
 1

 Scenario-Based Performance Engineering with UCMNAV

Dorin B. Petriu1, Daniel Amyot2, Murray Woodside1

1Dept. of Systems and Computer Engineering
Carleton University, Ottawa K1S 5B6, Canada.

{dorin,cmw}@sce.carleton.ca

2School of Information Technology and Engineering
University of Ottawa, Ottawa, K1N 6N5, Canada.

damyot@site.uottawa.ca

Abstract. The analysis of a scenario specification for a new system can address
some questions of system performance, in the sense of delay and capacity estima-
tion. To assist the analyst, a performance model can be generated automatically
from a Use Case Map specification in the UCM Navigator (UCMNAV). This
paper describes the process, and the information that must be supplied in the way
of scenario annotations. It illustrates the tool-supported process with a substantial
example related to electronic commerce, which demonstrates the impact of provi-
sioning the software architecture for concurrency.

1 Introduction

Software performance engineering (SPE) is concerned with performance characteristics
(metrics) such as response times, delays and throughputs, and it aims to insure that soft-
ware products under development will meet their performance requirements. SPE uses
predictive performance models to analyze the effect of software features on perfor-
mance metrics for systems with timing and capacity requirements. SPE should begin
early in the software lifecycle, before serious barriers to performance are frozen into the
design and implementation. Although existing methods for early analysis are success-
ful, the transfer of designer knowledge into the performance model is slow and expen-
sive [18].

Scenario specifications provide a powerful starting point for system design and for
analysis of various kinds of requirements. Use Case Maps (UCMs) are a graphical lan-
guage specifically used for expressing scenarios, and for experimenting with scenario
interactions and architecture [3][9]. The UCM notation is part of the upcoming User
Requirements Notation, currently standardized by ITU-T [8]. Among the numerous sce-
nario notations surveyed in [1], UCMs are notably fit for many requirements engineer-
ing activities and for transformations to other modeling languages. A UCM tool, the
UCM Navigator (UCMNAV [13]) has been augmented to assist with the early analysis
of performance questions, from scenario specifications. This tool has already been used
in various SPE case studies [16][17][19] and in SPE graduate courses. This paper
addresses the details of how to begin such an analysis, by considering the performance
attributes of scenarios and how they are represented in tools.

The analysis of performance from scenario specifications is an active area of inves-
tigation [18]. Many other approaches are based on adding performance attributes to
behaviour models, with scenario-based and state-based languages. For instance, Mes-
sage Sequence Charts (MSCs) [7] can be supplemented with performance information

 2

to generate SDL [6] specifications, as suggested by Dulz et al. [5] and by Kerber [11].
UML behaviour models [14] can also have such annotations. Kähkipuro uses perfor-
mance-oriented UML models (in addition to the design model) to generate performance
models [10], whereas Woodside et al. extract performance models from UML designs
in a CASE tool [22]. A survey of methods for building performance models from UML
specifications is given in [2]. The advantages of UCMs for SPE are the capture of sce-
nario interactions and of architecture issues, the ability to describe scenarios without
specifying explicit inter-component collaborations, and the flexibility to rapidly modify
the architecture and to re-analyze, as studied by Scratchley in [19].

There exist many families of performance modeling languages. A very recent study
showed that queueing networks (QN) provide higher scalability and adequacy for per-
formance analysis than process algebras and generalized stochastic Petri Nets [4]. Lay-
ered Queueing Networks (LQNs) are supersets of QNs [12]. They capture the workload
within activities (operations connected in sequence or in parallel) which belong to an
entry of a task (e.g. method of an operating system process) running on a host device
(usually a processor). The host device is usually a processor, a task is often an operating
system process, but may also be an object, and an entry is like a method.

