
Automatic Generation of Layered Queuing Software
Performance Models from Commonly Available Traces

Tauseef A. Israr Danny H. Lau Greg Franks Murray Woodside

IBM Canada
770 Palladium Drive

Ottawa K2C 1C8, Canada

Dept. of Systems and Computer Engineering,
Carleton University

Ottawa K1S 5B6, Canada
tisrar@ca.ibm.com {dlau,greg,cmw}@sce.carleton.ca

ABSTRACT

Performance models of software designs can give early warnings
of problems such as resource saturation or excessive delays.
However models are seldom used because of the considerable
effort needed to construct them. Software Architecture and Model
Extraction (SAME) is a lightweight model building technique that
extracts communication patterns from executable designs or
prototypes that use message passing, to develop a Layered
Queuing Network model in an automated fashion. It is a formal,
traceable model building process. The transformation follows a
series of well -defined transformation steps, from input domain,
(an executable software design or the implementation of software
itself) to output domain, a Layered Queuing Network (LQN)
Performance model. The SAME technique is appropriate for a
message passing distributed system where tasks interact by point–
to-point communication. With SAME, the performance analyst
can focus on the principles of software performance analysis
rather than model building.

Keywords
Performance Engineering, Software performance, Tracing
Performance Modeling, Layered Queuing, Model Building

1. INTRODUCTION
Many software projects combine tight deadlines and increasing
complexity. As a result, vital performance issues are neglected,
only to arise in the late stages, when they are difficult to deal with.
In general, we would like to predict the performance problems in
advance when large design changes are easier to execute.

The earliest predictions are given by performance models created
from the requirements and the designers’ expertise [19][21][22].
The models require the description of the execution time and
frequency of the major system operations, and may be expressed
as extended queuing networks. Solutions give estimates of the
response time and throughput of the system under different loads,

and identify problem areas such as operations that are performed
too often or take too long. A recent standard supports the
definition of the necessary parameters within a UML design
model [13].

Generating performance models this way is effective [22] but may
be difficult. It requires system expertise and experience, a deep
knowledge of the system to be built, and performance expertise.
Automation of the model-building process would make the use of
models more accessible and reduce the time and effort.

Automation can be applied as the design develops, and executable
design products are created such as CASE tool models and
prototypes. Their behavior can be traced and used to create
performance models, as in the Angio Tracing and Trace-based
Load Characterization method described by Hrischuk et al [5][6].
These methods require a specialized trace format based on an
“angio dye id” which is injected into the beginning of each
response and propagated through the system (the name is by
analogy with dyes used for medical angiograms). This method is
effective in creating a model structure, but the workload
parameters must be determined separately.

The application of angio-trace based methods is limited by the
need for special trace information (transaction correlation in the
ARM monitoring standard [14] is the closest thing to a dye id).
Thus this research developed a different approach based on
commonly available trace data. It is called SAME (the Systems
Architecture and Model Extraction technique). It can be applied
in the middle and later stages of the software development cycle,
once an executable form of design product is available. In the
earliest stages, a loosely related scenario-based technique such as
[15] may be more suitable.

SAME uses performance model concepts which are described in
Section 2, based on types of interactions between components
which are discussed in detail in Section 3. Section 4 outlines the
method and the algorithm for reducing traces, with some
examples. Section 5 describes validation on simple cases, and
there is an e-commerce case study in section 6 which
demonstrates its application to a prototype, and its scalability.

2. PERFORMANCE ISSUES AND
MODELING
Software Performance Engineering (SPE) involves the use of a set
of methods for software systems development that meets with
another set of pre-defined performance requirements. The
available SPE techniques include design optimizations, the use of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP'05, July 12-14, 2005, Palma de Mallorca, Spain.
Copyright 2005 ACM 1-59593-087-6/05/0007…$5.00.

lab or field measurements to suggest configuration tuning and
design tuning, and performance modeling.

2.1 Performance Techniques
Software developers often incorporate well-known performance
optimizations such as hash tables in a design. To be effective this
requires a good knowledge of the system, and it is very difficult to
focus on the important optimizations without knowing where the
problems are. Source-code metrics (see e.g. [2]) may provide
relevant information.

Once a prototype or implementation is available its performance
can be measured, using operating system data, profiling of the
software, and special tools such as Quantify [7]. An example of a
measurement environment is Pablo [16]. An advantage of this
approach is that it evaluates the configuration of the system in the
environment, as well as design. However, it may be difficult to
obtain the measurement that one needs to understand a problem
(called “drilling down”), and this can only be done late in the
development cycle. This may be too late for some kinds of design
change (or make such change costly and time-consuming).

Performance models can be applied at any stage, including the
earliest, to analyze for any problems for the system in different
configuration and workload. When done in the very beginning
this can assist the developers to design performance into the
system. For deadline-driven systems, rate monotonic analysis [11]
determines the schedulability of a set of tasks. For systems with
probabilistic workloads and execution, simulation and queuing
network models [9] analyze contention for resources using
statistical workload descriptions such as mean service time and
mean number of visits of jobs to servers. Smith and others have
described how to create these models in early software design
[1][21][22].

