarding Call

Figure 2.6: Call Patternsin LQN mode

In a synchronous call, atask that requests service to other task waits for the reply.
When the requesting task gets the reply from the task then it continues its normal
execution. It means that during a synchronous call a task is blocked until and unless it

gets the reply of its request. Synchronous call pattern is shown in Figure 2.6 (a).
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In an asynchronous call, atask that requests service from other tasks does not wait
for the reply of the request. The requesting task resumes its execution after making its
request to other task. Asynchronous call pattern is shown in Figure 2.6 (b).

Forwarding call can be considered as special case of an asynchronous call. When
a task sends a request to the other task that responding task sends this request to some
other task and does not reply back to the blocked task that initiated the request. The last
task in the chain sends reply back to the task that initiated the request. Forwarding call
pattern is shown in the Figure 2.7 (c).

In a synchronous protocol type there may be two phases of execution. It can be
seen in Figure 2.6(a) and Figure 2.6(c). During first phase the task accepts the request
from other task and reply back or forward the request. The task, that reply back or
forward the request, continue its execution in another phase, this is called phase2. The
second phase identifies resource contention between the initiating task and the continuing

responding task.

Taskl Task?2 Task3 Task4

X
A
N/

Figure2.7: Smple UCM Scenario

2.5.1 Example: Smple LQN M odel
Figure 2.7 shows a ssimple UCM scenario and Figure 2.8 shows LQN model of

this UCM. In LQN model, tasks are shown as parallelograms and requests from one task
to another task are made from and to service entries, which are ports or addresses of
particular service offered by a task. An entry executes activities with precedence
relationships, and activities have resources demands and can make requests to other tasks.
For each activity, a resource consumption value such as CPU consumption, storage
operations, and any other operations of the process to carry out the execution steps, must
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be made available from arepository of resource functions. Resource functions will not be
discussed in thisthesis.

The interaction or call types are distinguished by different type of arrows. A filled
arrow represents the synchronous call, asynchronous call by norma arrow while
forwarding call by dotted line arrow. This is the best way to represent different types of
call inaLQN model.

Entry 1
Task 1 Activity 1

Asynchronous Call

Entry 2

Activity 2
Task 2

Synchronous Call

v

Entry 3

Task 3

|
[}
i
i Forwarding Call
\ 4

Entry 4
Processor 3 Activity 4
. 7. >

Figure 2.8: A Layered Queuing Network (LQN) Model

2.6 Performance Budgeting
Performance Budgeting considers performance issues and information from the

earliest stages of development. It includes techniques for generating the information,
including performance estimates, and techniques for guiding and coordinating the effort
for development.
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Performance Budgeting is another approach to achieve the performance targets of
any software system. The idea behind the performance budgeting is to derive the
estimates for the resource demands for a software system before the design. The
estimated figure may be based on past experiments and results. The best thing before the
design of software system is to plan the budgets for the resource demands of all the parts
and operations then perform a validation check for the required performance. The red
time system requirements such as timeliness, predictibility, dependendibility, and
deadline scheduling are discussed in [Halang91]. The idea of validation of resource
budgetsis discussed in [Woodside99].

Performance budgeting allocates resources based on achieving specific
measurable resource demands (i.e. CPU execution demand, disk operation demand and
network demand etc) rather than the required resources selection and other costs to carry
out an operation or activity. Resource demand target can be a starting point. Thus
performance budgeting first asks not how many resources do we expect to put through
for a software system but rather, how many resources do we need for software system.
The numbers of resources required are resource demands and they are the basis of
performance budgets. Resource demands are defined through a strategic planning process
that considers the critical issues like predictions and past experiences etc.

Associated tools, which are available for performance budgeting, will be

discussed in next section.

2.7 Automated tools support for Performance Budgeting
Automation plays an important role for any complex system. Many tools can be

developed to provide automation. Tool support is desired for two main reasons, the
increased ease of manipulation of designs and the desire to use design specifications as
input to other tools. Proper tool support would provide a platform for designers to study
the issues of large systems. Some tools are already available to automate completion
process and new tools can also be designed and implemented. Research and development

work isrequired in this direction to enhance this research work in future.
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2.7.1 UCM Navigator (UCM Nav)
The specification of large, complex distributed communication software systems

often overwhelms designers with low level details but often does not provide a high level
view at which the behavior of a system may be understood. These complex systems are
complex to understand and difficult to modify and extend. This results in increased
development costs and greater unreliability of software as systems, which cannot be
understood, cannot be modified without introducing new bugs. The high level
visualization of system is very necessary. The UCM methodology is developed to fill a
void in the specification of software systems in that it aims to provide a high level
overview of the behavior of a system. UCM Navigator (UCMNav) is a graphical editor,
which is designed for this purpose [Miga98]. It supports the UCM methodology and
provides support for multilevel designs, for description of the performance for its use as a
front end for performance simulations and for the generation of a linear textual
representation of entered designed allowing the UCM methodology to be used as frond
end for other software engineering tools. UCM Navigator can be used to provide
completion at UCM level. We will discussin a detailed section, how thistool can be used
to provide completion at UCM level.

2.7.2 Layered Queueing Network Solver (LQNYS)
The LONS isatool that solves LQN models and returns performance parameters

for the system [Woodside95c]. It can also be used to detect contention for certain
services or devices, and conditions such as deadlocks, races, and/or bottlenecks. This tool
can be used to provide completion at LON level. The LQN model is a kind of queuing
model based on the UCM and its parameters, and on the expected execution environment.
In defining the environment, additional components are added to the system, and these
may be held in a component sub-model library, which facilitate the “completion”. The
LONS offers a variety of output measures, which need to be tailored to the analysis, to
make it easy to use.

2.7.3 Java L ayered Queuing Network Definition tool (JL QNDef)
JLONDe€f isatool that provides an LQN editor with LQNS, aswell as providing a

graphical output of the layered architecture. This tool can be very helpful for the
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“completion”, which will be described in next chapter. It can further be enhanced. New
features can be introduced to provide completion at LQN level graphically. Features like
one component/task replacement with multiple component/tasks by mouse drag and drop.
Another feature, which will introduce disk, file server, and tuple space server in the
system graphically. These components can be selected from the window menu and would
be introduced at mouse click.

2.74 LQN ComponentsFilter
LON have been used to model and evaluate performance of many different

systems such as web servers and network file systems. Many of these components may
occur as parts of larger systems. If the same system occurs many times within the larger
systems, it must be modeled repeatedly. As a result, building a LQN model of a large
system that has number of identical or similar subsystems becomes tedious, especialy if
the subsystems are also large or have complex interactions with their environments.
Evaluating aternative LQN models where particular subsystems are replaced by other
subsystems requires the larger model to be reconstructed for each alternative. Thisis aso
tedious. To address these concerns, the concept of LQN components is introduced in
[McMullan00Q]. This tool automates the process of component replacement. Thisis not a
graphical tool. It replaces one task with a set of tasks. It is certainly helpful for the
“completion” when it is required to replace one task with a set of tasks. It demonstrated
two examples for task replacement in [McMullan00], which could be a kind of
“completion”. In first example, LinuxNFS component instance was replaced with two
tasks NFS1 and NFS2. In second example, one instance of LinuxNFS component with its

service interface was replicated to accommodate four different client tasks.

2.75 UCM toLQN Converter (UCM2LQN)
An automated generative tool UCM to LON (UCM2LQN) Converter for creating

performance models from UCMs is described in [Petriu0la] [Petriu01b]. This converter
automates the transition from the UCM design model to a corresponding LQN model.
The transition is based on certain interaction relationships between the UCM
components, which are implicit in the UCM representation. Thisisreally helpful for the
“completion” because it automates the process of UCM to LQN conversion. UCM to

27



Time/Performance Budgeting for Software Designs

LQON conversion is done by hand for this thesis. The question is how advanced is this
tool? Will it convert any new style set of UCMs or only works for any specific set of
UCMs. At this time it does not have capability to handle dynamic stubs and complex
UCM. It does not handle the looping problem of the UCM design.

2.7.6 Latency and Message Overhead Filter
The LONS had some limitations. It lacked parameter values to describe the

communication delay between pairs of processors. ldeally, there is no delay between a
sender and receiver during message passing. In fact, there is always a delay between
sender and receiver as messages passing due to priority for execution, or delay associated
with acknowledgement.

This tool aso facilitates the process of completion in the form of latency and
message overheads [LeeOl]. It provides “completion” at LQN level. It does this by
incorporating the user think time as latency between the processors and message
overheads in execution time between the entries. If processors are located on the same
machine then latency will be zero. If they are located remotely then there will be some
delay. At this time this tool handles synchronous calls only. Asynchronous and

forwarding calls can be implemented in future to improve this tool.

2.8 Tuple Space
This section will describe tuple space communication that is used in different

examples showing “completion” based on tuple space network components.

Network operating systems provide three basic mechanisms that are used to
support the services provided by the operating system and applications. These
mechanisms are M essage Passing, Remote Procedure Call (RPC) and Distributed Shared
Memory (DSM) [Dasgupta98]. These mechanisms support a feature called Inter Process
Communication (IPC). While Message Passing and RPC are the mainstays of distributed
programming, and are available on al network operating systems, DSM is not at all
ubiquitous. DSM s a feature by which two or more processes on two or more machines
can map a single shared memory segment to their address spaces. This shared segment
behaves like real shared memory, that is, any change made by any process to any byte in
the shared segment is instantaneously seen by all the processes that map the segment.
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Tuple Space is one of the shared memory paradigms [Roberts92, Foster95, Walkner95,
Gelerntner97, Dasgupta98 and Matloff99]. Tuple Space is also a coordination mechanism
like any other coordination mechanism such as direct, meeting-oriented [Peined7] or
blackboard. Tuple Space uses a Linda like coordination mechanism [Roberts92,
Walkner95 and Dasguptad8].

In Linda-like coordination, accesses to alocal blackboard are based on associative
mechanisms. Linda generalizes the concept of the communication via common variables
by offering an associative shared memory or a global mailbox called “tuple space”,
through which concurrently acting processes can cooperate and communicate. The data
objects inside tuple space are referred to as "tuples’. A tuple is an ordered sequence of
data or messages.

Linda-based tuples are unstructured, therefore selection from multiple matches is
arbitrary and implementation-dependent. To share data, generate atuple. To request data,
request a tuple. It provides many features such as destination uncoupling, space
uncoupling and time uncoupling. In destination uncoupling, the receiver does not know
the sender and the sender does not know the receiver. Space uncoupling provides
associative versus physical addressing and it is machine and platform independent. In
time uncoupling, tuple life span is independent of both creators and readers. It supports
time-digoint processes. The origina Linda model defines four basic operators:

e out inserts atuple, composed of an arbitrary mix of actual and formal fields, into
atuple space. This tuple becomes visible to all processes with access to that tuple
space.

* in extracts atuple from atuple space, with its argument acting as the template, or
anti-tuple, against which to match. Actual match tuple fields if they are of equal
type and value; formals match if their field types are equal. If al corresponding
fields of a tuple match the template the tuple is withdrawn and any actual it
contains are assigned to formals in the template. Tuples are matched non-
deterministically and in operations block until a suitable tuple can be found.

* rdissyntactically and semantically equivalent to in except that a matched tupleis
copied, not withdrawn, from the tuple space and hence remains visible to other

jprocesses.
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* eval issimilar to out, except it creates active rather than passive tuples. The tuple
is active because separate processes are spawned to evaluate each of its fields.
The tuple subsequently evolves into a passive tuple resident in the tuple space.

In addition to the basic model described above more than a decade of research by the
paralel programming community has led to a number of refinements and extensions to
the paradigm. For example, many implementations support two new operators, inp and
rdp which are non-blocking versions of in and rd.

Figure 2.9 shows a tuple space and different operations associated to it. Tuples are
like vectors, except that their components can be of various mixed types, i.e. integers,
floating-point numbers, character strings, and so on. For example, a tuple could consist of
("abc", 1.5, 12). The tuple (‘farray x’, 5, [1 4 2 7 9]) is a tuple consisting of a string, an
integer, and an array of integers. In Linda, processes only interact through the tuple
space, and routines are provided for placing tuples into, and extracting tuples from, tuple
gpace. The out operation places the tuple into tuple space. Linda is well suited for
handling dynamic load balancing by treating tuple space as a “bag of tasks.” Tasks to be
performed can be placed into tuple space with eval, and on the “completion” of atask the

results are put back into tuple space.

out(“basseal”,u, v)

out(*hassan”,68, 4.8)

{“shahid”, 34, 4,5}
{“zahid", 26, 07}
{“bassel”, 13, 3.0}

rd(“abid”,68, 4.8)
{“chotoo”, 13, 3.0}

Figure 2.9: Tuple Space
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There are many advantages of tuple space such as flexibility and scalability.
Flexibility does not restrict format of tuples nor types of data contained. Scalability
provides facility of anonymity of tuple operations.

Figure 2.10 shows a generalized tuple space UCM scenario in which ProcessA
places a tuple in tuple space using out operation and ProcessB remove tuple from tuple
space with in operation. The responsibilities show respective operation of each process
and tuple space.

ProcessA Tuple Space ProcessB

tin

T Ty
( -

Figure 2.10: Tuple Space UCM Scenario
29 Summary
This chapter provided background material for the following:

1. Various approaches to performance engineering described with pros and cons,

2. Use Case Map (UCM) specification, a starting point of the research,

3. Layered Queuing Network (LQN) Modeling with an example showing the
relationship between UCM(s) and LQN(S),

4. The need for performance budgeting,

5. Theavailable automated tool support for the above, and

6. Tuple Space, which is used as one the communication mechanisms for the
“completion”
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3.0 Performance Budgeting in a Software Design
Process

3.1 Introduction
This chapter will describe idea of performance budgeting, budget analysis road

map, the steps involved in this road map, the concepts and terminology associated with
the road map and an example, which will walk through this road map step by step.

3.2 Performance Budgeting
Budgets are a general approach to break a large problem down into manageable

pieces, common examples are financial budgets and time budgets for projects. This
section will describe a budgeting approach to deal with time in software design. It does
two things: It establishes processing demands for separate parts that are performed by
separate system components or activities, and which are the responsibilities of separate
developer groups. It uses a model to estimate the resulting time delays, which have two
parts, first part due to the execution of the software being developed which is measurable
by the developer as it emerges and second part due to contention delays, environment
overheads and system latencies, which are outside the designers' control.

What this breakdown achieves is, to give developer targets, which he or she can
understand and attempt to achieve, without having to understand the entire system. The
understanding of the entire system is focused where it should be, at the managerial level,
perhaps with some specialist participation in working with the model. It aso supports the
re-use of information about the environment, in models of successive or evolving
projects.

In evaluating the budget, time delays can be estimated from the budgeted
demands using the performance model. The analysis can go in a forward direction, from
execution demands to delays, or in areverse direction from permitted delays to permitted
values for execution demands. In the forward direction, execution demands in terms of
CPU seconds, network or storage operations are allocated to each activity e.g. each
responsibility in UCM. The model results are computed and examined to see if they are

consistent with requirements. If adjustments are made to the budgets, they can be
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similarly evaluated. The forward direction is easy to understand, but it may require
iteration to find suitable budget values. In the reverse direction, an automated search is
carried out to find the budgets, which satisfy the delay requirements and any other
necessary criteria and constraints. This thesis focuses on the forward direction, which can
then be a key component in the larger operationsin the reverse direction.

Performance models are the natural way to provide predictions for a range of
environmental conditions or design alternatives and these predictions can be used to
detect problems and suggest corrections. For many software design environments there
are sdgignificant uncertainties in the execution demands/processing time and
communication messages delays. The UCM model does not discuss the uncertainty
issues, although it can specify variances for resource needs. These uncertainties will also
be incorporated in the budgets and will be gradually resolved in the process of
devel opment.

Performance requirements and predictions may be stated as mean values, mean
values with a given variance, or as percentile values (such as 95% of response should be
completed within a given delay). Hard deadlines are a special case of percentiles (100%
of responsesin the given delay) but are rare in telecommunications. In evaluating models,
simulation techniques can give average or percentile values while analytical models
usually only give mean values. Preliminary analysis may be based on analytic results, and
more careful analysis on simulations.

The difficulties in applying this budgeting idea fall into two groups. making a
suitable performance model from the UCM and creating, evaluating and modifying the
budget vaues. In the second category there are questions such as, how do we assign a
budget to a developer? And what will be the largest possible budget? Intuition is a poor
guide because there are so many factors, which are applicable to certain situations and
data configurations only. The budgeting for performance can be question of trial and
error where the intuition and experience of the design team will play a key role. Putative
configurations can be proposed, the corresponding performance models can be derived
and evaluated, and the prediction results can be compared against requirements and

previous results. Budget can be varied. The question here is, how we go systematically?
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If we have atime shortfall, how do we respond? It can be by a balanced budget change, a
software design change, or a hardware change.

In previous research, there has been frequent mention of budgeting of time in
software, particularly in designing for hard-real-time deadlines. In these systems,
schedule analysis plays the role of the model; to verify that timing constraints can be met
deterministically (see, e.g. [Halang91]). For soft real-time, the discussion has been rather
general and solid techniques are scarce.

This work is different in that it starts from designer intentions expressed in the

UCMSs, and that it addresses budgeting issues in soft-real-time systems.

3.3 Budget AnalysisRoad Map
Figure 3.1 illustrates the process for analyzing budgets. The boxes represent

design artifacts or libraries used in the analysis, while the arrows show operations carried
out either by the analysis, or by some automated transformation. There are seven steps.

3.3.1 Stepl: Designer UCM
The designer UCM is a document, which describes the system specification as a set of

scenarios, at a suitable level of abstraction, and defines software components and
responsibilities. It shows the idea of software designer at some early stage of
development.

UCMs are used to capture user (functional) requirements when very little design
detail is available, without reference to messages or component states. With UCMs,
scenarios are expressed above the level of messages exchanged between components. A
software designer creates UCMs and he may include some design information but not all
of them. UCM can be composed of paths where responsibilities are not allocated to any
component. However, software designers are likely to hide architectural elements such as
internal components. In this case, the description of these components, their nature, and
some relationships, e.g., components that include sub-components, are required.
Communication links between components are required. If they are not included in the
map they have to be added. They can be incorporated in the form of a component, static

(single scenario) or dynamic (multiple scenarios) stubs.
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Incorporate Use Configuration
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e.g. Software Component e.g. File Server
Step3 Step5

Figure 3.1: Budget Analysis Road Map

While the designer UCM may be incomplete in the sense of abstraction, but
“completion” must be suggested or defined from somewhere and somehow, sufficiently
to alow us to add the missing pieces. For example if a tuple space is to be used for
communication, this might be information additional to the Designer UCM (rather than
included in it) also the choice of a particular server.

A UCM is not the only possible starting point for budget analysis. Another form
of specification, which identifies the scenarios, the components, and the activities for
which code is to be developed, could be used. For instance an executable state-machine
specification in ObjecTime was considered in [Hrischuk95], and using Specification and
Description Language (SDL) in [El-Sayed98]. It might be possible to use a Unified
Modeling Language (UML) specification, and a profile for UML has recently been
defined to support such an analysis[OMGO1]. The advantages of the UCM arethat itisa
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small compact abstract description of the architecture, which can be created before these
others and can lead into them [PetriuOlal. The next chapter will describe the idea of
Designer UCM in detail before describing the process of “completion”.

The designer UCM may or may not define the components and infrastructure that
will beincluded in the final system; these are the subjects of Step 3, the “completions’, of
road map.

3.3.2 Step2: Demand Budgets
The budgets are values for workload demands by the responsibilities in the UCM.

Demands may include CPU operations and storage and communications operations, and
may be in units of operation counts, or CPU-seconds on a known processor. Different
performance patterns can be described for the users for choosing first budgeted values for
the CPU demands or improving these budgeted values for the desired performance. Smith

describes performance patternsin [SmithO1].

Various performance patterns are described for choosing the initial budget values. These
are:

Assumed budgets

If a software system consists of the components, which are new, unfamiliar types
or used first time in the budget analysis then CPU demand budgets of such components
are assumed or guessed by the design team.

Derived budgets

If the system components are new but of familiar types then the budgeted demand
values can be derived from the performance requirements themselves (dividing up the
allowed delay into parts allocated to different responsibilities). Or the data for the CPU
time demands of the system component is not available then the sensitivities of the
performance metrics can be considered as targets to budget the CPU demand for each
responsibility.
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Reused budgets
If the system components have aready used in the some experiments then the
CPU demands of the components can be determined, which would be based on the past

experiments and results.

If the initial budgets are unable to provide satisfactory performance then budgets
can be revised to provide satisfactory performance. The performance patterns for

revising the budget are described as under:

Budgetsrevision

If the desired performance targets are not met then it is required to refine the
budgets. It can be done make by making adjustments in the CPU demand of one
operation by reducing the CPU demand time and by alowing more time to other
operations. Since every operation is time bounded that’s why time reduction must be
within allowable limit. The example of such systems is mission critical or real time
system where the operation CPU demands are time restricted and the operations finish
their jobs within the specified time constraint. Therefore, if the budget revisions are not
possible in such system then the architecture adjustment can be an alternate option for
achieving desired performance goal. Time allowance from one operation to the other
operation is acceptable in non-real time systems for the budget revision and refinement
where one operation time is reduced and the other operation is allocated more time to

finishitsjob for the desired performance.

3.3.3 Step3: Completion at the UCM level
The software design normally does not fully define the system to be deployed.

There may even be multiple deployments in different environments, and with different
components. For performance analysis some of these deployments must be defined at
least approximately; the amount of detail to be included is a matter of judgment. The
missing detail can be supplied at the UCM level, if it arises at particular points in the
scenario, or at the LON level, if it describes a service or infrastructure operation that is
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used by the system. Often a given “completion” can be added at either level; there is no
hard rule.

UCM *“completions’ are taken from a library of UCM specifications and are
added as stubs to the designer UCM. A stub represents an operation with detail defined in
a hidden sub-map. Thus the analyst must explicitly indicate where they are to be added.
In future it might be possible to add these stubs automatically guided by rules or
preferences input by architecture team. Chapter 4 will describe “completion” of an

incompl ete software specification in details.

3.3.4 Step4: Createthe Performance Model
The fourth step of road map is LQN model extraction from the “complete” UCM.

The detail of LQN model and available LQN tool are aready described in previous
chapter.

3.3.5 Step5: Completion of the LQN Model
The LQN model is completed by adding details of the execution environment in

the form of hardware as well as software. Examples of “completions’ include file servers,

protocol stacks, web servers, network latencies, network mechanisms, and processor

speeds. These may be defined at this step if it was not done earlier. Chapter 5 will

describe LQN Completion Filter. This tool is used to insert network components that

handle a cal between tasks. The inserted elements are bound to the source and

destination tasks of the call, and either to existing processors or to new devices of their

own. The LQN Completion Filter has four variations:

» Single Network Component Task (SNCT) filter inserts a single network component
LON task representing a network by replacing single call,

* Network Subsystem (NSS) filter inserts a LQN subsystem by replacing asingle call,

» Shared Resource Server Task (SRST) filter inserts a server LQN task by replacing
multiple cals, and

* Multicast Network Task (MCNT) filter inserts a single entry LOQN task by replacing

multiple calls.
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3.3.6 Step6: Evaluation
The performance model is solved and the results are compared to the required

values. One modality is to use the performance results to verify that, if the budgets are
met, the performance will be adequate. A second modality is to derive equipment
capacities (such as processor speeds) that, given the budgeted demand values, will alow

the performance goals to be met.

3.3.7 Step7: Feedback
Feedback depends on the evaluation results. If they are not satisfactory then some

changes are required. If predictions show inadequate performance, one approach is to
tighten the budgets until the predictions are in the green zone. Alternatively one could
adjust the design in the UCM domain, or the implementation options in terms of
“completions’ and the environment.

The next section will describe a Simple Call Agent Use Case example, which will
walk through budget analysis road map.

34 Example: Simple Call Agent Use Case Map (UCM)

34.1 Stepl: Designer UCM
Figure 3.2 shows the Designer UCM of a Simple Call Agent UCM [SiddiquiQ0].

It shows two scenarios, one for a Simple Call Agent (SCA) and the other for the Name
Service (NS). The first scenario is a call connection from Call Agent A to Call Agent B.
x1, x5 and x9 show the responsibilities and operations of the respective components. The
second scenario is of Name Service; it isfrom Call Agent A to Name Service. This UCM
is not complete from the point of view of performance model. It lacks some necessary

details and component.

3.4.2 Step 2: Budgets
The CPU time demand of each responsibility is chosen as 1.0 msec in beginning

of the budgeting process. Since components used in this example are new and unfamiliar
types, therefore, sensitivity of system response time and throughput are considered as

targets to budget CPU time demand for each responsibility.
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3.4.3 Step 3: UCM Completion and Infrastructure Components
The analysis of Designer UCM reveals that the missing component for this

scenario might be a communication infrastructure. Communication infrastructure may
involve a point-of-point communication, Remote Procedure Call (RPC), Inter Process
Communication (IPC), a black board system, or tuple space between Call Agent A and
Call Agent B.

In order to generalize communication component insertion, a point-to-point
communication infrastructure is considered for this scenario and network delay and
protocol agents are introduced between these parties. In Figure 3.3, the UCM is
“completed” by adding infrastructure components (protocol agents at Party A and Party
B, and a network delay) and their responsibilities, just for the call connection scenario.
The protocol agents carry out low-level functions (connection, data checking, flow
control). There could be additional completions to describe the message exchanges in

greater detail, in both scenarios, but thisis sufficient for illustration.
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Call Agent A Call Agent B

x9
%
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Figure 3.2: Simple Call AgentsUCM (Designer UCM)
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3.4.4 Step 4: LQN Model of Simple Call Agent
Figure 3.4 shows the performance model of Simple Call Agent, which is

extracted, from “complete” UCM. It shows that some components are additional to the
information provided by “complete” UCM. These are systems and environment
components, which are essential for a performance model of a system.

There are four user tasks representing the external participants in the scenarios,
namely “NSUser”, “RemoteUser”, “WLUserA” and “WLUserB”. “NSUser” is a source
of name service user requests, “RemoteUser” indicates request of those users who are
simply trying to connect from Call Agent A to Cal Agent B. “WLUserA” and
“WLUserB” have been added to represent sources of competing workload at the nodes

executing the scenarios and will be explained in next step.

T T T f Call Agent A Cdl Agent B
X5
x9
AX10  x12

x1

\
R

el [

x8
x11
l — |
=7\ X6
Name X7
Service
Protocol Agent A Network Delay Protocol Agent B

Figure 3.3: Simple Call Agents UCM (Complete UCM)
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Call Agent A is represented by an LQN task “CalAgentA”. This task has two
entries. “CallAgentAL” entry handles Name Service users and “CallAgentAR” handles
requests for call connection to Call Agent B. The two threads of this task are considered
for LQN model. The “CalAgentAL” entry aso calls the “NameService” task, which
processes name service requests. In order to process Name Service request it accesses the
disk. The disk or file service is shown as “Disk”.

