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Abstract

Because it affects such things as the degree to which logical concurrency can be realized

by physically concurrent devices, the concurrency architecture of software can have a large

impact on performance. Architectural decisions such as concurrency are typically made

early in the development of software, and are difficult to change once the software has

begun to be fleshed out. It is therefore useful to be able to evaluate the feasibility of

software concurrency architectures proposed for a set of scenarios and a set of response-

time requirements which, in part, define a particular software project. Such evaluation,

however, is difficult because it is hard to predict the effects of pre-emption, the amount of

concurrency-related overhead generated, and which portions of scenarios will actually be

performed in parallel and which will for some reason end up serialized. So that one can

discover possible ways to improve a concurrency architecture, it is also useful to diagnose

an architecture for causes of performance shortfalls.

This thesis describes an approach (and a tool) called PERFECT which performs such

evaluations and diagnoses by automatically constructing and simulating an instrumented

virtual implementation which conforms to a behaviour and concurrency architecture easily

specified by supplying a Use Case Map supplemented with performance information. This

work focuses on software for servers.

An evaluation reports, for each type of response, the fraction of responses which finish

within the specified delay time. Also reported is the utilization of each device. Diagnoses

include measurements of the cumulative effect of priority inversion at each point where

messages are sent to a software process, lost opportunities to concurrently use multiple

devices by the most urgent work, and the amounts of different types of concurrency-related

overhead such as context switching.

To demonstrate how the whole approach works, a number of cycles of proposing, eval-

uating, and diagnosing a concurrency architecture for a group communication server are

presented. The first architecture cannot process requests as fast as they arrive. By remedy-

ing the diagnosed causes of performance shortfalls, an architecture is derived which meets

all performance requirements. Adding concurrency not suggested by diagnoses causes per-

formance to decline.
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Chapter 1

Introduction

This thesis describes a way to evaluate and diagnose the performance of concurrency ar-

chitectures for software running on what we call single-node server systems. The class of

single node systems includes many kinds of network servers, such as media servers, web

servers, intelligent network (IN) servers, and corporate data servers. This chapter starts by

defining what is meant by concurrency in single-node systems, and then goes on to define

concurrency architectures and introduce how they can be evaluated and diagnosed.

1.1 Concurrency in single-node systems

For purposes of this thesis, a single-node system will be defined as a computer with one

memory space. The computer will likely have multiple devices which can access the memory.

These devices will definitely include one or more general-purpose processors, and other

devices could include special-purpose processors such as digital signal processors (DSPs)

and input/output (I/O) devices such as disks.

In these systems, each of the devices can potentially be working in parallel. A disk can

be retrieving data while a DSP is compressing audio and while a general-purpose processor

is encrypting a data packet. This is termed physical concurrency.

1
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1.1.1 Characteristics of applications

There are several classes of applications which run on single-node systems. The class of

applications focussed on in this thesis is server applications, such as a web server. In

such applications there may be different types of requests arriving from many clients. Each

request will result in one or more system responses. It is assumed that each type of response

has a specified delay within which nearly all responses of that type should be completed.

The goal is that each response should finish within its specified delay, and hence it is not

necessary that each response be treated “fairly”. For example, a web server might accept

requests which result in a voice response starting to stream or a large graphic bitmap being

sent. It may be more urgent to begin streaming a voice response than to finish sending a

large bit-map which was started much earlier.

Other applications may also benefit from the methods described in this thesis. A second

class of applications is interactive applications – those where a single user interacts with

the application. These include applications such as word processors and clients which

access database servers. These applications have typically made limited internal use of

concurrency.

A third class of applications is data processing applications, often amenable to batch

processing. With these applications, the goal is to complete a number of usually large

computational jobs in a reasonable amount of time. The time it takes to complete one part

of one of the jobs is not directly important. In these systems it is often possible to run

multiple applications simultaneously and hence get concurrency between applications, and

so concurrency within an application is often not so important. While one application is

using one device such as a disk, another application can be using another device such as

the CPU. This physical concurrency between logically concurrent applications reduces the

amount of time it takes to complete all the jobs.
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1.1.2 Specification by scenarios

Applications will be specified by describing a set of scenarios. Each scenario describes

the processing that needs to occur following the occurrence of a particular type of external

event and under certain conditions. Examples of external events that may trigger a scenario

include the arrival of a request message or a timer expiring. An example of a condition that

may have to be satisfied for a certain scenario is that a certain buffer must be full. The

processing for a scenario is described by linking activities, each of which defines a chunk of

processing. Examples of activities are retrieving a certain record from a database, processing

a multimedia sample, and logging some report in a file. More complex paths may fork, join

and synchronize.

A response-time requirement can be specified between any two points on a scenario,

and consists of a minimum percentage of responses which must complete within a specified

delay value.

1.1.3 Concept of concurrency within an application

Concurrency can occur within an application in two forms: concurrency within a single

execution of a scenario, and concurrency between executions of one or more scenarios (there

can be concurrency between multiple executions of a single scenario). Concurrency at the

scenario level is an example of logical concurrency. Under certain conditions, this logical

concurrency can be realized by physically concurrent devices.

To assist in discussing logical concurrency, the notion of tokens will be introduced. When

an external event occurs, something called a token will be created which will traverse the

path and trigger the activities in sequence. When an activity finishes executing and there

is no activity in sequence after it, the token at that activity is destroyed. That is, a token

serves to mark the progress of execution along a scenario instance.

Where a scenario path forks to initiate activities in parallel, extra tokens will be created



CHAPTER 1. INTRODUCTION 4

to traverse the parallel paths.

Sometimes before the processing of one external event has finished, one or more other

external events occur. In many cases, from the point of view of the application, these events

can be processed concurrently. In terms of tokens, one or more tokens resulting from one

external event are still active when another external event generates another token. In

principle, all the tokens could be executing simultaneously.1

At some instant, the collection of tokens for an executing application indicates all the

potential concurrency at that instant.

1.1.4 How concurrency in applications is supported

It was explained above that an application can have logical concurrency, as can be expressed

by tokens. How is this logical concurrency supported when the application is executed?

To support logical concurrency, our server application will employ multiple kernel threads

during its execution. Each kernel thread is a virtual machine, and the kernel threads queue

for devices. Multiple devices can be active concurrently, and hence multiple kernel threads

can be making progress concurrently.

In some situations, a single kernel thread may implement the execution paths of several

tokens in some way. That is, the execution of tokens can (if desired) be interleaved by the

kernel thread. The decision about where to provide separate kernel threads determines to

a large part the concurrency architecture.

1.2 Value of concurrent threads in an application

Using concurrent threads gives both advantages and disadvantages for performance. Among

the advantages are:

1Unless one token in a critical section blocks one or more other tokens.
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• It allows logical concurrency to be realized as physical concurrency, enabling a set

of responses to finish more quickly. While one thread is using one device, another

thread can be using another device. Also, when a thread using a processor becomes

blocked for some reason, the processor can still continue being productive by executing

another thread.

• It enables pre-emption based on urgency. Because each thread is scheduled separately

by the kernel, an urgent thread when enabled can easily pre-empt a less-urgent thread.

This provides a mechanism for concentrating system resources on achieving response

deadlines that are in jeopardy.

1.3 Costs of concurrent threads

In choosing where to use concurrency in a design, the costs of concurrency must be consid-

ered. These costs include:

• Context switching. There is a processing overhead when switching from one thread

to another.

• Messaging. When the flow of processing activities along a scenario instance passes

from one thread to another, a message will have to be sent. The message provides a

pointer to the token representing the processing.

• Protecting shared data objects. With pre-emption enabled, a thread may be pre-

empted while it is in the midst of accessing a shared data object. If the activities

which access the data object are not all executed by a single thread, and if at least one

of those accesses can modify the state of the data object, then some form of protection

will be needed so that the object will always be left in a consistent state and values

obtained from it will be sensible. Any way of ensuring such consistency, such as using
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semaphores in a pessimistic scheme, will have processing overhead associate with it.

• Memory. For each thread that is created, a chunk of memory is allocated to store

information such as the thread’s stack. Communication structures such as mailboxes

and objects such as semaphores used for protecting shared data objects also consume

memory. Memory usage can especially be a concern on legacy embedded systems

where memory is often limited.

1.4 Concurrency architectures for single-node systems

This thesis will define a concurrency architecture for single-node systems by three charac-

teristics:

• A relation between activities2 and threads.

• A policy for maintaining the consistency of each shared data object.

• The style of messaging for every place where a path crosses between threads.

The method used in this thesis to define the relation between activities and threads is to

first divide the activities in the application into groups and then choose how many threads

can be created for each group. The thread or collection of threads available for a group will

comprise a process, single-threaded or multi-threaded respectively.

Policies for guaranteeing that operations on a shared data object return sensible values

and leave the object in a consistent state can either be optimistic, pessimistic, or a combi-

nation of the two. In this thesis we analyze pessimistic methods. Pessimistic methods can

either allow multiple readers to access the data object simultaneously, or insist that strictly

one operation be allowed to proceed at a time.

2And other elements along paths which will be defined in Chapter 3
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The third area defined by the concurrency architecture is style of messaging. Possible

styles include synchronous messaging where a message is stored with the sending thread until

it is ready to be received, and asynchronous messaging where mailboxes accessible to the

receiving thread are created to store messages. We will restrict attention to asynchronous

messaging in this thesis. More complex interactions can be built up from asynchronous

messages.

1.5 Evaluation and diagnosis

This thesis has three goals: first, to define the concepts of concurrency architecture in an

operational way, second to evaluate a concurrency architecture for its performance, and

third to diagnose causes of performance shortfalls and suggest improvements.

In order to choose a concurrency architecture which balances the costs and benefits of

concurrency it is necessary to be able to quantitatively compare different concurrency ar-

chitectures. In this thesis, we present a method for making such comparisons. For instance,

we may compare the change in overhead caused by an additional process against the benefit

of additional concurrency.

A concurrency architecture is ultimately judged by the degree to which the specified

response-time requirements are met on the target hardware platform, so measuring the

fraction of each type of response which meets the specified delay is important. The utiliza-

tion of each device is also useful, as it helps us understand whether the target hardware

platform comprises adequate resources.

Diagnosis identifies defects in concurrency when performance goals are not met. In

this work, diagnosis is based on measurements made on an execution of each architecture,

including:

1. The amounts of different types of overhead are measured: context switching, messag-

ing, priority adjustment, and data protection.
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2. Deadline inversion is identified at every point where a path crosses into a process, and

a cumulative measure of its effect is computed.

3. Lost opportunities to concurrently use multiple devices by the most urgent tokens are

also measured.

To evaluate and diagnose a concurrency architecture for a set of scenarios, a simulation

is automatically constructed and performed.

1.6 Class of systems considered

To summarize the class of software systems that is analyzed in this research, it has

• a single processing node, which may be a multiprocessor

• the defining characteristic is a single memory address space

• soft deadlines - a specified percentage of responses in a certain class must complete

within the specified delay for that class. Hard deadline systems may be analyzed by

specifying 100% success for responses, but this research makes no guarantees for hard

deadline systems.

• pre-emptive scheduling

• open arrivals and departures (although the ideas should carry over to closed systems

as well).

1.7 Contributions

The original contributions of this work are:
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• A number of extensions to the Use Case Map notation for scenarios, which allow or

assist performance information to be annotated (see Chapter 3). Use Case Maps is

a notation for graphically describing scenarios of a software system and the software

components which implement the scenarios.

• A virtual implementation which can be constructed from a set of scenarios and a

proposed concurrency architecture (see Chapter 4). The execution of the virtual

implementation includes:

– A set of rules which controls the creation, movement, cloning and destruction of

tokens.

– A set of rules which ensures that at any given moment each thread is scheduled

with an intelligent deadline.

• A translation of the VI into a simulation model that captures performance measures

(see Chapter 4).

• Three diagnostic metrics which can identify concurrency problems in an architecture

and discussion of improvements (see Chapter 5)

• A tool named PERFECT (PERFormance Evaluation by Construction Tool) which

implements the methods for generating a virtual implementation, running the simu-

lation to necessary levels of accuracy, and calculates the diagnostic metrics.

• Tutorial examples (see Chapter 5) and a substantial case study (see Chapter 6) which

demonstrate the way in which serious and diverse problems can be resolved using the

methods of this thesis.



CHAPTER 1. INTRODUCTION 10

1.8 Organization of thesis

This thesis is organized as follows. Chapter 2 gives background on partitioning activities into

processes, specifying system behaviour, scheduling in soft real-time systems, and diagnosing

designs. Chapter 3 introduces Use Case Maps, which are used in this thesis for specifying

the scenarios of an application and showing a concurrency architecture. Chapter 4 explains

how a virtual implementation can be constructed and simulated. Chapter 5 defines metrics

used to diagnose a concurrency architecture. Chapter 6 presents a case study on which the

methods described in this thesis are used. Finally, Chapter 7 contains conclusions.



Chapter 2

Background

This chapter describes various avenues of research that are important background for the

present research.

First we review how the intended behaviour of concurrent systems can be specified.

In Chapter 1 we introduced the notion of an activity, some identified chunk of processing

that occurs along a scenario. We also stated that we could decide where to provide separate

kernel entities to manage the execution of these chunks of processing. Described in this

chapter are several author’s work on how to partition activities into kernel entities, here

called processes.

Because of its impact on performance, scheduling of kernel entities is very important

and so this chapter reviews relevant topics in scheduling.

Finally, this chapter reviews other author’s work on diagnosing designs.

2.1 Specification of system behaviour

Software architects need a suitable specification of the intended behaviour of a concurrent

system. This section describes a number of techniques that are used to specify behaviour.

11
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2.1.1 Written text for scenarios

In the Merriam-Webster dictionary, one of the definitions of scenario is: “an account or

synopsis of a possible course of action or events”. This is the definition which is applicable

when we use the word scenario from the software engineering perspective. For us, a scenario

describes the course of actions that occurs for a certain sequence of events.

Development methods typically begin by expressing each scenario with written text.

This is true of Jacobson’s Object-Oriented Software Engineering method [36], Real-Time

Object-Oriented Modeling [59], the Fusion method [24], the Object Modeling Technique [55],

and Booch’s Object-Oriented Design [12]. These descriptions are not detailed enough to

support performance evaluation, so this approach was not followed for the present work.

2.1.2 Message sequence charts

In many methods the activities in the scenarios are then allocated to components and the

scenarios are formalized with notations such as Message Sequence Charts (MSCs) [3] or

Sequence Diagrams in UML [56]. A scenario may start as a message to one component,

which will perform some activities, and then the scenario can be handed off to another

component in a message.

2.1.3 Extended state machines

Extended state machines provide a way of describing the behaviour of a system in terms

of the behaviour of the components comprising the system. Each component can be in one

of a number of states. A transition between states is triggered by receiving a message,1

and leads to actions which may include performing activities or sending messages. If the

behaviour of each component has been described accurately and the components have been

joined correctly, then the behaviour of the system will have been successfully specified.

1“Receiving a message” can be interpreted broadly as receiving notification that some event has occurred.
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Extended state machines in the forms of Estelle [66] and SDL [66, 2] were introduced to

model communication protocols and spread rapidly to communication software and to real-

time systems in the form of Statecharts [30, 31]. ROOM [59] uses a notation derived from

Statecharts. UML [56] also uses an object variant of statecharts.

Note that a predetermined partitioning of activities among concurrent components is

needed in order to describe system behaviour using extended state machines. Thus this

approach to behaviour does not help us carry out the initial partitioning.

2.1.4 Process algebras

A process algebra allows behaviour (or scenarios) to be specified formally with a language.

Parts of scenarios can be described separately and can be composed.

LOTOS is a language which is often used for specification of communication services

and protocols [66]. LOTOS combines a behavioural model derived from the process alge-

bras CCS [48] and CSP [33] together with an abstract data typing language based on Act

One [66].

Stochastic Process Algebras [1] have been used for performance evaluation, and this is

an approach which might be useful for evaluating concurrency. However the processes in the

algebra and the assumed synchronous communications between them appear to impede the

introduction of concurrency partitioning which does not follow the predetermined bound-

aries in the specification. Thus, like extended state machines, this does not really help us

carry out the initial partitioning.

2.1.5 Graphical specification of scenarios

A good way to express system scenarios and their interactions is with a graphical notation.

This is very successfully done with Use Case Maps [15], but can also be done with other

graphical notations such as Activity Sequence Networks [16], the UCLA Graph Model of
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Behaviour [67, 22, 23], and Petri Nets [52, 62, 28]

Use Case Maps, which are used in this research, were developed by observing software

designers describing their work. In the pictorial version of a UCM, a scenario follows a path

(which can be drawn as a line with forks and joins) with responsibilities indicated along

it. Abstraction is provided via subdiagrams, and details are often suppressed. The binding

of components to scenario elements can be indicated graphically, and can also be adjusted

graphically, which supports the present desire to create and adjust the initial partitioning

into processes. A formal graph structure also exists for Use Case Maps. Use Case Maps are

described further in Chapter 3.

Use Case Maps can in some ways be thought of as a graphical depiction of a process

algebra. In [7], Amyot et al. demonstrate UCMs being translated into LOTOS. After

translation into LOTOS, tools can be used to analyze and validate the specification. These

include LOLA [54] for analysis and design testing, and LMC [27] for checking temporal logic

properties.

Use Case Maps could in theory be analyzed as well, but to this date they have been

used primarily to reason about systems in a somewhat informal way and such analysis and

validation tools have not yet been developed directly for them.

