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ABSTRACT 

Performance models of software designs can give early warnings 
of problems such as resource saturation or excessive delays. 
However models are seldom used because of the considerable 
effort needed to construct them. Software Architecture and Model 
Extraction (SAME) is a lightweight model building technique that 
extracts communication patterns from executable designs or 
prototypes that use message passing, to develop a Layered 
Queuing Network model in an automated fashion. It is a formal, 
traceable model building process. The transformation follows a 
series of well -defined transformation steps, from input domain, 
(an executable software design or the implementation of software 
itself) to output domain, a Layered Queuing Network (LQN) 
Performance model. The SAME technique is appropriate for a 
message passing distributed system where tasks interact by point–
to-point communication. With SAME, the performance analyst 
can focus on the principles of software performance analysis 
rather than model building. 
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1. INTRODUCTION 
Many software projects combine tight deadlines and increasing 
complexity. As a result, vital performance issues are neglected, 
only to arise in the late stages, when they are difficult to deal with.  
In general, we would like to predict the performance problems in 
advance when large design changes are easier to execute. 

The earliest predictions are given by performance models created 
from the requirements and the designers’ expertise [19][21][22]. 
The models require the description of the execution time and 
frequency of the major system operations, and may be expressed 
as extended queuing networks. Solutions give estimates of the 
response time and throughput of the system under different loads, 

and identify problem areas such as operations that are performed 
too often or take too long. A recent standard supports the 
definition of the necessary parameters within a UML design 
model [13]. 

Generating performance models this way is effective [22] but may 
be difficult. It requires system expertise and experience, a deep 
knowledge of the system to be built, and performance expertise. 
Automation of the model-building process would make the use of 
models more accessible and reduce the time and effort. 

Automation can be applied as the design develops, and executable 
design products are created such as CASE tool models and 
prototypes. Their behavior can be traced and used to create 
performance models, as in the Angio Tracing and Trace-based 
Load Characterization method described by Hrischuk et al [5][6].  
These methods require a specialized trace format based on an 
“angio dye id” which is injected into the beginning of each 
response and propagated through the system (the name is by 
analogy with dyes used for medical angiograms). This method is 
effective in creating a model structure, but the workload 
parameters must be determined separately. 

The application of angio-trace based methods is limited by the 
need for special trace information (transaction correlation in the 
ARM monitoring standard [14] is the closest thing to a dye id). 
Thus this research developed a different approach based on 
commonly available trace data. It is called SAME (the Systems 
Architecture and Model Extraction technique). It can be applied 
in the middle and later stages of the software development cycle, 
once an executable form of design product is available. In the 
earliest stages, a loosely related scenario-based technique such as 
[15] may be more suitable. 

SAME uses performance model concepts which are described in 
Section 2, based on types of interactions between components 
which are discussed in detail in Section 3. Section 4 outlines the 
method and the algorithm for reducing traces, with some 
examples. Section 5 describes validation on simple cases, and 
there is an e-commerce case study in section 6 which 
demonstrates its application to a prototype, and its scalability. 

2. PERFORMANCE ISSUES AND 
MODELING 
Software Performance Engineering (SPE) involves the use of a set 
of methods for software systems development that meets with 
another set of pre-defined performance requirements. The 
available SPE techniques include design optimizations, the use of 
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lab or field measurements to suggest configuration tuning and 
design tuning, and performance modeling. 

2.1 Performance Techniques 
Software developers often incorporate well-known performance 
optimizations such as hash tables in a design. To be effective this 
requires a good knowledge of the system, and it is very difficult to 
focus on the important optimizations without knowing where the 
problems are. Source-code metrics (see e.g. [2]) may provide 
relevant information. 

Once a prototype or implementation is available its performance 
can be measured, using operating system data, profiling of the 
software, and special tools such as Quantify [7]. An example of a 
measurement environment is Pablo [16]. An advantage of this 
approach is that it evaluates the configuration of the system in the 
environment, as well as design. However, it may be difficult to 
obtain the measurement that one needs to understand a problem 
(called “drilling down”), and this can only be done late in the 
development cycle. This may be too late for some kinds of design 
change (or make such change costly and time-consuming). 