3.4.5 Step 5: Additional Completions, Environment and Assumptions
“Additional completions’ are introduced in the form of environment components.

In Simple Call Agent performance model, these environment components are introduced
as competing workloads. These workload components are added in the form of
competing workload users “WLUserA”, “WLUserB”, “CompetingWWLA”,
“CompetingWLB, “CresourceA”, and “CresourceB” task.

The “CalAgentAR” entry processes the caling scenario by caling the
“ProtocolAgentA” and “NetworkDelay” tasks. At the same time it is competing for the
node resource “ CResourceA” with “Protocol AgentA” and “CompetingWLA” tasks.

“CompetingWWLA” is an abstract workload, which represents al the competing
workload at node A, driven by the source “WLUserA”. It can be adjusted to represent
different environments and levels of business of the entire system.

For the example, we need to create budget values for the parameters:

* CPU time demand for each responsibility except those shown in the network

delay

* Disk demand (how many accesses) for the name server responsibility x11

* Network latency values as demands for x3 and x7.

In doing this, we are interpreting responsibilities in the UCM as operations. If a
responsibility in the UCM is really an abstract representation of work done by severa
tasks together, it needs to be refined to a point where it is executed by one component.
The analysis assumes this has already been done.

Notice that choosing a budget value is different from making a prediction. If the
component being budgeted is of a familiar type, the budget value may be a prediction
based on experience; if it is anew and unfamiliar type, then the budget value is properly
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seen as atarget or acommitment. The difference between a prediction and a commitment

is subtle but important; anyone may refuse to make a prediction if they lack data, but

anyone beginning a project is making al kinds of commitments, and thisis just one more.

NSUser | NSUser RemoteUser | RemoteUser W LUserA | W LUserA W LUserB | W LUserB
/
CalAgentAL | CallAgentAR | CallAgentA
N
Protocol AgentA otocoIAgentA
L
Proto?olAgent? tocol AgentB
X
Com;reting)NLAf CompgtingWLA CompetingWLB | CompetingWLB NameService NameService
I
cafx entB / CallAgentB
CReaourcfeA CResourceA CResoyréeB CResourceB
) a
NetworkDelay NetworkDelay Disk Disk

Figure 3.4: LQN Model of Simple Call Agent
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3.4.6 Step 6: Experimental Results Evaluation
The LQN analytical model gave the throughput and response time of the remote

users, calculated for a range of remote users, for different numbers of name server users.
“CalAgentA”and “CalAgentB” tasks are multithreaded. The numbers of threads for
both tasks were two. Tools, which exist to make the analysis easier, are the LQNS solver
for LQNSs, and the SPEX program for sequencing repeated runs over ranges of parameter
values. The LQN file of the model is included in Appendix A.The capacity and delay of
the system were monitored in term of throughput and response time respectively. Figure
3.5 shows that as the number of name service users increases the performance of the
system for call connections decrease. Other runs showed how, when the service time
(representing the CPU time budget) of any task increased then the utilization of that task
was increased and the remote user performance decreased.
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Figure 3.5: Response Time (msec) of Remote Usersfor Different NS
Users

The impact of increased budgets also depends on the location of the task in the layered
model. Because, if the task is located at lower layers and its service time is high as

compared to the tasks located on the upper layers then this task may cause bottleneck in
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the system. The bottlenecks of this task also cause bottleneck for upper layers. This effect

was observed by increasing the service time of tasks “CallAgentA”, “CalAgentB”,

“ProtocolAgentA” and ” Protocol Agent B”.

Remote Users NS User =1 NS User =5 NS User =9 NS User =13 NS User =17
1 19.7408 28.5517 40.9504 54.6051 68.7478
11 128.744 133.914 142.47 153.887 167.006
21 260.053 261.985 266.631 273.513 282.212
31 391.934 393.136 396.198 400.923 407.123

Table 1: Response Time (msec)

The throughput was also analyzed and shows the effect on system capacity of changesin

numbers of users, in Figure 3.6. The same data is shown in numerical form in Tables 1

and 2.
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Figure 3.6: Throughputs (Users/ms) of Remote Usersfor Different NS

Users
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Remote Users NS User =1 NS User =5 NS User =9 NS User =13 NS User =17
1 0.025 0.021 0.016 0.013 0.011
11 0.074 0.071 0.068 0.063 0.059
21 0.075 0.074 0.073 0.072 0.069
31 0.075 0.075 0.074 0.074 0.073
41 0.075 0.075 0.075 0.074 0.074
51 0.075 0.075 0.075 0.075 0.074

Table 2: Throughputs (User ms)

3.5 Summary

This chapter explains in detail the Budget Analysis Road Map with an example,

which highlights the key steps of the performance budgeting approach. These are as

follows:

1.

N o g A~ 0D

Designer UCM as one of the high level specifications of a software design. Any
specification can be used a starting point of the performance budgeting road map,
Resource demand budgets,

“Completion” of an incompl ete specification of software design,

Creation of the performance model,

Additional ”completion” at performance model,

Evaluation, and

Feedback

46




Time/Performance Budgeting for Software Designs

4.0 Completion of an Incomplete Software
Specification

4.1 Introduction
A software specification does not include all the information, which is necessary

for the performance evaluation of a software design, because of its level of abstraction.
The information can be some missing software components or operations depending on
the performance evaluation requirements and the nature of the system. This thesis uses
the term "completion” to mean additional elements, which are required for the
performance evaluation of a software system specification, and will be incorporated in an
incomplete software specification. Although the addition of the components and
operation will result in the modification of software design but it will describe al of the
expected components and operations necessary for the performance evaluation.

The performance model requires knowledge of different components and operations
of the system. The components can represent software entities such as objects, processes,
databases, servers, and networking components (tuple space or blackboard system) as
well as non-software entities e.g. or hardware etc. The operations can be CPU operations
(associated execution costs) and communications operations, which are required for the

workload demands. The chapter will discuss the following issues for the “ completion”:

* How should a*“completion” be specified?

* Alternatives for the “completion”

o “Completions’ at different stages

* Automation for the “completion”

* An example will be discussed in this chapter to elaborate the “completion” and
aternatives for the “completion”. The “completion” will be incorporated first and

the “additional completion” introduced later if one required for this example.

4.2 How should a“completion” be specified?
“Completion” can be specified a¢ UCM level while the “additional completion”

introduced a LQN level. The software designer can insert missing components and
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operations at UCM level for the “completion”, which are not shown explicitly but can be
inferred. These components can be some existing software components, represented in
the specification by design stubs and will be used as re-used software components. For
example, a “completion” might refer to a missing network component used in
communication between different objects. It can be single or multiple components.
Network components may not be important for a software design scenario but are
required for a performance model. Components and operations can also be incorporated
a LON level. These can be introduced in the form of software components or
performance parameter such latency (adding think time in latency) or message overhead
for execution demands depending on the requirement of system.

The “completion” can be a replacement of some components in a specification or
model with some other components e.g. a plug-in map replace a stub in a UCM
specification or atask replacement with subsystem in LQN model.

The “completion” can also be a pattern that can be instantiated or transformed in
specification e.g. adapting a plug-in to a use or adapt the scenario to the plug-in in a
UCM specification or the communication pattern transformation, which will be described
in next chapter.

Since, the “completion” and the “additional completion” may be approximate in
both functional and structural terms, or may define workload and demand abstractions,
and are for the performance evaluation of a software design therefore they are different
from the functional refinements of a specification, elaborations by generative
programming [CzarneckiOl], or software components in component-based software
engineering [ Szyperskiog].

In this chapter, some examples of the “completion” will be described in UCM
domain as well as the “additional completion” in LQN domain and some examples will
be described only as the “additional completions’ in the LQN domain in next chapter.

At this stage, the “completions’ are introduced manually. Since all the tools are
not available for the “completion” and the “additional completion” that’s why semi-
automation, which refers to manual work and available tools help, is preferable at this

stage.
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4.3 Alternative“completions’ for Inter-component Communication
There can be alternatives for the “completion” of inter-component

communication. The selection of missing components and operations is also important
from the “completion” and performance model viewpoint. It depends on the scenarios
and nature of a software system. It can be understood with a paradigm of two parties

communication system shown in Figure 4.1.

4.3.1 Example: Two-Party Communication
Two parties, “Party A” and “Party B”, are interacting each other in a UCM

scenario. “Party A” sends a request to “Party B”. “Party B” accepts the request. The
responsibilities associated with each party are labeled as “x1” and “x2". These
responsibilities represent generic processing (actions, activities, operations or tasks etc.).
This scenario isillustrated in Figure 4.1. Thisinformation is not sufficient for two parties
to communicate with each other. The communication type is also unknown. It is
important to know whether they are located on same machines or different machines. It is
desired to choose a suitable a network component between them.

Different type of communications can be possible between these two parties. It
can be a point-to-point communication, Inter Process Communication (IPC), Remote
Procedure Call (RPC), an Object Request Broker (ORB) [Mowbray97 and OMG95], a
blackboard system [Cabri98 and Spruit97], or a tuple space communication. The choice
of network components depends on the location of components whether they are located
locally or remotely and their interaction type such as synchronous, asynchronous or
forwarding.

It can also be anonymous communication i.e. one party does not have to know the
other party. If both parties are on local machines then IPC is a good choice, if they are
remote machines then RPC is a good choice, if both parties have dissimilar operating
systems or hardware then ORB will be a good choice. Tuple space communication will
be a suitable choice of communication when both parties are on local or remote machines
and interacting anonymously. Tuple space server can be a meeting point for both parties.

The choice of tuple space server is also important whether it is centralized or distributed.
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Party A Party B

X1 X2

Figure4.1: Two-Party Communications

4.3.2 Alternative: “Completion” by Simple Network Messaging
Consider ssimple network messaging case for the “completion”. The network

component is added between two parties for the “completion”. It is assumed that parties
are located remotely. The root map is shown in Figure 4.2.

Party A Network Party B

—X 0 A

Figure4.2: “Completion” with network messaging

Network component has a static stub, which represents a sub scenario. The plug-
in map associated with this sub map is shown in Figure 4.3.

Sub scenario shows “Protocol Agent A” for “Party A”, “Protocol Agent B” for
“Party B” and “Network Delay” component. The choice of protocol is also important for
network message system. It is assumed that the protocol agents of both parties are part of

network component and thisis sufficient for the “completion’ illustration.
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Protocol Agent A Network Delay Protocol Agent B

—X X x—

xa xd xb

Figure 4.3: Sub-scenario for network component

4.3.3 Alternative: Completion By Tuple Space
Consider tuple space as a suitable communication component for the

“completion”. Tuple space is added between two parties for the “completion”. It is
assumed that “Party A” is communicating with “Party B”, this is one-way
communication and both parties are remote parties. A tuple space server is coordinating
communication between these parties. The choice of tuple space server is also important
whether it is centralized or distributed. Centralized tuple space is selected for this
example. For simplicity, only two of the tuple space operations, in and out, will be used
in this example. The out operation is used to place tuple in the tuple space and in
operation is used to remove tuple from tuple space. in is a blocking operation. The other
operations like rd, rdp, eval and inp are not important for this example. The details of

these operations are already described in Chapter 2.

Party A Tuple Space Server Party B
notify x2

o—)_

VA

—X x—

x1 Xin xout

——

Figure 4.4: Two-Party Communication using tuple space for
“completion”
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“Party A” places its tuple in tuple space server using out operation. The tuple
space server notifies “Party B” about the tuple. It is assumed “Party B” would be blocked
if the tuple is not available in the tuple space. “Party B” will remove the tuple from the
tuple space server using in operation. If the tuple found in tuple space then “Party B” will
remove it. If the tuple is not in tuple space then “Party B” will not wait for the tuple and
will continue its normal execution. When the tuple will arrive in tuple space, tuple space

server will notify “Party B”. “Party B” will remove the tuple from tuple space.

4.3.4 Alternative: Completion by Remote Procedure Call (RPC)
Consider Remote Procedure Call (RPC) case for the “completion”. RPC

mechanism is implemented at both parties for the “completion”. It is a generalized case
for communication while ORB is a special case of RPC, which will be discussed in next
section. It is assumed that “Party A” is communicating with “Party B”, this is one-way
communication and both parties are remote parties. RPC mechanism is coordinating
communication between these parties. RPC is a client server mechanism. “Party A” is
acting as client and “Party B” is acting as server. The non-blocking RPC mechanism is
chosen for this example because “Party A” is not blocked after sending the request to
“Party B”. Athena RPC a MIT [Arons], Concert-C [Auerbach94] and ASTRA

[Ananda9l] are examples of non-blocking or asynchronous RPC.

Party A Network Delay Party B

inl outl xnd in2 out2

<>

o\
Vv

Figure 4.5: Completion with RPC
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Before introducing non-blocking RPC for “completion” some components
associated with RPC will be discussed.

Client Stub: It performs packing and unpacking of data. Packing refers to the
conversion of procedure names and parameters into a message. It is called marshaling of
data. Unpacking refers to conversion of message coming from server into results. At link
time client is statically bounded to a procedure that spans address space over the network
to communicate with the remote server. It takes help from name server.

Client Transport Mechanism: It refers to communication network software. It
converts the call into send operation. In non-blocking RPC case the client continues its
normal execution after making request to server.

Server Stub: It performs packing and unpacking of data. Packing refers to the
conversion of results into message. It is called marshaling of data. Unpacking refers to
conversion of message into procedure arguments i.e. un-marshaling of data.

Server Transport Mechanism: It refers to communication network software. It
receives message from client.

Server Process: It's surrogate process that executes the procedure. The process
accepts call from appropriate client and makes local call.

Two party-communications example is not completed from the point of view of
RPC communication. RPC components of both client and server are not shown in Figure
4.1 *Designer UCM”. RPC components are implemented in the form of static stub at both

parties as shown in Figure 4.5.

Client Transport Mechanism

Client Interface Client RPC Stub
inl outl
—X X X—
Xui Marshaling
Network Protocol

Figure4.6: Client Scenario at Party A
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Figure 4.6 shows the client side RPC sub-scenario, which is introduced as part of
“completion” at “Party A”. The associated responsibility with client interface is labeled
as “xui”, which shows user interaction with the client side object. The responsibility
“marshaling” at stub provides marshaling of data at “Party A”. The third rectangular box
shows Client Transport Mechanism and the network protocol associated with it. This
provides network communication facility to “Party A”.

Server Transport Mechanism

Server RPC Stub Server Process
. out2
in2
X X %
Un-marshaling XS
Network Protocol

Figure4.7: Server scenario at Party B

Figure 4.7 shows the server side RPC sub-scenario, which is introduced as a part
of “completion” process at “Party B”. The first rectangular box shows Server Transport
Mechanism and the protocol associated with it. This provides network communication
facility to “Party B”. The responsibility “un-marshaling” at stub provides un-marshaling
of data at “Party B”. The associated responsibility with server interface is labeled as
“xs”, which shows client connection with the server side object.

Network delay component introduced as part of “completion” process shown in
Figure 4.5 The associated responsibility islabeled as “xnd”.

4.3.5 Alternative: Completion By Object Request Broker (ORB)
Consider an Object Request Broker (ORB) case for “completion” process. ORB is

added between two parties for “completion”. It is assumed that “Party A” is
communicating with “Party B”, this is one-way communication and both parties are
remote parties. An ORB is coordinating communication between these parties. The
choice of ORB depends on the implementation and the vender of ORB. For ORB
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communication it is assumed that “Party A” is acting like as a client and “Party B” is
acting like as a server. It is also assumed that both parties are running same vender ORB

though it can be from different venders.

Party A Network Delay

Figure4.8: “Completion” with ORB

ORB is the infrastructure mechanism standardized by Common Object Request
Broker (CORBA). The role of ORB is to unify access to application services, which it
does by providing a common object-oriented, remote procedure call mechanism. CORBA
provides location transparency i.e. the difference in the location of the objects. Objects
can be local to the client i.e. on the same machine; or they can be on the remote machine;

or on different platforms or implemented in different languages.

ORB Agent ORB
Client Interface Client Stub
inl outl
—X X X—
Xic Marshaling
ORB Protocol

Figure 4.9: ORB Sub-scenario at Party A
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Usualy ORB isimplemented as runtime library. Client and server both have these
libraries. Client implements the link to server through communication port using standard
ORB protocol. Client calls the stub, marshals the data and send the request to client side
ORB. Client side ORB connects server side ORB though communication port using
standard ORB protocol.

ORB ORB Agent
Server Stub Server Interface
in2 out2
——X X% X—
De-marshaling xis
ORB Protocol

Figure 4.10: ORB Sub-scenario at Party B

Server un-marshals the data, accepts the request and does processing according to
the request. If it is synchronous message then server marshals the reply, passes this data
to server side ORB that communicates client side ORB, and client un-marshals the data.

Stub provides marshaling of parameter information from language-dependent
interface. It translates high-level language parameters to a form for transmitting
information across the network.

Interface is a link between user and object on the machine. The static interface is
assumed for this purpose. Static interface shows that type of information may be
completely specified when the software is written at compile time so that when the stubs
are generated, the particular ORB product may use this compile-time information to
provide highly optimized marshaling transformation.

The choice of protocols is ORB-implementation dependent, and the client does

not have to have explicit knowledge of which protocol is being used.
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Network Delay

Start End
|
@ X |
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Figure4.11: Sub-scenario for network delay

Two party-communications example is not completed from the point of view of
ORB communication. ORB components of both client and server are not shown in Figure
4.1 “Designer UCM”. ORB component is implemented in the form of static stub at both
parties as shown in Figure 4.8.

Figure 4.9 shows the client side ORB sub-scenario, which is introduced as part of
the “completion” at “Party A”. The associated responsibility with client interface is
labeled as “xic’, which shows user interaction with the client side object. The
responsibility “marshaling” at stub provides marshaling of data at “Party A”. The third
rectangular box shows an ORB and the protocol associated with it. This protocol will
connect “Party A” to “Party B”.

Figure 4.10 shows the server side ORB sub-scenario, which isintroduced as a part
of the “completion” at “Party B”. The first rectangular box shows an ORB and the
protocol associated with it. This protocol will connect “Party B” to “Party A”. The
responsibility “un-marshaling” at stub provides un-marshaling of data at “Party B”. The
associated responsibility with server interface is labeled as “xis’, which shows client
connection with the server side object.

Network delay component is shown in Figure 4.11 as sub-scenario. The
associated responsibility is labeled as “xnd”. This is aso introduced as part of
“completion”.

57



Time/Performance Budgeting for Software Designs

RPCUser RPCUser
ClientUserInterface | ClientUserInterface
ClientStub ClientStub
ClientProtocol ClientProtocol
ServerProtocol ServerProtocol
SeﬁverStub ServerStub
\

ServerProcess
Resource | ServerResource NameService NameService
NetworkDeIay NetworkDelay DISk Disk

Figure4.12: LQN Mode of RPC

44 “Completions’ at different stages: Additional ‘completion” in

L QN domain
The term additional “completion” will be used to refer to the notion that some

network components have been inserted at UCM level but the details associated with
these components can not be shown. Associated details of network components can be

latencies and message overheads, which cannot also be shown at UCM level so it can be
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incorporated in the form of additional “completion” at LQN level. Latencies can be
incorporated in the form the User Think time and message overheads in execution
demand. Figure 4.12 shows completion at LON level.

4.4.1 Example: Additional Completion for RPC
Figure 4.13 shows the LQN model with additional “completion”. Each task has

single entry. The detail of each task isasfollows:

RPCUser Task: It shows the user task at “Party A” to make an RPC request.
ClientUserInterface Task: It shows the user interface at “Party A”, through which user
will make request for the connection.

ClientStub Task: It shows the stub responsibility at “Party A”. It performs marshaling of
data.

ClientProtocol Task: It shows the Network Protocol responsibility at “Party A”. It
provides communication mechanism for “Party A”.

ServerProtocol Task: It shows the Network Protocol responsibility at “Party B”. It
provides communication mechanism for “Party B”.

ServerStub Task: It shows the stub responsibility at “Party B”. It performs un-marshaling
of data

ServerProcess Task: It performs the request of the client at “ Party B”.

WLUser C Task: It shows the client side users, which are competing for the resources at
client.

CompetingWWLC Task: It shows the client side competing workload task. WLUserC
accesses this task to the resource.

ClientResource Task: It shows the competing resource at client side

WLUserS Task: It shows the server side users, which are competing for the resources at
server.

CompetingWLS Task: It shows the server side competing workload task. WLUserS users
use thistask to access server side resources.

ServerResource Task: It shows the competing resource at client side

NameService Task: This task shows a name server. A RPC process is associated with

name space. If process would like to access a procedure in another name space a special
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name to address binding is required. Name server aids in this binding by producing the
name to process mapping. The RPC server registers each procedure with name server so
the client can locate it at call time.

Disk Task: Name Server accesses the disk.

RPCUser PRCUser WLUserC [ WLUserC WLUserS | WLUserS

ClientUserinterface | ClientUserInterface

h 4
ClientStub ClientStub CompetingWLC | CompetingWLC CompetingWLS | CompetingWLS

ClientProtocol

ch

ServerProtocol ServerProtocol Cli entwrce ClientResource

SexverStub ServerStub

\

ServerProcess
Resource | ServerResource NameService NameService
NetworkDeIay NetworkDelay DISk Disk

Figure4.13: LQN Mode of RPC
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It can be seen from the performance model of RPC example that Name Service
task and competing workload tasks are included. The name server is very important for
RPC mechanism. This may not be important for a software designer because this
information is not important for a RPC mechanism but for performance model it is. The
name server accesses the disk, which can affect the performance of the system. The
workload users were also not important to show RPC mechanism but they are important
for a performance model. Because, there will be some users on client side as well as
server side, which will be using both the machines or some other processes will be
running at the same time on both machines. These processes will compete for the
resources with different RPC processes, which will really affect the overall performance
of the system.

In RPC performance model, only network delay was introduced but the execution
overheads were not considered. These can also be included as additional “completion” in

order to get satisfactory performance result.

45 Automation for the“completion”
Different tools can be designed to provide automation for the “completion” at

specification level as well as model level. Some of the tools which are already available
to introduce “completions’ at specification level eg. UCM Navigator introduces
“completions” at UCM level in the form of software component or a UCM plug-in map
as a software subsystem. In addition to this, each software component has a performance
related window for the information, which includes arrival rates at start points, path
choice probabilities, deployment of processes to processors and the workload demands of
responsibilities.

Some of the tools, which are already available, insert the “completion” after the
model is built eg. LQN Components Filter and Latency and Message Overhead filter
insert the “completions” at LQN level.

These tools do not provide integrated automation for the “completion”. Research
and development required in this direction to combine and integrate all the tools to
introduce different types of “completions’ at specification level as well as model level.

All previously available tools can aso be combined into UCM Navigator to provide an
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integrated environment for the “completion”. UCM2LQN Converter is aready integrated
in UCM Navigator.

This thesis contribution for the “completion” is the development of LQN
Component Filter tool. It has four variations. This tool introduces additional
“completion” in the form of network communication components at LON level. The
mechanism of the design and algorithm will be discussed in next chapter.

46 Summarry
This chapter explains in detail one of the important steps of the budgeting road

map, the “completion” of an incomplete specification of a software design. The following
issues are discussed in this chapter:

1. How should a“completion” be specified?,

2. Alternative “completions’ for inter-component communication,

3. “Completions’ at different stages, and

4. Automation for the “completion”.
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5.0 LQN Component Filter

5.1 Introduction
This chapter will describe the design of LQN Component Filter, which provides

automation to the “completion” at model level. The idea of the “completion” is aready
discussed in previous chapter. There are four variants of the LQN Completion filter.
These filters define the “completion” at LQN level. This is done for a call replacement
with a network component. It is implemented in form of Single Network Component
Task (SNCT) filter, Network Subsystem (NSS) filter, Shared Resource Server Task
(SRST) filter and Multicast Network Task (MCNT) filter.

5.2 Motivation for the Design
Distributed and communication software involve many network components. A

network mechanism usually involves some latency and delay communication associated
with these network components. These network components can be single e.g. a router or
multiple e.g. a chain of routers, local e.g. LAN or remote eg. a RPC client-server
connection through Internet, single threaded or multi threaded, depending on the
communication types and systems. It is possible to replace a call with a network
component by hand but automation will enhance the process of replacement. LQN
requires new features such as a cal replacement with a particular type of network
component by automation.

The definition and type of callsin LQN performance model are discussed in detail
in Chapter 2. They represent simple messages from one task to another task (from one
entry to another entry) but there are some cases when message passing or ssmple call
representation is not sufficient for a performance model. So, it is required to replace a
simple call or a number of calls with one or several network components depending on

the type of communication.
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5.3 Basc Concept of Network Component Filter
In LQN model, a call is bound with source and destination tasks (source and

destination entries) and tasks are bound to processors. These tasks can be on the same

processor or separate processors depending on the system requirements.

Input LQN File | ) Network Output LON File
(InputFile.lqn) Component  —————3 (OutputFilelqn)

— > Filter

Network

EntryTaskData.txt file Component

Figure5.1: Network Component Filter Design

The basic concept of Network Component filter is such that it reads an input LQN
file, which defines the model of a software system where a call will be replaced by a
network component. It can be areplacement of single call or multiple calls depending on
the definition of “completion”. The second argument of the filter is a text file caled
EntryTaskData.txt file, which defines a set of pairs of entries and tasks. In LQN model, a
call is associated with an entry and each entry is associated with a task. Therefore, in
EntryTaskData.txt file, first entry is a source entry with an associated task where cal is
originated and second entry is a destination entry with an associated task where call is

terminated. The general syntax of the file is shown below.

<Source Entry> <Source Task> <Destination Entry> <Destination Task>

The third argument of the filter is a network component. A network component

can be represented by a single network task or a network subsystem in LON model
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depending on the component definition. Therefore, third argument is either the name of
the task, if the network component is a single task, or a file name representing a network
subsystem. It replaces the desired call with network component and generate output file.
The design of the filter is shown in Figure 5.1.

Many network component filters can be designed to achieve different types of
“completions’ at network components level. Three particular network filters design will
be discussed in next sections, which will define different types of “completions’. The
sections will cover ssmple Single Network Component Task (SNCT) filter, Network
Subsystem (NSS) filter, Shared Resource Server Task (SRST) filter, and Multicast
Network Task (MCNT) filter.