Petri Nets can be used similarly to UCM paths to capture system scenarios. A feature

of petri nets is tokens. These can be used to mark the progress of scenario instances through

a scenario captured as a petri net. Some Petri Net formalisms, such as PROTOB [9], also

allow abstraction. Petri Nets can be readily analyzed.

To be useful in describing a concurrency architecture, a Petri Net notation would have

to allow some way of indicating a partitioning into processes of the Petri Net places and

transitions describing the scenarios.



CHAPTER 2. BACKGROUND 15

2.2 Partitioning activities into processes

In design methodologies for concurrent software, an important step is the partitioning of

the specified activities into processes. In [19], deChampeau, Lea, and Faure refer to such

partitioning as clustering, and state: “Because clustering remains something of a black art,

it is very convenient to use a prototyping tool to assist in the evaluation of clusterings.”

They list 17 criteria which one can consider while partitioning a set of objects into

processes . Some of the more interesting criteria are:

• Forced partitioning: Identify processes with objects as mandated in non-functional

requirements documents.

• Functional partitioning: Identify processes with coarse-grained objects identified in

analysis.

• Structural partitioning: Identify processes with objects that are easy to isolate. For

example, transaction loggers and other “message sinks” which consume events gener-

ated by a large number of other objects without communicating back to them.

• Service-based partitioning: Isolate objects that perform well-known, generic services

in their own processes.

• Path-segment-based partitioning: Combine all of those objects involved in a particular

sequential path segment into a process.2 This implies, but does not explicitly specify,

that it is wise to put parallel path segments in separate processes.

• Link-based partitioning: Partition into processes so that as many object links as

possible point to objects residing in the same process. This avoids fragmentation, in

which objects include some components situated in one process and some in another.

2They actually call this task-based partitioning as they call a (sequential) path segment a “single-threaded
task”.
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• Communication-based partitioning: Allocate heavily interacting objects to the same

process.

• Recovery-based partitioning: Isolate failure-prone objects (e.g. those interacting with

unreliable hardware) in their own processes to facilitate restarts, etc.

• Maintenance-based partitioning: Isolate objects of classes that are most likely to

change in the future.

deChampeau et al. recognize that the criteria in their list may overlap or be incompat-

ible. They also recognize that partitioning must be performed using heuristic approaches,

and that performance must be balanced against other design factors, such as maintain-

ability, that argue for the use of functional and structural criteria in addition to resource

concerns.

Gomaa discusses partitioning in [29]. His ideas that do not appear in Lea’s list include:

• Temporal cohesion: group into one process activities which need to be executed in

response to the same event.

• Task priority criteria: create a process for a time-critical activity.

Mok proposed three strategies for partitioning activities in hard real-time systems [49].

• Decomposition by critical timing constraints: create one process to perform the com-

putation associated with each timing constraint.

• Decomposition by centralizing “concurrency control”: create one periodic process for

each equivalence class of compatible periodic timing constraints and one sporadic

process for each asynchronous timing constraint. Concurrency control in this context

means enforcing critical sections.
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• Decomposition by distributing “concurrency control”: a process is created for each

activity.

Mok explains that decomposition by distributing concurrency control allows a resulting

design to be easily distributed across multiple processors, but exacts a higher cost for inter-

process communication and concurrency control. He also notes that changing the period of

an input or deadline of a response can require modifying the scheduling attributes of many

processes. Regarding overhead, Gomaa agrees with Mok stating that too many tasks can

unnecessarily increase overhead due to communication and synchronization. deChampeau

et al., on a similar note, state that reasonable choices about the number and size of processes

depend on the efficiency of the underlying operating system scheduling and interprocess

communication mechanisms.

Buhr shows examples of process partitioning for a protocol-processing subsystem [15]

that are similar to Mok’s strategies.

• Buhr’s first partitioning has one process for the path that sends packets and one

process for the path that receives packets. This would correspond to Mok’s decom-

position by critical timing constraints, assuming a timing constraint maps to one of

Buhr’s paths.

• Buhr’s second partitioning has one process for every activity and corresponds to Mok’s

decomposition by distributing concurrency control.

• Buhr’s third concurrency architecture has a single process which controls multiple

(assumed-) equally-urgent paths.

• Buhr adds a class of concurrency architectures that is not mentioned by Mok: having

a single multithreaded-process which serves one or more paths. In Buhr’s case study

this allows multiple transmissions and/or receptions to proceed concurrently.
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Thus software architects are given plenty of issues to think about when they are devel-

oping the concurrency architecture for software. They need help to know which issues are

important for a particular project. For a given issue there may be lots of options, but there

is currently little guidance to help select between the options. This is the starting point for

this present research.

2.3 Scheduling in soft real-time systems

Because of their impact on performance, scheduling issues are very important in the design

of all concurrent systems including soft real-time systems. There is a large literature on

scheduling: a good survey of scheduling in real-time systems is given by Mercer [44].

Earliest-Deadline First (EDF) is the scheduling policy used in the research described

in this thesis. The following sections introduce and provide background on EDF. Static

priority scheduling, a very simple policy, is described first. Then a benefit of allowing

priorities to change, that is of dynamic priorities, is described in a section on priority

inheritance. Of policies with dynamic priorities, EDF has a number of benefits and is

described in section 2.3.3.

2.3.1 Static priority scheduling

A simple, low-overhead scheduling policy is to assign a single priority to the thread (or

threads) of a process when created, and never change that priority. Typically a higher-

priority thread can pre-empt a lower-priority thread.

Those hard-real-time systems for which each class of external events has a minimum

non-zero spacing in time and for which activities have a finite maximum processor demand

often use one of the rate monotonic family of scheduling policies [42]. These policies use

static priority scheduling with pre-emption.

Daigle et al. describe a static priority scheduling policy for communication processing
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systems where a scenario is split up into a sequence of activities3 [18]. They discussed a

packet switching software example where the processing of an incoming packet was divided

into 13 activities which were handled by 10 processes. Daigle found that to get fast response

times, that processes should be given priorities such that the later a process is in the

sequence, the higher its priority should be.

2.3.2 Priority inheritance

It is often useful to change the priority of a thread, even if only temporarily. Consider for

instance the problem of unbounded priority inversion [60], where a high-priority thread is

waiting for a low-priority thread to release a resource (such as a semaphore) but one or

more medium priority threads keep the low-priority thread from running. Such a situation

can be avoided if the low-priority thread “inherits” the priority of the high-priority thread

while the high-priority thread is waiting [60].

Unbounded priority inversion can be caused by messaging in addition to synchroniza-

tion [45, 65]. To avoid unbounded priority inversion when messaging and synchronization

are nested, priority inversion must be managed using an integrated method such as the

Integrated Real-Time Resource Management Model [41].

2.3.3 Earliest Deadline First

If the priority of a thread can change, a good scheduling policy for soft real-time systems

is Earliest Deadline First (EDF) [43]. A deadline is some absolute time in the future when

a response should be finished.

A number of authors have found EDF to be a good policy for real-time database systems,

especially at low to moderate loads (eg. [5, 68, 32, 34]).

3Using the terminology of Daigle et al., a job is split up into a sequence of tasks.
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Abbot and Garcia-Molina in [5] report for systems with exponentially distributed inter-

arrival times that EDF scheduling worked best at lower loads, and Least Slack, statically

evaluated, performed better at higher loads. For statically evaluated least slack, slack is

measured once when a transaction arrives and is defined by:

slack = deadline − (arrival time + service time)

where service time is the total service time required at all devices.

During overload conditions, EDF suffers from the “Domino Effect” [64, 32], whereby

a response which is already “late” is given the highest priority, thus delaying responses

which could otherwise more easily meet their deadlines. To stabilize overload performance,

Haritsa, Livny and Carey [32] propose algorithms called Adaptive Earliest Deadline (AED)

and Hierarchical Earliest Deadline, the latter of which considers the assigned “value” of a

response completing on time. In [26], Haritsa et al. use the AED in a network management

system.

J. Huang et al. found on a testbed system that the CPU scheduling algorithm is very

important in improving the performance of real-time transactions. They also found that

overheads such as locking and message communication are non-negligible and can not be

ignored in real-time transaction analysis [34].

If the EDF policy cannot meet all deadlines, it has a tendency to discriminate against

longer jobs. A policy called Adaptive Earliest Virtual Deadline (AEVD) has been developed

to overcome such bias [51].

2.3.4 Subtask deadline assignment

The EDF policy was developed assuming only one device (a single processor) was being

used by the jobs. If the jobs can use multiple processors, then parallel subtasks can be

executed in parallel. It has been found that there is a problem if all subtasks are scheduled

with the deadline of the parent task: if one parallel subtask is late, then the whole task
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is late. A number of strategies for assigning a deadline to each parallel subtask have been

proposed [39]. Strategies have also been proposed for assigning deadlines to sequential

subtasks [38].

2.3.5 Scheduling disk requests with deadlines

Disk scheduling normally does not consider deadlines or priorities of disk requests. The

better conventional algorithms for scheduling disk requests instead are focussed on the

location of data on a disk when scheduling the disk access [53]. Examples are Shortest-

Seek-Time First (SSTF), which chooses for next service the request that is closest to the

current head position, and SCAN, in which the head sweeps back and forth across the disk

surface servicing all requests that lie ahead of it.

In [4], Abbot and Garcia-Molina propose a number of policies which do consider request

deadlines. In their policies, they give preference to read requests over write requests as long

as there are sufficient memory buffers to hold outstanding write requests. This is due to

the assumption that once a transaction is committed in memory there is no deadline to

write changed data back to disk. The simplest of these is EDF, which applies the same

EDF policy used for the processor to disk read requests. Policies which consider both data

locations and request deadlines are Earliest Deadline SCAN (D-SCAN), which modifies the

traditional SCAN algorithm so that the track location of the read request with the earliest

deadline is used to determine the scan direction, and Feasible Deadline SCAN (FD-SCAN),

which is similar to D-SCAN except that only read requests with feasible deadlines are chosen

as targets that determine the scanning direction.

2.4 Diagnosing designs for performance problems

In her pioneering work on software performance engineering, Connie Smith [17] advocates

a loop of performance evaluation and lifecycle concept improvement at every stage of a
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computer application’s lifecycle. She discusses ways to improve designs without pushing

any particular detailed development strategy. She lists a number of performance principles.

An example is the parallel processing principle, which says: execute processing in parallel

(only) when the processing speedup offsets communication overhead and resource contention

delays. In a case study, she reduces the best-case response time from 1026 seconds to 4.3

seconds by applying these principles.

John Neilson et al. show that software bottlenecks may exist in concurrent software [37].

A software bottleneck occurs when a task exhibits a high utilization which is also high

relative to the utilizations of each of its servers, either direct or indirect. They describe how

software bottlenecks may be alleviated by multi-threading or “cloning” .

Gomaa describes how a concept called task inversion can be used in situations where

there are concerns about high tasking overhead [29]. Task inversion is essentially the process

of combining the functionality of multiple tasks into one task.

Hesham El-Sayed proposes a design-improvement process which generates and solves an

LQN Model for a design, and then either increases the priority of the task deemed most

suitable or reshapes the design by re-allocating or splitting that most suitable task [21]. The

most suitable task is chosen from among those tasks involved in performing non-compliant

scenarios. A task is split by putting the entry which suffers most from waiting time into a

separate task. The process then iterates by returning to the step of generating and solving

an LQN Model, this time for the modified design.

2.5 Realizing potential parallelism in massively parallel pro-

cessing

This thesis is concerned with software concurrency architectures for soft-real-time server

applications. A somewhat related area is finding and realizing potential parallelism for
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massively parallel processing – used for example for scientific computing (see for example [25,

6]). Both areas try to exploit parallelism to increase performance. For scientific computing

there is typically only one response – the end of the long parallel program – and typically

these programs would not pre-empt each other. Soft-real-time server applications, on the

other hand, typically deal with a number of classes of relatively short responses, and often

have multiple responses competing with each other to finish.

2.6 Software architecture

Software Concurrency Architecture is one aspect of the general field of Software Architec-

ture [61, 40], which deals with all large-scale issues of software design.

In [40], the software architecture of a program or computing system is defined as:

“the structure or structures of the system, which comprise software components, the

externally visible properties of those components, and the relationships among them.”

The book [61] is a good introduction to the concerns of software architecture, which go

far beyond performance. Evaluation of architectures is addressed in [40], and at greater

length by by Bass, Clements and Kazman in [10]. They identify goals in terms of qualities

such as performance, security, availability, reliability, modifiability, and they relate these

to architecture features and styles. They describe architecture evaluation by review, using

a qualitative scoring approach to assessment, and scenarios to define challenges to each

particular quality.

The present concern for evaluation for performance can easily be embedded in the

broader approach of [10].



Chapter 3

Use Case Maps with Performance

Annotations

This chapter describes the scenario notation called Use Case Maps, and how it has been spe-

cially modified to support performance analysis. Use Case Maps were defined by Buhr [13]

to specify scenarios and their relationships to software components.

3.1 Basic UCM notation for specifying scenarios

Figure 3.1 shows example UCM scenarios and the basic UCM scenario elements have been

named.

The scenarios are indicated by smooth solid lines starting at filled circles called path

starts, and ending at short perpendicular bars called path ends. The thicker bars along a

scenario indicate AND forks and AND joins and allow possible concurrency in a scenario

to be expressed. When a path contains one or more OR forks or OR joins, it implies that

multiple scenarios are sharing portions of the path. The path segment before an OR fork is

shared by multiple scenarios. The path segment after an OR join is also shared by multiple

24
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Response-time Requirements
----------------------------------------
Rab: 90% < 10ms --Ta -> Tb
Rac:  90% < 30ms -- Ta -> Tc
Rad:  90% < 20ms -- Ta -> Td
Rbc:  90% < 5ms -- Tb -> Tc
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Figure 3.2: UCM scenarios with performance extensions indicated

scenarios. A stub is represented by a small diamond shape and indicates a portion of a

scenario which is defined elsewhere in a “plugin” diagram.

3.2 Performance extensions to the basic scenario notation

The basic UCM notation has been extended to include needed performance information such

as arrival processes, branch selection criteria for OR forks, and response-time requirements.

These and other extensions are indicated in Figure 3.2 and are described in the following

subsections.



CHAPTER 3. USE CASE MAPS WITH PERFORMANCE ANNOTATIONS 27

3.2.1 Tokens and workload intensity

A scenario is started by a relevant event occurring in the environment of the system being

described. An example event is the arrival of a request to the system. When such an

event occurs, think of a token being created at a path start and starting to travel along

the path of a scenario. This token is similar in many ways to a Petri Net token. To get

performance predictions we need estimates of the workload intensity, and so for each path

start we require that an arrival process for events be specified. Unless specified otherwise,

the examples in this thesis have Poisson arrivals at a path start. The average interarrival

time for a path start can be indicated on a UCM diagram beside the name of the path start.

3.2.2 Activities, their references to data objects, and their service re-

quirements

In this thesis, we define as an activity a stub whose plugin is single-input/single-output, and

has no AND forks or AND joins. The stub may cross passive components such as passive

data objects. Such an activity will require service from a sequence of declared devices when

executed. We make this definition because a stub is a more general concept than we need,

for example allowing multiple inputs and multiple outputs.

The plugins which define activities in this thesis will be relatively simple: when an

activity is is executed, think of a method or procedure being invoked which may in turn

invoke other methods and procedures thus forming a call graph. To show that an activity’s

plugin will invoke one or more methods of an anchored1 data object, a dashed line is drawn

between the activity and the data object. Typically in UCM’s this connection is identified

only in the plugin diagram. An arrow pointing to the data object implies that the activity

will write to the data object. Conversely, an arrow pointing to the activity implies that the

activity will read from the data object.

1An anchored component is one that is referenced in a plugin, but is defined at a higher level.
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Figure 3.3: A possible plugin for activity h

Figure 3.3 shows a plugin for activity h of the example UCM. The plugin assigns two

responsibilities x and y to the anchored data object Dat2.

When an activity is executed, service will be required from a sequence of declared devices

such as the processor and disks. In the sequence, the amount of service required of a device

will be specified by a distribution and required parameters. An example sequence of service

requirements is:

1. CPU: A processing demand of 30ms, a deterministic quantity. Processing demands
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are defined in the model for a reference processor, and then scaled according to the

processor speed when evaluating a particular deployment.

2. Disk1: A number of accesses uniformly distributed between 1 and 3.

3. DSP1: An amount of time exponentially distributed with a mean of 0.5ms (as mea-

sured on a reference Digital Signal Processor)

Although not illustrated in this thesis, PERFECT also allows operations within the

executing activity to be defined, so as to create, modify, or delete data associated with the

token which arrived at the activity. As explained in the next subsection, this data can be

used to route the token at OR forks.

Characteristics may be specified when declaring devices. For example the speed of the

processor relative to the chosen reference processor must be specified.

3.2.3 Branch selection criteria at OR forks

At an OR fork, an arriving token can be routed to one of a number of branches. In the

UCMs presented in this thesis the branch is chosen randomly, and a relative branch weight

can be assigned to each of the branches to define the probabilities of choosing the different

branches. The OR fork in Figure 3.2 has branches weighted 2 and 3, giving probabilities of

2/5 and 3/5 respectively. Where no branch weights are specified, any branch will be chosen

with equal probability.