The following sections describe the steps needed to do a performance analysis of
scenarios specified with the UCMNAV editor. A tutorial example of an electronic com-
merce system (e-bookstore) is presented in order to illustrate these steps, which are:

• start with a UCM model that is “sufficiently complete” for performance analysis;
• augment the UCM with performance-related data;
• generate a Layered Queueing Network performance model and solve the model

(this step is automated);
• analyze the LQN results with reference to performance requirements and goals, and

revise the UCM if needed.

The reader unfamiliar with UCMs or LQNs can find tutorial material in [3][9][12].

2 UCM Model

A UCM describes a system as a set of paths that traverse a set of components. The oper-
ations of the system are captured as responsibilities along a path, allocated to particular
components. The sequence in the path represents causality and control, including fork-
ing into parallel subpaths. The movement of the path from one component to another
represents transfer of control, without showing details of how this is accomplished. Path
detail can be hidden in sub-diagrams called plug-ins, contained in stubs (diamonds) on a
path. More details on the UCM semantics can be found in [9].

The steps required for performance analysis will be presented using an example of
a Web-based bookstore called the RADSbookstore (for selling books on Real-time And
Distributed Systems), also described in [17]. The RADSbookstore provides the follow-
ing facilities:

• an interface for customers - to browse the catalogue and to buy books;
• an interface for bookstore administrators - to examine the inventory and the sales

data;
• separate databases for the inventory and the customer accounts;

 3

• applications to manage customer accounts, shopping cart objects, and the inven-
tory; and

• a subsystem to track and fill back-orders (orders to be filled for books that are not
in stock).

Figure 1 shows the RADSbookstore root (top-level) map. The parallelogram
shaped components represent concurrent processes, while the rectangle shapes are
uncommitted architectural elements. The details of service operations are entirely hid-
den in the stubs; indeed there are seven different client operations and two different
administrator operations. These are dynamic stubs with selection of the appropriate
plug-in UCM according to a request type. In this style, the root UCM represents a large
number of scenarios. Because of space limitations here, we will illustrate only the
checkout scenario for customers, which has two levels of plug-ins as shown in Figure 2
and Figure 3, and the fill backorders scenario for administrators, shown in Figure 4.

2.1 UCM Style Constraints For Generating Performance Models

The UCMNAV tool has a performance model generation capability, but it can only be
used on a UCM which satisfies a few constraints on completeness and style. To encour-
age the capture of incomplete scenarios, “legal” UCMs are relatively unconstrained,
however performance model generation requires several constraints to be satisfied. In
particular, a UCM must be properly formed, meaning:

• it must have at least one point, empty or otherwise, inside each component that is
crossed by a path;

• it must have all loops expressed by the explicit loop construct
— this means avoiding “informal” looping structures formed by using an OR-fork

followed by a path looping back to an OR-join at an earlier point on the path
(see Figure 5);

• it should not have paths branching from a loop that join with paths that did not
branch off the same loop;

• plug-ins must be properly bound to their stubs;
— that is, each input segment to a stub must be bound to a start point in the plug-

in map, and each output segment to an end point in the plug-in.

Customer

RADSbookstore

Administrator

makeRequest

IN1 OUT1
IN1 OUT1

makeRequest

serveClient
serveAdmin

Figure 1. UCM root map for the RADSbookstore.

 4

• plug-in maps must not also be identified as root maps.

In addition, UCMs for performance should also:
• have paths that fully cover the scenario interactions of the system that are to be

modeled;

Figure 2. First level plug-in for the checkout scenario, in stub serveClient.

RADSbookstore

ShoppingCart

Server

CheckOut {IN1} CheckedOut {OUT1}

OUT1

isEmpty

IN1

displayWithPrice

Figure 3. Second level plug-in for the checkout scenario, in stub displayWithPrice.

RADSbookstore

BackorderMgr CustomerAccountInventoryMgr

ShoppingCart

Database CustomerDB

checkout
pricelist

getPrices

itemPrice

show_prices

getPrice
getItem

updateStock

addToAvailL

addToBackL
updateBackorder

shipAvailL

updateHistory

updateAccount

shipping
{IN1}

{OUT1}

 5

• be augmented with the necessary performance-related data, as listed below. Some
of the parameters have default values.