Layered Queuing Network (LQN) models [3][15][17] are a kind
of extended queuing model which describes software resources
and interactions, and are used here.

2.2 Layered Queuing Network Models
The LQN model is an extension to queuing models, as proposed
by Woodside et al. and others [3][17][23]. These models can
handle some of the important performance features such as multi-
threaded processes, devices, locks and other communication tasks.
It is useful for describing systems with parallel processes on a
multiprocessor or a network-based client-server system.

LQN models contain tasks representing software and hardware
components in the system, with entries representing operations by
these tasks. Entries make requests to entries in lower layers.
Tasks may take roles as “pure clients” which only originate
operations as clients, or as “pure servers” which only serve, as for
hardware devices, or as “active servers” which accept and serve
requests and then while doing so, make their own requests to
lower servers.

Interactions between entries are of three types: asynchronous,
synchronous, and forwarding. An asynchronous service request
does not wait for any reply to the request. As soon as the request
is sent, the requester can continue with its operation. A
synchronous service request can also be described as a RPC or a
rendezvous request. The requester waits for a reply (“blocked”)
and then continues its own operation. A forwarding interaction is
a combination. The server of a synchronous request forwards it
asynchronously to another task, which has the responsibility of

replying, or forwarding it again. The original task is blocked until
the reply arrives.

A notation for LQN models is shown by an example in Figure 1.
The parallelograms represent the tasks and entries, while the
different types of service requests are identified by the different
kinds of arrows. Client1 and Client2 originate asynchronous and
synchronous requests, respectively, the latter being forwarded to
Entry6. Entries have parameters for CPU demand and arcs for
requests are labelled by the mean number of requests they make
[3]. LQN models have been described for many kinds of
applications (e.g. [20]).

Client1

Entry1
[1]

(1)

Client2

Entry2
[1]

(1)

Processor1

Server1

Entry3
[1]

(1)

Processor2

Server4

Entry4
[1]

(1)

Processor3

Server5

Entry5
[1]

Entry6
[1]

Processor4
Forwarded request
Asynchronous request
Synchronous request

Figure 1: Example of an LQN Model

2.3 Approaches for Building Performance Models
In order to construct these performance models, we need to have a
systematic approach. As proposed from Connie Smith, we should
use quantitative methods to assess and change the system’s
attributes during the early design stage of the development cycle
[20]. We can then use it to obtain the execution patterns and
solve for the performance prediction. Other scenario-based
approaches by Scratchley [18] and by Petriu and Woodside [15]
create models from Use Case Maps. Menasce and Gomaa
described a software performance engineering language CLISSPE
[12].

The trace based approach taken here was originated by Hrischuk
et al in [5] and extended in [6]. It identified patterns in the trace,
including inter-task interactions described here and additional
patterns involving forking and joining. An end-to-end response
identifier called an “angio dye id” was carried through the system
by the messages involved in the response, and is recorded in the
trace events. The dye id gives a response context for every event,
and also assists in relating forks and joins in the flow. A scenario
was described as a graph, and LQN model structures (with request
frequencies, see below) were created by a rule based graph
analysis approach to define graph transformations [6]. The model
could include parallel sub-paths.

Other performance analysis methods use traces to create profiles
(time spent in different components, in context), or to visualize
problems [7]. Klar et al. [10] created a series-parallel delay model
from traces, and used it to predict performance. However none
have gone as far as the angio-trace work, in creating queueing
model structures.

The present work is closely related to angio-tracing described in
[6]. Here, we give up the ability to capture parallel paths, in order
not to require the angio dye ids in the trace.

3. SOFTWARE ARCHITECTURE AND
MODEL EXTRACTION TECHNIQUE
In this paper, a new automated model generation technique call
the Software Architecture and Model Extraction (SAME)
technique is presented. To apply SAME, a scenario, or a set of
scenarios, is executed in the system or the executable design
model, and a trace of events for the interactions of the components
is captured. Interaction must be by message passing.

Commonly available trace information such as the component
identity, the type of even (send or receive, for inter-component
events), and a timestamp, is all that is required. There must be
enough information with a receive event to identify the
corresponding send event, and to construct a message trace with
records showing

[sender id, receiver id, time of reception]

The trace may come from a single node or a loosely coupled
distributed system. From here on, the components in the trace will
be called “tasks”, in line with the LQN model. However in
practice they may be objects, threads, or processes, or a
combination of all three. A task must only be some kind of
sequential program, running on a single “host” processor.

Figure 2 shows the steps in processing the trace. An analysis
based on “interaction trees”, described in the next section,
identifies the interactions between the tasks as patterns. These
interactions serve as input for generating the LQN models. With
the use of performance parameters for CPU demand and request
frequencies, an LQN model is produced.