PERFECT also allows for data associated with a token to control which branch the token

should follow. Specifically, if a token has a piece of numeric data called BRANCH SELECTOR,

then the token will follow the branch whose label matches the value of BRANCH SELECTOR.
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3.2.4 Timestamp points and response-time requirements

A response is the completion of some requirement following a certain begin event. The

response time for a response is the time difference between the occurrences of the begin

event and the end of the response. A single begin event can trigger multiple responses. For

example, when a file is requested of a web server, two responses may be sending the file

to the client and logging the request to a log file. Each type of response can have its own

response-time requirement. In this thesis, a response-time requirement specifies a delay and

the fraction of responses (usually 90%) which must complete within that delay.

On the path of a scenario, the begin and end events of a certain response are defined by

two points. The points are indicated on the path by timestamp points. Timestamp points

are marked by filled triangular arrowheads along a path and are used to “instrument” the

UCM. A type of response can be indicated by a dotted line between two timestamp points

with an arrowhead pointing to the end of the responses. The specified delay value for the

response-time requirement and optionally a name for the type of response can be indicated

along the dotted line.

For example, when a message arrives at the path start S1 of Figure 3.2, the newly

created token immediately passes timestamp point Ta where it is stamped with the current

(i.e. arrival) time. The token carries its timestamp history throughout its lifetime. When

a token crosses the timestamp point at the end of a response-time requirement, such as

Td, the response time for that response is determined (provided the token has previously

passed the begin point of that response). In Figure 3.2, a token starting at S2 or one of the

token’s descendents may generate a response-time for a response of type Rbd but will not

for other types such as Rad. The response-time requirements in this thesis all specify that

90% of responses be completed within a specified delay.

In summary, to define a type of response and its response-time requirement, the following

must be specified:
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• A begin event

• An end event

• A delay value

• The fraction of responses of that type which must complete within the delay.

3.3 Partitioning of path elements

In addition to specifying scenarios, UCMs allow one to associate the scenario elements

with software components such as processes and modules or packages. Since this thesis

is concerned with concurrency architectures, UCM’s notation for active components like

processes is of most interest.

The partitioning of the execution between processes is indicated by drawing in the back-

ground parallelograms representing processes. Each path element in a UCM belongs to the

process drawn behind it. As shown in Figure 3.4 using red labels, a single-threaded process

such as stp1 is indicated by a parallelogram, and a multi-threaded process such as mtp1 by

a stack of parallelograms. Each process is named. The scenarios can be reshaped to ease

partitioning, and if desired multiple parallelograms (or multiple stacks of parallelograms)

identically named can be drawn in separate parts of the diagram to include in one process

scenario-elements which are awkwardly separated on a diagram.

The partitioning defines whether a data object will be shared or not. If the data object

“falls” in a multithreaded process, or is accessed by activities in different processes, then it

is shared, and must be protected in some way when it is accessed.

A partitioning implicitly introduces overhead operations including messages between

processes, context switches between threads, and access control for the shared data objects.

These are indicated in the colour blue in Figure 3.4. Details of when these overhead op-

erations occur will be explained more fully in the next chapter. However, it is apparent
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that certain overhead operations occur during an execution of a scenario starting at S1 in

Figure 3.4.

• There are messages from a thread of mtp1 to processes stp1 and mtp2 and later to

process stp2, and also messages from a thread of each of stp1, mpt2, and stp2 to the

originating thread of mtp1. Note that two messages are sent from mtp2 to mpt1, and

only one message from each of stp1 and stp2 (a message will be sent for only one of

the OR-fork branches in stp2).

• In order for each process to do its share in processing the scenario, context switching

will be necessary between a thread in each of the processes.

• Access control will be performed when activities b and e access shared data object

Dat3, and when activity e accesses shared data object Dat1. Thus access control will

be needed whether data objects are shared between processes, as is the case with

Dat3, or are shared between threads of a single process as is the case with Dat1.

Figure 3.5 shows the same scenarios but with a different concurrency architecture. In

this architecture fewer overhead operations will occur.

3.4 Incorporation of performance annotations into UCM Nav-

igator

The UCM Navigator [14] is a graphical tool for editing UCMs. It allows one to draw

scenarios with just a few clicks of a mouse. A component such as process is also easily

drawn by just clicking and dragging the mouse.

The performance annotations described in Section 3.2 have been incorporated by An-

drew Miga [47] into UCM Navigator. Not currently implemented in the tool are the dotted

lines drawn
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• from a stub to a data object to show that the stub’s plugin references the data object

(see Section 3.2.2)

• from one timestamp point to another to indicate a response (see Section 3.2.4).

UCM Navigator saves entered UCMs in a defined XML format [8].



Chapter 4

Virtual Implementation to

Evaluate Architecture

This chapter explains how a virtual implementation is automatically constructed and its

execution is simulated to provide quick evaluation of a concurrency architecture. The goal

of the virtual implementation is to allow the full performance potential of the architec-

ture to be exploited. In constructing the virtual implementation, certain assumptions are

made regarding kernel scheduling and message handling, and tentative decisions are made

regarding the behaviour of each thread.

It must be re-iterated that the virtual implementation is not an automated design step.

It is simply constructed to make the best of the concurrency architecture expressed in the

UCM, and it uses techniques which might not be usable in practice. At least, their use in

practice would require further development of platform features, which is outside the scope

of this research.

36
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4.1 Processes, threads, and mailboxes

In the virtual implementation there is a process for each process in the specification. Each

process has its own process mailbox. If the process is singlethreaded, it is a program with

a single instance which can receive messages from the process mailbox. Alternatively, if the

process is multithreaded, it has a potentially unbounded number of threads which can all

receive messages from the one process mailbox.

If an execution path leaving a thread later returns, it will arrive as a message to a return

mailbox private to the thread.

4.2 Thread behaviour in the virtual implementation

The behaviour of a thread is governed by a controller which sequences the execution of

activities and the invocation of kernel primitives. In the simulation, it does this by inter-

preting the UCM specification of the path segments allocated to the process. This control

logic takes the role assumed by a finite state machine in some software development meth-

ods (eg. ROOM [59] and UML [56]). The state of a thread, R, consists of a set TR of tokens

being processed, each of which has a record of its location on a UCM subpath, and the

number, nR, of tokens which are expected to return to the thread in messages to the return

mailbox.

Each thread starts by obtaining a token from the process mailbox of its containing

process. Stored in this token is the token’s location on a UCM path (the location will be

on a path segment crossing into the process). The controller moves the token to the next

path element and updates the token’s location attribute.
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4.2.1 Behaviour at an activity

When the token arrives at an activity, it begins to execute the activity’s specification by

requesting service at the first of a sequence of devices. If the activity needs access to

data objects shared between threads, then read or write permissions as appropriate will

be requested first, before service is requested from any device. The request may cause the

thread to be blocked. To avoid deadlock trying to access shared data objects, they are

globally ordered in the model, and all requests are made according to that order. To reduce

the occurrence of a thread holding a data object while it is blocked waiting for permission

to access another, in general data objects subject to greater contention should be placed

earlier in the ordering. In Figure 4.1 for example, activity e reads from Dat3 and writes

to Dat1. Assuming Dat1 is placed in the order before Dat3, when a token in a thread of

process mtp1 reaches activity e, write permission will first be requested for Dat1, and then

read permission will be requested for Dat3. Because of the global ordering, another token

reaching activity e in any other thread of mtp1 will have to request access to those data

stores in exactly the same order. When the last in the sequence of devices has finished

serving the activity for a token, the data stores will be released and the token will be moved

along the path.

Note that permission to access shared data is requested at the granularity of a whole

activity. In order to get access to a shared data object for only part of the duration of an

activity, the activity would be subdivided into multiple activities.

4.2.2 Behaviour when forking

When a token arrives at an OR fork along a UCM path, the token will be routed along one

of the outgoing branches. In the UCMs presented in this thesis, the output branch is chosen

randomly according to the specified relative branch weights. The evaluation method also

allows for data to control the choice of branches as was explained in section 3.2.3.
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Figure 4.1: A UCM showing scenarios and a concurrency architecture

When a token arrives at an AND fork, the original token will be routed to one of the

branches, and clones of the token will be created and routed to each other branch. The

cloned tokens will be referred to as descendents of the arriving token.

4.2.3 Behaviour when a token leaves a process

When a token T reaches a point where a path segment crosses from one process, Ps, to

another, Pd, the thread, Rs, of Ps, under whose context token T has been executing, will

send a message referencing T . If token T or a descendent will later return to Ps then

Rs – keyed to Ps – is stored in T in dictionary RT and Rs’s count of expected returning

tokens, nRs , will be incremented as described at the bottom of this section. If token T or

an ancestor has previously visited Pd then it was handled by Rd, the thread in RT keyed

to Pd, so the message goes to the return mailbox of Rd. Otherwise, the token goes to the

process mailbox of Pd. From the above it should be understood that if a token executed by
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a thread Rs leaves a process Ps but the token or at least one descendent later returns to

Ps, then all descendents which return to Ps, and the original token if it returns, will return

to thread Rs via the thread’s return mailbox.

Returning to the same thread is done mainly to ensure that proper tokens are joined with

each other at an AND join. Using the thread behaviour presented in this chapter, joining

proper tokens requires that each token joining at an AND join in a thread of a multi-

threaded process was either the last token the thread received from the process mailbox,

or is a descendent of the last token that the thread received from the process mailbox. An

AND join should generally not be put in a process without this condition being met. A

consequence of this requirement is that it is never simultaneously permitted in a thread

that tokens are waiting to join at an AND join, the token return count is 0, and there are

no tokens resulting from an AND fork which are ready to proceed.

In Figure 4.1, the token that travels through activity c in a certain thread and all the

token’s descendents will all arrive at that same thread to be joined. Five tokens arrive at

the thread of mtp1 to be joined, but only four of the tokens have previously visited mtp1.

The fifth arriving token is a descendent that was created at the AND fork in process mtp2.

Without a return mailbox per thread, different tokens that should join together could end

up in different threads of a process containing an AND join resulting in possibly undesired

behaviour and perhaps deadlock.

An added consequence of tokens returning to the same thread of a process is that

intermediate result data needn’t be bound to and referenced through the token, but can

just remain in the context of the thread if the data will not be needed while the token is

away from the process. In Figure 4.1, activity m can directly use any intermediate result

data generated at an activity such as d.

After sending a message, a thread must get another token to be the active token following

the steps to be listed in section 4.4.2. At this point it suffices to say that a thread, R, cannot
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receive from the process mailbox of the process it belongs to if nR > 0.

Incrementing returning-token count

When a message is sent from a thread R of a process P , nR, the count of the number of

returning tokens, should be incremented by the number of tokens which are expected to

return to R as a result of the message being sent. If no tokens are to return as a result,

then the increment will be 0. If tokens do return as a result, the the increment will often

be 1, but if the token will be AND forked without matching AND join(s) while the token

is away from process P , then the increment can be greater than 1. In Figure 4.1, when a

token leaves thread R of mtp1 bound for mtp2, nR is incremented by 2.

In any case, the number of returning tokens must be deterministic: if a token is OR

forked after leaving but before returning to a process, all outgoing branches of the OR

fork must either OR join or must re-enter the process, even if no processing is done after

re-entering the process. This is necessary so that a thread will not wait for a message which

never will arrive. In the example UCM of Figure 4.1, when a token leaves thread R of

mtp1 bound for stp2, nR will be incremented by 1. The branch of the OR fork in stp2 with

activity k will return to mtp1 even though no processing is done there.

4.2.4 Behaviour at an AND join

When a token T controlled by a thread R arrives at an AND join, one of two things will

happen. If at least one other input branch of the AND join does not have a waiting token

controlled by thread R, then T must wait and R’s controller must get another token to

be the active token following the steps to be listed in section 4.4.2. If each other input

branch has a waiting token controlled by thread R, then R’s controller must merge into T

the information, such as RT , stored in the waiting tokens and delete the waiting tokens. T

then continues on.
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4.3 Scheduling policy

The scheduling of the processor in the simulator was chosen to aid in the evaluation of

feasibility of the response requirements. Thus, the scheduler should be “good” for systems

with soft deadlines and statistically determined arrivals and execution times, yet not have

an unreasonably large computational overhead. These scheduling requirements are similar

to those of real-time database systems where Earliest Deadline First (EDF) scheduling has

been investigated (see Section 2.3.3). All the reported studies show that EDF scheduling

works well at lower loads, allowing most of the responses to complete within their deadlines.

At heavy loads some other scheduling policies perform better but we are most interested in

cases where most responses are completed on time.

During periods of overload, EDF suffers from the “domino effect”[64], whereby a re-

sponse which is already “late” is given the highest priority, thus delaying responses which

could otherwise more easily meet their deadlines. To stabilize overload performance, Har-

itsa, Livny and Carey [32] propose an algorithm called Adaptive Earliest Deadline. This

research has used pure EDF and it has been satisfactory.

4.4 How the scheduling policy influences desired thread be-

haviour

With EDF scheduling, a thread controller will have to set deadlines at certain points during

its execution.

The first thing described is the way in which deadlines for a token are defined. Then,

the deadlines of tokens emerging from an AND fork are described, and how the active token

for a thread is chosen. Last to be described is the way in which the deadline for a thread

is determined, and how AND joins, sending messages, and OR forks influence deadlines.
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4.4.1 Defining deadlines for a token

A token, T , has a dictionary DT of deadlines which evolves through time. At each time t,

the dictionary has one deadline for each response-time requirement that T is subject to at

that time. When T crosses a timestamp point which starts a certain response-time interval,

rtr, a new value Drtr,T is added to DT . Drtr,T is defined by adding the response-time

requirement’s delay value, vrtr, to the current simulation time, tsim.

Drtr,T = tsim + vrtr

Multiple deadlines can be defined at the same moment if a timestamp point starts

multiple response-time intervals (as Ta does in Figure 4.1). The earliest deadline in DT at

any point in time, t, will be termed the deadline, DT (t), of the token at time t.

DT (t) = min D ∈ DT at time t

If a token T is created at S1 in Figure 4.1 and crosses Ta at a simulation time, tsim, of

100.0ms, then token T will have 110.0ms, 120.0ms, and 130.0ms as the deadlines in its

collection and 110.0ms will become its current deadline, DT (t = 100.0ms) = 110.0ms.

When T crosses the timestamp point which ends rtr, Drtr,T is removed from DT .

4.4.2 AND fork

It was mentioned in section 4.2.2 that a token is cloned when it reaches an AND fork. If

a deadline belonging to the original token is only relevant to some of the branches, it is

removed from the tokens going to the other branches. For each branch which immediately

leaves a process and irrespective of the deadline of the token on that branch, the controller

will immediately send a message to the appropriate mailbox of the destination process (the

process mailbox or a return mailbox of one of the process’s threads). These messages are
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immediately sent to guarantee that another thread can begin using the cpu if and when the

current thread starts using a device other than the cpu (such as a disk). The immediate

sending is even more important if the computer is a multiprocessor.

Because of cloning at AND forks, a controller for a thread R might have to interleave

the processing of a number of “ready” tokens. After sending any necessary messages, the

controller will have to obtain a token to make active.

1. If the thread R has ready tokens, select as the active token, AR, a ready token with the

earliest deadline, DAR
. Any other tokens will form the thread’s “ready-to-proceed”

set. QR(t) is defined as the “ready-to-proceed” set at time t.

2. Otherwise, thread R will receive from a mailbox.

(a) If the number of returning tokens, nR, is greater than 0 the thread will decrement

nR by 1 and receive from its return mailbox.

(b) Otherwise the thread will receive from the process mailbox of the process it

belongs to.

In Figure 4.1, after the token T described in section 4.4.1 reaches Af1, a message will be

sent to each of stp1 and mtp2. Each message will carry a token with a current deadline of

120.0ms. The token on the lowest branch with a current deadline of 110.0ms will become

the active token, and the fourth token will have a current deadline of 120.0ms and will form

the “ready-to-proceed” set.

4.4.3 Current priority of a thread

The current priority of a thread R will be assigned based upon the earliest deadline chosen

from among the earliest deadline of R’s active token, the earliest deadline of each token

waiting at any AND join and served by R, the earliest deadline of each token waiting at

a mailbox exclusive to R, and the deadline of each thread whose active token is waiting
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for access to data being used by R. Thus deadlines can be inherited in order to reduce

unbounded priority inversion [60]. Note that deadline inheritance is considered separately

for messaging and synchronization. When a message is sent to a thread which is waiting to

access a shared data object, or when a message is sent to the process mailbox of a single-

threaded process whose thread is waiting for a message on its return mailbox, unbounded

priority inversion can again result. To reduce the occurrence of unbounded priority in-

version in the latter case, such a single-threaded process should be made multi-threaded.

To eliminate all unbounded priority inversion, a method such as the Integrated Real-Time

Resource Management Model [41] should be used1. If no token currently associated with a

thread has a deadline, then the thread will be assigned the minimum possible priority (i.e.,

have an implied deadline of the end-of-time).

4.4.4 AND join

The above section stated that in choosing the current deadline of a thread, the thread’s

controller considers the deadlines of tokens waiting at AND joins in the thread. The neces-

sity of this is understood by considering the situation in which a relevant2 response-time

requirement begins on one branch of an AND join and ends after the AND join. Rbd in Fig-

ure 4.1 is such a situation. When a token T from that branch reaches the AND join, tokens

still to arrive at the AND join and join with token T will need to execute at the deadline

of T to avoid the possibility of inversion (i.e. allowing the execution of an unrelated token

with a deadline later than that of token T ). If the AND-join branches with outstanding

tokens are completely within the thread containing the AND join and have the most urgent

remaining tokens of the thread, there is no problem: according to the previous section the

deadline of the thread will be at least as urgent as that of the waiting token in question.