UCMNAV has the capability of automatically generating LQN models for any such
UCM, triggered by selecting the menu Performance → Generate LQN. The scenario to
performance transformation algorithm (SPT, [16]) used to generate LQNs uses a point
to point traversal of the UCM paths and infers a calling structure between the compo-
nents based on the order in which they are traversed by the path. If a path crosses a com-
ponent but does not have a point inside that component, then the path traversal will not
detect the component, and the entire set of calling relationships between components
may be misinterpreted. Thus, if the designer does not intend a path to touch a compo-
nent, it is recommended not to draw the path over the component at all.

 The requirement to use the loop construct relieves the SPT algorithm of the need to
interpret some very complex constructs which can be created by allowing paths to
branch and rejoin in any way at all. In effect it is a “good structure” constraint similar to
the use of a while..do. Figure 5 shows some loop constructs and whether they are inter-
preted as being properly formed for the performance model transformation, even if they
are all valid UCM subpaths.

When used informally, plug-in maps can be associated with a stub without explic-
itly binding the input and output path segments. However, the SPT algorithm relies on

DatabaseCustomerDB

RADSbookstore

BackorderMgr

InventoryMgr

CustomerAccount

fillBackorder

getItem

addToAvailL

[in_stock]

addToBackL

[out_of_stock]

updateStock

updateBackorder

getAccount

getAccountInfo

updateHistory

updateAccount

shipAvailL

Figure 4. Plug-in for the fill backorders scenario, in stub serveAdmin.

{IN1} {OUT1}

 6

the bindings to traverse the path into the stub, and out again. For a set of plug-ins in a
dynamic stub, it treats the input segment as an OR-fork to choose between possible
plug-ins. The binding dialog window for a stub is shown in Figure 6 and is accessed by
opening the Applicable Transformations pop-up menu for the stub and selecting the
Bind Plugin to Stub entry. Existing bindings are shown in the Stub Bindings text box. To
create an entry binding, one needs to select a stub entry and a plug-in map start point
before clicking on the Bind Entries button. Similarly, to create an exit binding one needs
to select a stub exit and a plug-in map stop point before clicking on the Bind Exits but-
ton. Binding a plug-in map into a stub also requires that the plug-in start and end points
have unique names in order to distinguish which point to use in a binding.

A given UCM model can include multiple maps of both Root and Plug-in type, and
a root map can even be used as a plug-in map in any stub. However this will confuse the
interpretation by the SPT algorithm. If the same map is to be used both as a root map
and a plug-in map, then it is best to avoid confusion by exporting the map and then
importing back as a plug-in for the desired stub. There will be two copies of the map,
but each copy will have a clearly defined type.

There is also a more subtle issue regarding the interactions between components
when generating an LQN model from a UCM. Calling relationships between compo-
nents are determined by the order in which they are traversed by a path. As a path
crosses new components, it is assumed that calls are being made from component to
component. Whenever a path returns to a component it has previously crossed, it is
assumed that a reply to a call is being received. The SPT algorithm attempts to maxi-
mize the synchronous interpretation of interactions between components, but this inter-
pretation requires that the path return to components that are supposed to make
synchronous calls. Thus, the performance model is based on the more restricted inter-
pretation that inter-component communication is determined solely by the order in
which components are crossed along a path. This is not necessarily an interpretation that
is assumed in other types of UCM usage, and one should keep it in mind when creating
UCMs that are meant to generate performance models.

Figure 5. Valid and invalid loop structures.

valid loop

valid loop

invalid loop

invalid loop

 7

2.2 UCM Performance-Related Parameters

The generation of performance models requires that the UCM be augmented with ade-
quate performance-related data to enable meaningful analysis. The following steps must
be performed in order:

• create processors and disks or other devices;
• assign UCM components to processors;
• assign service demands to UCM responsibilities.