54 Single Network Component Task (SNCT) Filter

5.4.1 Motivation For The Design
There are some cases in which a single call represents a single network

component. This component might share a processor with some other tasks, which exist
in the input LOQN file or it might have its own separate processor, which will be
incorporated with this task in the input LQN file during the execution of the filter. So, it
is required to design such a filter, which will read a set of pairs of source entry with the
associated task, destination entry with the associated task, and a processor if the
component share the processor, which exists in the input LQN file. It can be a
replacement of single call or multiple calls depending on “completion” definitions. For
multiple call replacement, all the replaced network components can be of similar or
dissmilar types. The example of the former is many routers with same configurations
having their own separate processors. In the later case some of the network components
would be sharing some processors, which exist in the input LQN file e.g. a modem and
some of them would have their own separate processors inserted by the filter e.g. routers.
Single Network Component Task (SNCT) filter defines such a “completion” for a
distributed communication software system in the form of single network component
task.
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5.4.2 Design Of TheFilter
The design of Single Network Component Task (SNCT) filter assumes that each

task will have one or multiple entries and each single network component to be
incorporated will share a processor exist in the input LQN model or have a separate
processor.

The design of SNCT filter is based on Network Component filter design shown in
Figure 5.1. The SNCT filter also accepts three arguments from the user from command
line. The first two arguments are the name of two separate files, and the third argument is
used to specify network component task name. The first argument is the input LON file,
which is aready described in section 5.3. The second argument is a file called
EntryTaskDataFile.txt with an added <Processor name> field. The modified syntax of the
fileis shown below:

<Source Entry> <Source Task> <Destination Entry> <Destination Task> <Processor
name>

<Processor name> is the name of the processor, which is optional. If processor
name is defined in the EntryTaskData.txt file then it is assumed that this processor is one
of the processors, which exist in the input LQN model and the single component will
share this processor with other tasks. If processor name is not defined then the filter will
insert a separate processor in the input LON file for the single network component during
the execution.

LQN model does not allow two tasks having a common name. The name of each
task should be unique. Since, network component is incorporated at run time and it
might be possible after inserting one network component in a model the user would like
to insert another component, therefore, network component name is specified as third
argument on the command line to provide uniqueness to network component task. This
will differentiate network component task with other components in a model. Thus the

complete command line has the following syntax.

$ava SNCT model.Ign EntryTaskData.txt Network TaskName
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If there might be a case when it is required to replace number of calls with
number of network components at the same time and each network component must be
distinguished from other network components. Index will be used with each network
component name to differentiate it from other network components. For example, if it is
required to replace three calls with three network components e.g. three routers and the
task name entered from command line is ‘nt’ then network components to be
incorporated will be ‘nt0’, ‘ntl’, and ‘nt2’. Moreover, if the names of processors are not
defined in the TaskEntryData.txt file then each network component will have a separate
processor since each router is a stand-alone device having its own processor; therefore, in
this case, respective processors will be ‘pnt0’, ‘pntl’, and ‘pnt2’.

5.4.3 SNCT Filter Algorithm
This section provides the algorithm for the SNCT filter for the replacement of

synchronous, asynchronous and forwarding calls. Since only one call will be replaced by
single task therefore the type of the call is not important. The role of the task is important
whether the task will share a processor of the input LON file or will have a its own
Separate processor.

The execution steps of the SNCT filter are described as under:

1. The SNCT filter reads the input LON file, EntryTaskData.txt file and the name of
the single task modeling the network and checks the validity of both files and the
presence of the LQN task representing a network component in the input LOQN
file.

2. (a) If another task is already present with the same name in the input LON file
then the filter will generate an exception and halt.

(b) The relation of the entry and the associated task in the EntryTaskData.txt file
is verified for each entry and task pair in the file whether the entry belongs to this
associated task. If not then the filter will generate an exception and halt.

(c) The validity of the call between source and destination entries, defined in the
EntryTaskData.txt file, is determined. If there is no such call in the input LQN
file then the filter will generate an exception and halt.
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(d) If a processor is defined with the pair of entries and the associated tasks
(source and destination) in the EntryTaskDatatxt file then the validity of the
processor is determined in the input LON file. If no such processor is available in
the input LQN file then filter will generate an exception and halt.

3. Thefilter creates the processor if necessary

4. A LQN task, representing the network, is created with a default delay (network

service time) of one unit and will generate output LON file.

Ael | Ae2 | Ae3 | tA Bel | tB Cel| tC

tZ

Figure5.2: Input LQN Mode

5.4.4 Example
Aninput LQN model is shown in Figure 5.2. Each box represents a task in which

gray part represents the name of the task and white part represents the entry or entries of
the task. Each task has its own processor. All the tasks are interacting synchronoudly. It is
required to replace al the calls between entries Ael (associated with task tA) and Xel
(associated with task tX), Ae3 (associated with task tA) and Ye2 (associated with task
tY), and Cel (associated with task tC) and Zel (associated with task tZ) with single
network components.

The following command is executed to incorporate single network task.

<khs@sunbird>java SNCT SingleEntryTaskData.txt Nt

The output LQN model is shown in Figure 5.3. Three calls are replaced by three
network component tasks NtO, Nt1, and Nt2.
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Ael | Ae2 | Ae3 | tA Bel | tB Cel | tC
A 4

NteO [ NtO tel | Ntl Nte2 | Nt2

Xel | tX Yel|Ye2| tY Zel | tZ

Figure5.3: Output LQN Mod€

5.5 Network Subsystem (NSS) Filter

5.5.1 Limited Goals For The Design
There are some cases in which a single call is handled by multiple network

components, which are the parts of a network subsystem. These multiple network
components have associated network delay and execution over heads which might affect
the over all performance of a distributed and communication software. Each component
may have its own processor or sharing a processor with some other tasks. For example a
network subsystem may consist of replicated tasks having a separate processor for each
task e.g. a series of routers connected between a client and server and some other tasks
with shared processors e.g. an ORB agent etc. So, it is required to design such a filter,
which will replace asingle call with anetwork subsystem.

In SNCT filter design, it was assumed that similar or dissimilar type of network
components would be incorporated during a multiple cals replacement and each network
component would replace a call while in NSS filter design a network subsystem replaces
asingle call with multiple replicated and shared tasks.

5.5.2 Design Of TheFilter
The design of NSS filter is based on the design of network component filter

shown in Figure 5.1. In addition to the three arguments described in Network Component

filter design, NSS filter uses a fourth argument on command line. The first three
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arguments are the names of three separate files and the fourth argument is the name of the
processor shared by some tasks of the network subsystem and the input LON file. The
first argument is an input LON file, the second argument is the EntryTaskData file, and
the third argument is network subsystem LQN file. The input LQN file and the
EntryTaskData file are already described in section 5.3 while the network component
LON fileis used to specify a network subsystems consisting of multiple network tasks. It
is aready mentioned in the previous section that a network subsystem may consist of
some replicated tasks and some shared processor tasks. A shared processor task is
distinguished from other tasks by using three letters ‘KHS' at the end of task name in the
network subsystem LON file. If a processor name is specified in the fourth argument and
the processor exists in the input LOQN file then the shared processor task will share the
processor, which is defined as the fourth argument on the command line, with other tasks
of the input LQN file otherwise the NSS filter will generate an exception and halt. Thus
the complete command line has the following syntax.

$ava NSS model.Ign EntryTaskData.txt SubsystemModel.Ign SharedProcessor

In this filter, the type of the call, which will be replaced by network subsystem, is
important. The call will or will not affect the calls inside the network subsystem. When a
network subsystem “completion” is defined in a software system then this subsystem
maintains the type of call between the sender and the receiver of the replacing call. For
example, if a call, which is to be replaced by network subsystem, is synchronous then
sender gets the reply from receiver. When the network subsystem replaces the call then
sender gets the reply from the receiver not from any of the tasks of network subsystem.
An example explains this effect in section 5.5.4.

A network subsystem may consist of one or multiple tasks. These tasks can be on
a separate processor or on common processor depending on the design of network
subsystem. The type of call between each pair of tasks may be similar or dissimilar. For
example, a network subsystem consists of three tasks ntO, ntl and nt2. It is assumed that
the call type between each pair of tasksis asynchronous. In similar call type case, ntO will
be interacting with ntl asynchronously and ntl will be interacting with nt2
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asynchronoudly. In dissmilar call type case, ntO will be interacting with ntl
asynchronously and nt1 will be interacting with nt2 synchronously or vice versa.

5.5.3 NSSFilter Algorithm
This section provides the agorithm for the NSS filter for the replacement of

synchronous, asynchronous and forwarding calls. The validity check for the set of pair of
entry and the associated task (source and destination), call between source and
destination for the EntryTaskData.txt file described for the SNCT filter are same for the
NSS filter the only difference is the processor definition. In NSS filter, the shared
processor is defined as the fourth argument instead of defining it in the EntryTaskData.txt
file. Three letters “KHS” are appended with the name of the task in the network
subsystem file which will share the processor with the other task of the input LQN model.
If the fourth argument is not defined at the time of the execution, the NSS filter will
generate an exception.

In NSS filter, the call to be replaced between sender and the receiver in the input
LON file important. Since the type of the call will affect the calls inside the network
subsystem, which will replace this call therefore, each call replacement will be described

separately.

1. Asynchronous Call Replacement

If the call, which is to be replaced, is an asynchronous call then there will be no
affect on network subsystems calls. The NSS filter will simply plug-in the network
subsystem in the input LOQN file by introducing asynchronous call between the sender
task and the first task of the network subsystem and between the last task of the network
subsystem and the receiver task. The filter will generate an output LQN file.

2. Synchronous Call Replacement

If the call, which is to be replaced, is a synchronous call then the NSS filter will
introduce a synchronous call between the sender task and the first task of the network
subsystem and the call between the last task of the network subsystem and the receiver

task will be converted according to type of the network subsystem because the
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synchronous call replacement affects the calls inside the network subsystem. The effect

of the call can be described as under:

If the call between each pair of the tasks of a network subsystem is also
synchronous then there will be no affect of replacing call on network subsystem
calls. The NSS filter will simply plug-in such a network subsystem in the input
LQN model by introducing a synchronous call between last cal of the network
subsystem and the receiver task and generate an output LON file.

If the call between each pair of tasks of the network subsystem is asynchronous
then these asynchronous calls will be replaced by forwarding cals. For such a
network subsystem the NSS filter will convert all the asynchronous calls of the
network subsystem into forwarding calls and introduce a forwarding call between
the last task of the network subsystem and the receiver task. The filter maintains
type of interaction between the sender and the receiver and the receiver gets the
reply from the receiver.

If there is a forwarding call interaction in the network subsystem then the NSS
filter will introduce a synchronous call between the last task of the network
subsystem and the receiver task. After the insertion of the network subsystem the
sequence of interactions between the sender task and the receiver task can be
described as follows. The sender will send the message and wait for the reply to
the first task of the network subsystem, which will send this message to the
second task and wait for the reply. This message will be forwarded to the last task
of the network subsystem, which will send this message to the receiver and wait
for the reply. The receiver will reply to the last task of the network subsystem.
The last task will reply to the first task of the network subsystem, which will
eventually reply to the sender.

3. Forwarding Call Replacement

If the call, which is to be replaced, is a forwarding call then the NSS filter will

introduce a forwarding call between the sender and the first task of the network

subsystem and a forwarding call between the last task of the network subsystem and the

receiver. The effect of the call can be described as under:
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» If the call between each pair of tasks of a network subsystem is also forwarding
then there will be no affect of replacing call on network subsystem calls. The NSS
filter will simply plug-in network subsystem in the input LON file and generate
output LON file.

» |f the call between each pair of tasks of a network subsystem is asynchronous then
the NSS filter will convert all the asynchronous calls to the forwarding calls and
generate an output LQN file.

* The filter will generate an exception if there is a synchronous call in network
subsystem.

* The filter will generate an exception if a forwarding call is followed by an

asynchronous call in network subsystem.

5.5.4 Example (See Also Appendix Fi)
To understand the effect of a call, which will be replaced by a network subsystem,

consider asimple Input LQN Model shown in Figure 5.2. It is required to replace the call
between the entries Ae3 (tA) and Ye2 (tY). The Input LQN File is included in Appendix
G1 and the EntryTaskData.txt file in Appendix G2.

A network subsystem consists of three single entry replicated tasks and a shared
processor task, which is distinguished by, letters "KHS’. The network subsystem file is
included in Appendix G3.

Synchronous Call Replacement
Since the call, which isto be replaced, is a synchronous call therefore the interactions
between the tasks inside the network subsystem will be affected. Three cases are

described as under:

Case 1. The call between each pair of tasks of a network subsystem is synchronous
therefore will be no effect of replacing call on network subsystem calls. The network
subsystem is included in Case S1 of Appendix F2. The output LQN model isincluded in
Case S1 of Appendix F2. When the fourth argument is defined as processor p3 then the
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filter replaces the shared task processor np2 with p3. The output LQN file isincluded in
Appendix G4.

Case 2: The call between each pair of tasks of network subsystem is asynchronous and
these asynchronous calls will be replaced by forwarding calls. The network subsystem is
included in Case S2 of Appendix F2. The source entry Ae3 will interact with the entry of
first task of network subsystem synchronously and all other entries in network subsystem
will forward this call to the destination entry and the destination entry Ye2 will reply to
the source entry Ae3. The output LQN model isincluded in Case S2 of Appendix F2.

Case 3: A forwarding call network subsystem is included in Case S3 of Appendix F2.
The output LQN model isincluded in Case S3 of Appendix F2.

Forwarding Call Replacement
To understand the effect of a forwarding call, which will be replaced by a network
subsystem, consider a simple input LQN model included in Appendix F3. The possible

forwarding call replacement cases are described as under:

Casel: All the tasks are interacting asynchronously in the network subsystem and all the
calls will be converted to forwarding calls. The network subsystem and output LQN
model are included in Case F1 of Appendix F4.

Case2: All the tasks are forwarding the request and there will be no effect. The network
subsystem and output LQN model are included in Case F2 of Appendix F4.

5.6 Shared Resource Server Task (SRST) Filter

5.6.1 Motivation For The Design
There are some cases in which amany clients are interacting with one server. The

server may have the capability to serve unlimited number of client requests. Server
handles each client request independently with a separate thread. For example, this might
be a web server or a tuple space server. Shared Resource Server Task (SRST) filter
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introduces such a “completion” in LQN model. In this type of “completion”, a cal is
replaced by an entry of a shared resource (threaded) server LON task. If there are number
of calls and it is required to replace these calls with a threaded server task then a single

entry of this server will replace asingle call.

5.6.2 Design Of TheFilter
The design of SRST filter is based on the design on network component filter

shown in Figure 5.1. It accepts three arguments from user on command line. The first two
arguments are files names, and third argument is a server task name, which provides
uniqueness to server task name. The details of input LON file and EntryTaskData.txt file

are discussed in section 5.2. Thus the complete command line has the following syntax.

$java SRST model.Ign EntryTaskData.txt ServerTaskName

5.6.3 SRST Filter Algorithm
This section provides the agorithm for the SRST filter for the replacement of

synchronous, asynchronous and forwarding calls. The type of the call is not important
because each call will be replaced by the single entry of the share resource server task.
Since, thisis aserver task therefore it is assumed that it will have a separate processor.

The execution steps of the SRST filter are described as under:

1. The stepl to 4 described in section 5.4.3 for the SNCT filter are same for the
SRST filter aswell.

2. After the validity of the input LON file, EntryTaskData.txt file and task name, the
relation between entry and the associated task (source and destination), and
presence of the call the filter will incorporate a multiple entries shared resource
server. Each entry of the task will replace a call. The SRST filter will insert a
separate processor with the task in the input LQN file and will generate output
LQON file.

5.6.4 Example
Tuple space server task can be incorporated as a shared resource task. This

network component is used when tuple space communication is used among different
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tasks. It is assumed that there is one centralized tuple space server, which is coordinating

communication among between many tasks.

ell tl e2l e22 t2 €6l t6

e31 €32 t3 edl t4 e51 t5

Figure5.4: Input LQN Mod€

Consider an LQN model shown in Figure 5.4 as input LQN model. It is required
to introduce tuple space server task in the model. Each call will be replaced by each entry
of tuple space server task. The output model is shown in Figure 5.5.

ell t1 e?2l e22 t2 e6l t6
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Figure5.6: Output LQN Mod€
5.6.5 Design Limitations
» If auser would like to replace more LOQN calls with a server task which is already
incorporated in a LQN model. New entries cannot be incorporated in server task
once the server task is created. This can be done by hand but automation does not

support it.
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* Multiple server tasks cannot be incorporated at a time for distributed server
systems. In order introduce the idea of distributed server tasks; the filter program

will be executed as many times as the number of server tasks are required.

5.7 Multicast Network Task (MCNT) Filter

5.7.1 Motivation For The Design
There are some cases in which the information is sent from one or more senders

to a set of other receivers e.g. a multicast network. Multicast Network Task (MCNT)
filter introduces such a“completion” in LQN model. In this type of “completion”, a call
is replaced by single entry LON task. If there are number of calls and it is required to
replace these calls with asingle entry LOQN task.

5.7.2 Design Of TheFilter
The design of MCNT filter is based on the design on network component filter

shown in Figure 5.1. It accepts three arguments from user on command line. The first two
arguments are files names, and third argument is single entry LQN task name, which
provides uniqueness to task name with the other tasks of input LQN model. The details of
input LON file and EntryTaskData.txt file are discussed in section 5.2. Thus the complete

command line has the following syntax.

$avaMNCT model.lgn EntryTaskData.txt MulticastNetowrk TaskName

5.7.3 MCNT Filter Algorithm
This section provides the agorithm for the MCNT filter for the replacement of

synchronous, asynchronous and forwarding calls. Since multiple calls will be replaced by
the single entry of the task therefore the type of the call not important. It is assumed that
thistask will have a separate processor.
The execution steps of the MCNT filter are described as under:
1. The stepl to 4 of the SNCT filter described in section 5.4.3 are same for the
MCNT filter.
2. After checking the validity of the input LOQN file, the EntryTaskData.txt file and
the task name, the relation between entry and the associated task (source and
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destination), and presence of the call, the filter will incorporate a single entry task.
The MCNT filter will insert a separate processor with the task in the input LQN
file and will generate output LOQN file.

ell el2 t1 ezl t2 €31 t3 edl t4
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Figure5.7: Output LQN Mod€

5.7.4 Example
Consider an LOQN model shown in Figure 5.7 as the input LQN model. It is

required to introduce a multicast network task in the model. The calls, which will be
replaced by single entry multicast network (M Cast) task, are shown with gray colors. The
output model is shown in Figure 5.8.

ell el2 t1 e2l t2 e31 t3 edl t4
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Figure5.8: Output LQN Mod€
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5.8 FutureWork
All the filter designs discussed in this chapter support call replacement for a call between

source and destination entries, not the call between a source activity and a destination
entry. So, the designs can be extended for call replacement between source activity and

destination entry.

5.9 Summarry
This chapter demonstrated the idea of an automated tool for the “completion”,

LQN Component Filter, which filter insert the “completion” at LQN level only. The LON
Component Filter has four variations and the design and implementation of each filter is
described with a example. These are as follows:

1. Single Network Component Task (SNCT) filter,

2. Network Subsystem (NSS) filter,

3. Share Resource Server Task (SRST) filter, and

4. Multicast Network Task (MCNT) filter.
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6.0 Tuple Space M easurements and Modeling

6.1 Introduction
This chapter describes the measurements done on a particular vendor specific

tuple space called J-Spaces. J-Spaces Technologies Ltd. releases J-Spaces as The J-
Spaces Platform 1.0. The J-Spaces Platform 1.0 is the first commercia implementation of
the JavaSpaces specification. JavaSpaces is a powerful Jini service specification. In order
to understand J-Spaces measurements environment, brief descriptions of Jini network
technology, JavaSpaces and The J-Spaces Platform 1.0 will be discussed. Measurements
results are analyzed using PerfAnal [Mayers00].

6.2 Jini Network Technology
Jini network technology provides simple mechanisms, which enable devices to

plug together to form a community. Each device provides services that other devices in
the community may use. These devices provide their own interfaces, which ensures
reliability and compatibility. Sun Microsystems introduces this network technology. The
details of Jini Specification are described in [Oaks00, Arnold00, Edwards00, and
Arnold99a).

Jini technology uses a lookup service with which devices and services are
registered. When a device plugs in, it goes through an add-in protocol, called discovery
and join-in. The device first locates the lookup service (discovery) and then uploads an
object that implements all of its services' interfaces (join).

6.3 JavaSpaces
JavaSpaces is an integral part of Jinil.1 Starter Kit of SUN Microsystems Inc.

[Waldo98]. JavaSpaces is a powerful Jini service specification that provides asimple, yet
powerful infrastructure for building distributed applications. The JavaSpaces
specification defines a reliable distributed repository for objects, along with support for
distributed transactions, events and leasing. Applications are viewed as a group of
processes in JavaSpaces programming model, cooperating via the flow of objects into
and out of "spaces” [Arnold99b].
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JavaSpaces is based on the concept of tuple spaces first described in 1982 in the
Linda programming language and system, originally propounded by Dr. David
Gelerntner at Yae University [Roberts92, Foster95, Walkner95, Gelerntner97,
Dasgupta98 and Matloff99]. The public-domain Linda system is a coordination language
for expressing parallel processing algorithms without reference to any specific computer
or network architecture and provides inter-process coordination via virtual shared
memories, or tuple-spaces, that can be accessed associatively.

The tuple-space model is especialy useful for concurrent algorithms. Although
JavaSpaces technology is strongly influenced by the Linda system, it differs from it in
several ways, like Javas richer typing, object orientation, subtype matching and
transactional support spanning multiple spaces, leasing and events.

6.3.1 JavaSpaces API
The JavaSpaces APl is very simple and elegant, and it provides software

developers with a simple and effective tool to solve coordination problems in distributed
systems, especially in domains like parallel processing and distributed persistence. The
developer designs the solution as a flow of objects rather than a traditional request/reply
message based scenario. Combined with the fact that a Java Space is a Jini service, thus
inheriting the dynamic nature of Jini, JavaSpaces is a good model for programming
highly dynamic distributed applications.

Each object, which implements the interface net.jini.core.entry.Entry, corresponds
to atuple. The public instance variables of these objects are the components of the tuple.
The JavaSpaces APl consists of 4 main method types discussed in [Wado98 and
Arnold99b:

* Write() : writesan entry to a space.

* Read() :readsan entry from aspace.

 Take() :readsanentry and deletesit from a space.

* Notify() : registersinterest in entries arriving at a space.

JavaSpaces enables full use of transactions, leveraging the default semantic of the
Jini Distributed Transactions model. This enables developers to build transactional-secure

distributed applications using JavaSpaces as a coordination mechanism. Since Jini
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transactions can span more than one Jini Service, and a JavaSpace instance is a Jini
Service, atransaction may span more than one space.

The API itself provides non-blocking versions, where a read() or take() operation
may take a maximum timeout to wait before returning to the caller. Thisis very important
for applications that cannot permit themselves to block for long times or in the case that
the space itself isin some kind of a deadlock.

JavaSpaces also makes extensive use of Jini leases, as it mandates that entries in
the space be leased (and thus expire at a certain time unless renewed by a client). This

prevents out-of-date entries, and saves the need for manual cleanup administration work.

6.4 TheJ-Spacesplatform 1.0
The JSpaces Platform [JSpaces| was designed initially for enterprise-scale

mission-critical applications that require the extensive use of the JavaSpaces API.

A J-Spaces platform is an intelligent connectivity network service. It consists of a
server or a set of servers, which are located somewhere in the network, and allows
applications to share and exchange information in a transparent and spontaneous manner.
Upon demand, the space server allocates a space (distributed shared memory), into which
the user can start sending information objects. The information objects in the space can
be shared with other applications. Unlike other solutions, the space doesn't need to know
anything about the information it stores, or about the identity and location of the sender
and receiver. The application, on the other hand, can use the space immediately without

any need for specific integration or modifications.

6.4.1 J-Space server
J-Spaces server is the actua entity (JVM) that has a J-Spaces container instance

among other Jini services. The J-Spaces server provides the ability to control whether or
not to launch in-memory Jini services. By default al the services, including the HTTP
daemon, RMID, reggie, Jini Lookup Service (LUS) and mahalo (Jini Transaction
Service) are launched.

The LUS is an active-able service. A client will first access the activation service
(RMID) and the RMID will provide them with the reference for the actual LUS. Thisis

82



Time/Performance Budgeting for Software Designs

done only once in the life cycle of client/service communication. After the client gets a
reference to the LUS from the RMID it access the LUS directly not through the RMID.
J-Spaces supports dynamic code loading of its proxy classes. This means that
when a client gets a reference to the space its application needs to know nothing about its
underlining implementation. The proxy loads dynamically all the relevant classes it
requires from the HTTP server and thisis the reason why HTTPD isrequired in J-Spaces
Platform. A proxy is not a server it is an object, which contains the client implementation

of the space and can be obtained viathe LUS.

6.5 MeasurementsUsing PerfAnal Tool
The measurements results are analyzed using a tool caled PerfAnal.

Measurements are done using Java Development Kit (JDK) 1.3.0 01 version on
Windows NT 4.0 platform.
PerfAnal is selected for the following reasons:
* Itiseasy to use and provides reasonable results
* The measurement tool provided by JDK is called hprof. hprof is actually an agent,
which can be helpful to provide information about CPU time, heap usage etc. by
using VM profiler. It is difficult to get and anayze the results from hprof.
PerfAnal reads the results from a file coming from hprof, it analyzes data and
provides a graphical display for CPU time of threads, methods and lines on behalf
of caller and callee.
* PerfAnal is used for analysis when process is terminated that’s why it does not
occupy too much memory when process is executing.
Thistool has some drawbacks. These are as under:
* Itinherits drawback of hprof.
» |t does not provide elapsed time (wall clock time). The time it takes for a task to
finishitsjob.
» Concurrent measurements are not possible. PerfAnal is used when process is
terminated that’s why it is not possible to monitor a process during its execution.
It is not possible to get the snapshot of some interesting point during process

execution.

83



Time/Performance Budgeting for Software Designs

» CPU timeis measured in tick, so it is required to calibrate the tick for of machine
and JDK.

6.6 A Brief Description of Master/Workers Example
This example is used to do measurements on J-Spaces. Asaf Kariv,

the Vice President R& D of J-Spaces Technologies Limited, developed this example.

The example is based on a Master and Workers processes. Master process writes
an integer on the space. Workers read this integer from the space. Each worker finds the
divisor of the integer from a specified range of integers allocated by Master and writes
the result back to the space. Master takes this result from the space and determines
whether the result is a prime number.