Entities and interaction
patterns

Model structure

LQN Performance model

Tree transformation
technique

Model assembly

Add parameters

This
paper

Execution traces

Figure 2: Steps for SAME Technique

3.1 Tasks, Trace Events, and Messages
To apply the SAME technique, the software must be composed of
components with a unique identity, which receive messages one at
a time (no internal concurrency) from a request queue, and which
can block for replies (which do not have to wait in its request

queue). Messages must be delivered in the order they are sent, for
the same pair of sender and receiver.

In a distributed system separate traces are made at each node, or
even within each process, and timestamps are often not precisely
synchronized. The traces must be merged, or otherwise interpreted
to associate send events and receive events for the same message,
and give the message trace for SAME. This requires that
timestamps be sufficiently well synchronized to obtain the correct
causal order in the merged trace (the timestamp at the receiving
end is later than that at the sender, when sending in either
direction), or alternatively that messages carry additional
identification that is recorded in the traces at each end, and can be
used to associate the send and receive events correctly.

3.2 Interaction Patterns
The three interaction patterns mentioned above are important for
identifying task blocking behavior, with its associated delays.
Figure 3(a) illustrates all three patterns by showing a trace
fragment with six messages between five tasks, as a UML
sequence diagram.

 Task A Task E Task D Task C Task B

m5

m1

Execution-occurrence C.1

m6

m4

m3

m2

Figure 3(a) A trace fragment as a Sequence Diagram, showing
an execution-occurrence and three interaction patterns

In the example shown, the first message m1, from A to B, begins
an “execution occurrence” (which we will abbreviate as an EO) at
A. It makes A block, but we will return to it in a moment.
Messages m2 and m3, between B and C, make a synchronous
interaction shown in Figure 3(b). The “client” task B sends a
request m2 to C which is processed by the “server” task C while
the client task waits (is blocked). The server sends back a reply
m3 to the client, ending its EO. While it is busy further requests to
C are put into a service queue. During the service, the server may
make nested synchronous requests to other tasks. This type of
communication pattern can be seen in many different types of
client-server systems.

 Task C Task B

m3

m2

Figure 3(b) The synchronous interaction between tasks B & C

The interaction from B to D is shown separately in Figure 3(c). It
is asynchronous, in that B sends a message and does not expect a

reply. Both B and D can be executed concurrently. While the
server is servicing a request, other requests have to wait. Since
the client does not wait for a reply, it is important that these
messages are reliable so they do not get lost during the
transmission.

 Task D Task B

m4

Figure 3(c) The asynchronous interaction from B to D

The third type of interaction is a forwarded request, represented
here by the messages in Figure 3(d). The message m5 from B to E
forwards the request from A to B, on to E. E must take the
responsibility to send the reply (m6) while B ends its EO, and
may take its next request. A message may be forwarded any
number of times, with the last server replying to the client, which
remains blocked. The forwarding pattern in Figure 3(a) begins
with m1, and includes m5 and m6; the other messages are part of
the service given by B before it forwards the request. For
example, B might have to do a lookup (at directory task C) to find
the address of the ultimate server, and log the operation (at
logging task D) before sending the request to the ultimate server
E.

 Task A Task E Task B

m5

m1

m6

Figure3(d) The forwarding interaction from Task A, to B, to E

The communications patterns in Figure 3(a) may be expressed by
the graph in Figure 3(e), in which the nodes represent the
execution occurrences and the arcs represent the messages.
Because a task may have many EOs in a trace, the nodes carry a
number (A.i represents the ith EO of task A); here the number 1 is
used for all the tasks.

The three interaction patterns appear in this graph. For example
the cycle B.1-C.1-B.1 represents the synchronous request from
B.1 to C.1, and the cycle A.1-B.1-E.1-A.1 represents the
forwarding. Clearly the interpretation of a message as part of an
interaction depends on its context in the message flow. In
analyzing such a graph we will interpret any interaction as
synchronous or forwarding, if that is feasible. Any message which
might be a reply is interpreted that way.

 EO A.1 EO B.1

m1

m6 m5

m4

m3

m2

EO D.1

EO E.1

EO C.1

Figure 3 (e) The interpretation of the Trace Fragment as an
Interaction Tree (This form is a graph rather than a tree)

4. INTERACTION TREE ANALYSIS
The technique to be described uses Interaction Trees, which are
similar to Figure 3(e) except that they are created on the fly from
the stream of messages in the trace, and they evolve for each
message. As in Figure 3(e), nodes represent EOs of tasks, and arcs
represent messages. These graphs are trees because any cycles are
removed as soon as they are created. A set of trees is maintained
by the algorithm, for different concurrently active interactions.

Figure 4: A Typical Interaction Tree

Figure 4 illustrates an interaction tree and the usual terms root,
leaf, parent and child nodes.