The following steps should also be done but their order does not matter:
• define arrival characteristics for start points;
• assign probabilities/weights to branches on OR-forks;
• assign probabilities/weights to plug-ins for dynamic stubs;
• assign loop repetition counts to loops.

Time values used for parameters are unitless. They can be interpreted to be of whatever
time unit the designer chooses (typically milliseconds or seconds). However, it is
important that the time unit used be consistent throughout the entire UCM.

Figure 6. Bind Plugin to Stub dialog box before and after completing the bindings.

 8

Processors and devices need to be created in UCMNAV prior to LQN generation.
To create a device, one should open the Device Characteristics dialog box (Perfor-
mance menu) as shown in Figure 7 (left).

The type of device to be edited can be selected from the Device Type drop-down menu.
Devices can be:

• Processor - processing device that acts as a host to components
• Disk - disk device
• DSP - digital signal processor
• Service - any external service

Each device must be specified to have an associated operation time that is a relative
scale factor for its processing speed. A larger operation time indicates a slower device.
The SPT algorithm also creates a default infinite processor, i.e. a multiprocessor with an
unlimited number of replicas, with an operation time of 1. All the components that do
not have a processor assigned in the UCM are generated as LQN tasks assigned to this
infinite processor.

Components in the UCM should have a host processor specified. Figure 7 (right)
shows the Component Attributes dialog box which is used to configure components.
The Editing Mode determines whether the component is a stand-alone component (Cre-
ate New Component) or a reference to an already existing component (Install Existing
Component). The Component Label is the name of the component — if the component
is a reference of an existing component then changing the label will change that name of

Figure 7. Device Characteristics and Component Attributes dialog boxes.

 9

the component and all its other references. The Component Type drop-down menu
determines whether the component is a Team/Object/Process/ISR/Pool/Agent/Other,
however all component types are mapped to LQN tasks. In the case of multiple refer-
ences to the same component, only one LQN task is generated for the component and
visits to any of the references are assumed to generate messages to that one task. The
Stack checkbox indicates whether or not the component is replicated, and it activates the
Replication field which specifies the number of additional replicas. Component replicas
are generated as multi-threaded tasks in the LQN. If the Replication field is set to * then
the corresponding LQN task is infinitely-threaded. The Processor text field shows all
the processors defined in the UCM, with the highlighted processor being the host for the
component. If no processor is selected for the component then the LQN generated will
make the corresponding task run on the infinite processor.

Responsibilities can make specific demands on the various services defined. Figure 8
shows the Service Requests by Responsibility dialog box (invoked from the Edit
Responsibility dialog box by pressing the Service Requests button). The Service Type
column in the top text field shows the services that are called and the Quantity column
indicates the number of requests made. To add a new service request, one selects the
Service Category to be used from the drop-down box and then selects the actual device
in the Service Name field. If the service type is processor, then only the name of the host
processor for the component that contains the responsibility will be shown, but it must
still be explicitly selected by highlighting it in the Service Name field. The request
quantity must also be entered in the Request Quantity field.

Deciding upon the right values for service demands can be a delicate undertaking,
and there are different strategies used to find them. A value can come from a known
value or benchmark, a performance budget for the maximum/average time that may be
taken by the responsibility [20], or maybe just an estimate by the designer that can be
fine-tuned later [21]. Any responsibility that does not have service demands specified is

Figure 8. Service Requests by Responsibility dialog box.

 10

generated as an LQN activity with a default demand of 1. This default means that even
an incompletely specified UCM generates an LQN that can be solved, although the
solution is only a very rough approximation.