Performance models can be applied at any stage, including the 
earliest, to analyze for any problems for the system in different 
configuration and workload.  When done in the very beginning 
this can assist the developers to design performance into the 
system. For deadline-driven systems, rate monotonic analysis [11] 
determines the schedulability of a set of tasks. For systems with 
probabilistic workloads and execution, simulation and queuing 
network models [9] analyze contention for resources using 
statistical workload descriptions such as mean service time and 
mean number of visits of jobs to servers. Smith and others have 
described how to create these models in early software design 
[1][21][22].  

Layered Queuing Network (LQN) models [3][15][17] are a kind 
of extended queuing model which describes software resources 
and interactions, and are used here. 

2.2 Layered Queuing Network Models 
The LQN model is an extension to queuing models, as proposed 
by Woodside et al. and others [3][17][23].  These models can 
handle some of the important performance features such as multi-
threaded processes, devices, locks and other communication tasks.  
It is useful for describing systems with parallel processes on a 
multiprocessor or a network-based client-server system. 

LQN models contain tasks representing software and hardware 
components in the system, with entries representing operations by 
these tasks.  Entries make requests to entries in lower layers. 
Tasks may take roles as “pure clients” which only originate 
operations as clients, or as “pure servers” which only serve, as for 
hardware devices, or as “active servers” which accept and serve 
requests and then while doing so, make their own requests to 
lower servers.   

Interactions between entries are of three types:  asynchronous, 
synchronous, and forwarding. An asynchronous service request 
does not wait for any reply to the request.  As soon as the request 
is sent, the requester can continue with its operation. A 
synchronous service request can also be described as a RPC or a 
rendezvous request.  The requester waits for a reply (“blocked”) 
and then continues its own operation.  A forwarding interaction is 
a combination. The server of a synchronous request forwards it 
asynchronously to another task, which has the responsibility of 

replying, or forwarding it again. The original task is blocked until 
the reply arrives. 

A notation for LQN models is shown by an example in Figure 1.  
The parallelograms represent the tasks and entries, while the 
different types of service requests are identified by the different 
kinds of arrows. Client1 and Client2 originate asynchronous and 
synchronous requests, respectively, the latter being forwarded to 
Entry6.  Entries have parameters for CPU demand and arcs for 
requests are labelled by the mean number of requests they make 
[3]. LQN models have been described for many kinds of 
applications (e.g. [20]). 
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Figure 1:  Example of an LQN Model 

2.3 Approaches for Building Performance Models 
In order to construct these performance models, we need to have a 
systematic approach.  As proposed from Connie Smith, we should 
use quantitative methods to assess and change the system’s 
attributes during the early design stage of the development cycle 
[20].  We can then use it to obtain the execution patterns and 
solve for the performance prediction.  Other scenario-based 
approaches by Scratchley [18] and by Petriu and Woodside [15] 
create models from Use Case Maps. Menasce and Gomaa 
described a software performance engineering language CLISSPE 
[12].  

The trace based approach taken here was originated by Hrischuk 
et al in [5] and extended in [6]. It identified patterns in the trace, 
including inter-task interactions described here and additional 
patterns involving forking and joining. An end-to-end response 
identifier called an “angio dye id” was carried through the system 
by the messages involved in the response, and is recorded in the 
trace events. The dye id gives a response context for every event, 
and also assists in relating forks and joins in the flow. A scenario 
was described as a graph, and LQN model structures (with request 
frequencies, see below) were created by a rule based graph 
analysis approach to define graph transformations [6]. The model 
could include parallel sub-paths. 

Other performance analysis methods use traces to create profiles 
(time spent in different components, in context), or to visualize 
problems [7]. Klar et al. [10] created a series-parallel delay model 
from traces, and used it to predict performance. However none 
have gone as far as the angio-trace work, in creating queueing 
model structures.  