4.1 Sketch of Interaction Tree analysis
The processing of one item from the message trace is as follows:

Step 1. Assuming there is already a live EO for the sender, a node
is created for the EO of the receiver, which is attached by a
directed arc from the active EO of the sender. If there already is a
live EO for the receiver, the arc goes to that node, which may
create a cycle.

If there is no active EO for the sender, a node is created for it
which becomes the root of a new tree, and a node for the receiver
is created and attached to it. Any existing live node for the
receiver is made a zombie (it can no longer have arcs attached to
it). Zombie nodes are removed in Steps 2 and 3.

Step 2. If a cycle was created in some tree by the added message,
it may be a reply message which completes an interaction. The
cycle is analyzed and if possible, interaction records are produced

and the tree is simplified, to remove the messages in the cycle.
The simplification may identify some number of additional
asynchronous interactions, and may divide one tree into several
smaller trees.

Step 3. A cleanup operation is applied to all the trees that have
been modified or created during Steps 1 and 2. This may identify
further asynchronous interactions and create further divisions into
smaller trees.

4.2 Definitions for Interaction Tree analysis
Interaction Tree Analysis creates and evolves a set of trees which
is initially empty. For each task X it maintains the EO number
liveX of the current live node (if any; it is zero if there is none),
and the next EO number nextX to be assigned.

Each node is name X.i for the task and its EO and is labeled with
(t, status) for the time of its invoking message and its status (live
or zombie). Each arc is labeled by the time of the message it
represents. Nodes are live when they are created; they may be
turned into zombies when the same task participates in another
message. There can only be one active node for a task at any time,
across all trees.

Because each global interaction begins with a single message, the
root node of each tree has only one child. During a step a root
may be produced with multiple children (called “improper”), but
cleanup will reduce this to one or more proper trees.

The most recent active child node of any node is called its
“immediate candidate” or IC; we may say that Child = IC(Parent)
or “Child is IC”. In Figure 4, the nodes C and E with dashed
outlines are “non-immediate candidate” or NIC; B, D and F are
IC.

If there is a direct path from active node A to active node B in any
tree, we say A is an ancestor of B, written A => B. For example in
Figure 4, A => B and B => F.

4.3 Algorithm
Only an informal definition of the algorithm is given here; a full
definition (in a somewhat different form) is given in [8].

Part A. Initialize the set of tasks and their counters live (to zero),
and next (to 1).

Part B. Process message records until the trace terminates. For
each message (A, B, t), we define the existing active nodes for A
and B (if any) to be A.u and B.v and their next EOs to be A.i and
B.j. Then:

1. Add a message arc with time label t. Nodes A.u or B.v may
be present or absent. There are two cases:

• if NOT(B.v => A.u) (note: no cycle will be created),

- if (A.u exists) attach the arc from A.u to a new
node B.j with label (t, live)

- else create new node A.i with label (t, live) and a
child B.j with (t, live).

In either case if a previous B.v exists it is made zombie
when B.j is created.

• else (note: A.u, B.v exist and a cycle will be created):

- insert the arc from A.u to B.v

2. If there is a cycle (there should be only one), suppose the last
message is from node A.u with label (t, live) to a node B.v
with label (t, live). Then

• if the cycle length is 2, produce an interaction record
[Sync, (B, v, tstart), (A, u, tend)], with tend taken as the
time on the arc (A,B)

• if the cycle length is N>2, produce an interaction record
[Fwd, (B, v, tstart), List, (A, u, tend)], with

- (B, v, tstart), (A, u, tend) as above,

- Construct List as a list with N-2 entries of form (X,
k, time) for the intermediate nodes X.k, in order
along the path from B to A.

3. Tree cleanup. There is a sequence of operations, which will
be outlined only.

• if there is a cycle, make zombies of all the nodes in the
cycle below the highest node in the cycle (which
initiated the interaction). Remove all the arcs on the
cycle, and any nodes that are isolated by this.

• remove any zombie root node X.k and for each child
Y.m generate an asynchronous interaction record
[Async, X, k, Y, m, t], where t is the time label of Y.

• for any improper root node X.k, remove all the arcs
except the one to its IC, and detach their sub-trees as
new trees. For each removed arc from X.k to some
node Y.m, generate an interaction record [Async,
X, k, Y, m, t] as above. This must be done recursively
as the detached trees may be improper also, and the
previous step must be invoked if any zombie root node
emerges.

• Remove any zombie leaf node Y.m (and the arc from
its parent X.k), and generate an interaction record
[Async, X, k, Y, m, t] as above. This may have to be
done recursively also.

• Update the numbers nextX for all tasks X that had
nodes created, and liveX for tasks with nodes that have
changed status, in preparation for the next step.

When the trace terminates, for each child node Y.m of parent
node X.k, create an asynchronous interaction record
[Async,X,k,Y,m,t]. At this point we have a set of interaction
records, each of which represents a single interaction.