The arrival process for each start point needs to be specified using the Start Point
Workload dialog box, shown in Figure 9, which is accessed from each start point’s
transformation menu. The arrivals can be specified as either open streams with no limit
on the job population or as closed streams with a finite job population. In order to be
picked up by the SPT algorithm, the distribution of the interarrival time for open arrival
streams and the think time for closed streams should be specified as either exponential
with a mean, deterministic with a mean, or uniform with a value. Erlang distributions
with a high and low value or expert distribution with a string descriptor are not currently
handled. Start points with closed arrivals imply a return path for each job and as such
should be connected to an end point along the same path or be contained in the same
component as an end point. In the absence of such an end point, the SPT algorithm will
generate the required return path from the first end point encountered as the path is tra-
versed. By default, start points with no specified arrival process are generated as having
open arrivals with an exponential distribution with a mean of 1.

Probabilities for OR-fork branches should be specified using the Specification of
OR-Fork dialog box accessed from each OR-fork’s transformation menu. The branches
are labelled as BR1, BR2, and so on, and those labels are shown on the UCM whenever
the window is open. Branch probabilities can be specified as decimal fractions or as rel-
ative weights for each branch, and they are normalized during the LQN generation pro-
cess. Similarly, plug-ins for dynamic stubs are also traversed like branches between a
virtual OR-fork at each stub entry point and a virtual OR-join at each stub exit point.
Each plug-in should also have a specified selection probability, which are specified in
the Choose Plugin dialog box of each dynamic stub. Any missing branch or plug-in
selection probabilities are given a relative weight of 1. If all the branch or plug-in selec-
tion probabilities for an OR-fork or dynamic stub are missing, then each branch or plug-
in will be generated with an equal probability in the LQN.

The number of loop repetitions for each loop construct needs to be specified as a
loop count in the Edit Loop Characteristics dialog box. Loops with missing loop counts
are generated with a default value of 1.

Figure 9. Start Point Workload dialog boxes for open and closed arrivals.

 11

2.3 Verification of Parameter Completion

UCMNAV provides the capability of verifying whether all the performance-related
parameters have been entered for all relevant elements in a UCM. Selecting the Perfor-
mance menu → Verify Annotation Completeness entry highlights in red all the UCM
elements that have missing parameters. Selecting the Performance menu → Remove
Annotation Highlighting entry removes the highlighting.

3 LQN Performance Model

Figure 10 shows the LQN model generated from the annotated RADSbookstore UCMs.

The details of entries and activities, and the workload parameters are suppressed for
presentation purposes. The multiple interaction arrows show the numbers of different
kinds of access made from one task to another. For example, tracing the paths in Figures
1, 2 and 3 leads us from the set of Customer tasks, to the RADSbookstore task repre-
senting the system as a whole (a task without functions) to the Server. The Checkout
scenario then calls the ShoppingCart, which manages the checkout. The ShoppingCart
calls the InventoryMgr (twice), the BackorderMgr, and the CustomerAccount. The
InventoryMgr in turn calls the Database, and the CustomerAccount calls the Cus-
tomerDB.

CustomerAccount

Database CustomerDB

BackorderMgr InventoryMgr

ShoppingCart

Server

RADSbookstore

Administrator

AdminProc

Customer

CustomerProc

BookstoreProc

DatabaseProc

Figure 10. LQN model of the RADSbookstore.

 12

The forwarding path, shown by the dashed arrow from the InventoryMgr to the
CustomerAccount, is part of the Administrator’s backorder scenario, as shown by the
Administrator path in Figure 1 and the fill backorders plug-in in Figure 4. The forward-
ing occurs when the InventoryMgr is updated, initiates the shipping, and then passes on
the information to the CustomerAccount for the accounting and billing. The Customer-
Account then forwards the reply back to the RADSbookstore.

3.1 Solving LQNs

LQN models can be solved using tools such as the LQNS analytic solver and the LQSim
simulator [12]. Both solvers accept the same input LQN file format, which is automati-
cally generated from UCMNAV, and generate similar output files with the following
sections:

• General solver statistics: elapsed time, system time, blocks, simulation length for
LQSim, etc.