The present work is closely related to angio-tracing described in 
[6]. Here, we give up the ability to capture parallel paths, in order 
not to require the angio dye ids in the trace. 

3. SOFTWARE ARCHITECTURE AND 
MODEL EXTRACTION TECHNIQUE 
In this paper, a new automated model generation technique call 
the Software Architecture and Model Extraction (SAME) 
technique is presented. To apply SAME, a scenario, or a set of 
scenarios, is executed in the system or the executable design 
model, and a trace of events for the interactions of the components 
is captured. Interaction must be by message passing.  

Commonly available trace information such as the component 
identity, the type of even (send or receive, for inter-component 
events), and a timestamp, is all that is required. There must be 
enough information with a receive event to identify the 
corresponding send event, and to construct a message trace with 
records showing 

[sender id, receiver id, time of reception] 

The trace may come from a single node or a loosely coupled 
distributed system. From here on, the components in the trace will 
be called “tasks”, in line with the LQN model. However in 
practice they may be objects, threads, or processes, or a 
combination of all three. A task must only be some kind of 
sequential program, running on a single “host” processor. 

Figure 2 shows the steps in processing the trace. An analysis 
based on “interaction trees”, described in the next section, 
identifies the interactions between the tasks as patterns. These 
interactions serve as input for generating the LQN models.  With 
the use of performance parameters for CPU demand and request 
frequencies, an LQN model is produced. 
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Figure 2: Steps for SAME Technique 

 

3.1 Tasks, Trace Events, and Messages 
To apply the SAME technique, the software must be composed of 
components with a unique identity, which receive messages one at 
a time (no internal concurrency) from a request queue, and which 
can block for replies (which do not have to wait in its request 

queue). Messages must be delivered in the order they are sent, for 
the same pair of sender and receiver. 

In a distributed system separate traces are made at each node, or 
even within each process, and timestamps are often not precisely 
synchronized. The traces must be merged, or otherwise interpreted 
to associate send events and receive events for the same message, 
and give the message trace for SAME. This requires that 
timestamps be sufficiently well synchronized to obtain the correct 
causal order in the merged trace (the timestamp at the receiving 
end is later than that at the sender, when sending in either 
direction), or alternatively that messages carry additional 
identification that is recorded in the traces at each end, and can be 
used to associate the send and receive events correctly. 

3.2 Interaction Patterns 
The three interaction patterns mentioned above are important for 
identifying task blocking behavior, with its associated delays. 
Figure 3(a) illustrates all three patterns by showing a trace 
fragment with six messages between five tasks, as a UML 
sequence diagram. 

 Task A Task E Task D Task C Task B 

m5 

m1 

Execution-occurrence C.1 

m6 

m4 

m3 

m2 

Figure 3(a) A trace fragment as a Sequence Diagram, showing 
an execution-occurrence and three interaction patterns 

In the example shown, the first message m1, from A to B, begins 
an “execution occurrence” (which we will abbreviate as an EO) at 
A. It makes A block, but we will return to it in a moment. 
Messages m2 and m3, between B and C, make a synchronous 
interaction shown in Figure 3(b). The “client” task B sends a 
request m2 to C which is processed by the “server” task C while 
the client task waits (is blocked).  The server sends back a reply 
m3 to the client, ending its EO. While it is busy further requests to 
C are put into a service queue. During the service, the server may 
make nested synchronous requests to other tasks.  This type of 
communication pattern can be seen in many different types of 
client-server systems. 

 Task C Task B 

m3 

m2 

 

Figure 3(b) The synchronous interaction between tasks B & C  

The interaction from B to D is shown separately in Figure 3(c). It 
is asynchronous, in that B sends a message and does not expect a 



reply. Both B and D can be executed concurrently.  While the 
server is servicing a request, other requests have to wait.  Since 
the client does not wait for a reply, it is important that these 
messages are reliable so they do not get lost during the 
transmission. 