Part C. Assemble the interaction records into a layered queueing
model.

1. For each task A that is recorded in the interaction records,
create an LQN task.

2. For each EO of form A.i that is recorded in the interaction
records, create an entry A.i for task A.

3. For each Sync interaction record [Sync, (A, u, tstart), (B, v,
tend)], add a synchronous interaction arc from entry A.u to
entry B.v in the LQN,

4. For each Async interaction record [Async, A, u, B, v, t], add
an asynchronous interaction arc from entry A.u to entry B.v
in the LQN,

5. For each Fwd interaction record [Fwd, (B, v, tstart), List, (A,
u, tend)], a series of arcs are created. Let C(k) be the entry

corresponding to the kth element of List (if this element is (X,
i, t), then C(k) is entry X.i). Then

• add a synchronous request from entry A.u to entry C(1),

• for j = 1 to N-3, add a forwarding request from entry
C(j) to entry C(j+1). If List has only one element there
is nothing to do.

• add a final forwarding request from entry C(N-2) to
entry A.u

The reply from C(N-2) to entry A.u is implicit in the ending
of the forwarding path.

The multiplicity parameters of the synchronous and asynchronous
request arcs are all set to 1.

The result of part C is a LQN model with tasks which may have
many entries, one for each EO. Many of these entries may perform
the same operations, repeated within the trace, and they should be
merged into a single entry.

Part D. Simplify the entries to merge those that perform the same
operations.

1. Sort the tasks into an order such that, where possible, tasks
earlier in the order originate interactions with later tasks.

2. Working from tasks at the end of the list, towards the
beginning, merge identical entries. Two entries are
“identical” if they belong to the same task, and initiate the
same requests (to the same set of entries and with the same
multiplicities), or the same forwarding operations. The
request arcs from the merged entry have the same
multiplicities as the two original entries; each arc into the
merged entry has the sum of the multiplicities on the input
arcs from the same source entry.

3. This is repeated until no candidate pair of entries can be
found.

The result of Part D is the final LQN model structure. To create an
LQN model, the performance parameters must be estimated and
inserted, as shown in Figure 2.

4.4 Illustrations
Two brief examples will illustrate Part B in processing a tree and
Part C in assembling a model.

Processing a tree (Part B)
Figure 5 illustrates one step of the algorithm beginning with the
tree on the left. A message (E, B, 7) is next in the trace. In
applying Part B, Step 1, the first option is taken because E.u does
not exist, (and thus B.1 is not an ancestor of E.u). Because E.u
does not exist a new tree with E.1 and B.2 is created. As part of
creating B.2, the previous live node B.1 is made zombie.

zombie

Figure 5 An interaction tree and its transformation on receipt
of a message (E, B, 7), labelled x4

Assembling a model
Suppose the messages shown in Figure 3(a) are recorded in a
message trace with entries (A, B, t1), (B, C, t2), etc. Then when
the algorithm is applied to them it gives the following set of
interaction records, in this order:

[Sync, (B, 1, t2), (C, 1, t3)]

[Async, B, 1, D, 1, t4]

[Fwd, (A, 1, t1), (B, 1, t5), (E, 1, t6)]

Part C first identifies the tasks A, B, C, D, E from the tasks in the
records, and the entries A.1, B.1, C.1, D.1, E.1. It then connects
them together from the interactions, to give the LQN shown in
Figure 6.

Task_A

A_1

Task_B

B_1

Task_E

E_1

Task_C

C_1

Task_D

D_1

Forwarded request
Asynchronous request
Synchronous request

Figure 6 Final LQN model for the example of Figure 3(a)

4.5 Generalizations
As described in [8], the algorithm can also accommodate

• trace records which describe non-message events, and can be
interpreted to deactivate nodes when they indicate that a task
is not blocked waiting for a reply.

• tasks that have operations after sending a reply (called
“second phase” operations in LQN).

• combining the results of processing multiple traces, in a single
model.

4.6 Implementation of SAME
The implementation follows a somewhat different description of
the algorithm, given in [8], which breaks the processing of one
message into 19 different cases. These cases are determined by the

location of live nodes B and A in the interaction tree. Cases 1 to 9
deal with live nodes A and B in different trees or not existing;
cases 10 to 13 have the vertices A and B in the same tree but
neither is a descendant of the other. Cases 14 to 16 have the
vertex A a descendant of vertex B, and in cases 17 and 18 process
A performs some non-interaction operation. The last case deals
with trace termination.

All the techniques and algorithms described in this section have
been implemented in a Java program with two parts, SAME1 and
SAME2. SAME1 implements parts A and B above, taking as
input the execution traces in an ASCII file format and generating
an ASCII file with the interaction records. SAME2 takes this
output file and outputs an LQN model.