• Echo of the specified service demands: specified service demands for every entry
and activity.

• Measured quantities: measured service demands, number of blocking and non-
blocking calls, call delays, synchronization delays.

• Service times: solved service times for every entry and activity, includes confi-
dence intervals when simulated with multiple blocks.

• Service time variances: variances and squared coefficients of variance for the ser-
vice times calculated in the section above.

• Throughputs and utilizations: solved throughputs and utilizations for every entry
and activity, includes confidence intervals when simulated with multiple blocks.

• Utilizations and waiting times for devices: solved hardware utilizations and wait-
ing times by every entry.

LQNS is faster but more limited than LQSim in the models it can handle. Some LQN
models do not have a stable analytical solution and therefore they need to be solved
using simulations with LQSim.

The layered nature of LQNs and the fact that the solvers provide results for both
software and hardware resources means this approach is suitable for detecting both soft-
ware and hardware performance bottlenecks.

Figure 11 shows the response time and throughput results for the RADSBookstore.
The bookstore was solved as a closed system with a variable client population and a sin-
gle administrator. The results show that this system becomes saturated with about 50
clients.

4 Performance Analysis

The LQN performance model can be used as a basis for exploring the performance solu-
tion space of the system. The kinds of analysis that can be performed include, but are
not limited to, the following:

• Sensitivity analysis: how important are different values for certain parameters to
the solution. This is useful to estimate the performance impact of the uncertainty in
estimated values.

 13

• Scalability analysis: how well does the system cope with more users, how does the
system throughput, response times and utilization behave as the workload is
increased.

• Concurrency analysis: how does the system respond to changes in the number of
threads or replicas for certain tasks.

• Deployment/configuration analysis: how does the system respond to different
deployment configurations, what are the effects of bandwidth limitations, network
delays, or reallocating the system hardware.

4.1 Example of Concurrency Analysis for the RADSbookstore

The results for the base case of the RADSbookstore indicate that Customers are queue-
ing up at the Server task, which has 5 threads. This suggests that increasing the number
of Server threads would remove a software bottleneck. Figure 12 shows the results of
increasing the number of Server threads to 50. Instead of improving the overall perfor-
mance of the system, increasing the number of Server threads actually degrades it. The
response time and throughput for Customers remains essentially unchanged, but the
response time for the Administrator rises from 12 seconds with 100 Customers to 60
seconds with 100 Customers. Thus the increase in threads consumes resources and
makes the Administrator response much worse, giving absolutely no benefits.

A better analysis of the performance results for the base case of the RADSbook-
store shows that within the system the Inventory Manager task is 100% saturated,
mostly due to waiting for the Database which is 80% busy. Thus the Customers queue-
ing at the Server are actually held up by the InventoryMgr and the Database. Therefore
the limited number of Server threads provides a kind of admission control, keeping con-
gestion out of the system without actually slowing it down. This indicates that a better
way of improving the performance of the system is to improve the InventoryMgr and
the Database.

An examination of the way in which Customers interact with the RADSbookstore
shows that they mostly browse the catalogue of books, and do not really need full data-
base capability and concurrency control. The catalogue is rarely updated, and could be

Figure 11. Response time and throughput simulation results for the RADSbookstore.

0

2000

4000

6000

8000

10000

12000

14000

0 50 100 150

Number of Customers

R
es

po
ns

e
T

im
e

(m

se
c)

Customer Administrator

0

0.002
0.004

0.006

0.008
0.01

0.012

0.014
0.016

0.018

0 50 100 150

Number of Customers

T
h

ro
ug

hp
u

t

(p
er

 m
se

c
(C

),
 s

ec
(A

))

Customer Administrator

 14

separated out as a read-only database without complex concurrency control. Indeed,
creating a separate Catalogue server inside the RADSbookstore to replace the catalogue
accesses to the InventoryMgr and the Database significantly improves the system per-
formance, as shown in Figure 13.