The sequence of operation in terms of J-Spaces can be described as follows:
Workers wait for the data from the Master. The Master writes the data on the space and
the space notifies the Workers proxy about that event and handles the Workers proxy
actual data. This causes Workers to return from their blocking read operations and
continue to write its result and the same goes to the Master. The space does not block for
this amount of time, only the Master and Workers proxies. The space woke up the
proxies viaa callback that it triggers for those clients.

This example consists of five Java classes. The descriptions of three core classes

are described in separate sub sections.

Main.java class
Main.java class sets RMI Security Manager. It gets references to the space and

transaction services. It calls Master.java class and displays the result test whether the

result is a prime number.

Master .java class
This class is responsible for splitting the task of checking a prime candidate into

sub tasks, gathering the partial results and returns the final result.
The following steps are involved to determine whether a given integer is prime.
Master.java class

* creates anew transaction
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* breakstask into several tasks and write them to space in one transaction
* commits transaction
» creates and starts worker threads wait for any result. If the result indicates that is
not a prime number, return false. If al results indicate a prime return true. It
creates a new transaction
» findsdivisor whether the candidate is prime number
Masterjava class uses two  classes  ChecklfPrimeTask.java  and
ChecklfPrimeResult.java.
ChecklIfPrimeTask object encapsulates a task entry in space. It writes the result as a
CheckIfPrimeResult object. ChecklfPrimeResult object encapsulates the result of a
CheckIfPrimeTask entry.

Worker .java class
A worker is a thread that is responsible for taking ChecklfPrimeTask tasks from a

space, performing these tasks and put back a ChecklfPrimeResult objects. Worker.java
class

* createsanew transaction

» takesatask from space

» checksresult

e commits transaction

6.7 Scenariofor the Measurement
The measurements are done on Windows NT 4.0 Workstation operating system using

Sun Utlra 5 machine through SunPC card. The scenario for the measurements is smple
and consists of the following steps:

* The J-Spaces Platform Installation: The installation of the J-Spaces Platform set
up al the services, including the HTTP daemon, RMID, reggie, Jini Lookup
Service (LUS) and mahalo (Jini Transaction Service) because they are embedded
in the J-Spaces Platform.

» The Installation Verification: Upon completion of the installation it is necessary
to run the J-Spaces Server. The J-Spaces Server is installed by default in “C:\J-
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SPACES>". The server is run from Windows NT console as well from “ Start”

menu. The utilities are configured to work on the default space named

“JavaSpaces’ which is created upon installation.

* Testing the J-Spaces Server: Before running the JSpaces Server it is

recommended to check the parameters in the setenv.bat file. To run the server the

JSpacesServer.bat file is executed and the following result is obtained on the

console:

C:\J-SPA CES\bin>setenv

C:\J-SPA CES\bin>JSpacesServer
Verifing license key...OK

J-Space server starting...
C:/1J-Spaces\lib\jaxp.jar
C:/J-Spaces\lib\parser.jar
C:/J-Spaces\lib\JSpaces.jar
C:/J-Spaces\lib\JSpaces-dl.jar
C:/1J-Spaces\lib\jini-core.jar
C:/J-Spaces\lib\jini-ext.jar
C:/J-Spaces\lib\jini-core.jar
C:/1J-Spaces\lib\reggie-dl.jar
C:/1J-Spaces\lib\mahalo-dl.jar
C:/1J-Spaces\lib\jini-examples-dl.jar
C:/J-Spaces\lib\space-examples-dl .jar
Web server isup...

RMID isup and running...

/reggie-dl.jar requested from sunbird-pc.sce.carleton.ca:3073

Reggieisup...

/mahalo-dl.jar requested from sunbird-pc.sce.carleton.ca:3079

Mahaoisup...
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To verify a successful installation run the ping.bat utility and the following result

is obtained on the console;

C:\J-SPA CES\bin>ping sunbird-pc JavaSpaces -r localhost
Looking for sunbird-pc container...

Started to READ from <JavaSpaces> space with
TIMEOUT: FOREVER

BUFFERSIZE: 100

ITERATIONS: 5

AVERAGE TIME = 118 milliseconds

M easurement with the Master/Worker example: The run.bat, which isascript file,
contains the following command and options to record traces of the example for

J-Spaces measurements. The run.bat file contains the following:

@call ../../bin/setenv.bat

@java -Xrunhprof:cpu=samples,depth=12,thread=y,file=f 150.txt
-Djava.security.policy=%POLICY %
-classpath../../libl/jini-corejar;../../lib/jini-ext.jar;
classes;../utilities/classes primes.Main localhost 150

where,

1. -Xrunhprof is an option used to record traces of a Java program and
file=f150.txt isan ASCI|I file where the traces are recorded.

2. classes;../utilities/classes primes.Main locahost 150 is an option where the

name of ajavaclassfile, of which measurements are obtained, is specified.

After recoding the traces in f150.txt file the measurements results are analyzed
using PerfAnal program, which is written in Java and is a separate program,
which is not included in J-Spaces Platform. The following is a command to

execute the PerfAnal program.

C: \PerfAnal>java -cp pa.jar com.macmillan.nmeyers.PerfAnal f150.txt
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6.8 Master/Workers Example Performance Model
The performance model of Master/Workers example is essentially a queuing

model expressed in layered queuing, a driver task called “RefTaskl” stimulating the
execution of operations of software entities. The performance model is shown in Figure
6.1.

The configuration that was modeled and analyzed for the measurements was one
Master and 12 Workers. Master registers service to Lookup Service (LUS task) using
RMID Server (RMID task) and Transaction Manager (TM task) and places data on the
space (Jspaces task) using HTTP Daemon (HTTPD task).

Operation Name CPU Demand (ms) per operation
Read 3.92
Write 3.92
Take 3.92

Table 3: Measured CPU Demandsfor Operations

Workers read the integer from the space using same sequence of operations, find
the divisors of the integer and write the results on the spaces. Masters takes the results
from the space. The LON file of J-Spaces model isincluded in Appendix B.

The CPU demands measured and calculated for each entry of operation and
component (server) in millisecondsis shown in Table 3 and 4 respectively.

The measured CPU demands show that it would take 12.25 ms for Master or

Worker to do aread, write or take operation in J-Spaces.

Component Name CPU Demand (ms) per operation
RMID 131.5
TSM 8.33
LUS 31.83
HTTPD 56.42

Table4: Measured CPU Demands for Components
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Figure 6.1: LQN Modé of J-Spaces
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6.9 Moded Results
The simulation model gave the throughput, response time and processor

utilization of Workers, calculated for a range of Workers, for different numbers Ref Task1
users.

Figure 6.2 shows the curves of the response time (msec) for different number of
RefTaskl users for a range of Workers. The range of Reftaskl users do not affect the
repose time of the system as much as the different number of the workers. The response
time of the system increases with number of workers. The same data is shown in
numerical formin Table 5.

Figure 6.3 shows that as the number of Workers increases the performance of the
system decreases. The host processor utilization was 97.17% for 12 workers when
throughput was around 0.00143 response cycles for 1 RefTaskl1 users. The bottleneck of
the system is RMID Server, when the utilization of RMID server was 52.55% the over all
processor utilization of system was 97.8%.

The throughput and host processor utilization are shown on graphs in Figure 6.3
and 6.4. The same datais shown in numerical formin Table 6 and 7.

The results are obtained with 95% confidence level (error ranges from and 1% to
10%).

6.10 Summary
This chapter describes the measurements and modeling of a commercially

available tuple space, J-Spaces, with an example. It describes the following:
1. Jini Network Technology overview,

JavaSpaces overview,

J-Spaces platform 1.0 necessary details for the measurement,

M easurements using PerfAnal tool, and

a  w N

Brief description of Master/Workers example, scenario for the measurement,

performance model for the Master/Workers example and the model results.
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Figure 6.4: Host Processor Utilization to the Number of Workers

RefTask1
Workers 0 3 z 7 9 11 3 15
1 526.058 | 526.243 526.8 527.619 | 528.018 | 527.478 |526.603| 526.242
3 1055.54 | 1044.8 | 1052.83 | 1057.42 | 1052.71 ] 1051.55 |1057.09]| 1057.04
6 1840.01 | 1842.61 | 1845.41 | 1837.15 | 1852.35 | 1840.62 |1854.15| 1839.57
9 2632.12 | 2645.87 | 2647.81 | 2648.9 2624.1 | 2638.84 |2631.71] 2622.91
12 3433 | 3431.41 | 3417.62 | 3410.1 | 3438.37 | 3404.59 |3398.54| 3425.99
Table5: Response Time (msec) to the No. of Workers
RefTask1
Workers 0 3 = 7 9 11 3 15
1 0.00798 | 0.00796 | 0.00797 | 0.00799 | 0.00797 | 0.00797 |0.00798| 0.00796
3 0.00433 | 0.00434 | 0.00434 | 0.00433 | 0.00434 | 0.00435 |0.00434| 0.00433
6 0.00257 | 0.00258 | 0.00258 | 0.00258 | 0.00257 | 0.00257 |0.00257| 0.00257
9 0.00183 ] 0.00183 | 0.00183 | 0.00183 | 0.00183 | 0.00183 |0.00183| 0.00183
12 0.00143 ] 0.00142 | 0.00142 | 0.00142 | 0.00142 | 0.00142 |0.00142| 0.00142

Table 6: Throughput (Response Cycles) to the No. of Workers
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RefTask1
Workers 0 3 z 7 9 11 3 15
1 0.84008 | 0.84009 | 0.84066 | 0.84057 | 0.84113 | 0.84082 |0.84050| 0.84033
3 0.91345 | 0.91256 0.91318 0.91386 0.91315 | 0.91329 10.91308] 0.91323
6 0.94844 | 0.94854 0.94845 0.94841 0.94858 | 0.94842 10.94866] 0.94849
9 0.96324 | 0.96376 | 0.96365 | 0.96371 | 0.96295 | 0.96332 |0.96349] 0.96323
12 0.97179] 0.97178 0.97190 0.97137 0.97173 | 0.97144 ]10.97140] 0.97146
Table 7: Processor Utilization to the No. of Workers
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7.0 Case Studies

7.1 Introduction
This chapter will demonstrate performance budgeting approach by presenting two

case studies, one describing Distributed Hand-off Protocol UCM design and one
describing Plain Old Telephone System (POTS) UCM design.

Two case studies are described to demonstrate different aspects of the usability of
the approach. Distributed Hand-off Protocol UCM design case study involves al the
necessary steps mentioned in budget analysis road map, the usability of LQN Component
filters and tuple spaces. Plain Old Telephone System (POTS) UCM design case study
involves only the budgeting of the CPU demands for the system. For POTS UCM design,
it is assumed that the available UCM is a “complete” UCM and LQN modd is extracted
from UCM2LON tool mentioned in Chapter 2.

7.2 Case Study A - Distributed Hand-Off Protocol UCM Design

7.2.1 Overview
This case study describes a UCM design of a distributed hand-off protocol, based

on a tutorial example by Gunter Mussbacher at Mitel Networks, which illustrates a
particular style of drawing UCMSs, to teach designers the UCM notation [MussbacherO1].
The original UCM example has been smplified and used as Designer UCM for the case
study.

7.2.2 Stepl: Designer UCM
* Figure 7.1 shows aDesigner UCM for a distributed hand-off protocol. The

protocol described in this specification is used to coordinate the execution
of some arbitrary duty by two tasks, Process A and Process B, in a
distributed environment.
In Figure 7.1, the scenario is shown in three stages:
* Paty A initiates the execution of the duty, which is forwarded to
Process A via Device A and Main_Controller, with a confirmation to
Party _A.
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e Later, Party A initiates a request to hand off the duty to Process B, which

goes via Device A and the Main_Controller to Process A, and then to

Process B. Process B interrogates Party B. Party B forwards a

confirmation via Device_ B and Main_Controller to Process B, which then

begins to execute the duty.

* While doing so it sends a synchronous storage request to Process Backup,

which carries out the request and replies back to Process B.

Responsibilities in the UCM are interpreted for performance analysis as

operations.
Party A Device A Main_Controller Process A
r ~
ptyA_ell devA_ell mc_ell psA_ell }
® Y \/ VA
A A B AN
mc_el2
b—H—T o
mc_el3
ptyA_el2 devA_el2 psA_el2
Process B Process Backup
Party B Device B \
[ —
psB_el2
ptyB_ell % j
devB_ell psB_ell psBk_ell

Figure 7.1: Distributed Hand-Off Protocol UCM (Designer UCM)
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7.2.3 Step 2: Budgets
Since, thisis an artificial example, the execution demands of the responsibilities

have been arbitrarily chosen as unity, aso the sensitivity of system response time and
throughput are considered as targets to budget CPU time demand of each responsibility.

7.24 Step 3: UCM Completion and Infrastructure Components
The Designer UCM shown in Figure 7.1 does not describe the communication

infrastructure between different communicating processes. Communication infrastructure
might consist of protocol stacks, middieware, etc. Here, it was decided to use a tuple
Space communication mechanism, which is aready described in Chapter 2. Other
communications such as protocol stacks are needed but will not be shown here, for
simplicity of explanation. The tuple space communications is provided by a server task,
which handles and stores messages.

In this example, it is assumed that there are anonymous communications between
Process A and Process B, and Process B and Process Backup. Tuple space provides
anonymous communication feature among different communicating processes, as
described in Chapter 2. Figure 7.2 shows a distributed tuple space server with two server
processes. The process Tuple Space A provides communications between Process A
and Process B, Tuple Space B process provides communication between Process B and
Process Backup. All other processes are using address based socket communications.

The scenario illustrates that Process A performs an “out” operation and places
data in Tuple Space A, and Process B performs an “in” operation, which removes it.
Process B and Party B forward this request to Device B. Device B replies back to
Main_Controller, which sends asynchronous message to Process B. Process B performs
“out” operation and places tuple in Tuple_Space B. Process Backup removes tuple from
Tuple_Space B by performing “in” operation, it performs a backup operation and replies
back to Process B through Tuple Space B. The number shown in small gray box along
UCM path provides sequence of operation for UCM scenario.

7.25 Step 4: LON Mode of Distributed Hand-off Protocol
The LQN model of Distributed Hand-off Protocol Complete UCM was generated

by the LQN2UCM converter. This converter maps every task of UCM to an LQN task,
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every crossing to an entry, and every responsibility to an LQN activity. Figure 7.3 shows

the model, with many activities suppressed. In Figure 7.3, every rectangle represents a

task, with a gray color box showing the task name. White boxes besides this are the

entries of the task. Boxes shown in a second row below the task are activities. The entry,

which contains these activities, is just above the first activity from the left. The

messaging arrows with a filled head represent synchronous service calls while the other

arrows represent asynchronous service calls. The dashed line arrows with a filled head

represent forwarded service calls.

Party A Device A Main_Controller Process A
Tuple Space A
ptyA ell devA_ell 3 mc_ell psA_ell 4
P
2 mc_el2 7 9
mc_el3
ptyA_el2 devA_el2 psA_el2 8
5
6 13
. \ Process B
Party B Device B Tuple Space B Process Backup
ptyB_ell 14 \\ 16
12 psB_el2 15
TN I Y ¥—H—¥
sB_ell
devB_el1 PSE_ tsB_ell psBk_el1
10

),

Figure7.2: “Completion’ of Figure 2 with Tuple Space Communication

The Figure 7.3 includes four new tasks, Party A User, ts CriticalSection,
Cs _opA and Cs_opB, which have been introduced as additional ‘ completions’” which will

be described in next step.
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Figure 7.3 shows that the scenario begins with:

1. the Party A User task initiates the scenario by making a synchronous request
through entry ptyA _User to entry ptyA_tae of the Party A task.

2. the activity PtyA_ell handles this request and makes a synchronous request to entry
dev_ell of the Device A task.

3. this request is forwarded by mc_ell entry of Main_Controller to psA_ell entry of
Process A, which replies back to ptyA_tae entry. Eventually, Party A task replies
back to Party A User task.

The scenario continues as Party A task makes an asynchronous request to
Device A through ptyA_el2 activity. devA_el2 makes an asynchronous request to
mc_tae entry of Main_Controller. This request is handled by mc_el2 activity of mc_tae
entry. It makes a synchronous request to psA_el2 entry of Process A task.
Tuple Space A, Process B, and Party B forward this request to Device B, which
replies back to Main_Controller.

Finally Main_Controller initiates an asynchronous request through mc el3
activity to psB_el2 entry of Process B task, which requests Process Backup for back up
operation through Tuple Space B task. Process Backup performs a backup operation
and replies back to Prcoess B.

The number shown in gray color box under each task provides mapping of UCM
path in LQN model.

7.2.6 Step 5: Additional Completions, Environment and Assumptions
Additional “completions’ are introduced in the form of environment components i.e.

Party A_User, ts Central, Cs_opA and Cs_opB tasks. All of these tasks are added as to
achieve suitable performance model. Party A _User task, which is a reference task, will
initiate the scenario. Since, communication infrastructure is based on a distributed tuple
space server with two server processes therefore a centralized tuple space server is
required to synchronize these processes.
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ts Central task, which is acting as centralized server for distributed tuple space
servers, will provide synchronization for Tuple_Space A process through Cs opA task
and Tuple_Space B process through Cs_opB task.
To follow the analysis a little further, the performance model was created with
workload values, and the following assumptions:
» The CPU demands were considered as unity for all entries and activities in the
beginning
» The probabilities for the path traversing were considered as 100 % (i.e. value ‘1’
from one entry of atask to entry of another task).
» All therequestsfor in and out operations of tuple space are handled by one entry.

o All the tasks are on separate processors.

7.2.7 Step 6: Experimental Results Evaluation
The Distributed Hand-off Protocol LQN model is solved by ParaSRVN simulator.

Figure 7.4 shows the model predictions for the delay of the system, giving the sensitivity
of response time vs. different number of users for the “Full Demand” or base case
(labeled FDMC, with 1 msec for al demands) and for other budget values. The number
of threads of the Main_Controller, denoted as m, was also varied with values 1, 2, 6 and
10. Thus, for instance, FDMC(m=1) is a base case with single Main_Controller thread
and CPU demands of 1.0 for all the entries and activities. The LOQN file of FDMC(m=1)
isincluded in Appendix C1.

The sensitivity of response times and throughputs vs. different number of users
for the “Full Demand” with different threads of Main_Controller are shown as
FDMC(m=2), FDMC(m=6), and FDMC(m=10) in Figure 7.4 and 7.5 respectively and
same datais shown in numerical formin Table 8(a) and 9(a) respectively.

The results are obtained with 95% confidence level (error ranges from and 1% to
5%). Other values of demands were modeled with 10 threads (m = 10):

* the MC(0.05, 0.15, 0.15) curveis obtained with the CPU demand value of 0.05 msec
for the entry mc_ell, 0.15 msec for the activity mc_el2, and 0.15 msec for the
activity mc_el3 of Main_Controller. The CPU demands of rest of the system are 1.0

MSEC.
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the DVD(0.1, 0.1) curve is obtained by budgeting the CPU demands to 0.1 msec for
the entries of Device A and Device B, the CPU demand values for the rest of the
system are same as described for the MC(0.05, 0.15, 0.15) curve.

the PABD (0.1, 0.1) curve is obtained by budgeting the CPU demand values of 0.1
msec for the entries of Process_A and Process B, the CPU demand values for the rest
of the system are same as described for the DVD(0.1, 0.1) curve.

the PAB (m = user) curve is for multiple threads in Process A and Process B, equal
to the number of users) with budget CPU demands described for the PABD (0.1, 0.1)

curve.
Main_Controller
(d=1.0, 1.0, 1.0)
Device_A (d=1.0, 1.0)
Device_B (d=1.0, 1.0)
Users Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)
Other system Components (d=1.0)
Main_Controller Main_Controller Main_Controller
Threads (m=2) Threads (m=6) Threads (m=10)
1 10.518 7.936 6.825
31 21.951 12.976 8.021
61 64.308 25.569 12.600
91 263.789 77.915 29.326
121 689.314 258.030 108.101
151 1061.060 594.883 336.250
181 1542.470 882.566 594.886
211 1927.360 1177.000 875.489
241 2336.310 1509.870 1136.060

Table 8 (a): Response Time (msec) With Full CPU Demands

The sensitivity of response times and throughputs vs. different number of users
for the “budgeted demands” with different 10 threads of Main_Controller are shown as
MC(0.05, 0.15, 0.15), DVD(0.1, 0.1), PABD (0.1, 0.1), and PAB (m = User) in Figure
7.4 and 7.5 respectively and same data is shown in numerical form in Table 8(b) and 9(b)

respectively.
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Main_Controller
Threads (m=10)
MC(0.05,0.15,0.15)| DVD(0.1, 0.1) PABD (0.1,0.1) | PAB (m =User)
Main_Controller Main_Controller Main_Controller (d=0 05. 001500 15)
(d=0.05, 0.15, 0.15) (d=0.05, 0.15, 0.15) (d=0.05, 0.15, 0.15) De;icé A (&—d 10 1)
Users Device_A (d=1.0, 1.0) Device_A (d=0.1, 0.1) Device_A (d=0.1, 0.1) Device B ( ) A
Device_B (d=1.0, 1.0) Device_B (d=0.1, 0.1) Device_B (d=0.1, 0.1) Process A (d_-d 1 0 1)
Process_A (d=1.0, 1.0) Process_A (d=1.0, 1.0) Process_A (d=0.1, 0.1) Process B (d:0'1’ 0'1)
Process_B (d=1.0, 1.0) Process_B (d=1.0, 1.0) Process_B (d=0.1, 0.1) Other s sjte.m, :
Other system Other system Other system compone nt}é (d=1.0)
Components (d=1.0) Components (d=1.0) components (d=1.0) Party /f Thread (rr_1:.User)
Party_B Thread (m=User)
1 6.388 5.610 4.417 3.122
31 7.090 5.993 4.928 3.650
61 9.670 8.805 6.948 4.314
91 22.374 19.993 13.359 6.144
121 112.250 105.530 47.920 11.100
151 331.773 321.029 200.679 25.578
181 597.021 593.844 428.956 78.589
211 847.206 846.439 664.890 202.736
241 1138.340 1112.520 914.523 372.236

Table 8 (b): Response Time (msec) with Budgeted CPU Demands

The LON files of MC(0.05, 0.15, 0.15), DVD(0.1, 0.1), PABD (0.1, 0.1), PAB (m
= User) areincluded in Appendices C2, C3, C4, and C5 respectively.

From the graphs we can see that the performance starts to degrade around 90
simultaneously active users, for m = 1, but that with 10 threads in the Main Controller
thisisimproved to about 120 users. The detailed inspection of the model outputs confirm
that the Main_Controller is a software bottleneck, which requires multi-threading, but the
improvement is slight beyond m=10. Main controller demand reduction has only slight
effect; device demand reduction has a modest effect; Process A and Process B demand
reductions have a large effect, and Process A and Process B multithreading has a very
large effect, roughly doubling the capacity when m=10 for the Main_Controller. The
sensitivity of the throughput was also analyzed and shows the effect on system capacity
of changes in numbers of users. We can see that throughput saturates after 151 users for
MC(0.05, 0.15, 0.15), DVD(0.1, 0.1), and PABD (0.1, 0.1) and after 211 users for PAB

(m = User). Thesamedatais shown in numerical form in Tables 8(b) and 9(b).
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Main_Controller
(d=1.0, 1.0, 1.0)
Device_A (d=1.0, 1.0)
Device_B (d=1.0, 1.0)
Users Process_A (d=1.0, 1.0)
Process_B (d=1.0, 1.0)
Other system components (d=1.0)
Main_Controller Main_Controller Main_Controller
Threads (m=2) Threads (m=6) Threads (m=10)
1 0.0010 0.0010 0.0010
31 0.0304 0.0305 0.0306
61 0.0575 0.0595 0.0601
91 0.0720 0.0847 0.0883
121 0.0718 0.0957 0.1092
151 0.0732 0.0949 0.1130
181 0.0712 0.0960 0.1135
211 0.0721 0.0970 0.1126
241 0.0722 0.0959 0.1129

Table 9 (a): Throughput (Usersmsec) with Full CPU Demands

Main_Controller
Threads (m=10)

MC(0.05, 0.15, 0.15)

Main_Controller
(d=0.05, 0.15, 0.15)

DVD(0.1, 0.1)

Main_Controller
(d=0.05, 0.15, 0.15)

PABD (0.1, 0.1)

Main_Controller
(d=0.05, 0.15, 0.15)

PAB (m = User)
Main_Controller
(d=0.05, 0.15, 0.15)

Users | pevice A (d=1.0, 1.0) Device A (d=0.1, 0.1) Device A (d=0.1, 0.1) e ggfg'f 8'3
Device_B (d=1.0, 1.0) Device_B (d=0.1, 0.1) Device_B (d=0.1, 0.1) P——) (d_-(j 1 0 1)
Process_A (d=1.0, 1.0) Process_A (d=1.0, 1.0) Process_A (d=0.1, 0.1) Process B (d:0.17 0'1)
Process_B (d=1.0, 1.0) Process_B (d=1.0, 1.0) Process_B (d=0.1, 0.1) Other s s_te.m’ :
Other system Other system Other system - onené (d=1.0)
Components (d=1.0) Components (d=1.0) components (d=1.0) Party XThread (n_1=User)
Party_B Thread (m=User)
1 0.0009 0.0010 0.0010 0.0010
31 0.0308 0.0307 0.0307 0.0308
61 0.0602 0.0604 0.0606 0.0610
91 0.0890 0.0891 0.0896 0.0903
121 0.1088 0.1094 0.1156 0.1198
151 0.1134 0.1146 0.1258 0.1470
181 0.1135 0.1136 0.1265 0.1678
211 0.1143 0.1141 0.1268 0.1759
241 0.1127 0.1141 0.1258 0.1759

Table 9 (b): Throughput (Usersymsec) with Budgeted CPU Demands
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7.3

731

Case Study B —Plain Old Telephone System (POTS) UCM Design

Overview

This case study describes Plain Old Telephone System (POTS) call connection

UCM design example, which provides a base UCM design for traditional telephony
system. Daniel Amyot originally developed this UCM in[Amyot99b and Amyot00].

7.3.2

Stepl: Designer UCM

The root map of POTS UCM Design is shown in Figure 7.6. The scenario consists of
five rectangular boxes labeled as SCP, OS, Switch, Orig, and Term, referring to UCM
components and three diamond-shaped objects PreDial, PostDial, and Billing, referring to
static stubs.

The system components are described as under:

Orig component refersto caler’ s telephone set

Term component refers to callee’ s tel ephone set

Multiple copies of Orig indicate multiple user connections

Switch provides connectivity to both

Operations System (OS) component provides billing facility to system

Service Control Point (SCP) component is used to processes IN features but this

component is not used in POTS scenario.

The stubs of UCM path are described as under:

PreDial stub refers to features that are activated before the number is dialed.
PostDial stub refersto features that are activated after the number is dialed.