5. VALIDATION TESTS AND CASE
STUDY
With the wide possibilities of the different communication
patterns and scenarios, it is important to perform some testing to
make sure the resulting LQN models generated are accurate. This
section describes 6 simple test cases that were used for validation
along with a comprehensive case study on the ATM-GSM
network model. Please refer to [8] for the complete details of the
tests and resulting LQN models. The test case and results are
discussed in the following.

5.1 Validation Test Cases
The first case represents the synchronous communication pattern
as shown in Figure 7. The first interaction is at t = 10 where B
received a message from A with A replying back to B at t = 100.
In the SAME tool, it detected a synchronous communication
pattern from the interaction tree based on case 14 of the tree
transformation technique as shown in the diagram, and it was able
to generate the LQN models for it.

Figure 7: Simple Synchronous Communication Pattern

The second case illustrates the asynchronous communication
pattern between two processes as shown in Figure 8. As time t =
10, process A sends a message to process B but there was no reply
to the request. The interaction tree is created but there was no
message as the reply when the interaction ends. Based on the last

case of the tree transformation technique in the SAME, this
interaction can be classified as an asynchronous interaction as it
shows in the communication pattern in the diagram. An LQN
model is created based on that.

Figure 8: Simple Asynchronous Communication Pattern

The third case is an example of a simple forwarding
communication pattern between three processes as shown in
Figure 9. At t = 10, process B receive a message from process A
and then it sends a message to process C at t = 100. Process C
then replies process A at t = 150. The interaction tree is
constructed as shown in the diagram. From case 16 in the tree
transformation, SAME has determined that it is a forwarding
interaction and was able to use it to build the appropriate LQN
model.

Figure 9: Simple Forwarding Communication Pattern

The fourth case is a synchronous pattern with nested interaction
between three processes as shown in Figure 10. At t = 10, process
B receives a message from A and then sends a message to process
C at t =100. At t = 200, process B replies back to Process A.
Since process A has received a reply, it is considered as a
synchronous communication pattern. Since there was no reply
from process C and process B was not blocked after the message,
it is considered as an asynchronous message as stated in case 2 in
the algorithm. We can see the communication pattern shown in
the diagram and it was used to create a simple LQN model.

Figure 10: A Nested Asynchronous Message

The fifth case is a two step forwarding communication pattern
involving four processes as shown in Figure 11. First, the
message is passed from process A to process B, process B to
process C, process C to process D. After that, process B sends a
message back to B. From case 16 of the tree transformation
technique, this is considered as the forwarding pattern. After that,
process B replies to process A to end all the interactions. From
case 14 of the tree transformation, this is a synchronous
technique. From this scenario, we can see that there is a
forwarding interaction nested inside a synchronous
communication pattern. The results are produced in the diagram
and were used to make the LQN model.

The last test case is an example of a concurrent system as shown
in figure 12. SAME is able to handle the processes the same way
as a non-concurrent system, but there are multiple trees used to
represent the concurrent behaviors. In this test case, process A
and process C starts two simultaneous execution threads
interacting with different processes. The trace starts at t = 10
where process B receives a message from B and then process D
receive a message from process C at t = 20. At this point, two
initial interaction trees are formed. At t = 100, process D sends a
message to process E with process B sending a message to process
D at t = 110. Since process D is in another tree, this interaction
causes vertex D in the interaction to become inert. This inert node
allows process E to finish its interaction by a having a forwarding

request to send a message back to process C, as it is done at t =
150, instead of having a reply back to process D which is
currently in use.

Figure 11: A Nested Forwarding Communication Pattern

After the reply from process E to process C, we have finished the
forwarding interaction as stated in case 16 of the tree
transformation technique.

Figure 12: Concurrent System

At t = 160, process D sends a message back to A, and this is also
another forwarding interaction. We can see the results produced
from the interaction tree in the diagram. These are used to
generate the LQN model as shown in figure 13.

ProcessA
E0

ProcessC
E3

ProcessB
E1

ProcessD
E2 E4

ProcessE
E5

Figure 13: Concurrent System LQN Model

From the above six test cases, we were able to validate the
techniques that were used to identify the different communication
pattern to generate the appropriate performance model. The
following section describes a case study using SAME to model
the performance of a complex system.

6. CASE STUDY: RADSBookStore
RADSBookStore is an application created to evaluate and verify
the logic of the SAME Technique. It is a prototype of a
computerized book store system supporting most of the operations
one can do on a book store computer terminal, with the Use Cases
in Figure 14.

Figure 14 Use cases for the RADSBookStore system

The RADSbookstore application is a three tier system comprising
of the client, the application and the database layer.

Figure 15 Classes in the RADSBookStore software

The client layer serves as the front-end of the system from where
requests of various sorts originates. The application layer consists
of a main server which is responsible for serving clients requests
by creating new customer accounts, sending requests to the billing
and shipping departments, query books’ and customers’
information and maintaining shopping carts for the customers
involved in current sessions. Further, there is also a replenish
thread that serves the purposes of replenishing the inventory upon
which the billing and the shipping department serves the
backorders which were created due to inventory shortfall.