 

 Task D Task B 

m4 

 

Figure 3(c) The asynchronous interaction from B to D 

The third type of interaction is a forwarded request, represented 
here by the messages in Figure 3(d). The message m5 from B to E 
forwards the request from A to B, on to E. E must take the 
responsibility to send the reply (m6) while B ends its EO, and 
may take its next request. A message may be forwarded any 
number of times, with the last server replying to the client, which 
remains blocked.  The forwarding pattern in Figure 3(a) begins 
with m1, and includes m5 and m6; the other messages are part of 
the service given by B before it forwards the request. For 
example, B might have to do a lookup (at directory task C) to find 
the address of the ultimate server, and log the operation (at 
logging task D) before sending the request to the ultimate server 
E. 

 

 Task A Task E Task B 

m5 

m1 

m6 

Figure3(d) The forwarding interaction from Task A, to B, to E 

The communications patterns in Figure 3(a) may be expressed by 
the graph in Figure 3(e), in which the nodes represent the 
execution occurrences and the arcs represent the messages. 
Because a task may have many EOs in a trace, the nodes carry a 
number (A.i represents the ith EO of task A); here the number 1 is 
used for all the tasks.  

The three interaction patterns appear in this graph. For example 
the cycle B.1-C.1-B.1 represents the synchronous request from 
B.1 to C.1, and the cycle A.1-B.1-E.1-A.1 represents the 
forwarding. Clearly the interpretation of a message as part of an 
interaction depends on its context in the message flow. In 
analyzing such a graph we will interpret any interaction as 
synchronous or forwarding, if that is feasible. Any message which 
might be a reply is interpreted that way. 
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Figure 3 (e) The interpretation of the Trace Fragment as an 
Interaction Tree (This form is a graph rather than a tree) 

4. INTERACTION TREE ANALYSIS 
The technique to be described uses Interaction Trees, which are 
similar to Figure 3(e) except that they are created on the fly from 
the stream of messages in the trace, and they evolve for each 
message. As in Figure 3(e), nodes represent EOs of tasks, and arcs 
represent messages. These graphs are trees because any cycles are 
removed as soon as they are created. A set of trees is maintained 
by the algorithm, for different concurrently active interactions.  

 
Figure 4: A Typical Interaction Tree 

Figure 4 illustrates an interaction tree and the usual terms root, 
leaf, parent and child nodes.  

4.1 Sketch of Interaction Tree analysis 
The processing of one item from the message trace is as follows: 

Step 1. Assuming there is already a live EO for the sender, a node 
is created for the EO of the receiver, which is attached by a 
directed arc from the active EO of the sender. If there already is a 
live EO for the receiver, the arc goes to that node, which may 
create a cycle.  

If there is no active EO for the sender, a node is created for it 
which becomes the root of a new tree, and a node for the receiver 
is created and attached to it. Any existing live node for the 
receiver is made a zombie (it can no longer have arcs attached to 
it). Zombie nodes are removed in Steps 2 and 3. 

Step 2. If a cycle was created in some tree by the added message, 
it may be a reply message which completes an interaction. The 
cycle is analyzed and if possible, interaction records are produced 



and the tree is simplified, to remove the messages in the cycle. 
The simplification may identify some number of additional 
asynchronous interactions, and may divide one tree into several 
smaller trees. 

Step 3. A cleanup operation is applied to all the trees that have 
been modified or created during Steps 1 and 2. This may identify 
further asynchronous interactions and create further divisions into 
smaller trees. 

4.2 Definitions for Interaction Tree analysis 
Interaction Tree Analysis creates and evolves a set of trees which 
is initially empty. For each task X it maintains the EO number 
liveX of the current live node (if any; it is zero if there is none), 
and the next EO number nextX to be assigned. 

Each node is name X.i for the task and its EO and is labeled with 
(t, status) for the time of its invoking message and its status (live 
or zombie). Each arc is labeled by the time of the message it 
represents. Nodes are live when they are created; they may be 
turned into zombies when the same task participates in another 
message. There can only be one active node for a task at any time, 
across all trees.  