The Billing has a straight path connecting its input and output. The path has a
single responsibility to log the start time of the connection between the caller and
calee.

PreDial stub has a default plug-in that merely connects the input and output paths.
PostDial map has provides more functionality. It has associated plug-in map
shown in Figure 7.7. The PostDial plug-in either connects caller to callee or
notifies the caller that calleeis busy.

ProcessCall stub refers to features dealing with making a connection; the
associated plugin map is shown in Figure 7.8. NumberDisplay and ProcessBusy
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stubs have default plug-in without any responsibilities. Former displays the
caller’ s number while the later has features associated with the callee being busy.

» ProcessCall plug-in checks whether the callee is idle. If the callee is idle then its
status is changed to busy and the process of making the connection is started
otherwise the process of notifying the caller, that the calee is busy, starts. The
starting point of acall isbound to IN1 input while theidle and busy end points are
bound to stub’s OUT1 and OUT2 outputs respectively.

SCP (O]
ouTt A Billed
ccountBi
INL\ / Billing
Switch
Ori
g |
Offjook  JgPPT ‘
DT BT
_ A . ap TermConnect
OrigConnect Dial

Figure 7.6: UCM Root map for POTS example
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SCP 0s
Swicth
Billing
term connected]
ouT2
orig_connected
SetL|
Orig I Term I
I |
y
NumberDisplay
RP IN1 OuUT1
StopPR

Figure7.7: PostDial plug-in map

When a user attempt to make a call through POTS then two scenarios are
possible. The call can either be setup successfully or indicate that the callee is busy. In
successful call connection scenario, the caller picks up the receiver, the switch notes that
the caller is busy and caller gets a dial tone. The caller then dials the callee number and
dial tone stops. The switch checks the status of callee and finds that the callee is currently
idle, and stores the caller number as the callee last incoming number. The callee gets the
ring and caller gets the remote ringing tone. The callee picks up the receiver and rings
stops. The caler remote ring tone also stops and the billing details are recorded by the
operations system and connection is established.
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For an unsuccessful call connection scenario, if the switch checks the status of
callee and finds that the callee is busy then the caller gets a busy tone and connection is

not made.

7.3.3 Step2: Budgets
The CPU time demand of each responsibility of the Switch is chosen 0.25 msec

and for the rest of system responsibilities 1.0 msec in beginning of the budgeting process.
Though the components used in this example are familiar types but due to lack of
availability of data for CPU time demands, sensitivity of system response time and

throughput are considered as targets to budget CPU time demand for each responsibility.

Swicth

POTS TermBusy
Lﬂ busy

Orig Term

Figure 7.8: ProcessCall Plug-in map
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734 Step 3: UCM Completion and Infrastructure Components
POTS UCM Design is taken from Dorin B. Petriu thesis [PetriuOlal. He

experimented developed a generative tool, LQN2UCM converter, for LQN model
extraction. It is assumed that POTS UCM Design is a “complete’” UCM for model

extraction.

7.35 Step 4: POTSLQN Mode
The UCM2LQN converter generated a large number of default activities in order

to create activity connections and calling relationships that correspond to the UCM inpui.
Every fork and join leads to the creation of as many default activities as there are path
segments leading into or away from the given fork and join. Thus an AND fork with one
input and three output branches will lead to the creation of four default activities to
represent it. The POTS UCM design features two AND forks shown in Figure 7.7 in
Term and Switch, two AND join shown in Figure 7.7 in Orig and Term, and one OR fork
shown in Figure 7.8 in Switch.

The LQN model for POTS shown in Figure 7.9 as jLQNDef graphic, with many
activities suppressed. The Figure 7.8 includes one new task, RefTaskl, which has been
introduced as additional “completion” which will be described in next step. The LON file
for POTSisincluded in Appendix A.

The starting point of the scenario is RefTaskl task, which sends a synchronous
message to Orig task. It indicates that the receiver is picked up and RefTaskl task waits
for the reply from Orig task. Orig task interacts with the Switch synchronously.

Orig task first requests a dia tone, then that a connection be established with the
other party whose number is dialed, and finally that the connection be enabled so the two
parties can talk. The Switch in turn first makes a call to the Term process to create the
call. After the callee picks up, Switch sends an asynchronous message to Term process to
confirm that the two parties can now talk to each other. Switch aso sends an
asynchronous message to log the start time of the connection to OS.
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Figure7.9: POTSreduced Layered Queuing Network (LQN) Model
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7.3.6 Step 5: Additional “Completions’, Environment and Assumptions
The UCM2LQN converter introduced additional “completion” in the form of

environment components i.e. RefTaskl and one common processor for al the tasks in
extracted LQN model. RefTaskl task and processor are added to achieve suitable
performance model. RefTask1 task, which is areference task, will initiate the scenario.

Since, the end of the UCM path did not come back to the start point and the system
had open arrivals, the UCM2LQN converter derived it as asynchronous interaction
between RefTaskl task and Orig task. The sensitivities of response time (mean delay)
and throughput (capacity) of overall system can only be observed when RefTask1 waits
for the reply from Orig, therefore, the asynchronous call between RefTaskl and Orig is
replaced with synchronous. Performance model was created with workload values and
the following assumptions:

* RefTaskl and Orig tasks interact synchronously

*  Thenumber of Orig and Term tasks are equal to the number of Ref Task1 tasks

» The Switch and the OS share a common processor while al the other tasks have

their own separate processors

» The CPU demands were considered as unity for all entries and activities in the

beginning

» The probabilities for the path traversing were considered as 100 % (i.e. value ‘1’

from one entry of atask to entry of another task)

The model is solved by ParaSRVN simulator, SPEX tool made the analysis easier for
sequencing repeated runs over ranges of parameter values. The model gave the
sensitivity of throughput and response time of overall system for a range of RefTaskl,
Orig and Term tasks, and for different budgeted CPU time demands of system

components.

7.3.7 Step 6: Experimental Results Evaluation
The predictions of the simulation model for delay (the sensitivity of average

response time) and capacity (the sensitivity of throughput) of overall system are plotted
to the number of call connections i.e. different number of RefTaskl users for the

budgeted CPU demand vaues with exponential scale in Figures 7.10 and with
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logarithmic scale 7.11. The Figures 7.12, 13 and 15 are the plots of processor utilization
for the Switch, the Orig and the Term with exponential scale. The simulation results
showed that multiple Switch threads degraded system performance. So, only one switch
thread was used for all the ssimulation models. The case Switch (CPUd=0.25 msec) is
considered as the base case. In this case, the CPU demands for all the activities of the
Switch are 0.25 msec and for the rest of the system 1 msec. The LQN file of Switch
(CPUd=0.25 msec) isincluded in Appendix D1. Other values of budgeted demands with
single Switch thread and CPU demand of 0.25 msec of Switch.
 Orig (CPUd=0.5 msec) curve is obtained by budgeting the CPU demands to
value 0.5 msec for all the activities of Orig, the CPU demand values for the rest of
the system are same as described for the Switch (CPUd=0.25 msec) curve.
 Term (CPUd=0.1 msec) curve is obtained by budgeting the CPU demands to 0.1
msec for all the activities of Term, the CPU demand values for the rest of the
system are same as described for the Orig (CPUd=0.25 msec) curve.

Case Orig (CPUd=0.5 msec)

From the graphs we can see that the performance is somewhat better when the
CPU demand of Orig was budgeted to 0.5 msec with the CPU demand of the Switch of
0.25 msec and the rest of system of 1.0 msec. This case is plotted as Orig (CPUd=0.5
msec). Detailed inspection of the model outputs shows that the processor utilization of
the switch reached to maximum 51.8% for 500 users. The mean delay and the throughput
of the system were 95.258 msec and 0.193 Users/msec respectively for 500 users. The
LON file of Orig (CPUd=0.5 msec) isincluded in Appendix D2.

Case Term (CPUd=0.1 msec)

From the graphs we can see that the performance starts to degrade when the CPU
demand of term was budgeted to 0.1 msec with the CPU demand of the Switch of 0.25
msec, Orig of 0.5 msec and the rest of system of value 1.0 msec. This case is plotted as
Term (CPUd=0.1 msec). Detailed inspection of the model outputs shows that the
processor utilization of the switch reached 84.0% at 500 users. The LON file of Term
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(CPUd=0.1 msec) is included in Appendix D3. The same data is shown in numerical
formin Tables 10, 11, 12, 13 and 14.
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Figure 7.14: Term Processor Utilization to the No of RefTask1 Users

User |Switch(CPUd=0.25 msec)| Orig(CPUd=0.5 msec) |Term(CPUd=0.1 msec)
50 26.567 51.952 92.393
100 28.981 4.223 28.340
150 46.187 106.062 44.447
200 57.955 56.493 35.113
250 70.674 49.039 47.341
300 94.426 101.169 83.227
350 104.711 97.045 69.533
400 147.914 102.024 70.317
450 157.298 115.066 60.966
500 186.520 95.258 87.266

Table 10: POTS Response Time (msec)
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User |Switch(CPUd=0.25 msec)| Orig(CPUd=0.5 msec) | Term(CPUd=0.1 msec)
50 0.025 0.029 0.034
100 0.048 0.048 0.042
150 0.080 0.069 0.079
200 0.104 0.104 0.103
250 0.101 0.127 0.135
300 0.153 0.137 0.145
350 0.139 0.172 0.179
400 0.162 0.178 0.196
450 0.165 0.186 0.221
500 0.166 0.193 0.264

Table 11: POTS Throughputs (User s/msec)

User [Switch(CPUd=0.25 msec)] Orig(CPUd=0.5 msec) Term(CPUd=0.1 msec)
50 0.110 0.085 0.124
100 0.170 0.105 0.137
150 0.237 0.263 0.218
200 0.342 0.294 0.317
250 0.365 0.362 0.386
300 0.465 0.506 0.461
350 0.479 0.519 0.626
400 0.470 0.508 0.676
450 0.483 0.524 0.658
500 0.492 0.518 0.840

Table 12: Switch Processor Utilization

User | Switch(CPUd=0.25 msec)| Orig(CPUd=0.5 msec) | Term(CPUd=0.1 msec)
50 0.191 0.099 0.142
100 0.345 0.152 0.172
150 0.475 0.296 0.262
200 0.660 0.374 0.373
250 0.785 0.455 0.452
300 0.933 0.592 0.560
350 0.968 0.634 0.685
400 0.976 0.648 0.802
450 0.991 0.652 0.796
500 0.991 0.672 0.961

Table 13: Orig Processor Utilization
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User | Switch(CPUd=0.25 msec) |Orig(CPUd=0.5 msec)] Term(CPUd=0.1 msec)
50 0.137 0.110 0.016
100 0.240 0.140 0.016
150 0.300 0.330 0.030
200 0.389 0.350 0.039
250 0.408 0.445 0.047
300 0.550 0.610 0.060
350 0.565 0.650 0.072
400 0.585 0.649 0.089
450 0.559 0.629 0.081
500 0.619 0.640 0.103

Table 14: Term Processor Utilization

7.4 Budget Revision
Sensitivity analysis provides the variation in the output of a model qualitatively or

guantitatively to different sources of variation. It can be used as a guide for the revision
of budgets when the budgeted resource demands are unable to meet the performance
targets. It might be possible that the analysis results reveal the bottleneck of the system,
which points to most profitable change in the budgeted values. The values of the resource
demand can be selected in such a manner that it would reduce the bottleneck of the
system and provide the desired performance. If the budgeted values are unable to meet
the satisfactory performance then the architecture adjustment can be done as another

option for the desired performance goal.

7.5 Conclusions
Performance budgeting approach for an incomplete software design specification

has been presented, using Distributed Hand-Off Protocol and Plain Old Telephone
System (POTS) UCM s case studies. The approach presented the idea of “completion” for
an incomplete software specification and budgeting of CPU time demands for different
system components. Several simulation models are developed and analyzed for the
sensitivity of average response time as mean delay and the sensitivity throughput as the
capacity of overall system. The experimental results are presented, involving tables and
graphs for budgeted CPU time demands of different systems components.
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In POTS, the Term demand reduction has a large effect and Orig budget demand
reductions have a small effect to the overall of the performance of system; OS demand
reductions have no effect on the performance of the system. Further performance
improvement might be possible with architecture adjustment, which will be discussed in
next chapter.

In Distributed Hand-Off Protocol, the “completion” was introduced in the form of
tuple space at UCM level. It could be inserted at LON level by using The LQN
Component Filter, which would significantly reduce the effort by introducing
“completion” as tuple space as single network component LQN task. The inserted
components are bound to the source and destination tasks of the call, and either to
existing processors or to new devices of their own. The semi-automated model building
significantly reduced the effort to construct a model for from an high-level specification

of a software design. The approach should easily scale to larger systems.

7.6 Summary
This chapter describes two industry relevant case studies which walk through

various steps of budget analysis road map. The are as follows:

1. Distributed Hand-Off Protocol UCM design covers most of the steps of the road map
and

2. Plain Old Telephone System (POTS) UCM design is a “complete’ specification. It
covers the road map steps from the model extraction through an automated tool to the

result evaluation.
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8.0 Architecture Adjustment

8.1 Introduction
This chapter presents an approach to deal with performance shortfalls by

adjusting the system design. The approach depends on the evaluation results. If the
results are not satisfactory then some changes are required. If predictions show
inadequate performance, one approach is to tighten the budgets until the predictions are
in the green zone. Alternatively one could adjust the design in the UCM domain, or the
implementation options in terms of “completions” and the environment. Architecture
adjustment can be suggested at software level as well as hardware level. Here, the
adjustments will be presented by modifying the completions representing the system
environment in the Plain Old Telephone System (POTS) example described in previous
chapter.

8.2 Architecture Adjustment in POTS

8.2.1 POTS Architecture
It is assumed that POTS performance results evaluated in previous chapter show

that the budgeted CPU time demands of components are unable to achieve satisfactory
performance due to the fact that the Switch and the OS were sharing a processor.

POTS call connection UCM design is based on real world telephone system. It is
not feasible to suggest adjustments in POTS UCM design because it provides the base
UCM of overall telephony system. The necessary adjustments are can be provided in
POTS LQN mode. The model reveals that POTS architecture consists of five tasks
including a Switch, which acts like a server task. It provides call connectivity to caller
(originator) and callee (receiver). The Switch hardware architecture details are beyond
the scope of this research but it is possible to suggest and demonstrate architecture

adjustmentsin the LQN environment in POTS for desired performance targets.

8.2.2 POT S Architecture Adjustment Options
Numbers of options are available to make changes in POTS LQN model. One

possibility is to make some changes in activity connections. If, there are number of
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activities in a given task and the operation does not depend on sequence the activities
then by introducing parallelism in activities connection might improve the performance
of the system. POTS call connection depends on sequence of operation for a particular

call and all the activities operations are inter-related with each other.

8.2.3 Processors Adjustment in POTS Model
Another possibility is to make hardware level adjustments in the mode by

introducing new hardware. Although hardware adjustment is expensive, tradeoff should
be made between system performance and the cost. Since there is only processor in
POTS LOQN model and more processor can be introduced to achieve the desired
performance.

The POTS LOQN model described in previous chapter reveals that there is only one
processor alocated to all the tasks and it becomes a bottleneck when number of users
increases to a certain limit. So, it is desired to remove this bottleneck by introducing a
separate processor for each task.

Following assumptions are made for the new model after budgeting al the values of
CPU demands for different components:

* All the tasks are on separate processors

» The CPU time demands of value

0 “1l.0msec” for al entries and activities of the OS
0 “0.5msec” for al the entries and activities of the Orig
0 “0.25msec” for al the entries and activities of the Switch
0 “0.1msec” for al the entries and activities of the Term
The modd is solved by ParaSRV N simulator using SPEX for sequencing repeated
runs over ranges of parameter values. The model gave the sensitivity of throughput and
response time of overall system for arange of RefTaskl and for different budgeted CPU

time demands of components with new hardware.

824 Results Evaluation
The comparison of sensitivity analysis graphs of response time to the number of

users for the systems with shared and separate processors are shown in Figure 8.1 and
numerical data for above graphs is given in Table 15. For the system with shared
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processor, OS and Switch share a processor. Dark curvesin Figure 8.1 represent system
with the shared processor whereas the system with separate processors is represented by

light curves. These curves are plotted with exponential scales.
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Figure 8.1: Senditivity of Response Timeto the No of Users

Table 15 is divided in three main columns: Users, Separate Processors and Shared
Processors. Each sub column shows mean delays values for different budged CPU
demand values of the Switch, the Orig, the Term, and the OS. As predicted, the response
times for the system with separate processors are reduced compared to the response times
of the system with shared processor. The maximum percentage improvement is 63.08%
for 50 users when the Switch, the Orig, the Term and the OS have the budgeted CPU
demands of values 0.25 msec, 0.5 msec, 0.1 msec, and 1.0 msec respectively. The LQN
files of separate processor systems are included in Appendices E1, E2, E3. The

percentage improvement is greater for alighter load because of small number of users.

121



Time/Performance Budgeting for Software Designs

Separate Processors Shared Processor
Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25)
Users |origo@=1.0) |orig(d=0.5) Orig0(d=0.5) |Orig0(d=1.0) |Origo(d=0.5) |Origo(d=0.5)
Term(d=1.0) Term(d=1.0) Term(d=0.1) Term(d=1.0) Term(d=1.0) Term(d=0.1)
0S(d=1.0) 0S(d=1.0) 0S(d=1.0) 05(d=1.0) 0S(d=1.0) 05(d=1.0)
50 2.29 74.68 20.91 26.57 51.95 92.39
100 100.70 43.80 35.89 28.98 4.22 28.34
150 42.79 77.89 67.22 46.19 106.06 44.45
200 128.21 46.71 50.04 57.95 56.49 35.11
250 57.80 65.49 47.36 70.67 49.04 47.34
300 100.99 98.38 81.10 94.43 101.17 83.23
350 126.54 78.05 101.55 104.71 97.05 69.53
400 156.14 64.25 63.12 147.91 102.02 70.32
450 205.71 130.33 83.30 157.30 115.07 60.97
500 174.81 139.65 76.89 186.52 95.26 87.27

Table 15: POTS Mean Delayswith processor adjustment

The comparison of sensitivity analysis graphs of throughputs to the number of users for

systems with shared and separate processors were also analyzed and shown in Figure 8.2

with logarithmic scale and numerical data for the mentioned graphsis given in Table 16.
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Figure 8.2: Sensitivity of Throughputsto the No of Users
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The throughput of the system with processor adjustment does not improve as
much as the mean delays values. This is due to the fact that when the OS does not utilize
processor whether it shares the processor with the Switch. There was no change in
throughput when the maximum mean delay was improved to 63.08% for 50 users when
the budgeted CPU demands of values of 0.25 msec, 0.5 msec, 0.1 msec, and 1.0 msec for
the Switch, the Orig, the Term and the OS respectively. The maximum percentage in
throughput improvement is 7.69% for 100 users when the budgeted CPU demands of the
values of 0.25 msec, 1.0 msec, 1.0 msec, and 1.0 msec were for the Switch, the Orig, the

Term and the OS respectively.

Separate Processors Shared Processor
Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25)
Users |origo@=1.0) |orig(d=0.5) Orig0(d=0.5) |Origo(d=1.0) |Origo(d=0.5) |Origo(d=0.5)
Term(d=1.0) Term(d=1.0) Term(d=0.1) Term(d=1.0) Term(d=1.0) Term(d=0.1)
05(d=1.0) 05(d=1.0) 0S(d=1.0) 05(d=1.0) 0S(d=1.0) 05(d=1.0)
50 0.026 0.023 0.034 0.025 0.029 0.034
100 0.056 0.053 0.055 0.048 0.048 0.042
150 0.073 0.076 0.076 0.080 0.069 0.079
200 0.091 0.122 0.109 0.104 0.104 0.103
250 0.133 0.117 0.127 0.101 0.127 0.135
300 0.135 0.150 0.146 0.153 0.137 0.145
350 0.146 0.172 0.188 0.139 0.172 0.179
400 0.170 0.202 0.216 0.162 0.178 0.196
450 0.176 0.201 0.239 0.165 0.186 0.221
500 0.187 0.218 0.265 0.166 0.193 0.264

Table 16: POTS Throughputswith processor adjustment

Figure 8.3 shows the comparison of the Switch processor utilization for the shared
processor system and separate processors system with logarithmic scale. When separate
processors were assigned to the OS and the Switch, the processor utilization of the
Switch was reduced from 12.4% to 4.3 % when the maximum mean delay was improved
to 63.08% for 50 users when the budgeted CPU demands of values of 0.25 msec, 0.5
msec, 0.1 msec, and 1.0 msec for the Switch, the Orig, the Term and the OS respectively.
For the same values of budgeted CPU demands the maximum processor utilization was
84% for 500 users for the shared processor system and it reduced to 45.3% for the

separate processors system. Table 17 shows the same result in numerical form.
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Figure 8.3: Switch Processor Utilization the No of Users

Separate Processors Shared Processor
Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) | Switch(d=0.25) [ Switch(d=0.25) | Switch(d=0.25)
Users |origo@=1.0) |orig(d=0.5) Orig0(d=0.5) |Origo(d=1.0) |Origo(d=0.5) |Origo(d=0.5)
Term(d=1.0) Term(d=1.0) Term(d=0.1) Term(d=1.0) Term(d=1.0) Term(d=0.1)
05(d=1.0) 05(d=1.0) 0S(d=1.0) 05(d=1.0) 0S(d=1.0) 05(d=1.0)
50 0.027 0.056 0.043 0.110 0.085 0.124
100 0.110 0.084 0.097 0.170 0.105 0.137
150 0.136 0.140 0.168 0.237 0.263 0.218
200 0.159 0.157 0.148 0.342 0.294 0.317
250 0.209 0.191 0.197 0.365 0.362 0.386
300 0.250 0.288 0.276 0.465 0.506 0.461
350 0.261 0.278 0.358 0.479 0.519 0.626
400 0.267 0.329 0.376 0.470 0.508 0.676
450 0.263 0.332 0.400 0.483 0.524 0.658
500 0.256 0.348 0.453 0.492 0.518 0.840

Table 17: Switch Processor Utilization with processor adjustment
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8.3 Summary
The chapter describes the architecture adjustment as mean of satisfactory

performance results when the budgets are failed to meet the performance targets. His
chapter covers the following:
1. POTS example with possible architecture adjustment and

2. The performance results comparison with and without adjustments for POTS example
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9.0 Conclusions and Future Work

9.1 Conclusions

9.1.1 Objectives and Requirements
The main focus of the thesis was to describe a performance analysis approach for

the software design (especially for the UCM designs), which is based on budgets or
estimated figures for the resource demands of al the parts and operations of the system.
The budget or estimated figure may be based on prediction, intuition or past experiment
results. The key element of this approach is the planning of budgets for the resource
demands of all the parts and operations of system and validation check for the required

performance.

9.1.2 ThesisContributions
Different concepts are used from software performance engineering and

distributed communication software systems engineering during the development of this
approach. The main contributions of thisthesis are:

» The approach of Performance Budgeting process with based on the Road Map
described in Chapter 3. Performance Budgeting provides different steps to carry
out performance analysis before the development and implementation of any
software system to meet performance goal.

» Definition of the term “ completion” to overcome the incompleteness of a design
specification. We suggest and provide ways to add missing components and
parameters to an incomplete specification of a software design. An incomplete
specification shows the thinking of a software designer at some early stage of
development. The specification is very abstract and may omit some necessary
details, which are important for a suitable performance model.

» Demonstration of the “ completion” described in Chapter 5. The development of
four network filters provides automation to the “completion” at LQN level only
(model level). Different network components are incorporated in different
examples in the form of asingle LQN task representing a simple message passing
network component (a single network component), a generalized protocol suite
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(LON network subsystem), a shared resource server LOQN task and a multicast

network LQN task.

* Measurements and modeling of tuple spaces. Measurements are done on J-Spaces
(J-Space Technologies Inc.) [JSpaces| and the performance model of J-Spaces is
constructed and analyzed described in Chapter 6.

* Two end-to-end Case Studies on UCM design examples from industry, described
in Chapter 7.

These contributions provide a framework to allow for the reuse of performance
information, a process for tracking and correcting performance attributes of designer
driven the project, components based performance analysis as well as overall system
based performance analysis.

Two case studies demonstrated different aspects of the usability of the approach
in Chapter 7.0. Distributed Hand-off Protocol UCM design case study involved al the
necessary steps mentioned in the budget analysis road map, the usability of the LQN
Component filters and tuple spaces. Plain Old Telephone System (POTS) UCM design
case study involved only the budgeting of the CPU demands for the system assuming
aready available “complete” UCM and extracted LQN model for the system.

An approach, to deal with performance shortfall by adjusting the system design in
the implementation options in terms of environment, is described in Chapter 8. The
problem of adjusting the system design to meet the performance goal is addressed in

chapter 8 with an example.

9.2 FutureWork

9.2.1 LQN Component Filter
This thesis contribution for the “completion” is the development of LOQN

Component Filter tool with four variants. More communication filters can be designed
and developed to support other types of communication mechanisms and components at
LON level.

At this time, LQN Component Filter tool does not have the capability to support
activity based LQN models. It can be enhanced to support activity based LQN models.
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9.2.2 Graphical User Interface (GUI) for budgeted CPU demands
A Graphic User Interface (GUI) can be designed to provide ease in changing CPU

demands of different entries and activities of a LQN model. Thiswill help a user to keep
track of CPU demands of entries and activities of a LQN mode for a satisfactory
performance response. This might be helpful in a case where budget adjustments are

required for adesired performance target.

9.2.3 Integrated Environment for UCM based Budget Analysis Road Map
This thesis described a UCM design based budget analysis road map. An

integrated environment is required to provide automation for the UCM design based
budget analysis road map. Different tools are already described in Chapter 2, which are
available for the “completion” at UCM level as well as for additional “completion” at
LQON level. Each tool supports a different type of the “completion”. These tools do not
provide integrated automation for the “completion” as well as budget analysis road map.
Further research and development is required in this direction to combine and integrate
all the tools to introduce different types of “completions’ at UCM level as well as LQN
level.

If al the available tools are combined into one integrated tool then it will increase
ease of manipulation of designs and development. A short-term goal could be the
integration of all these tools into UCM Navigator to provide an integrated environment
for UCM based software designs.

9.2.4 Budget AnalysisRoad Map for Different Specifications
A UCM is not the only possible starting point for budget analysis road map.

Another form of specification, which identifies the scenarios, the components, and the
activities for which code is to be developed, could be used. For instance an executable
state-machine specification in ObjecTime described in [Hrischuk95], SDL described in
[El-Syed98], or a UML specification can be used. A profile for UML has recently been
defined to support such an analysis [OMGO1].