For the purposes of obtaining execution traces from the
application, RADSBookStore was instrumented with trace
messages which were then recorded in a file while executing the
use cases shown in Figure 14. For the BrowseProducts operation,
the sequence diagram shown in Figure 16 shows the messages that
will be recorded during one execution.

Figure 16 The sequence diagram for the BrowseProducts

operation

When this operation was executed on the prototype it produced
the trace in Table 1.

Table 1 Trace for BrowseProducts

Time Event Process Message Type

4052950 send Client browse_STARTC

4053220 receive Server browse_STARTC

4053500 send Server display_START

4053720 receive Inventory display_START

4053990 send Inventory getName_START

4054270 receive Book getName_START

4054490 send Book getName_END

4054760 receive Inventory getName_END

4055030 send Inventory getName_START

4055310 receive Book2 getName_START

4055530 send Book2 getName_END

4055750 receive Inventory getName_END

4056020 send Inventory display_END

4056240 receive Server display_END

4056460 send Server browse_ENDC

4056740 receive Client browse_ENDC

Each of these traces was processed using the Interaction Tree
Analysis algorithm to first identify different types of interactions
and then, in Part D, to create an LQN model for each scenario.
The LQN models created were sufficiently syntactically and
semantically correct to satisfy the model parser for the solver, in
all 12 cases. The models gave reasonable solutions.

The scenarios were then merged by creating a Client task which
makes all the initial requests, in proportions corresponding to a
usage profile for the scenarios. The tasks were merged by name
(so the merged task has the combined entries from all the
submodels) and Step D was applied to simplify the entries of this
combined model. A composite model of two scenarios is shown in
Figure 17. The model at this point has no meaningful CPU-
demand parameters, but with default values of 1 ms for each entry
the model can be solved with the LQNS solver [3] to give a
system throughput of about 10 responses/sec.

Scalability
Traces of up to 650 events were collected from the bookstore
prototype and processed into models. Other applications which
were successfully analyzed include traces from an executable
design model with about 50000 events, and from a running system
with nearly half a million events. This demonstrates the scalability
of the technique to large traces. For very large traces, the memory
requirements for Steps C and D can be improved by doing them
incrementally.

7. CONCLUSIONS
This paper has described an approach to automating the
construction of performance models of software, from traces of
behavior of running systems, prototypes or executable models. A
strength of this SAME technique is that it uses conventional trace
data which is available from many tracing tools, compared to a
previous technique which required special traces. The price paid
for this simplicity is that the joining of flows that previously
forked cannot be identified, however the existence of the parallel
sub-path and its workload is captured here.

The layered (LQN) performance model that is derived captures
the software workload, and also the effect of concurrent
interacting processes with various kinds of interactions
(synchronous, forwarding and asynchronous). This class of model
is useful for studying concurrency, threading levels, and other
kinds of logical resources.

The interactions between software components are identified by
an Interaction Tree analysis which is efficient and scales up well
to large traces (hundreds of thousands of trace events). The
performance model clusters similar interactions into single
architectural units called entries in LQN notation, which reduces
the complexity so that it distinguishes only those interactions
which have different behavior.

The technique is demonstrated on a moderate sized three-tier
application, called RadsBookStore. From the results generated
from the test case scenarios, we obtained LQN models that are
syntactically and semantically correct and are essentially the same
as those generated by hand. When performance parameters were
inserted, the models could be solved with the LQN solver to
obtain the performance results.

Figure 17. A view of a composite LQN model for the bookstore case study combining the behavior of two scenarios. The

parallelograms are tasks; the entries are not shown. The numerical substrings identify object instances.

The tool has also been applied to a large trace of a production
system with over a hundred threads, and a quarter-million events,
to generate a model.

The approach has limitations. First, the trace events must have
globally ordered timestamps, or unique message ids. Second, if
there are multiple threads, traces must identify the thread. Third, if
there is no unique message identifier, then we must be able to
assume the messages between components are served in FIFO
order. Fourth, the approach cannot identify the joining of two
parallel flows.

Currently, one research area is to automate the trace generation
from an executing system to make traces that are compatible with
the SAME tool. The target for this trace generation is on the J2EE
platform. This can be useful since a performance model can be
generated from the execution of the program without extra
instrumentation. It allows the developers to get instant
performance measurements during the testing phase of the system.
This can be very useful in the development environment.

8. ACKNOWLEDGEMENTS
This research was supported by a grant from NSERC, the Natural
Sciences and Engineering Research Council of Canada, and
CITO, Communications and Information Technology Ontario.

9. REFERENCES
[1] V. Cortellessa and R. Mirandola. Deriving a Queueing

Network based Performance Model from UML Diagrams, in
Proceedings of the Second International Workshop on
Software and Performance (WOSP2000), Ottawa, Canada,
September 17-20, 2000, pp. 58-70.