Because each global interaction begins with a single message, the 
root node of each tree has only one child. During a step a root 
may be produced with multiple children (called “improper”), but 
cleanup will reduce this to one or more proper trees. 

The most recent active child node of any node is called its 
“immediate candidate” or IC; we may say that Child = IC(Parent) 
or “Child is IC”. In Figure 4, the nodes C and E with dashed 
outlines are “non-immediate candidate” or NIC; B, D and F are 
IC. 

If there is a direct path from active node A to active node B in any 
tree, we say A is an ancestor of B, written A => B. For example in 
Figure 4, A => B and B => F. 

4.3 Algorithm 
Only an informal definition of the algorithm is given here; a full 
definition (in a somewhat different form) is given in [8].  

Part A.  Initialize the set of tasks and their counters live (to zero), 
and next (to 1). 

Part B. Process message records until the trace terminates. For 
each message (A, B, t), we define the existing active nodes for A 
and B (if any) to be A.u and B.v and their next EOs to be A.i and 
B.j. Then: 

1. Add a message arc with time label t. Nodes A.u or B.v may 
be present or absent. There are two cases: 

• if  NOT(B.v => A.u) (note: no cycle will be created),  

- if (A.u exists) attach the arc from A.u to a new 
node B.j with label (t, live) 

- else create new node A.i with label (t, live) and a 
child B.j with (t, live). 

In either case if a previous B.v exists it is made zombie 
when B.j is created. 

• else (note: A.u, B.v exist and a cycle will be created): 

- insert the arc from A.u to B.v 

2. If there is a cycle (there should be only one), suppose the last 
message is from node A.u with label (t, live) to a node B.v 
with label (t, live). Then 

• if the cycle length is 2, produce an interaction record 
[Sync, (B, v, tstart), (A, u, tend)], with tend taken as the 
time on the arc (A,B) 

• if the cycle length is N>2, produce an interaction record 
[Fwd, (B, v, tstart), List, (A, u, tend)], with 

- (B, v, tstart), (A, u, tend) as above, 

- Construct List as a list with N-2 entries of form (X, 
k, time) for the intermediate nodes X.k, in order 
along the path from B to A.  

3. Tree cleanup. There is a sequence of operations, which will 
be outlined only. 

• if there is a cycle, make zombies of all the nodes in the 
cycle below the highest node in the cycle (which 
initiated the interaction). Remove all the arcs on the 
cycle, and any nodes that are isolated by this.  

• remove any zombie root node X.k and for each child 
Y.m generate an asynchronous interaction record 
[Async, X, k, Y, m, t], where t is the time label of Y. 

• for any improper root node X.k, remove all the arcs 
except the one to its IC, and detach their sub-trees as 
new trees. For each removed arc from X.k to some 
node Y.m, generate an interaction record [Async,  
X, k, Y, m, t] as above. This must be done recursively 
as the detached trees may be improper also, and the 
previous step must be invoked if any zombie root node 
emerges. 

• Remove any zombie leaf node Y.m (and the arc from 
its parent X.k), and generate an interaction record 
[Async, X, k, Y, m, t] as above. This may have to be 
done recursively also. 

• Update the numbers nextX for all tasks X that had 
nodes created, and liveX for tasks with nodes that have 
changed status, in preparation for the next step. 

When the trace terminates, for each child node Y.m of parent 
node X.k, create an asynchronous interaction record 
[Async,X,k,Y,m,t]. At this point we have a set of interaction 
records, each of which represents a single interaction. 

Part C. Assemble the interaction records into a layered queueing 
model. 