Further research and development is required to apply budget analysis road map on these
specifications to exploit the benefits of this software performance engineering approach.
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9.3 Summary

This chapter highlighted the conclusions of the research describing the

contributions of the research. The future work suggested many issues which are as

follows:

1.

Further improvement of LQN Component filter,

2. Graphical User Interface (GUI) for budgeted CPU demands,
3.
4. Budget Analysisfor different specifications such as UML and SDL etc.

Integrated environment for UCM based Budget Analysis Road Map, and

129



Time/Performance Budgeting for Software Designs

References

[Aho98] A. Aho, S. Gallagher, N. Griffeth, C. Scheel, and D.Swayne, “Sculptor with
Chisel: Requirements Engineering for Communication Services,” Fifth International
Workshop on Feature Interaction in Telecommunications and Software Systems
(FIW 98), 10S Press, Amsterdam, pp. 45-63, October 1998.

[Amyot98] Daniel Amyot, “Use Case Maps for the Design and Validation of
Interactions-Free Telephony Features,” CITO Report # 1430, Ottawa, 1998

[Amyot99a] D.Amyot and R. Andrade, “Description of Wireless Intelligent Network
Service with Use Case Maps” 17" Brazllian Symposium on Computer Networks
(SBRC'99), Salvador, Brazil, May 1999

[Amyot99b] D. Amyot, L. Logirippo, R.J.A. Buhr, and T. Gray, “Use Case Maps for the
Capture and Validation of Distributed Systems Requirements,” Fourth International
Symposium on Requirements Engineering (RE’99), Limerick, Ireland, June 1999
[Amyot00] D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logirippo, J. Sincennes, B.
Stepien, and T. Ware, “Feature Description and Feature Interaction Analysis with Use
Case Maps and LOTOS,” Sxth International Workshop on Feature Interactions in
Telecommunications and Software Systems (FI1W 00), Glasgow, Scotland, May 2000
[Auerbach94] J. Auerbach, S. Demion, G. Goldszmidt, J. R. Rao, and J. Russell,
“Concert/C Rel 3.1: Availability of a language for distributed C programming,”
Technical Report, IBM Research, July 1994

[Ananda9l] A. L. Ananda, B. H. Tay, and E. K. Koh, “Astra, An asynchronous remote
procedure call facility.” In Proceedings of 11th International Conference on Distributed
Computing Systems, Arlington, Texas, pages 172-179, May 1991

[Arnold99a] K. Arnold. B, O'Sullivan, R. W. Scheifler, J. Waldo, and A. Wollrath, The
Jini[tm] Specification, Addison-Wesley Press, June 1999

[Arnold99b] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces[tm] Principles, Patterns,
and Practice, Addison-Wesley Press, June 1999

[Arnold00] K. Arnold, The Jini[tm] Specifications, Addison-Wesley Press, 2nd Edition,
December 2000

130



Time/Performance Budgeting for Software Designs

[Arons] B. Arons, “Tools for Building Asynchronous Servers to Support Speech and
Audio Applications,” In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST'92), Monterey, California, USA, pages 71-78, November 15-18,
1992

[Buhr95] Buhr, R.JA. and Casselman, R.S.. Use Case Maps for Object-Oriented
Systems, Prentice-Hall, USA, 1995.

[Buhr98] Buhr, R.J.A, “Use Case Maps as Architectural Entities for Complex Systems,”
In: Transactions on Software Engineering, IEEE, Vol. 24, No. 12, pp. 1131-1155,
December 1998.

[Cabrio8] G. Cabri, L. Leonardi, and F. Zambonelli, “ Reactive Tuple Spaces for Mobile
Agent Coordination,” 2nd International Workshop on Mobile Agents, Suttgart (D),
Lecture Notes in Computer Science, No. 1477, pp. 237-248, Sept. 1998.

[CzarneckiOl] K. Czarnecki and U. W. Eisenecker, Generative Programming. Addison-
Wesley, 2001

[Dasgupta98] P. Dasgupta, “Network Operating Systems,” A comprehensive article in
Encyclopedia of Electrical Engineering, John Wiley, Department of Computer Science
and Engineering, Arizona State University, Tempe AZ 85287-5406, USA, 1998.
[EdwardsO0] W. K. Edwards, Core Jini[tm], Prentice-Hall Press, 2nd Edition, December
2000

[El-Sayed98] H. El-Sayed, D. Cameron, C. M. Woodside, "Automated Performance
Modeling from Scenarios and SDL Designs of Telecom Systems,” In Proc. of the Int.
Symposium on Software Engineering for Parallel and Distributed Systems (PDSE98),
Kyoto, April 1998.

[Foster95] I. Foster, Designing and Building Parallel Programs, Addison-Wesley Press,
Department of Computer Science, University of Chicago, Illinois, USA, 1995

[Franks99] G. Franks, PhD., "Performance Analysis of Distributed Server Systems’, Ph.
D. Thesis, Department of Systems and Computer Engineering, Carleton University,
Ottawa, Canada, December 1999.

[Gelerntner97] A. Smith, D. Gelerntner and N. Carriero, “Towards Wide-Area Network
Piranha Implementing Java-Linda,” Department of Computer Science, Yae University,
New Haven, USA, Technical Report, November 1997.

131



Time/Performance Budgeting for Software Designs

[Halang9l] W. Halang and A. Stoyenko, Constructing Predictable Real-Time Systems,
Kluwer Academic Publishers, Boston, 1991

[Hrischuk95] C. Hrischuk, J. Rolia and C.M. Woodside, "Automatic Generation of a
Software Performance Model Using an Object-Oriented Prototype,” Proceedings of the
Third International Workshop on Modeling, Analysis, and Smulation of Computer and
Telecommunication Systems, pp. 399-409, Durham, NC, January 1995.

[|[EEE-610.12] Institute of Electrical and Electronic Engineers. "IEEE Standard Glossary
of Software Engineering Terminology.” IEEE Standards Collection. New York, NY:
Institute of Electrical and Electronics Engineers, 1993.

[Jain9l] R. Jain, The Art of Computer Systems Performance Analysis. Techniques for
Experimental Design, Measurement, Smulation, and Modeling, Wiley Publisher, New
York, NY, April 1991,

[JSpaces] J-Spaces™ Platform 1.0 documentation

http://www.j-spaces.com/

[Kawai88] S. Kawai and S. Matsuoka., “Using Tuple Space Communication in
Distributed Object Oriented Languages,” Proc. of the OOPSLA '88, pages 276-283,
1988.

[LeeO0l] K. C. Lee, “Software Modeling Tools and Studies,” Technica Report,
Department of Systems and Computer Engineering, Carleton University, Ottawa,
Canada, April 2001

[Matloff99] N. Matloff, “TupleDSM: An Educational Tool for Software Distributed
Shared Memory,” Workshop on Computer Architecture Education (WCAE-99), Orlando,
Florida, USA, January 9-13, 1999

[Mayers00] N. Mayers, Java Programming on Linux, Waite Group Press, 2000
[McMullan00] D. McMullan, “Components in Layered Queuing Networks,” Technical
Report, Department of Systems and Computer Engineering, Carleton University, Canada,
April 2000

[McNamara99] C. McNamara, Business Report on “Basic Guide to Non-Profit Financial
Management”, 1999

132



Time/Performance Budgeting for Software Designs

[Miga98] A. Miga, “Application of Use Case Maps to System Design with Tool
Support,” M. Eng. Thesis, Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada, July 1998

[Mowbray97] T. J. Mowbray, W. A. Ruth, Inside CORBA: Distributed Object Standards
and Applications, Published by Addison Wesley Longman Inc, 1997

[Mussbacher01] G. Mussbacher and D. Amyot, A Collection of Patterns for Use Case
Maps — 3" Draft, Mitel Networks, 350 Legget Dr., Kanata (ON), Canada, K2K 2W?7,
PRIVATE COMMUNICATION

[OaksD0] S. Oaks and H. Wong, Jini in a Nutshell, O'Rellly & Associates Publisher,
March 2000

[OMG95] Object Management Group, Common Object Request Broker Architecture and
Soecification (CORBA), Revision 2, New Y ork,: John Wiley, August 1995

[OMGO01] OMG document "UML Profile for Schedulability, Performance, and Time,"
Revised submission, June 2001, available from OMG at www.omg.org.

[Peined7] H. Peine, T. Stolpmann, “The Architecture of the Ara platform for Mobile
Agents,” Proceedings of the Ist International Workshop on Mobile Agents, Berlin (D),
Lecture Notes in Computer Science, No. 1219, Springer-Vaerlag(D), pp, 50-61, April
1997

[PetriuOla] D. B. Petriu, “Layered Software Performance Models Constructed from Use
Case Map Specifications,” M. Eng. Thesis, Department of Systems and Computer
Engineering, Carleton University, Ottawa, Canada, 2001.

[Petriu01b] D. B. Petriu and C.M. Woodside, “ Generating A Performance Model From A
Design Specification,” The 6™ Mitel Workshop (MICON2001), Mitel Networks, Ottawa,
August 2001

[Roberts92] John Roberts, Introduction to Parallel Processing and the Transputer,
published by Van Nostrand Reinhold, New York, U. S. A, 1992, ISBN 0-442-00872-4
[Rolia95] J.A. Roliaand K.C. Seveik, “The Method of Layers,” IEEE Trans. on Software
Engineering, vol. 21, no.8, August 1995, pp.689-700.

[SiddiquiO0] K H. Siddiqui and C.M. Woodside, “A Description of Time/Perfomrance
Budgeting for UCM Desgin,” The 5" Mitel Workshop (MICON2000), Mitel Networks,
Ottawa, August 2000

133



Time/Performance Budgeting for Software Designs

[SiddiquiOl] K H. Siddiqui and C.M. Woodside, “Performance Aware Software
Development (PASD) Using Execution Time Budgets,” The 6" Mitel Workshop
(MICONZ2001), Mitel Networks, Ottawa, August 2001

[Spruit97] C. M.C. Spruit, L. P. J. Groenewegen and |. G. Sprinkhuizen-Kuyper,
“Blackboard Systems modeled in SOCCA”, Technical Report, Department of Computer
Science, Leiden University, The Netherlands, 1997

[Smith93] C.U. Smith and L.G. Williams, “ Software Performance Engineering” A case
study including performance comparison with design alternatives.” |EEE Transactions on
Software Engineering, 19(7): 720-741, July 1993.

[Smith95] Smith, C. U. & Williams, L. G., “A Performance Model Interchange Format,”
Performance Engineering Services, Feb. 1995.

[SmithO1] Smith, C. U. & Williams, L. G., Performance Solutions. A Practical Guide to
Creating Responsive, Scalable Software, Addison-Wesley Publishing Company, 2001.
[Szyperski98] C. Szyperski, Component Software; Beyond Object-Oriented
Programming. New Y ork: ACM Press, 1998

[UCMorg] Use Case Maps Web Page and UCM User Group (since March 1999)
http://www.UseCaseM aps.org

[Waldo98] Waldo, J., JavaSpaces'™ Specification 1.0, SUN Microsystems Inc.,
Technical Report, March 1998

[Walkner95] David W. Walker, “An Introduction To Message Passing Paradigms,” In
Proceedings of the 1995 CERN School of Computing, CERN 95-05, pages 165-184, ed.
C. E. Vandoni, held August 20 - September 2, 1995, in Arles, France, 1995.
[Woodside89] C.M.Woodside, “ Throughput calculation for basic stochastic rendezvous
networks,” Performance Evaluation, Vol. 9, No. 2, pp.143-160, 1989

[Woodside95] C.M. Woodside J.E. Neilson, S. Mgumdar, and D. C. Petriu, “The
Stochastic Rendezvous Network Model for Performance of Synchronous Client-Server-
like Distributed Software,” IEEE Trans. on Computers, vol. 44, no. 1, January 1995, pp
20-34.

[Woodsided5¢c] C.M. Woodside, R.G. Franks, A. Hubbard, S. Mgjumdar, J.E. Neilson, D.
C. Petriu, and J.A. Rolia, “A Toolset for Performance Engineering and Software Design
of Client-Server Systems,” Performance Evaluation, vol-24, no 1-2, 1995, pp.117-136.

134



Time/Performance Budgeting for Software Designs

[Woodside95h] C.M.Woodside and G. Ragunath, “General Bypass Architecture for
High- Performance Distributed Algorithms,” Proc. 6" IFIP Conference on Performance
of Computer Networks, Istanbul, Oct.23-26, 1995, In “ Data Communication and their
Performance”, eds. S. Fdida and R.U. Onvura, Chapman and Hall, pp51-65,
[Woodside98] C.M. Woodside, C. Hrischuk, B. Selic, S. Bayarov, “A Wideband
Approach to Integrating Performance Prediction into a Software Design Environment,”
Proc. First Int. Workshop on Software and Performance (WOSP98), pp. 31-41, October
1998.

[Woodside99] C.M. Woodside and C. U. Smith, "Performance Validation at Early Stages
of Development”, Position paper, Performance 99, Istanbul, Turkey, October 99
[WoodsideO1] C. M. Woodside, A. Miga, D. Amyot, F. Bordeleau, and D. Cameron,
“Deriving Message Sequence Charts from Use Case Maps Scenario Specifications’, In
Tenth SDL Forum (SDL'01), Copenhagen, Denmark, June 2001.

135



Time/Performance Budgeting for Software Designs

APPENDIX A —Simple Call Agent LON File

Khal id H. Siddi qui

St udent #256847

August 05. 2000

File nanme: sanple.xlgn

*** For 1 20 20 Nane Service User ****
*** For 1 to 200 Renote Users ****
<khs@rar kab> spex -F nmat sanpl e. x|l gn

HH O HHH R

G "Call Agent Mdel: Nanme Service, Two Users Call Connection, first
phases only" .000001 100 1 0.5 -1

$nRenot eUser = 1: 200, 10
$nNSUser =1: 20, 4
$hosts = sunset, sunspot, sunri se, mar kab, honefree

7
NSUserProc f i #infinite processors (one per user)
RenoteUserProc f i #infinite processors (one per user)
Wor kLoadUserProc f i #infinite processors (one per user)
NodeA f
NodeB f
Conpeti ngW. f
Net wor k f i
Di sk f
1

' T T TTTTT O

T 15

t NSUser r NSUser -1 NSUserProc m $nNSUser

t RenmoteUser r RenpteUser -1 RenpteUserProc m $nRenoteUser %
$Renot eUser Thr uput

t W.UserA r W.UserA -1 WorkLoadUser Proc m 10
W.UserB r W.UserB -1 Wor kLoadUser Proc m 10
Conpeti ngW.A n Conpeti ngW.A -1 Conpeti ng\W.
Conpeti ngW.B n Conpeti ngW.B -1 Conpeti ng\W.

Cal | Agent A n Cal | Agent AL Cal | Agent AR -1 NodeA m 2
Pr ot ocol Agent A n Protocol Agent A -1 NodeA
CResourceA n CResourceA -1 NodeA

NaneServei ce n NaneService -1 NodeA

Call AgentB n Cal |l AgentB -1 NodeB m 2

Pr ot ocol Agent B n Protocol AgentB -1 NodeB
CResourceB n CResourceB -1 NodeB

Net wor kDel ay n Networ kDel ay -1 Network

t
t
t
t
t
t
t
t
t
t
t
t Disk n Disk -1 Disk

-1

E 37

s NSUser 1 0 0 -1 # NS User

Z NSUser 10 0 0 -1

s RenoteUser 1 0 0 -1 % $RenoteUserEntryTi me # Renote User
Z RenoteUser 20 0 0 -1

s WUserA1 00 -1 # WrkLoad User A
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W.UserA 10 0 0 -1

WUserB 1 0 0 -1 # WrkLoad User B
W.UserB 10 0 0 -1

NSUser Cal | AgentAL 1 0 0 -1

Call AgentAL 1 0 0 -1

Cal | Agent AL NameService 1 0 0 -1
NaneService 1 0 0 -1

NaneService Disk 1 0 0 -1

Disk 1 00 -1

Renot eUser Call AgentAR 1 0 0 -1

Call AgentAR' 1 00 -1

Cal | Agent AR NetworkDelay 1 0 0 -1

Net wor kDelay 1 0 0 -1

Cal | Agent AR Prot ocol AgentA 1 0 0 -1

Pr ot ocol AgentA 1 0 0 -1

Pr ot ocol Agent A Protocol AgentB 1 0 0 -1
Prot ocol AgentB 1 0 0 -1

Pr ot ocol AgentB Cal | AgentB 1 0 0 -1
Call AgentB 1 00 -1

W.User A ConpetingWL,A 1 00 -1
Cal | Agent AR CResourceA 1 0 O -
Conpeti ngW.,A CResourceA 1 0 O
Prot ocol Agent A CResourceA 1 0
ConpetingWLA 1 0 0 -1
CResourceA 1 0 0 -1
W.User B Competi ngW.B 1
Cal | Agent B CResourceB 1
Conpeti ngW.B CResourceB 1
Pr ot ocol Agent B CResour ceB
ConpetingWB 1 0 0 -1
CResourceB 1 0 0 -1

1

1
-1
0 -1

00
00
1

-1
-1
00 -
100 -1

' KKK N KKK K MK WKWK OIK N K OIK UK DK UK N N

RO

$0 = $nRenpt eUser

$Renot eUser Thr uput

$Renpt eUser ResponseTime = $RenpteUserEntryTime - 20

-1
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O It I I

o

APPENDIX B —J-Spaces LON File

Khal id H. Siddi qui

St udent #256847

Sept 14, 2001

Fil e nane: JSPacesMdel v1012. xl gn

Nunber of Wbrkers =6

"JSpaces Mddel: Master, Worker, Prime Denmo Exmaple" .000001 1000 1
.5 -1

$sol ver =parasrvn

$

p
p

L e e e |

=

OO nunnunuonnnonnNOm

nUser= 1:15,1
0

jPf % $Putil
1

0

Ref Taskl r RefTaskl -1 P
Master n Mwite Make Mmd Mus Mittpd -1 jP m$nUser 9% $Thruput

Workersl n Wwitel Weadl Wmdl Wusl Wittpdl -1 jP
Workers2 n Wwite2 Wead2 Wmd2 Wus2 Wittpd2 -1 jP
Workers3 n Wwite3 Wead3 Wmd3 Wus3 Wittpd3 -1 jP
Workers4d n Wwited Wead4d Wmd4 Wus4 Wittpdd -1 jP
Workers5 n Wwite5 Wead5 Wm d5 Wus5 Wittpd5 -1 jP
Workers6 n Wwite6 Weadé Wm dé Wus6 Wittpd6 -1 jP
Workers7 n Wwite7 Wead7 Wmd7 Wus7 Wittpd7 -1 jP
Workers8 n Wwite8 Wead8 Wm d8 Wus8 Wittpd8 -1 jP
Workers9 n Wwite9 Wead9 Wmd9 Wus9 Wittpd9 -1 jP
Workersl0 n Wwitel0 Weadl0 Wm d10 Wusl1l0 Wittpdl0 -1 jP
Workersll n Wwitell Weadll Wm dll Wusll Wittpdll -1 jP
Workersl2 n Wwitel2 Weadl2 Wm d12 Wusl2 Wittpdl2 -1 jP

RMDneRMD -1 jP

TSMn eTSM-1 jP

LUS n eLUS -1 jP

HTTPD n eHTTPD -1 j P

JSpaces n JSread JSwite -1 jP

0

Ref Taskl 1.000000 -1 % $UserEntryTi nme
Ref Taskl 100 -1
Mwite 3.92 0 0 -1
Make 3.92 0 0 -1
Wwitel 3.92 0 0 -1
Weadl 3.92 0 0 -1
Wwite2 3.92 0 0 -1
Wead2 3.92 0 0 -1
Wwite3 3.92 0 0 -1
Wead3 3.92 0 0 -1
Wwite4 3.92 0 0 -1
Wead4 3.92 0 0 -1
Wwite5 3.92 0 0 -1
Wead5 3.92 0 0 -1
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Wwite6 3.92 0 0 -1
Wead6 3.92 0 0 -1
Wwite7 3.92 0 0 -1
Wead7 3.92 0 0 -1
Wwite8 3.92 0 0 -1
Wead8 3.92 0 0 -1
Wwite9 3.92 0 0 -1
Wead9 3.92 0 0 -1
WwitelD 3.92 0 0 -1
Weadl0 3.92 0 0 -1
Wwitell 3.92 0 0 -1
Weadll 3.92 0 0 -1
Wwitel2 3.92 0 0 -1
Weadl2 3.92 0 0 -1
eRMD 131.5 0 0 -1
eLUS 31.83 0 0 -1
eTSM8.33 00 -1
eHTTPD 56.42 0 0 -1
JSread 3.92 0 0 -1
JSwrite 3.92 0 0 -1
Mmd100-1

Wm dl -1

W m d2 -1

W m d3 -1

W m d4 -1

W m d5 -1

W m d6 -1

Wm d7 -1
W m d8
W m d9
Wmdlo 1 0
Wmdll 1 0
Wmdl2 1 0
Mus 1 0 0 -
Wus1
W us?2
W us3
W us4
W us5
W us6
W us?7
W us8
W us9

RPRRRPRRPRPRRRPR
cfoNoNoNoNoNoRoNa)
lcfoNoNoNoNoNoRoNo)

RPRRRPRRPRRRRPR

nNnmmuunnnnmououonnnnnuononnnnoonnnnnonuonnnnouoououoununnnunoouonnnnnonnnnnuoonuonnon
eNeoloololololeNe)

=

—

©

Q

a1
PRRPRRPRRPRPRRRPR
efoNoNoNoNoNoRoNo)
efoNoNoNoNoNoRoNo)

1
'—\
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A A I I I I S S A O 4 O I 4 I I I DA A O I I I I I I A AN A I I I I I I I I I NN

VWt t pd10
VWht t pd11
VWt t pd12
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1l
Ref Task1
Ref Task1
Ref Task1l
Ref Task1
Ref Task1l

100-1
100-1
100-1
Mwite 1.000000 -1

M ake 1.000000 -1
Wwitel 1.000000 -1
Weadl 1.000000 -1
Wwite2 1.000000 -1
W ead2 1.000000 -1
Wwite3 1.000000 -1
W ead3 1.000000 -1
Wwited4 1.000000 -1
W ead4 1.000000 -1
Wwite5 1.000000 -1
W ead5 1.000000 -1
Wwite6 1.000000 -1
W ead6 1.000000 -1
Wwite7 1.000000 -1
W ead7 1.000000 -1
Wwite8 1.000000 -1
W ead8 1.000000 -1
Wwite9 1.000000 -1
Wead9 1.000000 -1
WwitelO 1.000000 -1
Weadl0 1.000000 -1
Wwitell 1.000000 -1
Weadll 1.000000 -1
Wwitel2 1.000000 -1
Weadl2 1.000000 -1
M mid 1.000000 -1

Wi dl 1.000000 -1
Wi d2 1.000000 -1
Wi d3 1.000000 -1
Wi d4 1.000000 -1
Wi d5 1.000000 -1
Wi d6é 1.000000 -1
W d7 1.000000 -1
W d8 1.000000 -1
W d9 1.000000 -1
Wni d10 1.000000 -1

Wm dll 1.000000 -1
Wm dl2 1.000000 -1
M us 1.000000 -1

Wusl 1.000000 -1
Wus2 1. 000000 -1
Wus3 1.000000 -1
Wus4 1.000000 -1
Wus5 1. 000000 -1
Wus6 1.000000 -1
Wus7 1.000000 -1
Wus8 1.000000 -1
Wus9 1.000000 -1
Wus10 1.000000 -1

Wusl1ll 1.000000 -1
Wusl1l2 1.000000 -1
httpd 1.000000 -1
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KKK I KKK I KK I K I I Ik k<

Ref Taskl Whttpdl 1.000000
Ref Taskl Whttpd2 1.000000
Ref Taskl Whttpd3 1. 000000
Ref Taskl Whttpd4 1.000000
Ref Taskl Whttpd5 1.000000
Ref Taskl Whttpd6 1.000000
Ref Taskl Whttpd7 1.000000
Ref Taskl Whttpd8 1.000000
Ref Taskl Whttpd9 1.000000

Ref Taskl Whttpdl10 1. 000000 -1
Ref Taskl Whttpdll 1.000000 -1
Ref Taskl Whttpdl2 1.000000 -1

Mwite eTSM 1. 000000 -1

M ake eTSM 1. 000000 -1
Wwitel eTSM 1. 000000 -1
W eadl eTSM 1. 000000 -1
Wwite2 eTSM 1. 000000 -1
W ead2 eTSM 1. 000000 -1
Wwite3 eTSM 1. 000000 -1
W ead3 eTSM 1. 000000 -1
Wwited4d eTSM 1. 000000 -1
W ead4 eTSM 1. 000000 -1
Wwite5 eTSM 1. 000000 -1
W ead5 eTSM 1. 000000 -1
Wwite6é eTSM 1. 000000 -1
W ead6 eTSM 1. 000000 -1
Wwite7 eTSM 1. 000000 -1
W ead7 eTSM 1. 000000 -1
Wwite8 eTSM 1. 000000 -1
W ead8 eTSM 1. 000000 -1
Wwite9 eTSM 1. 000000 -1
W ead9 eTSM 1. 000000 -1
WwitelO0 eTSM 1. 000000 -1
W eadl0 eTSM 1. 000000 -1
Wwitell eTSM 1. 000000 -1
W eadll eTSM 1. 000000 -1
Wwitel2 eTSM 1. 000000 -1
W eadl2 eTSM 1. 000000 -1
Mmnmd eRMD 1. 000000 -1

Wnidl eRM D 1. 000000 -1
Wm d2 eRM D 1. 000000 -1
Wm d3 eRM D 1. 000000 -1
Wm d4 eRM D 1. 000000 -1
Wni d5 eRM D 1. 000000 -1
Wni dé eRM D 1. 000000 -1
Wm d7 eRM D 1. 000000 -1
Wm d8 eRM D 1. 000000 -1
Wmnm d9 eRM D 1. 000000 -1

Wni d10 eRM D 1. 000000 -1
Wnidll eRM D 1. 000000 -1
W dl2 eRM D 1. 000000 -1
M us eLUS 1.000000 -1
Wusl eLUS 1.000000 -1
Wus2 eLUS 1.000000 -1
Wus3 eLUS 1.000000 -1
Wus4 elLUS 1.000000 -1

-1
-1
-1
-1
-1
-1
-1
-1
-1
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I S S A A A A B O I I B B N A A A A

1

R
$0

$ResponseTi me = $UserEntryTi me

Wus5 elLUS 1.
Wus6 elLUS 1.
Wus7 elLUS 1.
Wus8 elLUS 1.
Wus9 elLUS 1.