5 Conclusions

Software Performance Engineering from requirements descriptions is very challenging
and demanding. However, several developments such as those presented in this paper
indicate that automated generation of performance models early in the development
process is not only possible but also useful.

This paper presented systematically the steps involved in the construction of UCM
models annotated with performance information, as supported in UCMNAV. Once all
the required information is provided, a situation that can be verified by the tool, UCM-
NAV can automatically generate a performance model suitable for various kinds of per-

Figure 12. Response time and throughput simulation results for the
RADSbookstore with 50 server threads.

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150

Number of Customers

R
es

p
on

se
 T

im
e

(in

 m
se

c)
Customer Administrator

0
0.002
0.004

0.006
0.008
0.01

0.012
0.014
0.016
0.018

0 50 100 150

Number of Customers

T
hr

o
ug

h
pu

t

(p

er
 m

se
c

(C
),

 s
ec

 (
A

))

Customer Adminsitrator

Figure 13. Response time and throughput simulation results for the
RADSbookstore with a Catalogue server.

0

2

4

6

8

10

12

14

0 50 100 150

Number of Customers

R
es

p
on

se
T

im
e

(in
 m

se
c

(C
),

 s
ec

 fo
r (

A
))

Customer Administrator

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 50 100 150

Number of Customers

T
h

ro
u

g
hp

u
t

(p
er

 m
se

c
(C

),
 s

ec
 (

A
))

Customer Administrator

 15

formance analysis. Traceability between the two models is preserved through the use of
common names. Default values are provided by the SPT algorithm for several catego-
ries of parameters if they are not specified by the designer. Analysis reports for the
resulting LQN model are produced automatically with tools such as the LQNS analytic
solver and the LQSim simulator. The e-commerce example illustrated typical situations
of parameter provision and analysis results. Many variants of an UCM model (e.g. with
a different underlying architecture, or different values for the performance parameters)
can quickly be generated, evaluated, and compared.

The two languages selected here (UCM and LQN) proved to be a good match for
performance engineering based on requirement scenarios. Queueing networks are
known to be abstract, like UCMs, but they are usually difficult to obtain from behav-
ioural descriptions [4]. With UCMNAV, they are generated automatically from the
requirements specification, at the cost of some stylistic constraints. The addition of per-
formance annotations is not really costly because such information is typically needed
by any performance model.

Many of the parameter annotations for UML models have been inspired from exist-
ing work on UCMs and are now part of the performance profile for UML [15]. Recent
work also suggests that the SPT algorithm used in UCMNAV can likely be applied to
scenario specifications in other languages, including MSC and UML sequence, collabo-
ration, and activity diagrams [17]. This will be investigated, together with transforma-
tions to variants of queueing networks other than LQNs. We also plan to study how best
to use UCM scenario definitions in a performance engineering context, as well as the
verification of soft real-time requirements (captured with pairs of timestamps on UCM
paths [19]) through LQN analysis.

Acknowledgments. This research was funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC), through its programs of Strategic and Collabo-
rative Research Grants, and by Nortel Networks. We are thankful to Don Cameron and
Os Monkewich for their collaboration.

References

[1] Amyot, D. and Eberlein, E. (2003) An Evaluation of Scenario Notations and
Construction Approaches for Telecommunication Systems Development. To
appear in Telecommunication Systems Journal.

[2] Balsamo, S. and Simeoni, M. (2001) On transforming UML models into perfor-
mance models. Workshop on Transformations in the Unified Modeling Lan-
guage, Genova, Italy, April 2001.

[3] Buhr, R.J.A. (1998) Use Case Maps as Architectural Entities for Complex Sys-
tems. IEEE Transactions on Software Engineering. Vol. 24, No. 12, December
1998, 1131-1155.