[2] N. E. Fenton and S. L. Pfleeger. Software Metrics: A
Rigorous and Practical Approach. PWS Publishing
Complany, 1997.

[3] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia, and
M. Woodside. Performance Analysis of Distributed Server
Systems, Proc. Sixth International Conference on Software
Quality (6ICSQ), Ottawa, Ontario, 1996, pp. 15-26.

[4] F. Hayes-Roth, and D. Waterman. Principles of pattern-
directed interface systems. In D. Waterman and F. Hayes-
Roth, editors, Pattern-Distributed Inference Systems, pages
577-601. Academic Press, 1978.

[5] C. Hrischuk, J. Rolia, and C. M. Woodside. Automated
generation of software performance model using an object-
oriented prototype. Int. Workshop on Modeling and
simulation, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS ’95), pp. 399-409,
Durham, NC, 1995.

Client

ServerRef_5d56d5 ServerRef_194a4e

Shipping1 CustomerAccount

Inventory Billing_2f8358 ShoppingCart_1dfbff

Billing Book_21c887

Shipping2 Shipping

Billing_6d75 ShoppingCart_2f8358 ShoppingCart_48aa23 Order

Order_74689e

CustomerAccount_916a2 ShoppingCart_580be3

Order_7a29a1

ShoppingCart_19f91c Order_27391d

Book_3162d5

[6] C. Hrischuk, C. M. Woodside, J. Rolia, R. Iversen. Trace-
based load characterization for generating software
performance models. IEEE Transactions on Software
Engineering, vol. 25, no. 1, January 1999.

[7] IBM, IBM Rational PurifyPlus for Windows: Quantify
Component, http://www.pts.com/wp2292.cfm?det=y

[8] T. A. Israr. Lightweight Technique for Extracting Software
Architecture and Performance Models from Traces.
Master’s Thesis, Carleton University, 2001.

[9] R. Jain, The Art of Computer Systems Performance Analysis.
John Wiley & Sons Inc., 1991

[10] R. Klar, A. Quick, F. Soetz, “Tools for a Model-driven
Instrumentation for Monitoring”, Proc. 5th Int. Conf. on
Modeling Techniques and Tools for Computer Performance
Evaluation (TOOLS91), pp 165-180 Elsevier, 1992.

[11] C. L. Liu and J. W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment. J.
ACM, 20, pp.40-61.

[12] D. Menasce and H. Gomaa. A method for design and
performance modeling of client/server systems, IEEE
Transactions on Software Engineering, vol. 26, no. 11 pp.
1066-1085, 2000.

[13] Object Management Group, UML Profile for Schedulability,
Performance, and Time Specification, OMG Adopted
Specification ptc/02-03-02, July 1, 2002.

[14] The Open Group, Systems Management: Application
Response Measurement (ARM) API, Technical Standard, July
1998.

[15] D.B. Petriu and M. Woodside, Software Performance
Models from System Scenarios in Use Case Maps, in Proc.

12th Int. Conf. on Modelling Tools and Techniques (TOOLS
2002), London, England, April 2002.

[16] D.A. Reed, R.A. Aydt, R.J. Noe, P.C. Roth, K.A. Shields, B.
Schwartz, and L.F. Tavera, Scalable Performance Analysis:
The Pablo Performance Analysis Environment, Proc
Scalable Parallel Libraries Conference, Starkville, MS, Oct.
1993, IEEE Computer Society Press, pp. 104-113

[17] J. R. Rolia and K. Sevcik. The method of layers. IEEE
Transactions on Software Engineering, Vol. 21, No. 8, pp.
689-700, 1995.

[18] W. C. Scratchley and C. M. Woodside, Evaluating
Concurrency Options in Software Specifications, in Int.
Conf on Modelling, Analysis and Simulation of Computer
and Telecommunications Systems (MASCOTS), College
Park, MD, Oct. 1999, pp. 330-338

[19] B. Selic, M. Woodside, C. Hrischuk, and S. Bayarov, A
Wideband Approach to Integrating Performance Prediction
into a Software Design Environment, in Proc. First Int.
Workshop on Software and Performance (WOSP98),
October 1998, pp. 31-41.

[20] F. Sheikh and C. M. Woodside, Layered Analytic
Performance Modelling of Distributed Database Systems, in
Proc. Int. Conf. on Distributed Computer Systems,
Baltimore, May 1997, pp. 482-490.

[21] C. U. Smith. Performance Engineering of Software Systems.
Addison-Wesley Publishing Co., New York, NY, 1990.

[22] C. U. Smith and L. G. Williams, Performance Solutions.
Addison-Wesley, 2002.

[23] C. M. Woodside. Throughput calculation for basic
stochastic rendezvous networks. Performance Evaluation,
Vol. 9, No. 2, pp. 143-160, 1989.