000000 -1
000000 -1
000000 -1
000000 -1
000000 -1

Wus10 eLUS 1.000000 -1
Wusl1l eLUS 1.000000 -1

Wus12 eLUS 1.000000 -1

Mhttpd eHTTPD 1.000000 -1
. 000000 -1
. 000000 -1
. 000000 -1
. 000000 -1
. 000000 -1
. 000000 -1
. 000000 -1
. 000000 -1

Wht t pd1l
VWt t pd2
VWt t pd3
VWht t pd4
Wht t pd5
Wht t pd6
VWt t pd7
VWt t pd8
VWt t pd9

Wit t pd10 eHTTPD 1. 000000 -1
Whtt pd11l eHTTPD 1. 000000 -1
Whtt pd12 eHTTPD 1. 000000 -1

eHTTPD
eHTTPD
eHTTPD
eHTTPD
eHTTPD
eHTTPD
eHTTPD
eHTTPD
eHTTPD

PRRRPRRPRRRRR

000000 -1

eTSM JSread 1.000000 -1
eTSM JSwrite 1.000000 -1

0

= $nUser
$Thr uput

$Puti |

-1
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1.
50
1
0.
-1

$s
$n

P

' DT TTTTTTO

e e e e e e e e i e |
[N

=

v nnunuNOOm

APPENDIX C1-FDMC(m=1) LON File

Coment :
TSWLO01. xI gn
Aut hor :
Model
-100% Probabilities for
Think Tinme: Z= 1000 ns
Main Controller
July 29, 2001

OE-5

5

ol ver

User =

8

PartyA P f
PartyB P f
Tupl eSpace_P f
Device A f
Device B f

s P f

Process_AB f
Backup_ P f

12

Party_AUser

Party A f ptyA tae
Party B f ptyB ell

16

Party_ AUser
Party_AUser
1.

ptyB ell
devA ell
nc_ell 1
devB ell
devA el2

1
.0
1
1

0
0
0
0
0
0

o' OO

Khal id H. Siddi qui
W th

= parasrvn -B 20, 100000 -m | ogj ul 28
1: 300, 30

Party_AUser -1 PartyA P m $nUser % $Thruput
-1 PartyA P m $nUser

-1 PartyB P m $nUser

Device A f devA ell devA el2 -1 Device A m $nUser
Main_Controller f nc_ell nc_tae -1 OGS P

Process A f psA ell psA el2 -1 Process_AB

Process_B f psB ell psB el2 -1 Process_AB

Process_Backup f psBk_ell -1 Backup_ P

Device B f devB ell -1 Device B

TS Critical Section f ts_cs
TS psA psB f ts _psA psB -1 Tupl eSpace P
TS psB psBk f ts_psB psBk -1 Tupl eSpace_P

100 -1 9% $UserEntryTine

0 -1
-1
-1
1

-1
-1

t he users

-1 Tupl eSpace_P
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0.0 -1
0.0 -

Cooor=
cocoooo

1
-1
-1
. -1
psBk _el11 1.0 0.0 0.0 -1
Party AUser ptyAtae 1 0 0 -1
ptyA tae ptyA ell
nc_tae nc_el2
devA ell nt_ell 1.0 -1
nc_ell psA ell 1.0 -1
devA el2 nt_tae 1.0 0.0
psA el2 ts_psA psB 1.0
ts_psA psB psB ell 1.0
psB ell ptyB ell 1.0 -1
ptyB ell devB ell 1.0 -1
psB el2 ts psB psBk 1.0 0.0 0.0 -1
ts psB psBk psBk ell 1.0 0.0 0.0 -1
psB ell ptyB el11 1.0 0.0 0.0 -
ts_psA psBts cs 1.0 0.0 0.0
ts_psB psBk ts _¢cs 1.0 0.0 0.0

0.0 -1
-1
-1

1
-1
-1

KKK TTTTANTTAIPI< 000000 0o

Party_ A
ptyA ell 1.0
ptyA ell devA ell 1.0

< 0>

(7]

ptyA el2 1.0
ptyA el2 devA el2 1.0

N

DtyA ell -> ptyA el2;
pt yA el2[ ptyA tae]
1

A Main_Controller

s nc_el2 1.0

y nc_el2 psA el2 1.0
s nc_el3 1.0

z nc_el3 psB el2 1.0

nc_el2 -> nt_el3;
nc_el3[ nt_t ae]
-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi me

-1

144



Ti

me/Per for mance Budgeting for Software Designs

APPENDIX C2-MC(0.05, 0.15, 0.15) LQN File

G

1.
50
1
0.
-1

$s
$n

' T T TTTTT O

I s A e e e i e e |
[N

[N

E

wnnN®»

Comment: '
TSWLO7. xI gn
Aut hor: Khalid H Siddiqu
Model with
-100% Probabilities for all the users
- Think Time: Z= 1000 ns
- Main Controller Threads: m=10
- Changes in demands of MinController 0.05, 0.15 and 0.15
July 29, 2001
OE-5
5
ol ver = parasrvn -B 20, 100000 - m | ogj ul 28

User= 1: 300, 30

8

PartyA P f
PartyB P f
Tupl eSpace P f
Device A f
Device B f
OS P f
Process AB f
Backup P f

12

Party AUser r Party AUser -1 PartyA P m $nUser % $Thruput
Party A f ptyAtae -1 PartyA P m $nUser

Party B f ptyB ell -1 PartyB P m $nUser

Device A f devA ell devA el2 -1 Device A m $nUser
Main_Controller f nc_ell nc_tae -1 OS P m 10
Process_A f psA ell psA el2 -1 Process_AB
Process B f psB ell psB el2 -1 Process_AB
Process_Backup f psBk_ell -1 Backup_ P

Device B f devB ell -1 Device B

TS Critical Section f ts_cs -1 Tupl eSpace_P

TS psA psB f ts_psA psB -1 Tupl eSpace_ P

TS psB psBk f ts _psB psBk -1 Tupl eSpace P

16

Party AUser 1 0 0 -1 % $UserEntryTi ne
Party AUser 1000 0 0 -1

ptyB ell 1.0 0.0 0.0 -1

devA ell 1.0 0.0 0.0 -1

nc_ell 0.05 0.0 0.0 -1
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devB ell 1
devA el2 1
ts cs 1.0
ts_psA psB
ts psB psBk 1.0 0.0
psA ell1 1.0 0.0 0.0
psA el2 1.0 0.0 0.0 -
psB el1 1.0 0.0 0.0
psB el2 1.0 0.0 0.0 -
psBk el11 1.0 0.0 0.0 -1
Party_ AUser ptyAtae 1 00 -1
ptyA tae ptyA ell
nc_tae nc_el2

devA ell nt_ell 1.0 -1
nc_ell psAell 1.0 -1
devA el2 nt_tae 1.0 0.0
psA el2 ts _psA psB 1.0
ts_psA psB psB ell 1.0
psB ell ptyB ell 1.0 -1

ptyB ell devB ell 1.0 -1

psB el2 ts_psB psBk 1.0 0.0 0.0 -1
ts_psB _psBk psBk_el1 1.0 0.0
psB ell ptyB el11l 1.0 0.0 0.0
ts_psA psBts cs 1.0 0.0 0.0
ts psB psBk ts ¢cs 1.0 0.0 0.0

0.0 -1
-1
-1

1
-1
-1

KKK TITITITANTTSIISN 000000 0nnonon

Party_ A
ptyA ell 1.0
ptyA ell devA ell 1.0

< v

s ptyA el2 1.0
z ptyA el2 devA el2 1.0

ptyA ell -> ptyA el2;
pt yA el2?[ ptyA tae]
-1

A Main_Controller
s nc_el2 0.15
y nc_el2 psA el2 1.0

s nc_el3 0.15
z nc_el3 psB el2 1.0

mc_el2 -> nc_el3:;
nc_el3[ nt_tae]
-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi ne

-1

0.0 -1
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APPENDIX C3-DVD(0.1, 0.1) LOQN File

G
" Comment: '’
TSWL08. xI gn
Aut hor: Khalid H Siddiqui
Model with
-100% Probabilities for all the users
- Think Tinme: Z= 1000 ns
- Main Controller Threads: mel10
- Changes in demands of MainController 0.05, 0.15 and 0.15
- Changes in demands of Device A and Device B 0.1, 0.1
July 29, 2001
1.0E-5
50
1
0.5
-1

$sol ver = parasrvn -B 20, 100000 -m | ogj ul 28
$nUser = 1: 300, 30

P8

PartyA P f
PartyB P f
Tupl eSpace P f
Device A f
Device B f
OS P f
Process_AB f
Backup P f

' OTTTTTTTTO

=

12

Party AUser r Party AUser -1 PartyA P m $nUser % $Thruput
Party A f ptyAtae -1 PartyA P m $nUser

Party B f ptyB ell -1 PartyB P m $nUser
Device A f devA ell devA el2 -1 Device A m $nUser
Main_Controller f nc_ell nc_tae -1 OS P m 10
Process A f psA ell psA el2 -1 Process_AB
Process B f psB ell psB el2 -1 Process_AB
Process_Backup f psBk_ell -1 Backup_ P

Device B f devB ell -1 Device B

TS Critical Section f ts_cs -1 Tupl eSpace_P

TS psA psB f ts_psA psB -1 Tupl eSpace P

TS psB psBk f ts _psB psBk -1 Tupl eSpace P

L A e e |

=

E 16

Party AUser 1 0 0 -1 % $UserEntryTi ne
Party AUser 1000 0 0 -1

ptyB e11 1.0 0.0 0.0 -1

devA ell1 0.1 0.0 0.0 -1

nc_ell 0.05 0.0 0.0 -1

wnnN»
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devB el1 0.1 0.0 O
devA el2 0.1 0.0 O
ts . cs 1.0 0.0 0.0
ts_psA psB 1.0 0.0
ts psB psBk 1.0 0.0
psA ell1 1.0 0.0 0.0
psA el2 1.0 0.0 0.0 -
psB el1 1.0 0.0 0.0
psB el2 1.0 0.0 0.0 -
psBk el11 1.0 0.0 0.0 -1
Party_ AUser ptyAtae 1 00 -1
ptyA tae ptyA ell
nc_tae nc_el2

devA ell nt_ell 1.0 -1
nc_ell psAell 1.0 -1
devA el2 nt_tae 1.0 0.0
psA el2 ts _psA psB 1.0
ts_psA psB psB ell 1.0
psB ell ptyB ell 1.0 -1

ptyB ell devB ell 1.0 -1

psB el2 ts_psB psBk 1.0 0.0 0.0 -1
ts_psB _psBk psBk_el1 1.0 0.0
psB ell ptyB el11l 1.0 0.0 0.0
ts_psA psBts cs 1.0 0.0 0.0
ts psB psBk ts ¢cs 1.0 0.0 0.0

0.0 -1
-1
-1

1
-1
-1

KKK TITITITANTTSIISN 000000 0nnonon

Party_ A
ptyA ell 1.0
ptyA ell devA ell 1.0

< v

s ptyA el2 1.0
z ptyA el2 devA el2 1.0

ptyA ell -> ptyA el2;
pt yA el2?[ ptyA tae]
-1

A Main_Controller
s nc_el2 0.15
y nc_el2 psA el2 1.0

s nc_el3 0.15
z nc_el3 psB el2 1.0

ht_elZ -> nc_els3;
nc_el3[nc_tae]
-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi ne
-1

0.0 -1
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APPENDIX C4-PABD (0.1, 0.1) LON File

G
" Coment: "'
TSWL09. xI gn
Aut hor: Khalid H Siddiqui
Model with
-100% Probabilities for all the users
- Think Time: Z= 1000 ns
- Main Controller Threads: m=10
- Changes in demands of MainController 0.05, 0.15 and 0.15
- Changes in demands of Device A and Device B 0.1, 0.1
- Changes in demands of Process A and Process B 0.1, 0.1
July 29, 2001
1.0E-5
50
1
0.5
-1

$sol ver = parasrvn -B 20, 100000 -m | ogj ul 28

$

'O T T TTTT O

L e e |
[N

=

E
S
Z
S

nUser= 1: 300, 30

8

PartyA P f
PartyB P f
Tupl eSpace_P f
Device A f
Device B f
Os P f
Process AB f
Backup P f

12

Party AUser r Party AUser -1 PartyA P m $nUser % $Thruput
Party Af ptyAtae -1 PartyA P m $nUser

Party B f ptyB ell -1 PartyB P m $nUser
Device A f devA ell devA el2 -1 Device A m $nUser
Main_Controller f nc_ell nc_tae -1 OGS P m 10
Process_A f psA ell psA el2 -1 Process_AB
Process_B f psB ell psB el2 -1 Process_AB
Process_Backup f psBk_ell -1 Backup_ P

Device B f devB ell -1 Device B

TS Critical Section f ts_cs -1 Tupl eSpace P

TS psA psB f ts_psA psB -1 Tupl eSpace_ P

TS psB psBk f ts_psB psBk -1 Tupl eSpace_P

16

Party AUser 1 0 0 -1 % $UserEntryTi ne
Party_ AUser 1000 0 O -1

ptyB e11 1.0 0.0 0.0 -1
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devA ell1 0.1 0.0 0.0 -1
nc_ell 0.05 0.0 0.0 -1
devB ell 0.
devA el2
ts_cs 1.

S
S
psA ell 0
psA el2 0.
psB ell O
psB el2 0O
psBkelllOOOOO -1
Party AUser ptyAtae 1 00 -1
ptyA tae ptyA ell
nc_tae nc_el2

devA ell nt_ell 1.0 -1
nmc_ell psA ell 1.0 -1
devA el2 nt_tae 1.0 0.0
psA el2 ts_psA_psB .0
ts_psA psB psB ell 1.0
psB ell ptyB ell 1. O -1

ptyB ell devB ell 1.0 -1

psB el2 ts_psB psBk 1.0 0.0 0.0 -1
ts psB psBk psBk ell 1.0 0.0
psB ell ptyB el11l 1.0 0.0 0.0
ts_psA psBts cs 1.0 0.0 0.0
ts_psB psBk ts_¢cs 1.0 0.0 0.0

coooo

0.0 -1
-1
-1

-1
-1
-1

KKK TTTTTTTINTTIYD>DPROOOOOON OO nnnonon

Party_ A
ptyA ell 1.0
ptyA ell devA ell 1.0

< 0>

(7]

ptyA el2 1.0
ptyA el2 devA el2 1.0

N

ptyA ell -> ptyA el2:
pt yA el2[ ptyA tae]
-1

A Main_Controller

s nc_el2 0.15

y nc_el2 psA el2 1.0
s nc_el3 0.15

z nc_el3 psB el2 1.0
nc_el2 -> nt_el3;
nc_el3[ nt_t ae]

-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi ne

-1

0.0 -1
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APPENDIX C5-PAB (m =user) LON File

Coment :
TSWL10. xI gn

Aut hor: Khalid H Siddiqui

Model with

-100% Probabilities for all the users

- Think Time: Z= 1000 ns

- Main Controller Threads: m=10

- Changes in demands of MainController 0.05, 0.15 and 0.15

- Changes in demands of Device A and Device B 0.1, 0.1

- Changes in demands of Process A and Process B 0.1, 0.1 Wth
Mul tiple copies

July 29, 2001

1.0E-5
50

1

0.5

-1

$sol ver = parasrvn -B 20, 100000 -m | ogj ul 28
$nUser = 1: 300, 30

P 8

PartyA P f
PartyB P f
Tupl eSpace_P f
Device A f
Device B f
Os P f
Process AB f
Backup_ P f

' O TTTTTTO

=

12

Party AUser r Party AUser -1 PartyA P m $nUser % $Thruput
Party Af ptyAtae -1 PartyA P m $nUser

Party B f ptyB ell -1 PartyB P m $nUser

Device A f devA ell devA el2 -1 Device A m $nUser
Main_Controller f nc_ell nc_tae -1 OGS P m 10
Process_A f psA ell psA el2 -1 Process_AB m $nUser
Process_B f psB ell psB el2 -1 Process_AB m $nUser
Process_Backup f psBk_ell -1 Backup_ P

Device B f devB ell -1 Device B

TS Critical Section f ts_cs -1 Tupl eSpace P

TS psA psB f ts_psA psB -1 Tupl eSpace_ P

TS psB psBk f ts_psB psBk -1 Tupl eSpace_P

I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

=

E 16

s Party AUser 1 0 0 -1 % $UserEntryTi me
Z Party_ AUser 1000 0 O -1

s ptyB el1 1.0 0.0 0.0 -1
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devA ell1 0.1 0.0 0.0 -1
nc_ell 0.05 0.0 0.0 -1
devB ell 0.
devA el2
ts_cs 1.

S
S
psA ell 0
psA el2 0.
psB ell O
psB el2 0O
psBkelllOOOOO -1
Party AUser ptyAtae 1 00 -1
ptyA tae ptyA ell
nc_tae nc_el2

devA ell nt_ell 1.0 -1
nmc_ell psA ell 1.0 -1
devA el2 nt_tae 1.0 0.0
psA el2 ts_psA_psB .0
ts_psA psB psB ell 1.0
psB ell ptyB ell 1. O -1

ptyB ell devB ell 1.0 -1

psB el2 ts_psB psBk 1.0 0.0 0.0 -1
ts psB psBk psBk ell 1.0 0.0
psB ell ptyB el11l 1.0 0.0 0.0
ts_psA psBts cs 1.0 0.0 0.0
ts_psB psBk ts_¢cs 1.0 0.0 0.0

coooo

0.0 -1
-1
-1

-1
-1
-1

KKK TTTTTTTINTTIYD>DPROOOOOON OO nnnonon

Party_ A
ptyA ell 1.0
ptyA ell devA ell 1.0

< 0>

(7]

ptyA el2 1.0
ptyA el2 devA el2 1.0

N

ptyA ell -> ptyA el2:
pt yA el2[ ptyA tae]
-1

A Main_Controller

s nc_el2 0.15

y nc_el2 psA el2 1.0
s nc_el3 0.15

z nc_el3 psB el2 1.0
nc_el2 -> nt_el3;
nc_el3[ nt_t ae]

-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi ne

-1

0.0 -1
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APPENDIX D1 - Switch (CPUd =0.25) LON File

# UCMZLON out put

G
" Aut hor: Khalid H Siddiqui
- 100% Probabilities for all the users
- CPU demands for Switch 0.25
- Common Processor for Switch and CPU
1.0E-5
50
1
0.5
-1

$sol ver = parasrvn -B 20, 100
$nUser = 50: 500, 50

PO
p pl f % $OrigUtil
p p2 f % $SwitchUti |
pp3f % $Termltil
-1

T o

ef Taskl r RefTaskl -1 pl m $nUser 9% $Thruput
igf Oig El Oig E2 -1 pl m $nUser

82

f S EL -1 p2
mf Term Ela Term Elb TermE2 -1 p3 m $nUser

L i i i e |
o Q

[N

0

Switch E1l Switch Al

Switch E2a Switch_ A3

Switch E2b Switch_ A4

Switch E3 Switch Al7

Oig_E1 Oig_A2

Oig E2 Oig All

Term Ela Term Ala

Term Elb Term Alb

Term E2 Term Al10

OS E1 Os Al

Ref Taskl 1.000000 -1 % $UserEntryTi me
Ref Taskl 1000 -1

Ref Taskl Orig _E1 1.000000 -1

'S NO>>>>>>I>I>I>>M

[N

Switch

Switch Al 1

Swi tch_Al1 0. 25000000
Switch A3 1

Swi t ch_A3 0. 25000000
Switch A4 1

Swi tch_A4 0. 25000000

w00

tch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
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f
S
f
s
f
S
y
f
s
y
f
S
z
f
s
z
f
S
f
s
f
S
z

Switch_A6 1

Swi tch_A6 0.25000000
Switch_A8 1

Swi t ch_A8 0.25000000

Switch _A8a 1

Swi t ch_A8a 0.25000000
Switch_A8a Term Ela 1. 000000
Switch_A8b 1

Swi t ch_A8b 0. 25000000

Swi tch_A8b Term Elb 1. 000000
Switch_A9 1

Swi tch_A9 0.25000000
Switch_A9 Orig_E2 1.000000
Switch_A13 1

Swi t ch_A13 0. 25000000
Switch_Al13 OS_E1 1.000000
Switch_Al5 1

Swi t ch_A15 0. 25000000
Switch_Al7 1

Swi t ch_Al17 0.25000000
Switch_A19 1

Swi tch_A19 0.25000000
Switch_A19 Term E2 1. 000000

Switch_Al[ Swi tch_E1];

Switch A3 -> Switch A6;

Switch_A6[ Switch_E2a];

Switch A4 -> Switch A8;

Switch A8 -> Switch_A8a & Switch_A8b;

Switch_A8a & Switch_A8b -> Swi tch_A9;

Switch A9 -> Switch Al13 & Switch_Al5 & Switch_Al9;
Swi t ch_A15[ Swi t ch_E2b] ;

Switch_Al7[ Swi t ch_E3]

-1

<0t P TN TR0 TS0 TP TR0 T

Oig

Oig A2 1

Orig A2 1.000000

Oig_A2 Switch_E1l 1.000000
Oig M1

Oig A4 1.000000

Oig_AMa 1

Orig_Ada 1.000000

Oig_Ada Switch_E2a 1.000000
Oig Adb 1

Oig_Adb 1.000000

Oig Adb Switch_E2b 1.000000
Oig A5 1

Oig_A5 1.000000

Oig A7 1

Orig_A7 1.000000

Oig A9 1

Orig A9 1.000000

Oig All 1

Oig_All 1.000000

Oig All Switch_E3 1.000000
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dig_AZ -> Oig_A4;

Oig_A4 -> (0.500000) Orig_Ada + (0.500000) Orig_Adb;

Oig AMa -> Oig A5
Oig AMdb -> Oig A7,
Oig A7 -> Oig_A9;
Oig A9 -> Oig All;
Oig_AL1l[Oig_E1]

-1

>
—
@
3

Term Ala 1
Term Ala 1. 000000
Term Alb 1
Term Alb 1. 000000
Term A3 1
Term A3 1. 000000
Term A5 1
Term A5 1. 000000
Term A8 1
Term A8 1. 000000
Term A9 1
Term A9 1.000000
Term A10 1
Term A10 1. 000000
Term A11 1
Term_ All 1. 000000

) mh U Th ) —h) —hU) —h —h ) —h W —h

Term Ala -> Term A5 & Term A8;
Term Alb -> Term A3;

Term A3[ Term El1b] ;

Term A5 & Term A8 -> Term A9,
Term A9[ Term Ela];

Term A10 -> Term All

-1

cs

s Al L

OS_Al1 1.000000

LogBegin ABAt hid33 1
LogBegi n_ABA t _hi d33 1. 000000
s A2 1

0s_A2 1.000000

TR TR Th

'CB_Al -> LogBegi n_ABA t hi d33;
LogBegi n_ABA t hi d33 -> OS_A2
-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi me
$Origltil

$SwitchUti |

$Termti |

-1
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APPENDIX D2 —Orig (CPUd=0.5) LQN File

G
" - 100% Probabilities for all the users
- CPU demands for Switch 0.25
- CPU demands for Oig 0.5
- Ref Task1=Ori g=Ter menUser
- Common Processor for Switch and CPU
1.0E-5
50
1
0.5
-1

$sol ver = parasrvn -B 20, 100
$nUser = 50: 500, 50

PO
p pl f % $OrigUtil
p p2 f % $SwitchUtil
pp3f % $Termltil
-1

TO
t Ref Taskl r Ref Taskl -1 pl m $nUser % $Thruput
t Oigf Oig El Oig E2 -1 pl m $nUser

t Switch f Switch_ E1 Switch_E2a Switch E2b Switch E3 -1 p2

t 6sf OGS El1 -1 p2
t Termf TermEla Term Elb TermE2 -1 p3 m $nUser
-1

0

Switch El1 Switch Al

Switch E2a Switch_ A3

Switch E2b Switch A4

Switch E3 Switch Al7

Oig El1 Oig A2

Oig_E2 Oig_Al1l

Term Ela Term Ala

Term Elb Term Alb

Term E2 Term Al10

OS_ E1 OS Al

Ref Taskl 1.000000 -1 % $UserEntryTi me

Ref Taskl 1000 -1

Ref Taskl Orig_E1 1.000000 -1
1

'S NOP>>>>>I>>>>M

A Switch

f Switch Al 1

s Switch_ Al 0.25000000
f Switch A3 1

s Swi tch_A3 0.25000000
f Switch A4 1

s Switch_ A4 0.25000000
f Switch A6 1
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s
f
s
f
s
y
f
s
y
f
s
z
f
s
z
f
s
f
s
f
s
z

Switch_A6 0O
Switch_A8 1
Switch_A8 0
Swi t ch_A8a
Swi t ch_A8a

Switch_A8a Term Ela 1. 000000

Swi t ch_A8b
Swi t ch_A8b
Swi t ch_A8b
Switch A9 1
Switch A9 0

Switch_A9 Orig _E2 1.000000

Switch_Al13
Swi tch_A13
Swi tch_A13
Swi t ch_Al5
Swi tch_Al5
Switch_Al7
Swi tch_Al7
Swi tch_A19
Swi tch_Al19
Swi tch_A19

. 25000000

. 25000000
1
0. 25000000

1
0. 25000000

Term Elb 1. 000000

. 25000000

1
0. 25000000

OS_E1 1.000000

1
0. 25000000
1
0. 25000000
1
0. 25000000

Term E2 1. 000000

Switch_Al[ Swi tch_E1];
Switch A3 -> Switch_A6;
Switch_A6[ Swit ch_E2a];
Switch A4 -> Switch A8;

Switch A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Sw tch_A9;
Switch A9 -> Switch Al13 & Switch_Al5 & Switch_Al9;

Swi t ch_A15[ Swi t ch_E2b] :
Swi t ch_AL7[ Swi t ch_E3]

-1

T TP TP T TR TR DT TR0 T

Oig
Oig A2 1
Oig A2 0.5

Oig_A2 Switch_E1 1.000000

Oig_ M1

Oig_A4 0.5
Oig_AMa 1
Oig_Ada 0.

Oi g_Ada Switch_E2a 1.000000

Oig Adb 1
Oig_Adb 0.

Oi g_A4b Switch_E2b 1.000000

Oig A5 1
Oig A5 0.5
aig A7 1
Oig_A7 0.5
oig_A9 1
Oig_A9 0.5
aig All 1
Oig_All 0.