[4] Cortellessa, V., Di Marco, A., and Inverardi, P. (2003) Comparing Performance
Models from a Software Designer Perspective, TR SAH/042, Università di
L'Aquila, Italy, http://sahara.di.univaq.it/tech.php?id_tech=42

[5] Dulz, W., Gruhl, S., Lambert, L., and Söllner, M. (1999) Early performance pre-
diction of SDL/MSC specified systems by automated synthetic code generation.
Proc. of the Ninth SDL Forum (SDL'99), Montréal, Canada. Elsevier.

 16

[6] ITU-T (2000) Recommendation Z.100, Specification and Description Language
(SDL). Geneva.

[7] ITU-T (2001) Recommendation Z. 120, Message Sequence Chart (MSC).
Geneva.

[8] ITU-T (2003), Recommendation Z.150, User Requirements Notation (URN).
Geneva. http://www.UseCaseMaps.org/urn/

[9] ITU-T, URN Focus Group (2002), Draft Rec. Z.152 - UCM: Use Case Map
Notation (UCM). Geneva.

[10] P. Kähkipuro (2001) UML-Based Performance Modeling Framework for Com-
ponent-Based Distributed Systems. Performance Engineering, LNCS 2047,
Springer, pp. 167-184.

[11] Kerber, L. (2001) Scenario-based Performance Evaluation of SDL/MSC-Speci-
fied Systems. Performance Engineering, LNCS 2047, Springer, pp. 185-201.

[12] Layered Queues for Software and Hardware Performance Modeling: Resource
Page http://www.layeredqueues.org/

[13] Miga, A. (1998) Application of Use Case Maps to System Design with Tool Sup-
port. M.Eng. thesis, Dept. of Systems and Computer Engineering, Carleton Uni-
versity, Ottawa, Canada.

[14] OMG (2001) Unified Modeling Language Specification, Version 1.4. May 2001.
http://www.omg.org

[15] OMG (2001), UML Profile for Scheduling, Performance and Time. Document
ad/2001-06-14, http://www.omg.org/cgi-bin/doc?ad/2001-06-14, June 2001.

[16] Petriu, D. and Woodside, C.M. (2002) Software Performance Models from Sys-
tem Scenarios in Use Case Maps. 12th Int. Conf. on Modelling Tools and Tech-
niques for Computer and Communication System Performance Evaluation,
London, U.K., April. http://www.UseCaseMaps.org/pub/tools02.pdf

[17] Petriu, D. and Woodside, C.M. (2002) Analysing Software Requirements Speci-
fications for Performance. Third International Workshop on Software and Per-
formance (WOSP 2002), Rome, Italy.

[18] Pooley, R. (2000) Software Engineering and Performance: a Roadmap. In: The
Future of Software Engineering, ICSE'2000, Limerick, Ireland, pp. 189-200.

[19] Scratchley, W.C. (2000) Evaluation and Diagnosis of Concurrency Architec-
tures. Ph.D. thesis, Department of Systems and Computer Engineering, Carleton
University, Ottawa, Canada.

[20] Siddiqui, K. and Woodside, C.M. (2002) Performance-Aware Software Develop-
ment (PASD) Using Resource Demand Budgets. Third International Workshop
on Software and Performance (WOSP 2002), Rome, Italy.

[21] Smith, C.U., Williams, L.G. (2001) Performance Solutions. Addison-Wesley.
[22] Woodside, C.M., Hrischuk, C., Selic, B., and Bayarov, S. (2001) Automated Per-

formance Modeling of Software Generated by a Design Environment. Perfor-
mance Evaluation, vol. 45, pp 107-124, July 2001.

	1 Introduction
	2 UCM Model
	2.1 UCM Style Constraints For Generating Performance Models
	2.2 UCM Performance-Related Parameters
	2.3 Verification of Parameter Completion

	3 LQN Performance Model
	3.1 Solving LQNs

	4 Performance Analysis
	4.1 Example of Concurrency Analysis for the RADSbookstore

	5 Conclusions