1In the PERFECT tool described in Section 4.6 such a method is not currently used, but it can be added.
2A response-time requirement is considered relevant if it can affect the scheduling of threads or a thread

controller’s ordering of operations.
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In other cases, such as happens in Figure 4.1, concepts similar to those employed in the

Integrated Real-Time Resource Management Model should be used. It is anticipated that

a response-time requirement straddling an AND join in this way will rarely be encountered

in real applications.

4.4.5 Sending messages

When a message is sent to a mailbox, priorities may need to change. If the message is

being sent to a mailbox exclusive to a thread (any return mailbox, or a process mailbox for

a single-threaded process), and the earliest deadline of the token referenced in the message

is earlier than the current deadline of the receiving thread, then replace the deadline of the

thread with the token’s earliest deadline. If the message is being sent to the process mailbox

of a multi-threaded process, the earliest deadline of the token should be assigned to an idle

thread. In a virtual implementation, if a multi-threaded process needs an idle thread but

none is available, an additional thread will be created.

If multiple messages are waiting in a mailbox, a message carrying a token with the

earliest deadline will be the first to be received.

After sending a message a thread will have to obtain another token to make active by

following the steps enumerated in section 4.4.2. The thread’s deadline may change. In

any case, the thread should have a deadline assigned according to the rules described in

section 4.4.3.

4.4.6 Scheduling influences at OR forks

At an OR fork, deadlines which a token T is carrying in dictionary DT which are specific

to branches other than the one chosen can be discarded. This may result in the token’s

deadline, DT (t), becoming less urgent, and possibly the switching of which token is active

and/or the scheduling of another thread.
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Figure 4.2: The UCM of Figure 4.1 with the OR fork moved

To illustrate this, when the token T described in Section 4.4.1 or a descendent finally

reaches the OR fork in process stp2 of Figure 4.1, then if the upper branch is chosen the

current deadline of T will be discarded from DT and DT (t) will change to 130.0ms.

This suggests that OR forks should sometimes be placed more towards the start of a

scenario than is necessary for functional correctness. Such placement may allow one or more

urgent deadlines in a token’s collection to be discarded earlier, and hence allow a now more

urgent token to execute earlier thereby yielding more efficient scheduling. Thus moving an

OR fork more towards the start of a scenario can bind less urgent deadlines earlier, and

is an application of Smith’s Fixing-Point Principle [17]. For example, the OR fork in stp2

of Figure 4.1 could be moved in front of activity i provided that a copy of activity i was

placed on each branch immediately after the OR fork. These changes are shown in red in

Figure 4.2. The changes allow an earlier extension of the current deadline of each token

that follows the top branch.
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Summary of the data stored by a token

The data stored by a token T can now be summarized, as follows:

1. The location of the token T on a path. T can be located on a path segment between

two path elements, at an activity, or at an AND join. T would be located at an AND

join if it was waiting for other tokens to join with. Its location is updated every time

T moves along the path it is on.

2. A set of timestamps. A timestamp references a timestamp point and specifies a time

value at which the token T crossed the timestamp point. The set is augmented every

time T crosses a timestamp point.

3. The dictionary DT of deadlines for T , keyed by response-time requirement. See Sec-

tion 4.4.1. This dictionary gains one or more new deadlines when T crosses a times-

tamp point which begins one or more response-time intervals. The dictionary loses

one or more existing elements

• when T crosses a timestamp point which ends a response-time interval,

• when T , possibly a newly cloned token, is placed on a branch of an AND fork

for which some deadlines in DT are not relevant,

• when T is routed to a branch of an OR fork for which some deadlines in DT are

not relevant.

4. A dictionary RT , keyed by process, for which each value is a thread. See Section 4.2.3.

When a token is sent to a process which is a key in RT , the token will be deposited

in the return mailbox of the thread which is keyed to the process. When T leaves a

process which is not already a key in the dictionary and to which T will later return,

the dictionary is augmented to include as a value the thread which is actually sending

T . At the time T is created, RT is initialized to be empty.
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5. A set of named data values. These values can be used to select which branch should

be followed when T arrives at an OR fork as was discussed in section 3.2.3. These

values can be added, modified, or deleted at activities.

4.4.7 Summary of when a thread’s deadline may need to change

It will be helpful at this point to summarize in the following list when a thread’s deadline

may need to change.

1. The thread sends a token in a message to a mailbox (including at AND forks).

2. The thread’s active token crosses a timestamp point which either starts or finishes a

response-time requirement.

3. The thread’s active token arrives at an OR fork.

4. A message arrives at a mailbox and is destined for the thread.

5. Another thread must wait when it tries to access a data object currently being accessed

by the thread.

The first reason corresponds to a possible change in which token, if any, is active. This

includes sending messages at an AND fork. The second and third reasons correspond to a

possible change in the current deadline of the currently active token and possibly a change

in which token is active. The thread’s controller changes the thread’s priority.

The fourth and fifth reasons typically correspond to priority inheritance. In these cases

it is kernel primitives (messaging and locking) executing in the context of another thread,

or perhaps an interrupt service routine at the beginning of a path, that changes the thread’s

priority.



CHAPTER 4. VIRTUAL IMPLEMENTATION TO EVALUATE ARCHITECTURE 50

4.5 Scheduling of devices other than central processor(s)

The above sections have explained the choice of EDF for the kernel’s processor scheduling

policy and ways in which thread behaviour co-ordinates with EDF. While a thread is using

a processor, a more urgent thread can pre-empt it. Other classes of devices such as in-

put/output (I/O) devices and special-purpose processors may not be so easily pre-empted.

The UCMs presented in this thesis, and the PERFECT tool presented in the next section,

use disks and digital signal processors (DSPs) to represent these other classes of devices.

The scheduling of disks and DSPs in a virtual implementation is presented below.

Demand is placed on a disk as a number of accesses. Each access has a deadline equal to

the current deadline of the token. The scheduler for a given disk maintains a single queue

of all outstanding access requests. When one access finishes, the access with the earliest

deadline is performed next. An access while in progress cannot be pre-empted.

This is not a very sophisticated scheduler. Better strategies for disk scheduling were

described in Section 2.3.5.

An activity places demand on a DSP by requesting that a certain DSP procedure be

initiated. Statistics on the invocation are known or estimated. Each request has a deadline

equal to the current deadline of the requesting token. The scheduler for a DSP maintains

a queue of outstanding requests. Once a DSP procedure has been started it cannot be

pre-empted. When a scheduled DSP procedure finishes, the requested invocation with the

earliest deadline is performed next.

4.6 Details of the simulator

A virtual implementation of specified scenarios is evaluated by simulation using the PER-

FECT tool which was constructed for the purposes of this thesis. The tool takes a UCM in

the defined XML format [8], and simulates an automatically generated virtual implemen-
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tation for a specified amount of time. Typically, the UCM file in XML format is generated

by the UCM Navigator graphical UCM editing tool mentioned in section 3.4.

PERFECT is an object-oriented application written in Objective-C. Objects modelled

include:

• The scenarios: a scenario is modelled as a directed graph of scenario-element nodes:

– Path Starts

– Activities

– OR forks

– OR joins

– AND forks

– AND joins

– Path Ends

A scenario also references other objects, representing:

– Timestamp points

– Response-time requirements

– Shared data objects

• The hardware platform. This is made up of

– A multiprocessor with a variable number of processors. Obviously choosing one

processor allows a uniprocessor to be simulated. The speed of the processors can

be specified.

– One or more disks, as an example of I/O devices generally

– One or more DSPs, as an example of special-purpose processors generally
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• The concurrency architecture, made up of objects including:

– Processes

– Threads

– Mailboxes

• Tokens

• Semaphores

When a concurrency architecture is determined for a set of scenarios, the scenarios

record at which points certain paths cross between certain processes. Then to simulate

the system, tokens are injected at path starts according to the specified stochastic arrival

processes, and the entire behaviour of the system is automatically interpreted using the

connections between the objects. The logic of the simulator is distributed throughout the

objects. This has proven a very flexible tool architecture, allowing changes to simulation

behaviour simply by replacing the definition of a limited number of objects.

An external event is modelled as being received by an interrupt service routine which

sends a message to the appropriate mailbox.

A disk access is simply modelled in the simulator as taking an amount of time uniformly

distributed between, for the experiments in this thesis, 1ms and 23ms. Disk accesses are non-

deterministic due to the different amounts of head movement, etc. that may be necessary.

The XML file format for UCMs provides a way to define devices and specify parameters for

each device, so in principle disks and other devices can be modelled with as much accuracy

as desired.

For the experiments in this thesis, the processor overhead for the various kernel primi-

tives was based on results of the lmbench benchmarking suite [63]. The overhead results in

Table 4.1 are for the Solaris operating system running on an ultrasparc processor operating

at 143MHz.
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Kernel primitive Processor overhead
in µs

Context switch 20

Send message 7

Receive message 7

Adjust  priority  (deadline) 7

Semaphore wait block 4

Semaphore wait noblock 1

Semaphore signal resume 4

Semaphore signal noresume 1

Table 4.1: Processor overhead for kernel primitives using Solaris on a 143MHz ultrasparc

PERFECT links with the PARASOL C-language simulation library [50], which is an

execution-based library designed for prototyping and performance prediction of computer

systems involving concurrent and possibly cooperating software elements. The PARASOL

functions for thread management, inter-thread communication, and thread synchronization

are roughly aligned with primitives offered by the Mach kernel.

Running on a 32-bit machine, the 232 (C-language “int”) priority levels of PARASOL’s

pre-emptive priority scheduler were used to implement EDF scheduling by restricting dead-

lines to a resolution of microseconds and mapping the deadlines directly to priorities. This

allowed over 71 minutes of time to be simulated before deadlines would overflow. Main-

taining microsecond resolution, running on a 64-bit machine with 64-bit “int”s would allow

almost 600,000 years of time to be simulated.

For output, PERFECT reports statistics including:

• The mean response time and fraction of “successful” responses for each type of re-

sponse.



CHAPTER 4. VIRTUAL IMPLEMENTATION TO EVALUATE ARCHITECTURE 54

• The utilization of each device instance.

• The amounts observed of different types of concurrency-related overhead: context

switching, messaging, deadline adjustment, and semaphore operations used for pro-

tecting access to shared data objects.

• The metrics which are presented in the next chapter.

In order to estimate confidence intervals for each simulation run, PERFECT uses PARA-

SOL’s ps block stats call, which blocks the simulation run into quasi-independent blocks and

applies a Student-t analysis. In this thesis, each simulation is run for a duration such that

valid comparisons can be made between architectures. Where confidence intervals are not

explicitly stated, all digits for a reported statistic are significant according to a 95% confi-

dence interval. For example, a result 8.544 with a 95% confidence interval of 0.02 will be

reported as 8.54.

4.7 Simple validation of the simulator

This section presents some of the experiments which were performed to validate the eval-

uation capability of PERFECT. In these experiments, PERFECT’s simulation results are

compared to results obtained from analysis.

4.7.1 A M/M/1 queueing system

A simple system which can be thoroughly analyzed [11] is a M/M/1 queueing system with

First-Come, First-Served (FCFS) scheduling. In an M/M/1 queueing system, Poisson ar-

rivals are processed by a single server which has an exponentially distributed service time.

Figure 4.3 shows a UCM which corresponds to a M/M/1 queueing system. External events

arrive at an average rate of λ = 0.3 arrivals/second (the average interarrival time is 3.333
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rtr: 2.000

Mean
Response
Time:  0.73

Time figures in seconds

cpu: 0.600
(µ = 1.666 tokens/sec)

S: 3.333
(λ = 0.300

events/sec)

TeTs

93.6

cpu: 17.8%

Figure 4.3: A UCM corresponding to an M/M/1 queuing system

PERFECT
simulation with

95% confidence

Analysis

Mean Response Time (0.73 ± 0.01) secs 1/(µ−λ) = 0.7317 secs

Responses completing within 2secs 93.6% ± 0.6% F(x = 2secs) = 1 - e-(µ−λ)x = 93.50%

cpu Utilization 17.8% ± 0.5% λ/µ = 18.00%

Table 4.2: Comparisons between analysis and results of PERFECT simulation for the UCM
of Figure 4.3
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seconds), and each token requires an average of 0.6 seconds to be served (the average ser-

vice rate is µ = 1.666 tokens/second). Because all responses have the same response-time

requirement, PERFECT’s EDF scheduling will produce the same schedule as an FCFS

scheduler. One type of response, with a specified delay value of 2.000 seconds, is drawn

on the figure, and also indicated on the figure in a green triangle is the simulation result

that 93.6% of responses finish within the specified delay. The use of triangular symbols to

display such results is discussed further in Section 5.1.

For the UCM of Figure 4.3, Table 4.2 compares the results obtained by analysis with

the results of PERFECT simulation for the following quantities:

• The mean response time.

• The fraction of responses expected to complete within 2 seconds. This is simply

obtained from the response-time distribution.

• The cpu utilization.

Note that the analytical results fall nicely within the 95% confidence interval of the simu-

lation results.

4.7.2 A simple product-form queueing network

In addition to measuring the fraction of responses which complete within the specified delay

for a given response-time requirement, PERFECT can measure the mean response time as

was demonstrated above for the M/M/1 queueing system. We can easily get analytical

results, including the mean response time, for product-form queueing networks [20] such as

the one shown in Figure 4.4.

Figure 4.5 shows a UCM which corresponds to the queueing network of Figure 4.4. For

this UCM, a simulation by PERFECT reported a mean system response time of 8.8 seconds

with a 95% confidence interval of 0.2 seconds. Analysis of the queueing network gives a
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SdspA = 0.030

SdspB = 0.027

Scpu = 0.005

VdspB = 50

VdspA = 70

Vcpu = 121

Departures
R = 8.685secs.

Arrivals

λ = 0.3 jobs/sec.

UdspA = 0.63

UdspB = 0.405

Ucpu = 0.182

Figure 4.4: A simple product form queueing network

Te

Ts

SRT dspA:0.030

cpu:0.005

dspB:0.027

S: 3.333

Mean System
Response
Time:  8.7

dspA:  63%
dspB:  41%
cpu: 18.3%
ctx:  0.07%
msg:  2E-6
adjp:  2E-6

120

1
70

50

Time figures in seconds

Figure 4.5: A UCM corresponding to the product form queueing network of Figure 4.4

PERFECT
simulation with 95%
confidence interval

Analysis

Mean System Response Time (8.8 ± 0.2) secs 8.69 secs

dspA Utilization 63.1% ± 0.9% 63.00%

dspB Utilization 40.6% ± 0.5% 40.50%

cpu Utilization 18.3% ± 0.3% 18.15%

Table 4.3: Comparisons between analysis and results of PERFECT simulation for the UCM
of Figure 4.5
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cpu:8
S1: 20
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Time figures in milliseconds (except where specified).  Timeline not to scale.

18.129

5.055 5.041

context switch
(20µs)

receive
message (7µs)

adjust
priority (7µs)

activity being
executed

thread
ready-to-run

send message
(7µs)

activity
execution

interrupted

Mean Response
Time:  5.048

Mean Response
Time:  18.129

Figure 4.6: A UCM with equally spaced arrivals and a timeline of its execution. Note the
pre-emption which occurs.

mean system response time of 8.69 seconds, well within the simulation confidence interval.

When the virtual implementation is simulated, the cpu must execute overhead operations,

such as messaging, in addition to the cpu-intensive activity. However, the resource demands

of activities were made large enough to dwarf the contribution of the overhead operations.

In Table 4.3, the mean system response time and utilization figures obtained by analysis

are compared to those obtained by PERFECT simulation.

4.7.3 Validating pre-emption and overhead

Consider the UCM on the left side of Figure 4.6. The “shorter”, more urgent scenario

starting at S2 is triggered twice as often as the longer scenario starting at S1 and should

cause pre-emption to occur. All interarrival times are deterministic.

By following the rules of virtual implementation, a timeline of expected execution is

constructed on the right side of the figure. When an event is recognized by an (assumed)

interrupt service routine (ISR), the ISR will set the deadline of the destination thread,

and then send a message to that thread. Assuming that the destination thread is not
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already running, as is always the case for this UCM, the processor will eventually switch

to the context of the destination thread and the message will be received. For half of the

invocations at S2, the thread of stp1 will be running and will be pre-empted.

By adding the time spent executing the activities to the various overhead times, the

expected response times have been calculated and indicated on the timeline. Because of

the cyclical nature of the example, response times for response R2 will alternate between

5.055ms and 5.041ms. The mean response time reported by PERFECT for response R1 is

18.1289ms, exactly as it should be. The mean response time reported for response R2 is

5.048ms, the mean of the two possible response times for that response.



Chapter 5

Diagnostic Metrics

This chapter describes three problems which can degrade the performance of a concurrency

architecture. For each problem, an example which illuminates the problem is presented,

and a metric to measure the extent and identify the locations of the problem is proposed.

Combining a knowledge of which responses are determined to be late (using the evaluation

technique of the previous chapter), and information on concurrency problems which are

present using the diagnosis techniques of this chapter, the designer can expose the limita-

tions of a concurrency architecture and propose improvements. This is demonstrated for

each of the examples.

5.1 Problem 1: inversion due to inadequate concurrency

The term inversion here will be applied more generally than priority inversion but it has

the same significance. Inversion occurs when, due to inadequate concurrency, more urgent

work must wait for less urgent work [60]. Inversion can occur in a virtual implementation

under the following circumstances:

• Synchronization – An urgent token might have to wait for a less-urgent token which

is accessing a protected data object needed by the urgent token.