Orig_All Switch_E3 1.000000

000000

000000

5000000

5000000

000000

000000

000000

5000000
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Oig A2 -> Oig_Ad;

Oig_A4 -> (0.500000) Orig_Ada + (0.500000) Orig_Adb;

Oig Ada -> Oig_ A5
Oig AMdb -> Oig A7,
Oig A7 -> Oig_A9;
Oig A9 -> Oig All;
Oig_AL1l[Oig_E1]

-1

A Term

Term Ala 1

Term Ala 1. 000000
Term Alb 1

Term Alb 1. 000000
Term A3 1
Term A3 1. 000000
Term A5 1
Term A5 1. 000000
Term A8 1

Term A8 1. 000000
Term A9 1
Term A9 1.000000
Term A10 1

Term A10 1. 000000
Term A1l 1

Term_ All 1. 000000

) TR TR —h) —h ) —h —h ) —h W —h

Term Ala -> Term A5 & Ter m A8;
Term Alb -> Term A3;

Term A3[ Term El1b] ;

Term A5 & Term A8 -> Term A9;
Term A9[ Term Ela] ;

Term A10 -> Term All

-1

cs

s Al L

0Ss_Al 1.000000

LogBegin ABAt hid33 1
LogBegi n_ABA t hi d33 1. 000000
s A2 1

0s_A2 1.000000

T TP TR T

.CB_Al -> LogBegi n_ABA t hi d33;
LogBegin_ ABAt hid33 -> OS_A2
-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi me
$Origltil

$SwitchUti |

$Termti |

-1
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APPENDIX D3 —-Term (CPUd=0.1) LON File

G
- CPU demands for Switch 0.25
- CPU demands for Oig 0.5
- CPU demands for Term 0.1
1.0E-5
50
1
0.5
-1

$sol ver = parasrvn -B 20, 100
$nUser = 50: 500, 50

PO
p pl f % $OrigUtil
p p2 f % $SwitchUtil
p p3 f % $Ternhtil
-1

TO

t Ref Taskl r Ref Taskl -1 pl m $nUser % $Thruput

t Oigf Oig El1 Oig E2 -1 pl m $nUser

t Switch f Switch E1 Switch_E2a Switch E2b Switch E3 -1 p2
t &S f OS_El1 -1 p2

t Termf TermEla Term Elb TermE2 -1 p3 m $nUser

-1

0

Switch E1 Switch Al

Switch E2a Switch_ A3

Switch E2b Switch A4

Switch E3 Switch Al7

Oig El1 Oig A2

Oig E2 Oig All

Term Ela Term Ala

Term Elb Term Alb

Term E2 Term AlO

OS_E1 Os Al

Ref Taskl 1.000000 -1 % $UserEntryTi nme
Ref Taskl 1000 -1

Ref Taskl Orig _E1 1.000000 -1

'S NOP>I>>>>>>>>>M

=

Swi t ch

Switch_ Al
Switch Al
Switch_ A3
Switch_ A3
Switch_Ad
Switch_Ad
Switch_A6
Switch_A6
Switch_A8

. 25000000

. 25000000

. 25000000

. 25000000

N ThN TR TR TR D
POFRPROFRPRORFROR
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N0 020NN TN PPN O

Switch_A8 0
Swi tch_A8a
Swi tch_A8a
Swi t ch_A8a
Swi t ch_A8b
Swi t ch_A8b
Swi t ch_A8b
Switch_A9 1
Switch_A9 0O

Switch_ A9 Orig_E2 1.000000

Switch_Al13
Switch_Al13
Switch_Al13
Swi t ch_A15
Swi t ch_Al5
Switch_Al7
Switch_Al7
Swi tch_Al19
Swi tch_A19
Swi tch_A19

Swi t ch_Al[ Swi
Switch A3 ->
Swi t ch_A6[ Swi
Switch A4 -> Switch_AS8;

Switch A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;

. 25000000
1
0. 25000000

Term Ela 1.000000

1
0. 25000000

Term Elb 1.000000

. 25000000

1
0. 25000000

OS_E1 1.000000

1
0. 25000000
1
0. 25000000
1
0. 25000000

Term E2 1. 000000

tch_E1];
Swi t ch_A6;
tch_E2a];

Switch A9 -> Switch Al13 & Switch _Al5 & Switch_Al9;
Swi tch_A15[ Swi t ch_E2b];
Switch_Al7[ Swi t ch_E3]

-1

QQ"“<U)""UJ_"U)_"U)_"*<U)_'“<UJ_"U)_'“<UJ_"]>

Oig
Oig A2 1
Oig A2 0.5

Oig_A2 Switch_E1 1.000000

Oig M 1

Oig A 0.5
Oig AMa 1l
Oig_Ada 0.

Oi g_Ada Switch_E2a 1.000000

Oig_Adb 1
Oig_Adb 0.

Oig_Adb Switch_E2b 1.000000

Oig A5 1
Orig A5 0.5
Oig A7 1
Orig_A7 0.5
Oig A9 1
Oig A9 0.5
Orig _All 1
Orig_All 0.

Oig_All Switch_E3 1.000000

ig A2 -> O

ig_A4 -> (0.500000) Orig Ada + (0.500000)

000000

000000

5000000

5000000

000000
000000
000000

5000000

i g_A4;

Oi g_Adb;
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Oig Ada -> Oig_ A5
Oig AMdb -> Oig A7,
Oig A7 -> Oig_A9;
Oig A9 -> Oig All;
Oig AL1[Oig E1]

-1

A Term

Term Ala 1

Term Ala 0.1000000
Term Alb 1
Term_Alb 0. 21000000
Term A3 1

Term_A3 0.1000000
TermAS 1

Term A5 0.1000000
Term A8 1

Term_A8 0.1000000
Term A9 1

Term_ A9 0.1000000
Term A10 1
Term_A10 0.1000000
Term A1l 1

Term A1l 0.1000000

SN TR TR —h ) —h) —h ) —h —h —h

Term Ala -> Term A5 & Ter m A8;
Term Alb -> Term A3;

Term A3[ Term El1Db];

Term A5 & Term A8 -> Term A9;
Term A9[ Term Ela] ;

Term A10 -> Term All

-1

os

OS Al 1

OS_Al 1.000000

LogBegin_ABA t hid33 1
LogBegi n_ABA t hi d33 1. 000000
Os A2 1

OS_A2 1.000000

T TR TR TR

0S_Al -> LogBegi n_ABA t_hi d33;
LogBegi n_ABA t hi d33 -> OS_A2
1

RO

$0 = $nUser

$Thr uput

$ResponseTi me = $UserEntryTi ne
$Origutil

$SwitchUti |

$Ternmtil

-1
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APPENDIX E1 - Switch (CPUd =0.25) LQN File
G

- Common Processor for Switch and OS

1. 0E-5
50

1

0.5

-1

$sol ver = parasrvn -B 20, 100
$nUser = 50: 500, 50

PO

p pl f % $OrigUtil
p p2 f % $SwitchUtil
p p3f % $Termtil
p p4 f % $OSUti l

-1

T o

ef Taskl r RefTaskl -1 pl m $nUser 9% $Thruput
igf Oig El Oig E2 -1 pl m $nUser

tch f Switch_E1 Switch_E2a Switch_E2b Switch_E3 -1 p2
f OS El -1 p4

mf TermEla TermElb TermE2 -1 p3 m $nUser

B2

L e A g
o Q

[N

0

Switch E1l Switch Al
Switch_E2a Switch_A3

Switch E2b Switch_ A4

Switch E3 Switch Al7

Oig_E1 Oig_A2

Oig E2 Oig All

Term Ela Term Ala

Term Elb Term Alb

Term E2 Term Al0

OS E1 s Al

Ref Taskl 1.000000 -1 % $UserEntryTi me
Ref Taskl 1000 -1

Ref Taskl Orig _E1 1.000000 -1

'S NOP>I>I>>>>>>>>M

=

Swi tch

Switch_ Al
Switch_ Al
Switch_ A3
Switch_ A3
Switch A4

1
0. 25000000
1
0
1
Swi t ch_A4 0.25000000
1
0
1
0

. 25000000

Swi tch_A6
Switch_A6
Switch_ A8
Switch_A8

. 25000000

w o +~n P o >

. 25000000
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N W00 "N TNNWTOL TN ™

Switch_A8a
Swi tch_A8a

Switch_A8a Term Ela 1. 000000

Swi t ch_A8b
Swi t ch_A8b
Swi t ch_A8b
Switch A9 1
Switch_A9 0

Switch A9 Orig_E2 1.000000

Swi tch_A13
Switch_Al13
Switch_Al13
Swi tch_Al5
Swi t ch_A15
Swi tch_Al7
Switch_Al7
Swi tch_Al19
Swi tch_Al19
Swi tch_A19

1
0. 25000000

1
0. 25000000

Term Elb 1.000000

. 25000000

1
0. 25000000

OS_E1 1. 000000

1
0. 25000000
1
0. 25000000
1
0. 25000000

Term E2 1. 000000

Switch_Al[ Switch_E1];
Switch A3 -> Switch A6;
Swi tch_A6[ Switch_E2a];
Switch A4 -> Switch_AS8;

Switch A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Switch_A9;

Switch A9 -> Switch Al13 & Switch _Al5 & Switch_Al9;
Swi tch_A15[ Swi t ch_E2b];
Switch_Al7[ Swi t ch_E3]

-1

QQ"“<U)""UJ_"U)_"U)_"*<U)_'“<UJ_"U)_'“<UJ_"]>

Oig
Oig A2 1
Oig A2 1.0

Oig_A2 Switch_E1 1.000000

Oig M 1

Oig M 1.0
Oig AMa 1l
Oig_Ada 1.

Oi g_Ada Switch_E2a 1.000000

Oig_Adb 1
Oig_Adb 1.

Oig_Adb Switch_E2b 1.000000

Oig A5 1
Oig A5 1.0
Oig A7 1
Oig A7 1.0
Oig A9 1
Oig A9 1.0
Orig _All 1
Orig_All 1.

Oig_All Switch_E3 1.000000

ig A2 -> O

ig_A4 -> (0.500000) Orig Ada + (0.500000)

00000

00000

000000

000000

00000
00000
00000

000000

i g_A4;

Oi g_Adb;
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Oig Ada -> Oig_ A5
Oig AMdb -> Oig A7,
Oig A7 -> Oig_A9;
Oig A9 -> Oig All;
Oig AL1[Oig E1]

-1

A Term

Term Ala 1

Term Ala 1.000000
Term Alb 1

Term Alb 1. 000000
Term A3 1
Term A3 1. 000000
TermAS 1
Term A5 1. 000000
Term A8 1
Term A8 1. 000000
Term A9 1
Term A9 1. 000000
Term A10 1
Term_A10 1. 000000
Term A1l 1

Term A1l 1.000000

SN TR TR —h ) —h) —h ) —h —h —h

Term Ala -> Term A5 & Ter m A8;
Term Alb -> Term A3;

Term A3[ Term El1Db];

Term A5 & Term A8 -> Term A9;
Term A9[ Term Ela] ;

Term A10 -> Term All

-1

os

OS Al 1

OS_Al 1.000000

LogBegin_ABA t hid33 1
LogBegi n_ABA t hi d33 1. 000000
Os A2 1

OS_A2 1.000000

T TR TR TR

0S_Al -> LogBegi n_ABA t_hi d33;
LogBegi n_ABA t hi d33 -> OS_A2
1

RO

$0 = $nUser

$Thr uput

$ResponseTi me = $UserEntryTi ne
$Origutil

$SwitchUti |

$Ternmtil

$OSUt i |

-1
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APPENDIX E2—Orig (CPUd= 0.5) LON File

G
" - CPU demands for Switch 0.25
- CPU demands for Oig 0.5
- Common Processor for Switch and OS
1.0E-5
50
1
0.5
-1

$sol ver = parasrvn -B 20, 100
$nUser = 50: 500, 50

PO

pplf % $OigUtil
p p2 f % $SwitchUtil
p p3 f % $Ternltil
p p4 f % $OSUti l

-1

TO

t Ref Taskl r Ref Taskl -1 pl m $nUser % $Thruput

t Oigf Oig El1 Oig E2 -1 pl m $nUser

t Switch f Switch E1 Switch_E2a Switch _E2b Switch E3 -1 p2
t OSf OGS EL -1 p4b

t Termf TermEla Term Elb TermE2 -1 p3 m $nUser

-1

0

Switch E1 Switch Al
Switch_E2a Switch_A3

Switch E2b Switch A4

Switch E3 Switch Al7

Oig El1 Oig A2

Oig E2 Oig All

Term Ela Term Ala

Term Elb Term Alb

Term E2 Term AlO

OS_El1 Os Al

Ref Taskl 1.000000 -1 % $UserEntryTi me
Ref Taskl 1000 -1

Ref Taskl Orig _E1 1.000000 -1

'S NOP>I>>>>>>>>>M

=

Swi tch

Switch Al 1
Switch_Al 0.25000000
Switch A3 1

Swi t ch_A3 0.25000000
Switch A4 1
Switch_A4 0.25000000
Switch A6 1

- 0 Py N
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s
f
s
f
s
y
f
s
y
f
s
z
f
s
z
f
s
f
s
f
s
z

Switch_A6 0O
Switch_A8 1
Switch_A8 0
Swi t ch_A8a
Swi t ch_A8a

Switch_A8a Term Ela 1. 000000

Swi t ch_A8b
Swi t ch_A8b
Swi t ch_A8b
Switch A9 1
Switch A9 0

Switch_A9 Orig _E2 1.000000

Switch_Al13
Swi tch_A13
Swi tch_A13
Swi t ch_Al5
Swi tch_Al5
Switch_Al7
Swi tch_Al7
Swi tch_A19
Swi tch_Al19
Swi tch_A19

. 25000000

. 25000000
1
0. 25000000

1
0. 25000000

Term Elb 1. 000000

. 25000000

1
0. 25000000

OS_E1 1.000000

1
0. 25000000
1
0. 25000000
1
0. 25000000

Term E2 1. 000000

Switch_Al[ Swi tch_E1];
Switch A3 -> Switch_A6;
Switch_A6[ Swit ch_E2a];
Switch A4 -> Switch A8;

Switch A8 -> Switch_A8a & Switch_A8b;
Switch_A8a & Switch_A8b -> Sw tch_A9;
Switch A9 -> Switch Al13 & Switch_Al5 & Switch_Al9;

Swi t ch_A15[ Swi t ch_E2b] :
Swi t ch_AL7[ Swi t ch_E3]

-1

T TP TP T TR TR DT TR0 T

Oig
Oig A2 1
Oig A2 0.5

Oig_A2 Switch_E1 1.000000

Oig_ M1

Oig_A4 0.5
Oig_AMa 1
Oig_Ada 0.

Oi g_Ada Switch_E2a 1.000000

Oig Adb 1
Oig_Adb 0.

Oi g_A4b Switch_E2b 1.000000

Oig A5 1
Oig A5 0.5
aig A7 1
Oig_A7 0.5
oig_A9 1
Oig_A9 0.5
aig All 1
Oig_All 0.

Orig_All Switch_E3 1.000000

000000

000000

5000000

5000000

000000

000000

000000

5000000
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Oig A2 -> Oig_Ad;

Oig_A4 -> (0.500000) Orig_Ada + (0.500000) Orig_Adb;

Oig Ada -> Oig_ A5
Oig AMdb -> Oig A7,
Oig A7 -> Oig_A9;
Oig A9 -> Oig All;
Oig_AL1l[Oig_E1]

-1

A Term

Term Ala 1

Term Ala 1. 000000
Term Alb 1

Term Alb 1. 000000
Term A3 1
Term A3 1. 000000
Term A5 1
Term A5 1. 000000
Term A8 1

Term A8 1. 000000
Term A9 1
Term A9 1.000000
Term A10 1

Term A10 1. 000000
Term A1l 1

Term_ All 1. 000000

) TR TR —h) —h ) —h —h ) —h W —h

Term Ala -> Term A5 & Ter m A8;
Term Alb -> Term A3;

Term A3[ Term El1b] ;

Term A5 & Term A8 -> Term A9;
Term A9[ Term Ela] ;

Term A10 -> Term All

-1

cs

s Al L

0Ss_Al 1.000000

LogBegin ABAt hid33 1
LogBegi n_ABA t hi d33 1. 000000
s A2 1

0s_A2 1.000000

T TP TR T

.CB_Al -> LogBegi n_ABA t hi d33;
LogBegin_ ABAt hid33 -> OS_A2
-1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi me
$Origltil

$SwitchUti |

$Termti |

$OSUt i |

-1

167



Time/Performance Budgeting for Software Designs

APPENDIX E3—-Term (CPUd=0.1) LQN File

# UCM2LON out put

G

" - CPU demands
- CPU demands
- CPU demands

1.0E-5

50

1

0.5

-1

for Switch 0.25
for Oig 0.5
for TermO.1

$sol ver = parasrvn -B 20, 100

$nUser = 50: 500, 50

PO

p pl f % $OrigUtil
p p2 f % $SwitchUtil
p p3 f % $Ternhtil
p pd f % $OSUtI |

-1

TO
t Ref Taskl r Ref Taskl
t Oigf Oig El1 Oig

t OSf OSEL -1 p4

t Termf TermEla Term Elb TermE2 -1 p3 m $nUser

-1

0
Switch E1l Switch Al

-1 pl m$nUser 9% $Thruput
~E2 -1 pl m $nUser
t Switch f Switch_ E1 Switch_E2a Switch _E2b Switch E3 -1 p2

'S NOP>>>>>>>I>>M

=

w —Hn TN o Sty

Switch E2a Switch_ A3
Switch E2b Switch A4
Switch E3 Switch Al7
Oig El1 Oig A2
Oig_E2 Oig_Al1l
Term Ela Term Ala
Term Elb Term Alb
Term E2 Term Al10

OS_ E1 OS Al

Ref Taskl 1.000000 -1 % $UserEntryTi me

Ref Task1l 1000 -1
Ref Taskl Orig_E1 1.000000 -1

Swi tch
Switch A1 1
Switch_Al 0.25000000
Switch A3 1

Swi t ch_A3 0.25000000
Switch A4 1

Switch A4 0
Switch A6 1

Switch A6 0

. 25000000

. 25000000
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f Switch_A8 1

s Swi tch_A8 0.25000000
f Switch A8a 1

s Swi tch_A8a 0.25000000
y Switch_A8a Term Ela 1.000000
f Switch_A8b 1

s Swi tch_A8b 0.25000000
y Switch_A8b Term Elb 1.000000
f Switch_A9 1

s Switch_A9 0.25000000
z Switch_A9 Oig E2 1.000000
f Switch_A13 1

s Swi tch_A13 0.25000000

z Switch_A13 OS_E1 1.000000

f Switch_Al15 1

s Sw tch_Al15 0.25000000

f Switch_Al7 1

s Swi tch_Al17 0.25000000

f Switch_A19 1

s Swi tch_A19 0.25000000

z Switch_A19 Term E2 1.000000

Switch_Al[ Switch_E1];

Switch A3 -> Switch_A6;

Swi tch_A6[ Switch_E2a];

Switch A4 -> Switch A8;

Switch A8 -> Switch_A8a & Switch_A8b;

Switch_A8a & Switch_A8b -> Switch_A9;

Switch A9 -> Switch Al13 & Switch_Al5 & Switch_A19;
Swi tch_A15[ Swi t ch_E2b];

Switch_Al7[ Swi t ch_E3]

-1

Oig

Oig A2 1

Orig_A2 0.5000000

Orig_A2 Switch_E1 1.000000
Oig M 1

Orig_A4 0.5000000

Oig AMa 1l

Orig_Ada 0.5000000

Orig_Ada Switch_E2a 1.000000
Oig Adb 1

Orig_A4b 0.5000000

Orig_A4b Switch_E2b 1.000000
Oig A5 1

Orig_A5 0.5000000

Oig A7 1

Ori g_A7 0.5000000

Oig A9 1

Orig_A9 0.5000000

Oig All 1

Orig_All 0.5000000

Orig_All Switch_E3 1.000000

Q'*<U)""U)‘"UJ""U)‘"*<UJ"“<U)‘"UJ"“<U)‘"]>

ig A2 -> Oig_A4;
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Oig_ A4 -> (0.500000) Orig_Ada + (0.500000) Orig_Adb;

Oig Ada -> Oig_ A5
Oig AMdb -> Oig_A7;
Oig A7 -> Oig_A9;
Oig A9 -> Oig All;
Oig_AL1l[Oig_E1]

-1

A Term

Term Ala 1
Term_Ala 0.21000000
Term Alb 1
Term_Alb 0. 21000000
Term A3 1

Term_A3 0.1000000
Term A5 1

Term A5 0.1000000
Term A8 1

Term_A8 0.1000000
Term A9 1

Term_ A9 0.1000000
Term A10 1
Term_A10 0.1000000
Term A1l 1

Term A1l 0.1000000

SN TR TR —h) —h) —h ) —h W —h( —h

Term Ala -> Term A5 & Ter m A8;
Term Alb -> Term A3;

Term A3[ Term Elb] ;

Term A5 & Term A8 -> Term A9;
Term A9[ Term Ela];

Term A10 -> Term All

-1

os

0S Al 1

OS_Al 1.000000

LogBegin_ABA t hid33 1
LogBegi n_ABA t hi d33 1. 000000
Os A2 1

OS_A2 1.000000

T TR TR T

0S_Al -> LogBegi n_ABA t_hi d33;
LogBegin_ ABAt hid33 -> OS_A2
1

RO

$0 = $nUser

$Thr uput

$ResponseTime = $UserEntryTi ne
$Origltil

$SwitchUti |

$Ternmtil

$OSUL i |

-1
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APPENDIX F1 - Synchronous Call Replacement

Ael

AeZ

Apd

Be1

=]

Cel

L

synchronous call to be replaced

Input LQN Model
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APPENDIX F2 — Synchronous Call Replacement

Case S1:

Cases

ned

mit0

¥
nel nt1 ne? nt2kHS
! /
neal nei? nt3
Network Subsystem
Al Al Ae3 4 Bel B Cel 1

el

nel

nt1

(=04

neal

e

el

Output LON Model
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Case S2:
nefd nto
nel nt1 ne? nt2kHS
neal nel? nt3
Network Subsystem
Ael Al Aae3 Bel tB Cel ic

el

Output LQN Model
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Case S3:

ned nto

nel nt1 ne? nt2kHS
[
[
[
A"

neal nei? nt3

Network Subsystem
Al Al Ae3 4 Bel B Cel 1

nt1

(=04

ne

el

Output LON Model
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APPENDIX F3 - Forwarding Call Replacement

Cases

Ael

Ae?

Aed

Be1

tH

Cel

tc

Input LQN Model

Forwarding call to he replaced
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APPENDIX F4 — Forwarding Call Replacement

Cases
Case F1:
ned nto
nel nt1 ne? nt2kHS
[
[
[
A"
neal nei? nt3
Network Subsystem
Al Al Aed A Bel tB

Cel

L

hei?

,Am

ka2

tk

Output LQN Model
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Case F2:

ned nta
[
[
[
¥

nel nt1 ne? m2kHS
[
[
[
¥

neal nea? nt3

Network Subsystem
Al Al A3 Bel 1B Cel L8

,413

nedi ne3z
[
[
[
¥
kel kez ik

Output LQN Model

177



Time/Performance Budgeting for Software Designs

APPENDIX G1—Input LQN Filefor Network
Subsystem Filter
G

"Net wor k Component Tenplate File, Khalid H Siddiqui"
1.0E-5

100

1

0.9

-1

' TTTTTTT T
© T
W
—h —h —h —h —h —h

[

(o3}

tA
tB
tX
[
tzZ
tC

Ael Ae2 Ae3 -1 pi
Bel -1 p2

Xel -1 p3

Yel Ye2 -1 p4

Zel -1 p5

Cel -1 p6

e e A e e s i e |
— —h —h —h — —

=

©

Ael
Ael
Ael
Ae?2
Ae?2
Ae3
Ae3
Bel
Bel
Bel
Xel
Yel
Ye?2
Zel
Cel
Cel

OO
'—\
oo
1
B

= -
o
1 1
[iny

e

)

o
1

=

o D

-
oo
1
P

'roo0!'o!'" o oo !

= -

NERPERENX R <ENE <X
PR PR

PoococoorrPromoroRrRo
PFOOOOORRPORPOROREO
000000000000 OOO
COOO0O0O0OO0O0O000OO0000
0000000000000 OO

0.0 -1

KOOI I <K K< 0OmMm

=
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APPENDIX G2 - TaskEntryFile.txt for Network
Subsystem Filter

Khalid H Siddiqu

St udent #256847

Sept. 10, 2001

Fil e nane: EntryTaskData.t xt

Net wor k Conponent Filter

Usage: SourceEntry SourceTask DestinationEntry DestinationTask

HHHHHH

Ae2 tA Ye2 tY

#end
-1
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APPENDIX G3 — Network Subsystem LON File
G

"Net wor k Conmponent Tenpl ate File,

1

. 0E-5

100

1
0

.9

-1

e e i | ' DT OTT U
[ =

O O < 0Om

=

4
np0 f
npl f
np2 f
np3 f

4
ntO r neO -1 np0

ntl f nel -1 npl

nt 2KHS f ne2 -1 np2
nt3 f ne31 ne32 -1 np3

5

ne0 1.0 0.0 0.0 -
ne0 nel 1.0 0.0 O.
ne0 ne2 1.0 0.0 O.
nel 1.0 0.0 0.0 -

Khalid H. Siddiqui"”
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APPENDIX G4 — Output LQN Filewith Shared

G

"Net wor k Conmponent Tenplate File,

1. 0E-5
100
1

-1

' DO T T TTTTT O
©
[

=

ne0
nel
ne2

5

prty

[EEN
5 3 3535

tAr Ael
tBr Bel
tCf Cel
tX f Xel
tY f Yel
tZ f Zel

L A e e e e T i i e |
>
—
w

[N

@ 0D -

e

<OV OIK<K I <K K< 0OmMm
w >
o) 0]
[y ()
<P 3SP<XP
O) o - :
POOOOORORRPRONOOORRO
POOCOCOORPORPPORPORPOREO

-
aPPPEPPRNPENXE

@

-1 npO
-1 npl

-1 p3
ne3l ne32
Ae2 Ae3

-1 p2
-1 p6
-1 p3
-1 p4
-1 p5

Ye?2

O0O000O0O00O0OOO0OOOOOO
COOO0O0O0OOO0O0O0O0OHRO0O0OC0O

[eNeoNololoNololololololololoNoNoNeNe]

-1 np3
-1 pl

=

H.H.
o oo
1 1 1
N

H.
oo

1 1
B

oO!'"oo'!'"o!'"Rr!" OO0
o
1
-

o
1
=y

Processor P3

Khalid H. Siddiqui"
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K K K K

ne0 ne2 1.0 0.0
nel 1.0 0.0 0.0 -1
nel ne31 1.0 0.0 O
ne2 1.0 0.0 0.0 -1
ne2 ne32 1.0 0.0 O
ne3l 1.0 0.0 0.0 -
ne3l Zel 1.0 1.0 1
ne32 1.0 -1
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