1. For each task A that is recorded in the interaction records, 
create an LQN task. 

2. For each EO of form A.i that is recorded in the interaction 
records, create an entry A.i for task A. 

3. For each Sync interaction record [Sync, (A, u, tstart), (B, v, 
tend)], add a synchronous interaction arc from entry A.u to 
entry B.v in the LQN, 

4. For each Async interaction record [Async, A, u, B, v, t], add 
an asynchronous interaction arc from entry A.u to entry B.v 
in the LQN, 

5. For each Fwd interaction record [Fwd, (B, v, tstart), List, (A, 
u, tend)], a series of arcs are created. Let C(k) be the entry 



corresponding to the kth element of List (if this element is (X, 
i, t), then C(k) is entry X.i). Then 

• add a synchronous request from entry A.u to entry C(1), 

• for j = 1 to N-3, add a forwarding request from entry 
C(j) to entry C(j+1). If List has only one element there 
is nothing to do. 

• add a final forwarding request from entry C(N-2) to 
entry A.u 

The reply from C(N-2) to entry A.u is implicit in the ending 
of the forwarding path.  

The multiplicity parameters of the synchronous and asynchronous 
request arcs are all set to 1. 

The result of part C is a LQN model with tasks which may have 
many entries, one for each EO. Many of these entries may perform 
the same operations, repeated within the trace, and they should be 
merged into a single entry. 

Part D. Simplify the entries to merge those that perform the same 
operations.  

1. Sort the tasks into an order such that, where possible, tasks 
earlier in the order originate interactions with later tasks. 

2. Working from tasks at the end of the list, towards the 
beginning, merge identical entries. Two entries are 
“identical” if they belong to the same task, and initiate the 
same requests (to the same set of entries and with the same 
multiplicities), or the same forwarding operations. The 
request arcs from the merged entry have the same 
multiplicities as the two original entries; each arc into the 
merged entry has the sum of the multiplicities on the input 
arcs from the same source entry. 

3. This is repeated until no candidate pair of entries can be 
found. 

The result of Part D is the final LQN model structure. To create an 
LQN model, the performance parameters must be estimated and 
inserted, as shown in Figure 2. 

4.4 Illustrations 
Two brief examples will illustrate Part B in processing a tree and 
Part C in assembling a model. 

Processing a tree (Part B) 
Figure 5 illustrates one step of the algorithm beginning with the 
tree on the left. A message (E, B, 7) is next in the trace. In 
applying Part B, Step 1, the first option is taken because E.u does 
not exist, (and thus B.1 is not an ancestor of E.u). Because E.u 
does not exist a new tree with E.1 and B.2 is created. As part of 
creating B.2, the previous live node B.1 is made zombie.  

 

zombie 

Figure 5 An interaction tree and its transformation on receipt 
of a message (E, B, 7), labelled x4 

Assembling a model 
Suppose the messages shown in Figure 3(a) are recorded in a 
message trace with entries (A, B, t1), (B, C, t2), etc. Then when 
the algorithm is applied to them it gives the following set of 
interaction records, in this order: 

[Sync, (B, 1, t2), (C, 1, t3)] 

[Async, B, 1, D, 1, t4] 

[Fwd, (A, 1, t1), (B, 1, t5), (E, 1, t6)] 

Part C first identifies the tasks A, B, C, D, E from the tasks in the 
records, and the entries A.1, B.1, C.1, D.1, E.1. It then connects 
them together from the interactions, to give the LQN shown in 
Figure 6. 

Task_A
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Task_B

B_1 

Task_E

E_1

Task_C

C_1

Task_D

D_1 

Forwarded request
Asynchronous request
Synchronous request

 
Figure 6 Final LQN model for the example of Figure 3(a) 

4.5 Generalizations 
As described in [8], the algorithm can also accommodate  

• trace records which describe non-message events, and can be 
interpreted to deactivate nodes when they indicate that a task 
is not blocked waiting for a reply.  

• tasks that have operations after sending a reply (called 
“second phase” operations in LQN).  

• combining the results of processing multiple traces, in a single 
model. 

4.6 Implementation of SAME 
The implementation follows a somewhat different description of 
the algorithm, given in [8], which breaks the processing of one 
message into 19 different cases. These cases are determined by the 



location of live nodes B and A in the interaction tree. Cases 1 to 9 
deal with live nodes A and B in different trees or not existing; 
cases 10 to 13 have the vertices A and B in the same tree but 
neither is a descendant of the other. Cases 14 to 16 have the 
vertex A a descendant of vertex B, and in cases 17 and 18 process 
A performs some non-interaction operation.  The last case deals 
with trace termination.   