60
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• Messaging – An urgent token might have to wait to be received by a thread which is

processing a less urgent token.

As was explained in section 4.4.3, priority inheritance is used in a virtual implementation

to reduce unbounded inversion but some bounded inversion still remains under the above

circumstances. In a simple case, the bound on the inversion is then the amount of time

it takes the less-urgent token to finish with the resource in contention (a datastore or a

thread). It is difficult to eliminate this remaining bounded inversion when it occurs during

synchronization, but there are often avenues for eliminating bounded inversion when it

occurs during messaging.

For the messaging used in the virtual implementations, inversion can occur either at

a primary mailbox of a single-threaded process, or at any return mailbox. An example

of inversion at a primary mailbox is shown in Figure 5.1. Here, there are three paths of

processing. The first two paths have a cpu demand of 50µs, are invoked according to a

Poisson process with an average interarrival time of 500µs, share a data object ds1, and

require that 90% of responses complete in less than 300µs. The third path has a cpu demand

of 10µs, an average interarrival time of 500µs, and requires that 90% of responses complete

in less than 50µs. With all these paths assigned to one single-threaded process, we get very

high success ratios for paths 1 and 2, but only a 76% success ratio for path number 3. The

“success ratio” for a type of response is the ratio of responses which complete within the

specified delay to all responses of that type. Success ratios are indicated on UCM diagrams

in triangular symbols with a dashed arrow pointing to the type of response. Success ratios

which exceed the required percentage (90% in this thesis) are shaded green, while success

ratios which fall below the requirement are shaded red. Success ratios which come close to

meeting the required percentage are shaded pink.

The poor success ratio for path number 3 could be due to

• its combination of average interarrival time, cpu demand, and specified delay value
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Figure 5.1: Example showing inversion

(too small average interarrival time, too small specified delay value and/or too large

cpu demand) – i.e. an infeasible specification

• relatively urgent tokens arriving at S3 too often having to wait for the thread to finish

processing a less-urgent token on one of the top two paths – i.e. inversion. The thread

will not receive the relatively urgent token until it has finished its current processing,

Section 5.4.1 describes a metric that measures the amount of inversion in this archi-

tecture. If inversion is shown to be a significant problem, then a separate process can be

created for the third path. The thread of the separate process could pre-empt the processor

when its deadline is the most urgent. An alternative improvement would be to multithread

the process.
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Figure 5.2: Excess serialization due to only one token being able to travel along a given
path segment at a given time

5.2 Problem 2: inefficient scheduling of devices due to inad-

equate concurrency

If the scenarios make demands on multiple devices, then it should be possible for multiple

tokens to make progress simultaneously. Appropriately placed concurrency is required in

the software architecture in order to exploit this potential. In addition to having tokens on

different scenarios concurrently making progress, it is also possible for related or unrelated

tokens on the same scenario to make concurrent progress. Different external events trigger-

ing a scenario will result in unrelated tokens, and one or more AND forks on a scenario will

result in related tokens. If there is inadequate concurrency, then the progress of different

tokens will end up being serialized.

An example of excessive serialization due to only one token being able to travel along

a given path segment at a given time is shown in Figure 5.2. Here, the activities along a

path use three devices: one cpu and two DSPs. A response is defined over the length of the

path, and when the path is assigned to one single-threaded process, the response achieves

a 28% success ratio. A likely problem with this architecture is inefficient use of devices due

to serialized executions of the path. Because there is only one thread, only one device can

be active at any one time.
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Figure 5.3: Excess serialization after an AND fork

An example of excessive serialization after an AND fork is shown in Figure 5.3. Here,

a single-threaded process is responsible for executing both branches of the AND fork: one

which uses a disk and one which uses the cpu intensively. There are two responses, each

starting when an external event occurs: one ending after the activity which makes one disk

access and another ending after the activity which uses 11ms of processor time. Although

the cpu is lightly loaded, evaluation reveals a success ratio of 70% for the response ending

after the cpu-intensive activity. In this example it can be readily determined by inspection

that serialization of the branches is limiting the performance of the architecture. However,

with more complicated UCMs it is not always true that such serialization significantly

degrades performance because there may be many other tokens competing for devices.

In sections 5.4.2 and 5.4.3 metrics are proposed which will help to gauge the degree to

which the efficient scheduling of devices is being limited. The metrics may suggest that an

architectural change be considered.
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Figure 5.4: A very simple UCM
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Figure 5.5: The very simple UCM above with a second single-threaded process added

5.3 Problem 3: excessive overhead due to inappropriate con-

currency

Too much concurrency can cause undue overhead, thus slowing down responses. Figure 5.4

shows a simple Use Case Map where 95% of responses complete within the specified delay.

If we change to a two-process architecture the success rate drops to 47%. See Figure 5.5. It

is easy to see why the two-process architecture gives poorer performance. Both processes

use only the cpu and hence only one process can be “useful” at a time. Because only one

path uses the processes, the processes will always execute in alternation. Thus for every

response, two context switches are necessary as well as an extra message transfer and an

extra priority adjustment. In the single-process architecture, no context switches may be

necessary when a burst of arrivals is being processed.

To help to balance the overhead introduced by concurrency with the benefits of concur-
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rency, the fraction of cpu cycles used for different categories of concurrency-related overhead

is reported in the UCM diagrams in the lower right-hand corner.

• “ctx” refers to context switching

• “msg” refers to message passing

• “adjp” refers to adjusting thread priority

• “sem4” refers to semaphore operations used in protecting access to data objects.

Device utilizations are also listed.

5.4 Formal metrics for detecting problems

As explained in the previous section, we are measuring the different types of overhead, and

therefore can have some indication of when there is excessive overhead, but how can we

detect when there are problems in the architecture leading to inversion or inefficient use of

devices? To detect these problems we introduce some metrics which indicate the presence

of the problems.

5.4.1 Inversion metric

Figure 5.1 shows a UCM where we suspect inversion is a problem. That is, a relatively

urgent token created at S3 might have to wait for the thread to finish processing a less

urgent token on one of the top two paths. We want a metric to measure the extent to which

this actually happens. To achieve this we can create a set of metrics which measures the

time-averaged number of tokens which are deadline-inverted at each point where a path

crosses into a process. To help to interpret the results we will report the measurement at a

point, s, as a fraction of the time-averaged number of tokens waiting at s.
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The metric is thus specific to a point where a path crosses into a process. The point is

identified by naming the neighbouring path elements between which the point is located, as

illustrated in Figure 5.6. There are three cases. In the first case a path crosses for the first

time into a single-threaded process. Figure 5.1 shows examples of this case. In the second

case a path crosses for the first time into a multi-threaded process. If there is no limit to

the number of threads, as is the case in this work, then deadline inversion should not occur

because an urgent token would get its own thread which could pre-empt threads doing less

urgent work. Thus in this work we will not define the inversion metric for this case.

In the third case a path returns to a process. In this case a token returning to the

process will be received by a particular thread. If the process is multi-threaded, then the

token will be sent to exactly one of those threads. The path segment between c2 and c3 in

Figure 5.6 shows the case of inversion at a path returning to a process. If a token arrives at

mtp1 along the path from activity c2 to activity c3 before the sibling token arrives at the

AND join then the token will be deadline inverted.

The inversion metric will be measured in the first and third cases where a token will

wait to be received by a particular thread (the only thread for the first case, and the known

thread in the third case).

1. Definition: deadline inverted token.

Consider a token T waiting at time t to be received by a thread R which has an active token

and is in process P .

• As defined in section 4.4.1, let DT (t) be, at time t, the deadline for token T .

• Let DAR
(t) be the deadline of the active token of thread R at time t.

T is deadline inverted at time t if DT (t) < DAR
(t)
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Figure 5.6: Suspected deadline inversion where a path returns to a process

2. Inversion measures at a point s

Consider a point s at which a path crosses into a process.

• Let Is,R(t) be the set of deadline-inverted tokens waiting at a point s and at time t

to be received by thread R.

• Let Ws,R(t) be the set of tokens waiting at a point s and at time t to be received by

thread R.

Then, at time t, the total number of deadline-inverted tokens waiting at point s to be

received by any thread is:

Is(t) =
∑

allRinP

|Is,R(t)|
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The total number of tokens waiting there and at that time is:

Ws(t) =
∑

allRinP

|Ws,R(t)|

Over a period of observation of length L and starting at time t1, the time-averaged

number of tokens waiting at point s is:

Ws(t1, L) =
1
L

∫ t1+L

t1

Ws(t)dt

The fraction of those tokens which are deadline inverted is:

I∗s =
1/L

∫ t1+L
t1

Is(t)dt

Ws(t1, L)
=

∫ t1+L
t1

Is(t)dt∫ t1+L
t1

Ws(t)dt
≤ 1

The measures were estimated over a simulation run, taking care to discard initial tran-

sients and to obtain sufficient accuracy of estimates of the measures. Confidence intervals

were measured, and runs were extended to make the comparisons of measure values sig-

nificant. Reported values will be referred to as Ws and I∗s or, if the point on a path is

understood, simply W and I∗. A value of I∗ = 0 at a point means that there is no inversion

observed there, while a value of 1 or 100% means that all tokens at that point were inverted

all the time.

The result of applying the inversion metric to the Use Case Map of Figure 5.1 is shown

in Figure 5.7. The metric value is shown in white rectangles for the three points where paths

cross into the process. For the path with the urgent requirement, there is a time-average of

0.033 tokens waiting to be received (W(S3→c3) = 0.033). Of those, 48% are deadline-inverted

(I∗(S3→c3) = 48%). Note that for the two paths with the less-urgent requirement that no

waiting tokens are deadline inverted.
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Figure 5.7: Inversion metric applied to the Use Case Map of Figure 5.1

5.4.2 External device metric

Figure 5.2 showed a UCM where we suspected a problem of inefficient use of devices due

to serialization of execution. We need metrics to measure the degree to which any token is

waiting (either in a process or in a mailbox external to a process) and devices it needs are

idle or are doing less urgent work. This section will introduce a metric for tokens waiting

external to a process. A metric for tokens waiting internal to a process will be introduced

in the next section.

Consider a software system which places demand on a set C of classes of devices. Con-

sider in that system a token T arriving at a process P at point s along a path. Eventually

T will be received by a thread of P . T and any possible descendent tokens may need to use

a set NT,s of devices before either leaving the thread or being destroyed at path-ends. If

OR forks are present then the token and descendents may only use a subset of NT,s. Some
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of these devices will be used at the earliest deadline of the token, but other devices will not

be used until a later deadline of the token is applicable (because the token will have already

finished the response associated with its current earliest deadline).

• Let DT,s,d be the computed set of deadlines at which token T waiting at point s might,

while passing through the process it is entering, be scheduled on a device of class d.

• Let DT,s,d be the earliest deadline at which token T waiting at point s might, while

passing through the process it is entering, be scheduled on a device of class d,

DT,s,d = min D ∈ DT,s,d

• Let Dd(t) be the earliest deadline of all the threads (in any process) using or waiting

to use device d at time t. Dd(t) equals “the end of time” if one or more devices of

class d are idle at time t. Note that multiple threads can be using a processing device

in a multiprocessor. Also, for a non pre-emptable device, a thread waiting to use the

device may have a higher priority than the thread actually using the device.

A device d in NT,s is said to be potentially poorly scheduled (PPS) at time t with respect

to token T if Dd(t) > DT,s,d.

Let Ws(t) be the set of tokens at time t which have arrived at process P at point s

but have not yet been received by the process (i.e. are waiting). A device d is said to be

potentially poorly scheduled at time t with respect to Ws(t) if the device is potentially

poorly scheduled at time t with respect to any token in that set.

Let Ps(t) be the set of all potentially poorly scheduled devices at time t with respect to

Ws(t),

Ps(t) = {d|Dd(t) > DT,s,d, T ∈ Ws(t)}

Over a period of observation of length L and starting at time t1, the time-averaged
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number of devices which may be needed by tokens which are waiting at point s is:

Ns(t1, L) =
1
L

∫ t1+L

t1

∣∣∣∣∣∣
⋃

T∈Ws(t)

NT,s

∣∣∣∣∣∣ dt ≤ |C|

Ns(t1, L) will be referred to as time-averaged external device need at point s.

The fraction of that time-averaged device need which is potentially poorly scheduled is:

P ∗
s (t1, L) =

1
L

∫ t1+L

t1

|Ps(t)| dt

Ns(t1, L)
=

∫ t1+L

t1

|Ps(t)| dt

∫ t1+L

t1

∣∣∣∣∣∣
⋃

T∈Ws(t)

NT,s

∣∣∣∣∣∣ dt

≤ 1

Simulations are initialized with no tokens travelling along the paths. As stated earlier,

t1 should be chosen so that transient behaviour becomes insignificant, and L should be

chosen to give enough precision to allow meaningful comparison of alternative architectures.

Reported values will be referred to as Ns and P ∗
s or, if the point on a path is understood,

simply N and P ∗. Ns is the average number of devices that are usable by tokens at external

point s. A large value indicates a strong diversity of device demands from tokens at that

point, which in turn indicates strong potential concurrency within the process, for those

tokens. A value of zero for P ∗
s means that no device is ever potentially poorly scheduled

with respect to tokens at point s, while a value of 1 or 100% means that each device needed

by tokens which wait at point s is potentially poorly scheduled with respect to at least one

token waiting at point s, whenever there is at least one token waiting there.

The result of applying the inversion and external device metrics to the Use Case Map of

Figure 5.2 is shown in Figure 5.8. The metrics are shown in a white rectangle. While none

of the waiting tokens are deadline inverted, there is a time-averaged device need U(S1→c) of

1.6, of which P ∗
(S1→c) = 65% is potentially poorly scheduled.
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Figure 5.8: External device metric applied to the Use Case Map of Figure 5.2

5.4.3 Internal device metric

This section defines a metric similar to the external device metric, but for devices needed

by tokens waiting internally to a process. The metric is measured for each process.

Consider a ready-to-proceed token T in thread R of process P and waiting at point s.

See section 4.4.2 for a discussion of when tokens are waiting and ready-to-proceed. The

token and any possible descendent tokens may use a set UT,s of devices before either leaving

the thread, being destroyed at path-ends, and/or joining with the currently active token

of the thread or one of its descendants. Some of these devices may be used at the earliest

deadline of the token, but other devices will not be used until a later deadline of the token is

applicable (because the response associated with the current earliest deadline of the token

will have finished).

A device d in UT,s is said to be potentially poorly scheduled at time t with respect to

token T if Dd(t) > DT,s,d. Dd(t) and DT,s,d were defined above in section 5.4.2.

A device d is said to be potentially poorly scheduled at time t with respect to a thread

R if the device is potentially poorly scheduled at time t with respect to any token which is

in R and is ready-to-proceed, i.e. in set QR(t).

Let PR(t) be the set of all potentially poorly scheduled devices with respect to thread
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R at time t,

PR(t) = {d|Dd(t) > DT,s,d, T ∈ QR(t)}

Let UR(t) be the union of all UT,s at time t for which T is a token in the internal ready

queue of R,

UR(t) =
⋃

T∈QR(t)

UT,s

Over a period of observation of length L and starting at time t1, the time-averaged

number of devices which may be needed by ready-to-proceed tokens waiting in threads of

process P is:

NP (t1, L) =
1
L

∫ t1+L

t1

∣∣∣∣∣
⋃

allRinP

UR(t)

∣∣∣∣∣ dt ≤ |C|

NP (t1, L) will be referred to as time-averaged internal device need for process P .

The fraction of that time-averaged internal device need which is potentially poorly

scheduled is:

P ∗
P (t1, L) =

∫ t1+L

t1

∣∣∣∣∣
⋃

allRinP

PR(t)

∣∣∣∣∣ dt

∫ t1+L

t1

∣∣∣∣∣
⋃

allRinP

UR(t)

∣∣∣∣∣ dt

≤ 1

Following the convention established for the external device metric, reported values will

be referred to as NP and P ∗
P or, if the process is understood, simply N and P ∗. Since a

process must contain an AND fork in order to have internal device need, the metric will

not be reported for any process without an AND fork.

The result of applying the metrics to the Use Case Map of Figure 5.3 is shown in

Figure 5.9. The internal device metric is shown at the bottom of the process next to the

process’ name. There is a time-averaged internal device need Nstp1 of 0.28, of which an

impressive P ∗
stp1 = 99.8% is potentially poorly scheduled. Also note that there is a time-
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Figure 5.9: Internal device metric applied to the Use Case Map of Figure 5.3

averaged external device need N(S1→F ) of 0.39, of which P ∗
(S1→F ) = 50% was potentially

poorly scheduled (2 devices are needed by a waiting token, and 1 of those devices will be

“well-scheduled” processing a previous token). Finally, of the time-average of 0.29 tokens

waiting to be received by the process, 19% are deadline inverted (a token which arrives less

than 10ms after the previous token will be deadline inverted when the previous token is

using the cpu).

5.5 Using the metrics to guide design improvement

In section 5.4 we defined three metrics to help identify problems in architectural designs and

applied the metrics to the motivating Use Case Maps from the first sections of this chapter.

Considering the metric results, we will now try to improve the concurrency architectures

for the examples.
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5.5.1 Inversion examples

The metric results for the inversion example was shown in Figure 5.7. Call that case INV1.

Case INV2

To remedy the inversion on the third path of case INV1, an alternate architecture with

the third path in a separate process is proposed. The two-process architecture and its

evaluation are shown in Figure 5.10. Process stpB will pre-empt stpA if necessary when

a token is created at S3. Now none of the tokens are deadline inverted, and the success

ratio of the third response has increased from 76% to 98%. Because process stpA now

experiences pre-emption, the success ratios for the top two responses have decreased to

99.7% from virtually 100%. The new architecture has more overhead, especially context

switching which has risen from using 7.4% to 8.9% of cpu power.

Case INV3

It is important to understand that reducing inversion does not in itself guarantee that

any response will have a greater success ratio. The best concurrency architecture will be

obtained by balancing the benefits of greater concurrency with the overhead it introduces.

To show this, Figure 5.11 restates the UCM of Figure 5.7 with different parameters that

cause greater overhead. Specifically, all average interarrival times, cpu demands of activities,

and specified delays are halved. This leads to a doubling of the total cpu cycles spent on

messaging (the number of cpu cycles spent on a given overhead operation remains the

same). Context switching and priority adjustment overhead have increased significantly.

This means that for a given response, overhead now has a greater relative significance

which explains the smaller success ratios for the responses.
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Figure 5.10: Case INV2 – An architecture which removes inversion
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Figure 5.11: Case INV3 – UCM of Figure 5.7 with changed time parameters
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Figure 5.12: Case INV4 – Removing inversion in Figure 5.11 makes things worse

Case INV4

If we now remove the inversion as we did before by adding a second process, we find that

none of the responses has a higher success ratio. See Figure 5.12. The more-significant

overhead is the reason: if context must be switched to stpB in order to process an arrival

at S3 then there is no way that the arrival can be processed by the deadline. Recall that

context switching takes 20 microseconds of cpu time. If stpB processes multiple arrivals one

after another then it is possible that some of them will meet their deadlines.
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Figure 5.13: Case EXT2 – An architecture which increases concurrent use of devices com-
pared with the architecture of Figure 5.8

5.5.2 External device metric examples

The metric results for the first external device metric example is shown in Figure 5.8. Call

that Case EXT1. Remember that in the architecture shown in the figure, only one token

can be making progress at a time even though needed devices may be idle.

Case EXT2

We need to propose an architecture that allows multiple tokens to progress concurrently.

One way to do this is to split the activities in the original single-threaded process into two

(or more) single-threaded processes. A two-process pipeline architecture and its evaluation

are shown in Figure 5.13. The first two activities were grouped into one process and the

last two activities into another in an attempt to give a goodly amount of time during which

different devices can work concurrently: during a burst of arrivals and if there was no

overhead then two devices could always be working concurrently. If the first three activities

were placed in one process then multiple devices would never be able to work concurrently.

If the last three activities were placed in one process then two devices could be working

concurrently half of the time during a burst of arrivals.
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The new architecture has two processes in front of which device need can be measured.

The first point has a time-averaged external device need of 0.30, 38% of which is potentially

poorly scheduled. The second point has a time-averaged external device need of 0. The

original architecture had a time-averaged external device need of 1.6, 65% of which was

potentially poorly scheduled. The external device metric thus seems to indicate that the

two-process architecture is better. The success ratio of the response bears this out, as it

has gone up to 67% from 28%.

Case EXT3

It seems however that further improvement could be made by trying an architecture with

a greater number of threads. One such architecture would put each activity in a separate

process, thereby potentially allowing DSP1, DSP2, and the CPU to be used concurrently.

Obviously this architecture would also have an increase in overhead because of greater

numbers of messages, context switches, and priority adjustments. During a burst of arrivals

and ignoring overhead, all three devices could be constantly working.

By creating a single multi-threaded process, we can easily allow the situation where all

three devices are working simultaneously. Such an architecture is shown in Figure 5.14.

Here, the time-averaged external device need is down significantly to 0.09, 41% of which is

potentially poorly scheduled. The metric cannot be expected to go to zero in this example.

Consider a moment when all the threads are idle, and then a burst of arrivals occur close

together. While the cpu is processing the first token, the waiting tokens will be generating

device need, and the two DSPs will be recorded as potentially poorly scheduled.

Notice that we must consider both P ∗ and N when comparing the metric results for

different architectures. The magnitude of P ∗ indicates the degree to which a potential

scheduling problem exists in the design. The magnitude of N indicates the degree to which

the potential scheduling problem will manifest itself. The rather small N in Figure 5.14
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Figure 5.14: Case EXT3 – An architecture which further increases concurrent use of devices

explains why it reports a higher success ratio even though the P ∗ is larger than the cor-

responding metric in Figure 5.13. The metrics I∗ and W must be considered together for

similar reasons.

5.5.3 Internal device metric examples

The metric results for the internal device metric example are shown in Figure 5.9. Call this

Case INT1. In this example, problems were identified by all three metric measurements:

inversion metric and both internal and external device metrics. The internal device metric

seems to be the most disturbing of the three, and so the first proposed architectural im-

provement will focus on reducing that metric. Remember that in the architecture shown in

the figure, of the two tokens emerging from the AND fork following a token entering it, only

one can make progress at a time even though both devices needed by the scenario instance

are idle.

Case INT2

We need to propose an architecture that allows multiple tokens output from an AND fork

to progress concurrently. This can be done by allowing more than one process to work on

the fork’s branches.

A proposed improved architecture is shown in Figure 5.15. Here, the disk-accessing
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Figure 5.15: Case INT2 – An architecture which allows concurrent processing of AND fork
branches

activity has been put in a separate process. This has reduced the internal device metric

to zero, and now both responses are reporting better than 90% success ratios. Overhead,

although negligible in this example, has increased over the one-process architecture. Is this

the best concurrency architecture? Perhaps not, as the inversion metric where the path

crosses into process stpC reports that 86% of the time-averaged number of waiting tokens

is inverted. This is happening because tokens waiting at stpC have a deadline derived from

the urgent branch of the AND fork, but must wait until the less-urgent branch finishes its

current processing.

Case INT3

For this reason, it seems that a better concurrency architecture would be to put the AND

fork in the same process as the more-urgent branch. This is shown in Figure 5.16. Indeed,

the minimum success ratio has slightly increased from 93.2% to 93.7%. This is accompanied

by a decrease in the other success ratio to 98.7% from 99.9%. Context switching happens
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Figure 5.16: Case INT3 – An improvement to the architecture of the previous figure

slightly less often than in the previous architecture. This leaves only one remaining non-

zero-valued metric: the external device metric where the path crosses into stpD. This metric

registers non-zero under conditions such as the following. If the disk access will take less

time than activity c for a certain token arriving at the process mailbox of stpD, and another

token arrives at the process mailbox of stpD at least 10ms after the first, the second token

may have to wait for activity c to finish even though the disk is idle.

In this small example, it would actually work well to use static priorities with process

stpD’s thread having the higher priority. In more complex examples the benefits of EDF

priorities are apparent: an arriving token can cause a thread processing another token to

be pre-empted or not depending upon relative timings.

Case INT4

To improve the performance of EDF in this example, we can add an intermediate response-

time requirement as shown in Figure 5.17. The intention here is that the disk is scheduled
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Figure 5.17: Case INT4 – Results with an added intermediate deadline to tune the schedul-
ing

according to the deadline derived from the response-time requirement ending at Te1, but the

cpu work of executing the AND fork and actually scheduling the disk access is operated with

a deadline derived from the response-time requirement ending at Ti. With the intermediate

deadline the minimum success ratio increases slightly again, this time to 94.1%. The other

success ratio is relatively unchanged at 98.8%. Overhead for adjusting priorities has slightly

increased.

5.5.4 Example of metric for a path segment returning to a process

In sections 5.5.1 and 5.5.2 we have illustrated the usefulness of the external metrics applied

at a point where a path crosses into a process for the first time. In this section we will

provide examples which demonstrate the use of the metrics where a path segment carries

tokens returning to a process.



CHAPTER 5. DIAGNOSTIC METRICS 86

c2:5

c5:1

c4:2

c3:3

dsp1:4

ds1

Te2Ts

stp2

DSP:  16%
CPU:  48%
ctx:  2.0%
msg:  1.5%
adjp:  0.8%
sem4: 0%

I *=0%
P*=32% N=0.32

I *=0%
P*=0%

W=0
P*=0%

stp1  (D:

30

.91Time figures in 100s of µs

S1:25

N=0

Figure 5.18: Case RET1 – A UCM with tokens returning to a process

Case RET1

Consider the UCM of Figure 5.18. The path segment between activities c2 and c3 carries

tokens returning to stp1. The external metrics for this path segment indicate no problem.

Case RET2

Now suppose the cpu demand of c2 were 100µs instead of 500µs, as shown in Figure 5.19.

With this change there is now a time-averaged external device need of 0.18 at the segment

returning to stp1, 53% of which is PPS. What happens is that when a token leaves stp2,

the cpu will be idle because activity dsp1 is still using the DSP and hence the token cannot

be received.
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Figure 5.19: Case RET2 – The external device metric reports a problem on segment between
c2 and c3

Case RET3

Although 97% of responses complete within the specified delay, we could possibly improve

the performance if a token leaving c2 does not have to wait while the cpu is idle before

starting c3. An architecture which achieves this is shown in Figure 5.20. In the architecture,

activity c3 has been moved from stp1 to stp2. This requires that ds1 be protected from

concurrent access, an additional overhead. The architecture gives better performance even

though overhead has slightly increased.

Case RET4

The above examples illustrate the external device metric where tokens return to a process.

By making a different change to the UCM of Figure 5.18 we can at the same path segment

illustrate the occurrence of inversion. To do this, we add after c3 a timestamp point which
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Figure 5.21: Case RET4 – The external inversion metric reports a problem on the segment
between c2 and c3

is used to define a second response-time requirement. This is shown in Figure 5.21. Also

added in this figure is an intermediate timestamp point at the DSP-using activity. The DSP

is scheduled according to the deadline derived from the response-time requirement ending

at Te3, but the cpu work needed to actually schedule the DSP is executed with a deadline

derived from the intermediate response-time requirement of 2400us. The time-averaged

number of waiting tokens at the path segment where tokens return to stp1 is 0.094. 97% of

these are deadline inverted. A token waiting on segment c2→c3 will have to wait while the

cpu is executing activity c4 for a less-urgent token. Neither response-time requirement is

meeting the minimum 90% success ratio, especially the response-time requirement ending

at Te1.



CHAPTER 5. DIAGNOSTIC METRICS 90

c2:5

c5:1

c4:2

c3:3

dsp1:4

ds1

Te2

Te1

Ts

stp2

DSP:  16%
CPU:  50%
ctx:  2.8%
msg:  1.5%
adjp:  1.1%
sem4: 0.2%

I *=23% W=0.24
P*=45% N=0.35

I *=0%
P*=0%

W=0
P*=0%

stp1  (D:

S1:25

.88

30

.89

24

25

Time figures in 100s of µs

N=0

Figure 5.22: Case RET5 – An architecture which eliminates inversion when tokens return
to process stp1

Case RET5

An architectural adjustment similar to the one used in Figure 5.20 – moving activity c3 –

should also eliminate inversion for returning tokens if applied to the UCM in Figure 5.21.

Timestamp Te1 must of course move with activity c3 to stp2. This is shown in Figure 5.22.

Inversion was indeed eliminated for returning tokens and the success ratio for the response-

time requirement ending at Te1 made a definite improvement from 85% to 88%.

5.6 Discussion of the metrics

In this chapter three metrics were presented for diagnosing concurrency architectures. De-

pending upon the situation encountered, here are some thoughts on ways in which one can

react to problems identified by the metrics.
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1. Inversion or PPS device need at the process mailbox of a single-threaded process –

divide the process or make it multithreaded. Multithreading is often superior, but

if the process can be divided such that data objects are not shared between new

processes, then protecting data objects, with its inherent overhead, can be avoided.

2. Inversion or PPS device need where a path returns to a process – in this chapter

success has been observed from moving activities along a path between processes.

Creating an additional process may be suitable in some situations. Multithreading,

an option if the process is not already multithreaded, will not help in this case.

3. PPS device need internal to a process – divide the process. Again, multithreading

will not help in those situations where it is possible.

4. PPS device need at the process mailbox of a multithreaded process – if there is no

PPS device need internal to the process, then the external PPS device need can be

reduced by dividing the process, but this won’t always improve the performance of the

architecture. Sometimes the PPS device need is not caused by an insufficient number

of processes, but is just the result of non-periodic arrivals of external events.



Chapter 6

Case Study

The previous chapters have described a notation for specifying the scenarios of an appli-

cation, a way of building a virtual implementation to simulate and evaluate a proposed

concurrency architecture, and metrics that can be used to diagnose concurrency problems

in an architecture. This chapter applies those ideas to a substantial example: a Group

Communication Server.

6.1 Description of the Group Communication Server appli-

cation

Figure 6.1 shows the specification of a Group Communications Server (GCS) which stores

a set of documents and gives users access to them. Each user can subscribe to a set

of documents, submit new documents, and update documents. When a user updates a

document, all subscribers of that document are notified. Users can request that the current

version of a document be sent to them. There are five numbered scenarios as shown in

Figure 6.1:

1. Updating a document.

92
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Figure 6.1: The scenarios in the GCS application
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2. Submitting a new document.

3. Subscribing to a document

4. Unsubscribing from a document

5. Retrieving the most recent version of a document.

All the scenarios start at the path start named msgArr. The first processing on a request

is specified by activity recMsg at which the request type and document name are extracted

from the request. The request type identifies whether the user wants to store or retrieve

a document or whether the user wants to subscribe to or unsubscribe from a document.

Scenarios 1 and 2 are the possible results of a request to store a document.

Next on the path is an OR fork. As indicated by the numbers beside the branches, for

every 2 store-document requests, on average there are 1 subscribe, 1 unsubscribe, and 50

retrieve-document requests.

6.1.1 Scenarios 1 and 2: updating and submitting new documents

This section describes the paths for the topmost two scenarios: updating a document and

submitting a new document. These scenarios follow the top branch of the first OR fork.

The other three scenarios follow the other branches.

At activity recFile, the document text is extracted from the request. Next is activity

getDocInf, which reads from a data object: a dictionary named docMap. Using the document

name as a key, docMap is queried to see if the server has already stored a previous version

of the document, and if so the information on the document is returned.

Scenario 1: updating a document

If an earlier version of the document is already stored on the server, we are updating the

document. The top branch of an OR fork is followed which takes us to an AND fork, which
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in turn initiates a set of two parallel sub-paths. One branch of the AND fork is for writing

the document to one of two disks. The other branch is for notifying subscribers that the

document has been updated. To notify the subscribers,

• first a notification message is prepared.

• then a temporary copy of the subscribers list is made. The subscribers list is part of

a structure called docInfo which is maintained for each document.

• then the server loops through the copy of the distribution list. In each loop iteration,

the address of a different subscriber is extracted from the copied list (at activity

getSub) and the path going to sendNot is forked for the sending of the notification

message to the extracted subscriber. Forking the path in this way allows the sending

of each notification message and the extraction of subscribers to be done potentially

in parallel.

These sub-paths are specified as parallel because the prerequisites for executing each of

these sub-paths have already been achieved before the location of the AND fork, and the

activities in each sub-path have no sequential dependency on activities in the other. The

sub-paths can potentially be executed in parallel. There is no restriction that they must be

executed in parallel. This is identical to how a critical path model is constructed.

When the path exits from the notification loop, it joins with the disk-writing sub-path,

and a “success” message is prepared for the document-sending client by activity sendAck.

Error conditions are not explicitly considered in this case study, but an error message would

be returned instead of a success message should an error arise.

Scenario 2: submitting a new document

If a new document is being sent, the following activities are executed after the update-

document path forks off:
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• At activity newDI, a new docInfo object is constructed.

• At activity subLstAdd, a new subscriber list is created, initialized with the document

sender as the initial subscriber, and inserted in the new docInfo object.

• At activity bind, the new docInfo object is inserted into the docMap dictionary. Note

that prior to being inserted in docMap, no other activity can reference the new

docInfo object, and hence it has not been drawn explicitly on the diagram for the

new-document scenario.

• Activities writeToD1 and writeToD2 are for writing a document to disk 1 or disk 2

respectively. Notice that a document in the filesystem is considered a data object,

and might need to be protected against concurrent access. While a document is being

written to disk by one context, another context cannot write to or read from the

document. The simulation will randomly choose the disk to write to.

• At activity sendAck, an acknowledgement is prepared for the user.

6.1.2 Scenario 3: subscribing to a document

If a subscribe request is received, the following activities are executed after activity recMsg.

• Activity getDocInf, which retrieves information on the document.

• Activity addSub, which adds the requesting user to the list of subscribers for the

specified document.

• Activity sendAck, which prepares an acknowledgement for the user.

Scenario 4, which is the processing of an unsubscribe request, is very similar to the

processing of a subscribe request.
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6.1.3 Scenario 5: retrieving the most recent version of a document

The processing of a retrieve-document request occurs as follows after activity recMsg.

• Activity getDocInf is executed as for other scenarios

• Next, the application will read a document from the filesystem. The document will

most likely be read from the filesystem cache. This incarnation of this model assumes

that for every 25 documents read from the cache, only 1 will have to be obtained from

the disk.

• Finally, the file is prepared for sending to the requesting user.

6.2 Performance numbers

All the requests considered together arrive according to a Poisson process with an average

interarrival time of 4 ms (250 requests/second).

All response-time requirements are based on delays that start at Tarr. For purposes

of discussion, the delays ending at Tupd, Tnew, and Tget all have requirements of 150ms,

with values of 10 ms for Tnot, 0.35 ms for Tsub and 0.50 ms for Tuns. Through this

chapter these response-time requirements will be referred to as Rupd, Rnew, Rget, Rnot,

Rsub and Runs respectively. Because the response-time requirements are straightforward,

and to keep the UCM diagram simple, response-time requirements have not been drawn on

the UCM as dotted lines, as has been done for other UCMs in this thesis. Each response-

time requirement in this example specifies that 90% of responses be completed within the

specified delay.

The service requirements for each activity were determined from a programmed C++

implementation [58] of the application by using the Quantify tool [35]. The C++ imple-

mentation was functionally complete and was built on top of the ACE library [57], and
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measurements were made on a Sun workstation running the Solaris operating system. Two

architectures were implemented, a single-thread design and a thread-per-request design. A

number of scenarios were measured using an executable which had been instrumented using

the Quantify tool.

6.3 Concurrency architectures for the Group Communica-

tion Server

In the following sections we propose and evaluate five concurrency architectures for the

Group Communication Server application. The architectures range from one with no con-

currency, to one with enough processes and threads to allow every potentially concurrent

instance of an activity to have its own thread.

We start by presenting the no-concurrency architecture, identify what its concurrency

problems are, and then propose another architecture to attempt to solve those problems.

6.3.1 Case 1: Single-thread architecture

The first architecture that was evaluated is the most simple: all operations are performed

by a single thread (Figure 6.2). It has the advantage that, because there is only one thread,

there is no need to protect shared data and hence no overhead due to semaphore calls. It

also minimizes the messaging and context switching overhead.

As shown in Figure 6.3, the PERFECT tool reported that the system was unstable.

This architecture takes so long to process each request, one at a time, that it cannot keep

up with the rate of arrival of requests. Inspection of detailed simulation results showed

that the number of waiting tokens at the process mailbox was growing larger and larger as

the simulation run continued. Response times were growing larger and larger as well. If

we add together the 3 device utilizations shown in Case 1 of Table 6.1, the result is 100%
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Figure 6.2: Use Case Map for Group Communication Server with a single-threaded process
(Case 1)
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Figure 6.3: Evaluation of Single-thread architecture
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from which we can deduce that the thread is never idle. The system is unstable because

the average thread service time is too long.
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Case
num Case

name

Utilizations (%) Response times (mean time in ms / % meeting requirement)

Disk1 Disk2
CPU Rupd

(dv=150)
Rnot

(dv=10)
Rnew

(dv=150)
Rsub

(dv=0.35)
Runs

(dv=0.50)
Rget

(dv=150)
Total ctxsw

oh
msg
oh

adj dl
oh

sem4
oh

1 Single
Thread

37 37 26 0 0.6 1.8 0 infinite/0 infinite/0 infinite/0 infinite/0 infinite/0 infinite/0

2 6 Thread 49 49 40.0 3.9 2.3 3.8 0.20 173/53 93/32 99/85 6./53 6./55 15/99.2

3a SMTP 48 49 37.6 3.5 0.7 3.1 0.41 93/90 3.6/95 90/91 0.335/93 0.369/94 7.5/99.4

3b - double
subscribers

50 50 74.4 7.6 1.4 6.0 0.78 105/85 7.1/75 97/89 0.44/85 0.46/89 10.1/99.4

3c - - with 2
processors

49 49 48.5
+23.9

5.5 1.4 6.0 0.80 96/89 6.2/81 91/91 0.32/98 0.34/99.6 5.4/99.6

3d - - 2X faster
processor

50 49 36.4 5.5 1.4 6.0 0.80 92/91 3.2/96 90/91 0.17/99.8 0.19/99.8 4.8/99.6

4a Parallelism
in Updating

49 49 38.0 3.7 0.8 3.1 0.41 90/91 4.8/92 90/92 0.342/92 0.38/95 7.7/99.3

4b - double
subscribers

49 49 74.7 7.8 1.5 6.1 0.77 91/91 8.4/70 97/89 0.44/84 0.49/88 9.8/99.4

4c -- with 2
processors

49 50 48.3
+24.5

5.7 1.5 6.1 0.80 90/91 6.4/80 91/91 0.32/98 0.34/99.7 5.4/99.5

4d -- 2X faster
processor

50 50 36.6 3.2 0.7 3.0 0.39 90/91 3.9/95 91/91 0.17/99.8 0.19/99.8 5.0/99.5

5a Maximum
parallelism

49 49 43.1 6.3 2.6 4.0 0.41 91/91 16.9/31 95/89 0.65/89 0.8/91 9.5/99.2

5b - with 2
processors

49 49 30.2
+12.0

5.5
total

2.5
total

4.0
total

0.41
total

90/91 6.5/81 89/91 0.37/98 0.37/99.4 7.2/99.3

5c - with 4
processors

49 49 26.2+8.7
+4.8+2.4

5.2
total

2.5
total

4.0
total

0.41
total

90/91 5.0/88 89/91 0.321/99.2 0.341/100.0 6.9/99.3

Table 6.1: Output reported by PERFECT tool for GCS architectures



CHAPTER 6. CASE STUDY 103

The device metric at the process mailbox tells us that of the time average of 3 devices

needed by tokens waiting there, 81% of that time-average is potentially poorly scheduled.

Because there is only one thread, while one device is being used the other two devices are

idle and are potentially poorly scheduled. While the CPU is being used, the CPU itself

will sometimes be potentially poorly scheduled (it will be working with deadline X on the

less-urgent portion of a less-urgent scenario while a message with a token having a deadline

less than X is waiting in the process mailbox.) The inversion metric at the process mailbox

is consistent with the system being unstable. The number of waiting tokens keeps growing

unbounded. Eventually the deadline of any token being processed would be earlier than the

current simulation time, i.e. eventually all deadlines are missed.

Clearly we need to add some concurrency so that multiple devices can be used simulta-

neously, thereby allowing a higher utilization of each device and thus allowing more work

to be done.

6.3.2 Case 2: Six-thread architecture

To allow the disks and processor to be used simultaneously, consider the architecture shown

in Figure 6.4 with six single-threaded processes. A process D1 handles all the activities

which access disk1 and a process D2 handles all the activities which access disk2. In Fig-

ure 6.4 the same process D1 has been shown in three separate locations, to lie behind

activities in different sub-paths. D2 is treated the same way. Process notify handles the

matching AND-Fork/AND-Join elements and all non-disk-related activities after the AND

Fork. The AND Fork and AND Join are kept in the same process in order to join matching

tokens. After notify sends a message to either D1 or D2, it waits at its return mailbox for a

message to return from D1 or D2. Once waiting, no other work can be done by the waiting

thread until a message arrives at its return mailbox. Had the elements executed by notify

been left in process main, the main thread would have been unable to process other arriving
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Figure 6.4: Use Case Map showing Six-thread architecture (Case 2)



CHAPTER 6. CASE STUDY 105

main

newAck

sendFile

D2

D2

D1

D1

D2

D1

doc
Map

recMsg

getDocInf

getDocInf

getDocInf
getDocInf

newDI subLstAdd

bind

readFromD2

readFromD1

writeToD2

writeToD1

writeToD1

writeToD2

sendFile

sendAck

sendAck

sendNot

getSub

getDistLst

prepMsg

sendAck

sendAck

addSub

remSub

readFromCache

Tarr

Tget

Tnew

readFromCache

Tsub

Tuns

Tupd

Tnot

recFile

msgArr

1

2

4

3

5

doc
Info

D1
Files D2

Files

.99

.55

.53

.85

.53

.32

I *=0%
P*=42% N=0.05

I *=95% W=1.5
P*=47% N=0.24

I *=19% W=0.075
P*=72% N=0.15

I *=0.1% W=0.65
P*=95% N=0.34

I *=4% W=0.002
P*=0.1% N=0.002

W=0
N=0

D1:  49%
D2:  49%
CPU: 40.0%
ctx:  3.9%
msg:  2.3%
adjp:  3.8%
sem4: 0.2%

notify

W=0
N=0

I *=0%
P*=0%

I *=0%
P*=42% N=0.25

P*=0.3% N=0.023

Response-time Requirements
from Tarr.  90% less than
---------------------------------
0.35 -> Tsub,uns
10 -> Tnot
150 -> Tupd,new,get

5

1

1

1

50

2

1 1
25

25

38

1

Figure 6.5: Evaluation of Six-thread architecture

client messages while waiting for a message from D1 or D2. This is why notify was created.

Processes newAck and sendFile were also created so that process main would not have to

wait on any return mailbox.

Table 6.1 and Figure 6.5 show that this architecture is a great improvement over Case

1, in that the server is able to keep up with the arriving requests. However, only response-

time requirement Rget is being met: over 99% of Rget responses take less than 150ms.

Requirement Rnew is close to being met with an 85% success rate, but requirement Rupd

does much more poorly with only 53% of responses less than 150ms. Rsub and Runs also

have low success rates: 53% and 55% respectively.
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This architecture has significantly more overhead than the single-thread architecture:

context switching and semaphore overhead are now present, and the messaging overhead

and deadline adjustment overhead have significantly increased. Thus it is certainly not true

that increased overhead means a poorer-performing architecture. Semaphore overhead is

now present because protection has been introduced so that an individual file cannot have

active readers or other writers while a thread is writing to it. Also, the management data

for a particular document, including for example its list of subscribers, is protected so that

reading and updating are done under mutual exclusion.

Several of the metric values in Figure 6.5 indicate problems. The inversion metric at

the process mailbox of main shows that of the average of 1.5 tokens waiting at the mailbox,

95% were deadline inverted. This might explain why responses Rsub and Runs are relatively

far from the requirements. For example the processing of a subscription request, relatively

urgent, cannot pre-empt the execution of an activity like readFromCache. Compounding

this, the “retrieve document” scenario occurs relatively frequently, meaning that activity

readFromCache is executed relatively often.

The device metric at the process mailbox for main refers entirely to CPU, as this is the

only device which main uses. How can we explain that 47% of the time-averaged device

(CPU) need is potentially poorly scheduled? As it happens, the problem is with concurrent

access to files. A file cannot be read from the cache while another thread is writing the file.

Until the file is successfully written to disk, the cache will not be updated and no reads will

be allowed. So while thread D1 is writing a file to disk D1, if thread main tries to read that

file from the cache it will end up blocked on the file. This can cause the idle thread to be

scheduled, and hence the CPU will be poorly scheduled as other tokens waiting at main’s

process mailbox could use the CPU.

At the process mailbox of notify, 95% of time-averaged device (CPU) need is potentially

poorly scheduled. One reason for this is that messages arriving at the process mailbox for
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notify will queue while notify is blocked waiting on its return mailbox. 0.1% of the time

average of 0.65 tokens waiting at the process mailbox of notify are deadline inverted. The

deadline inversion happens when a message, whose carried token has a deadline derived from

Rnot, arrives before the previous execution of the update scenario has finished executing

sendAck.

Processes D1 and D2 behave symmetrically, and so on the diagram we have been able to

write one set of metric results for each of the corresponding paths entering and leaving D1

and D2. In the middle of the diagram, the paths leaving process main and entering processes

D1 and D2 show that none of the waiting tokens are inverted, but 42% of the time-averaged

device need of 0.05 is potentially poorly scheduled. There are two possibilities:

1. While one token is using a disk, a token waiting between activity bind and activity

writeToD1 or writeToD2 can use the CPU (albeit for only a short while) but the CPU

is idle.

2. The disk that a waiting token needs is idle, but the CPU is now busy elsewhere

processing a more urgent token.

The paths crossing from process notify into D1 and D2 show not only potentially poorly

scheduled device use, but also inversion: 19% of waiting tokens are deadline inverted. Why

is it that there is no inversion for paths leaving main and going to process D1 or D2, but

there is for each path leaving process notify? Consider one token which leaves process main

and arrives at process notify while process notify is waiting for a message at its return

mailbox. While process notify is waiting, another token leaves process main along scenario

2 and is received by process D1. Finally process notify receives a message on its return

mailbox and eventually the token waiting at the process mailbox of notify is able to reach

the process mailbox of process D1. This token is more urgent than the token currently being

processed by D1, hence the inversion.
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At the bottom of the diagram along scenario 5, there is the same 42% of potentially

poorly scheduled device use for the paths crossing into D1 and D2 as we had for the paths

on scenario 2.

Continuing further along scenario 5, we see some inversion for the paths crossing from

D1 and D2 to process sendFile, but no inversion on the paths going from process main to

sendFile. The reason for this is similar to the reason for inversion when the paths cross into

D1 and D2 along scenario 1. A token with a less-urgent deadline which came to sendFile

directly from process main may be being processed by sendFile when a more-urgent token

which came through D1 arrives at the mailbox of sendFile.

To summarize the main problems with this architecture which are observed during

execution:

1. There is deadline inversion at the process mailbox of main – because it is a single-

threaded process and it contains sub-paths with response-time requirements having

different specified delay values. Possible solution: make main multi-threaded or divide

into separate processes.

2. There is potentially poorly scheduled device need at the process mailbox of main –

because it is a single-threaded process and can block. Possible solutions: make main

multi-threaded or move the readFromCache activities to sendFile.

3. There are tokens waiting at the process mailbox of notify – because notify is single-

threaded and can wait for messages at its return mailbox. Possible solution: multi-

thread notify.

4. There is deadline inversion for tokens going from notify to D1 or D2 – because tokens

may block on some paths to D1 or D2. Possible solution: multi-thread D1 and D2.

Note that although a given disk request cannot be pre-empted, thread-switching can

occur between disk requests.
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5. There is potentially poorly scheduled device need at D1 and D2 – because each process

uses both the CPU and a disk, and tokens may be waiting while one of them is busy.

Possible solution if the disk being busy causes the problem – multithread the process.

6. There is significant overhead. Possible solution: reduce the total number of processes

so a given response uses fewer messages.

Multithreading as a solution option appears frequently in the above list. As presented,

those solutions would further raise overhead. One way to achieve multithreading and at the

same time reduce the number of messages being sent is to create an architecture similar to

case 1 but with a multi-threaded process.

6.3.3 Case 3: Single Multi-Threaded Process (SMTP) architecture

This case has a single multi-threaded process (Figure 6.6), with as many threads as are

needed. Like the six-thread architecture, this architecture allows the two disks and the

CPU to be used simultaneously. Also, more-urgent processing can now more easily pre-

empt less-urgent processing. The results for this architecture shown in Figure 6.6 are quite

encouraging: every response-time requirement is now being met. Also, although the total

overhead is greater than for the single-thread architecture, that overhead is less than it

was for the six-thread architecture of Figure 6.5. The only category of overhead which

has increased beyond that for the six-thread architecture is semaphore overhead, because

now docMap, the dictionary which indexes the data object for each document, must also

be protected. In the six-thread architecture docMap does not need protection because the

only access to it is from the single-threaded process main.

Looking at the metrics, the first thing to note is that by multi-threading the process,

inversion is eliminated as a problem. For the path crossing into the process, there is a small

time-averaged device need, 0.007. The device need occurs when a message arrives and has

to wait because some token is executing on the CPU at a more-urgent deadline. 32% of the
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device need is potentially poorly scheduled because one or both of the disks might be idle1

while messages are waiting to be received.

The internal device metric reports a time-averaged device need of 0.07. Because it is the

only scenario with an AND fork, we know that this device need is generated when scenario

1 is followed. 34% is potentially poorly scheduled. Three devices are potentially needed for

an execution of scenario 1: the CPU and two disks. It is the disks that will be potentially

poorly scheduled, as they may be idle while the CPU is generating, addressing, and sending

notification messages. One might wonder whether a disk could be working on a scenario 5

retrieve-document request that arrived after a scenario 1 update-document request and is

being served by another thread. This is not actually possible because, due to deadlines, the

CPU would not be yielded to allow the retrieve-document request to start.

6.3.4 Case 4: Parallelism-in-updating architecture

To improve the SMTP architecture of Case 3, we could try to get rid of the 32% potentially-

poorly-scheduled device need internal to the main process. This PPS device need occurs

because an update to a single document (scenario 1) has potential parallelism which is not

exploited: writing a file to disk could be parallel with generating, addressing, and sending

notification messages to subscribers. To eliminate the PPS device need, we can create a

separate process for one of these parallel subpaths. Figure 6.7 shows Case 4, with a separate

disk process to do the disk writing when a document is updated. This is a good chance

to emphasize that changing the concurrency architecture is usually very easy. In this case,

the operations within UCM Navigator are simply to drag a handle on the original process

to make it smaller, and then to click and drag a new process on the “canvas”. After saving

the file, PERFECT can be invoked again to evaluate the new architecture.

1The disks cannot be performing operations scheduled at a less-urgent deadline than that of any waiting
message because disk-operation deadlines are taken from thread deadlines and threads when using a disk
have a deadline based on the same specified delay value, 150ms.
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Similarly to what was done in Figure 5.21 on page 89, intermediate response-time re-

quirements were defined ending at activities writeToD1 and writeToD2. The disk accesses

are scheduled according to a deadline derived from the response-time requirement ending

at Tupd, but the CPU work needed to actually schedule the accesses (receiving a message

and calling the disk scheduler) is executed with a deadline derived from the intermediate

response-time requirements. Why are the intermediate response-time requirements needed?

Without them, the upper subpath performing the disk writing is scheduled according to

a deadline derived from Rupd, after the lower sub-path dealing with notification messages

which is scheduled according to a deadline derived from Rnot. This means that without

the intermediate response-time requirements that all the processing of activities prepMsg,

getDistList, and getASub, and the multiple instances of activity sendUpd for a particular

document being updated would have to be finished before a thread in writeF could use the

CPU to schedule disk writing, defeating the purpose of process writeF. Because scheduling

disk operations requires minimal processing resources, the intermediate response-time re-

quirements have an insignificant effect on the notification response times. To achieve the

desired effect, the delay value of the intermediate response-time requirements must be less

than that for Rnot. However, the smaller the delay value is, the more the disk-writing

subpath can negatively impact the response times of other scenarios. The delay value was

made smaller than Rnot but as close to it as possible.

The addition of process writeF has succeeded in eliminating PPS device need internal to

process main. The success rate of response Rupd is no longer “on the border” at 90% but has

risen to 91% (the mean response time has decreased from 93ms to 90ms). Counterbalancing

this increase is a decrease in the success rate of response Rnot, down from 95% to 92% (the

mean response time has increased from 3.6ms to 4.8ms).

The 32% PPS external device need of process main is similar to the SMTP design.

This is the best architecture evaluated so far for the system as specified, as it has highest
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minimum rate of success for responses: 91%.

6.3.5 Case 5: Maximal-parallelism architecture

Can the Parallelism-in-updating architecture (case 4) be modified to make it better? The

diagnostic metrics don’t point to any improvement that can be made. The only metric

which registers anything is the external device metric of process main, but as mentioned in

Section 5.6, PPS device need external to a multi-threaded process does not always indicate

that architectural improvements are possible.

There is, however, some remaining concurrency in the GCS specification which has not

been exploited by the architecture. Specifically, the sending of each notification message, as

well as the loop to actually retrieve the address of each subscriber, can potentially be done

in parallel. Previous architectures have serialized in one thread all of this work for a given

document being updated. Figure 6.8 shows an architecture with a third multi-threaded

process created to send out notification messages, one thread per message. Thus a single

update operation can activate as many of these threads as it can use.

The performance results of this Maximal-parallelism case are relatively poor for one

processor (case 5a): the overhead has significantly increased and the response times have

worsened over the previous two architectures. There is no real parallelism with just one

processor, and there is a lot of overhead in triggering a thread for every notification.

The overhead hurts some subscription requests. Although Rsub is close to its specifi-

cation, it has a high variance. Notice the interesting statistics reported for response Rsub:

the mean response time is 1.86 times the response-time requirement’s delay value, and yet

89% of responses are less than the delay value. Figure 6.9 shows a frequency distribution

of some measured response-times for response Rsub when using this architecture. Although

the vast majority of responses take less than 1 ms, response-times up to and even exceed-

ing 40 ms were observed. What seems to be happening is that when a document with
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Figure 6.9: Frequency distribution of measured response times for Rsub in Case 5a

many subscribers is updated, the sending of notification messages becomes very urgent (in

fact, significant numbers of notification responses miss their deadline) and this prevents

subscription requests from being processed.

Multiple processors (cases 5b and 5c)

Multiple processors were considered in Cases 5b (two processors) and 5c (four processors).

The results (in Table 6.1) show that the success rates for responses generally improve as more

processors are used. The response times for responses Rsub and Runs are significantly better

than for any tested single-processor design, with 98% or more of the responses within the

specified time value. However the success rates for response-time requirement Rnot (sending

update messages), even with 4 processors, do not compare favourably with those achieved

using the SMTP or Parallelism-in-updating architectures on a single processor. This is
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not surprising as the thread iterating through the subscriber list incurs a greater cost in

overhead by communicating with the sendNot process than it would simply by executing

the sendNot activity.

Case 5 added concurrency to case 4 which, however, showed no indication of deficient

concurrency. This Maximal-parallelism architecture indicates that it is not worthwhile to

increase concurrency if the diagnostic metrics do not suggest such an increase.

6.4 Impact of workload change

It is also important to explore the impact of a change in the performance parameters on the

performance of the architectures. This is because it is advantageous to choose an insensitive

solution. Workload estimates often start with one set of figures, but the actual workload

might be significantly different.

To demonstrate how the tool can help in this matter, the two best architectures (Cases 3

and 4) were tested with increased workload assumptions. The frequency of documents being

sent to the server was kept constant, but the average number of subscribers per document

was doubled, with a corresponding doubling of the number of get-document requests, giving

Cases 3b and 4b in Table 6.1. The results are also shown in Figures 6.10 and 6.11. Notice

the changes in the relative weights given to different branches of OR forks as compared to

those in Figure 6.1. The average interarrival time has shrunken from 4ms to 2.1ms.

The results show that both architectures now miss meeting the requirements, especially

for response Rnot which now has success ratios of only 75% for the SMTP architecture (down

from 95%) and only 70% for the Parallelism-in-updating architecture (down from 93%).

The reason for these changes is that the increased number of subscribers for documents has

significantly increased the processor demand for sending notification messages to subscribers

when a document is updated. The utilization of the processor rose to over 74% in both

cases.
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Figure 6.10: Evaluation of SMTP design with doubled subscribers (Case 3b)
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(Case 4b)
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The Parallelism-in-updating architecture still boosts the success ratio of response Rupd,

up to 91% from 85% with the SMTP architecture, and this boost still comes at the ex-

pense of the success ratio of Rnot. This brings us to an interesting conclusion: whereas the

Parallelism-in-updating architecture was deemed better with the original workload param-

eters, the SMTP architecture is better with the new workload parameters (better because

the improvement for Rupd is not worth the deterioration for Rnot).

With respect to the metrics, in both architectures there was a significant increase in

time-averaged device need. Internally to process main the time-averaged device need ap-

proximately doubled for both architectures. This makes sense as there are now twice as

many subscribers per document. The external time-averaged device need between msgArr

and activity recMsg also increased, implying messages more often waiting to be received by

a thread (the new workload parameters generate more request messages.) The percentage

of these device needs which is potentially poorly scheduled remained relatively constant

before and after the workload parameters were changed. Table 6.2 adds metric values to

other results for all simulations of the SMTP architecture.
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Case
num Case

name

Utilizations (%) Response times (mean time in ms / % meeting requirement) Device Metrics

Disk1 Disk2
CPU Rupd

(dv=150)
Rnot

(dv=10)
Rnew

(dv=150)
Rsub

(dv=0.35)
Runs

(dv=0.50)
Rget

(dv=150)
P* (in %) : N

Total ctxsw
oh

msg
oh

adj dl
oh

sem4
oh

msgArr
→

main
(int.)

3a SMTP 48 49 37.6 3.5 0.7 3.1 0.41 93/90 3.6/95 90/91 0.335/93 0.369/94 7.5/99.4 32:0.007 34:0.07

3b - double
subscribers

50 50 74.4 7.6 1.4 6.0 0.78 105/85 7.1/75 97/89 0.44/85 0.46/89 10.1/99.4 31:0.055 32:0.15

3c - - with 2
processors

49 49 48.5
+23.9

5.5 1.4 6.0 0.80 96/89 6.2/81 91/91 0.32/98 0.34/99.6 5.4/99.6 32:0.001 53:0.13

3d - - 2X faster
processor

50 49 36.4 3.1 0.7 3.0 0.40 92/91 3.2/96 90/91 0.17/99.8 0.19/99.8 4.8/99.6 32:0.007 33:0.07

Table 6.2: Output reported by PERFECT tool for sub-cases of SMTP architecture
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With the changed workload, we have not found a concurrency architecture which meets

all of the requirements using the default hardware configuration. To satisfy the require-

ments, we can try scaling up the hardware configuration.

One option in this regard is to add a second processor as we had tried above with the

Maximal-parallelism architecture. Rows 3c and 4c of Table 6.1, as well as Figure 6.12 show

the results obtained with the added processor. Note that although Rsub and Runs now

have very high success ratios, that the success ratio of Rnot is still inadequate. This can be

explained by considering that the entire processing of the notification responses for a given

“update document” request is being processed by a single thread running on one processor.

If a processor is not fast enough to complete the required processing within the specified

delay value, then any additional processors cannot enable the response requirement to be

achieved.

The failure of the first scaling option suggests that a second scaling option, using a faster

processor, be tried. To this end we have evaluated both the SMTP and Parallelism-in-

updating architectures using a single processor running at twice the speed. The evaluation

results are shown in rows 3d and 4d of Table 6.1 and Figures 6.13 and 6.14. Although the

SMTP architecture has PPS internal device need whereas the Parallelism-in-updating archi-

tecture does not, the success ratios of the two architectures are similar and all requirements

are met.
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Figure 6.12: Evaluation of SMTP architecture with doubled subscribers and two processors
(Case 3c)
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Figure 6.13: Evaluation of SMTP architecture with doubled subscribers and double-speed
processor (Case 3d)
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Figure 6.14: Evaluation of Parallelism-in-updating architecture with doubled subscribers
and double-speed processor (Case 4d)



Chapter 7

Conclusions

7.1 The overall view

This thesis has described and demonstrated a technique for evaluating a concurrency ar-

chitecture for a system that executes a given set of scenarios. The evaluation concentrates

on the decision of how to partition the scenario elements among concurrent processes, and

does not address the details of designing the processes. It attempts to find “very good”

executions of the scenarios in the architecture, using a simulated virtual implementation

and (pre-emptive) earliest-deadline first scheduling. The construction of the virtual im-

plementation and the prioritized execution are justified heuristically; no attempt has been

made to show theoretically that the executions are optimal, given the architecture.

The evaluation is based on achievement of soft deadlines, and includes the percentage

of deadlines achieved, and resource utilizations and overhead costs.

As well, several special metrics were defined to detect inadequate concurrency. These

metrics were also developed from heuristics and evaluated on a variety of examples. A sub-

stantial example was used to explore a wide range of issues in concurrency. It demonstrated

that the metrics could indeed identify concurrency problems in an architecture, and showed

126



CHAPTER 7. CONCLUSIONS 127

that if one adds concurrency to an architecture when such additional concurrency is not

indicated by the metrics, then performance degradation may result.

7.2 Individual contributions

The contributions of this thesis are:

7.2.1 Extensions to the Use Case Map notation

I have proposed a number of extensions to the Use Case Map notation which allow or assist

performance information to be annotated, including

• Timestamp points1 (in Section 3.2.4). In order to specify performance assertions for a

Use-Case Map, we need some way to identify points along paths at which and between

which the assertions are made. Required throughputs and response-times are obvious

assertions. Timestamp points fulfill this need.

• Responses and response-time requirements (also in Section 3.2.4) . It is useful to be

able to explicitly and graphically identify response-time requirements on a Use Case

Map. In this way an architect or designer can easily identify performance critical path

segments, and can spot errors in response-requirement specification. The response-

requirement extension to UCMs (a labelled dotted line with an arrowhead) provides

such an identification. Performance predictions or measurements can be attached to

the response requirement annotation as has been done in this thesis.

• The ability to show at the level of a stub that its plugin will assign at least one respon-

sibility to an anchored data object (see Section 3.2.2). If multiple tokens travelling on

a UCM can touch a data object simultaneously, the data object should be protected

1The actual symbol shape on a path was suggested by R. Buhr during a private conversation
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in some way to ensure it is seen with a consistent state. To easily identify such data

objects if they are accessed in a plugin, that access is indicated using a dotted line

from the stub. A number of types of access to the data object, such as read and write,

can be indicated using arrowheads pointing either to the data object or to the stub.

• Display of the criteria by which a choice is made at an OR fork (see Section 3.2.3).

Although a way to determine which branch of an OR fork is followed by a token

is not necessary to define the possible scenarios that can occur in a system, such

determination (or at least relative frequencies) is necessary when we want to evaluate

the performance of a UCM. To make this determination we can either give a relative

frequency for each branch, or associate each branch with a certain value held by an

element of data belonging to the token.

7.2.2 Virtual implementation

A concept of virtual implementation has been described, which transforms a set of scenarios

and concurrency architecture decisions into an operational form which can be evaluated (see

Chapter 4).

The goal of the virtual implementation is not primarily an automated design to be fol-

lowed by an implementer, but an ideal execution of the specification. The performance

achieved by the virtual implementation becomes a target for the implementer who has

many additional constraints (such as language, operating system, etc.) to contend with.

For example, although recognizing experimental systems such as Real-Time Mach and Cho-

rus [46], the author knows of no commercial operating-system kernel supporting EDF thread

scheduling, so the actual scheduling may have to be tuned to approach the evaluation.

The virtual implementation is also an exploration of ideal design, for example resolving

the implementation of potentially parallel paths in a sequential process.

The virtual implementation was constructed using :
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• A set of rules which control the creation, movement, cloning and destruction of tokens.

• A set of rules which ensures that at any given moment each thread is scheduled with

an intelligent deadline.

The virtual implementation is instrumented so that it can report

• the mean response time and fraction of “successful” responses for each type of re-

sponse.

• the amount of concurrency-related overhead observed: both the total concurrency-

related overhead, and the overhead broken down by type (context switching, mes-

saging, deadline adjustment, and semaphore operations used for protecting access to

shared data objects).

• The utilization of each device instance.

7.2.3 Metrics to detect concurrency problems

Three measures have been invented and tested, with the goal of identifying defects in

concurrency:

• An inversion metric which reports, at each significant point where a path crosses into

a process, the time-averaged number of waiting tokens and the percentage of that

which is deadline-inverted (see Section 5.4.1).

• An external device metric which reports at each point where a path crosses into a

process the time-averaged need for devices by tokens waiting at that point, and the

fraction of that need which is potentially poorly scheduled (see Section 5.4.2).

• An internal device metric, similar to the external device metric, but which measures

device need for tokens waiting inside the threads of a process (see Section 5.4.3). The

fraction of that internal need which is potentially poorly scheduled is also measured.
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These metrics complement the utilization and concurrency-related overhead measure-

ments reported above.

Tutorial examples were constructed, evaluated, and diagnosed to highlight certain con-

currency problems:

• Deadline inversion (see Section 5.1).

• Excessive serialization due to only one token being able to travel along a given path

segment at a given time (see Section 5.2).

• Excessive serialization after an AND fork (also see Section 5.2).

• Excessive concurrency-related overhead (see Section 5.3).

Changes to UCMs of the examples were proposed, evaluated and diagnosed to show

ways in which the concurrency problems can be resolved (see Section 5.5).

Another tutorial example was presented for which small changes to the model would

produce at a certain point along a path either no concurrency problems, a potentially poorly

scheduled device need problem, or an inversion problem (see Section 5.5.4).

7.2.4 The PERFECT tool

A tool named PERFECT (PERFormance Evaluation by Construction Tool) was developed,

to allow concurrency architectures for substantial systems to be evaluated and diagnosed

by anyone (see Section 4.6).

PERFECT reads in XML files containing UCMs which have been entered using the

UCM Navigator graphical editing tool [47]. Documentation and additional information

about UCMs and the UCM Navigator is available on the web site www.usecasemaps.org.
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7.2.5 Case study

A case study was constructed to show how the methodology and the PERFECT tool can

detect multiple concurrency problems in a substantial application (see Chapter 6). The ap-

plication constructed was a group communication server. A series of concurrency architec-

tures were proposed to show how the architecture can be tuned to yield good performance.

In the case study, increasing concurrency in the architecture at first improved performance

but eventually caused performance to diminish. All the metrics were demonstrated in a

variety of situations.

7.3 Straightforward generalizations

Below are listed some ways in which the work presented in this thesis can be readily gen-

eralized.

• Including software services assigned to some process in addition to the service by

devices currently included in the external device metrics. The metrics could then be

renamed external service metrics. The expanded metrics would identify potentially

poorly scheduled service need. The server processes could either be local or remote.

• Covering distributed systems evaluation. The generalization would use (for evaluation

purposes) global time for EDF scheduling, and the external service metrics would

include remote services as described above. Operations on shared data objects might

be remote.

• Being able to specify different mixes of loads under which the response-time require-

ments should hold. For example, consider a system with the following time-dependent

loads:
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– During the day, the following peak workload: 2 type A requests/second and 27

type B requests/second.

– At night, a different peak workload: 5 type A requests/second and 9 type B

requests/second.

• Using a notation other than UCMs to specify scenarios and concurrency architectures.

One possibility is a custom variant of Petri Nets.

7.4 Future Research

The following sections present some possibilities for future research arising from this thesis.

7.4.1 Validation on a system supporting EDF scheduling

In order to validate the evaluations, we should run some test applications using an operating

system kernel which supports EDF scheduling. The case study is one such test application,

but would require that the ACE framework run on the EDF kernel. Some experimental

versions of Real-Time Mach support EDF scheduling, so this would provide one option.

Real-time Mach also supports the style of messaging used in the virtual implementations.

7.4.2 Displaying results in the UCM Navigator

It would be useful to be able to send evaluation and diagnostic results back to the UCM

Navigator. Ideally, one could invoke PERFECT from UCMNav, and the results could be

fed back into the XML file and displayed in UCMNav. Currently, results have to be entered

by hand onto a UCM diagram in order to see them in context of the diagram.
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7.4.3 Automatic identification of efficient concurrency architectures

It would be useful to develop an algorithm which proposes a concurrency architecture and

an initial set of hardware, and automatically analyzes evaluation and diagnostic results and

searches for efficient concurrency architectures. Such an algorithm would first choose hard-

ware components of sufficient speed to handle the offered load and also allow all responses to

finish within their requirements assuming no contention for devices. The algorithm would

then choose an initial concurrency architecture, possibly one single-threaded process as was

done in the case study. The algorithm would then iterate through evaluating and diagnos-

ing an architecture, would choose the process which had the greatest metric problems, and

would either split the process or multi-thread it.

When architectural alterations no longer yielded improvements, if all of the responses

were not meeting their requirements the algorithm would analyze which responses were

failing and would select one or more devices to make faster.
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