All the techniques and algorithms described in this section have 
been implemented in a Java program with two parts, SAME1 and 
SAME2.  SAME1 implements parts A and B above, taking as 
input the execution traces in an ASCII file format and generating 
an ASCII file with the interaction records.  SAME2 takes this 
output file and outputs an LQN model. 

5. VALIDATION TESTS AND CASE 
STUDY 
With the wide possibilities of the different communication 
patterns and scenarios, it is important to perform some testing to 
make sure the resulting LQN models generated are accurate.  This 
section describes 6 simple test cases that were used for validation 
along with a comprehensive case study on the ATM-GSM 
network model.  Please refer to [8] for the complete details of the 
tests and resulting LQN models.  The test case and results are 
discussed in the following. 

5.1 Validation Test Cases 
The first case represents the synchronous communication pattern 
as shown in Figure 7.  The first interaction is at t = 10 where B 
received a message from A with A replying back to B at t = 100.  
In the SAME tool, it detected a synchronous communication 
pattern from the interaction tree based on case 14 of the tree 
transformation technique as shown in the diagram, and it was able 
to generate the LQN models for it. 

 

Figure 7: Simple Synchronous Communication Pattern 

The second case illustrates the asynchronous communication 
pattern between two processes as shown in Figure 8.  As time t = 
10, process A sends a message to process B but there was no reply 
to the request.  The interaction tree is created but there was no 
message as the reply when the interaction ends.  Based on the last 

case of the tree transformation technique in the SAME, this 
interaction can be classified as an asynchronous interaction as it 
shows in the communication pattern in the diagram.  An LQN 
model is created based on that. 

 

 

Figure 8: Simple Asynchronous Communication Pattern 

The third case is an example of a simple forwarding 
communication pattern between three processes as shown in 
Figure 9.  At t = 10, process B receive a message from process A 
and then it sends a message to process C at t = 100.  Process C 
then replies process A at t = 150.  The interaction tree is 
constructed as shown in the diagram.  From case 16 in the tree 
transformation, SAME has determined that it is a forwarding 
interaction and was able to use it to build the appropriate LQN 
model. 

 

Figure 9: Simple Forwarding Communication Pattern 

 



The fourth case is a synchronous pattern with nested interaction 
between three processes as shown in Figure 10.  At t = 10, process 
B receives a message from A and then sends a message to process 
C at t =100.  At t = 200, process B replies back to Process A.  
Since process A has received a reply, it is considered as a 
synchronous communication pattern.  Since there was no reply 
from process C and process B was not blocked after the message, 
it is considered as an asynchronous message as stated in case 2 in 
the algorithm.  We can see the communication pattern shown in 
the diagram and it was used to create a simple LQN model. 

 

Figure 10: A Nested Asynchronous Message 

The fifth case is a two step forwarding communication pattern 
involving four processes as shown in Figure 11.  First, the 
message is passed from process A to process B, process B to 
process C, process C to process D.  After that, process B sends a 
message back to B.  From case 16 of the tree transformation 
technique, this is considered as the forwarding pattern.  After that, 
process B replies to process A to end all the interactions.  From 
case 14 of the tree transformation, this is a synchronous 
technique.  From this scenario, we can see that there is a 
forwarding interaction nested inside a synchronous 
communication pattern.  The results are produced in the diagram 
and were used to make the LQN model. 

The last test case is an example of a concurrent system as shown 
in figure 12.  SAME is able to handle the processes the same way 
as a non-concurrent system, but there are multiple trees used to 
represent the concurrent behaviors.  In this test case, process A 
and process C starts two simultaneous execution threads 
interacting with different processes.  The trace starts at t = 10 
where process B receives a message from B and then process D 
receive a message from process C at t = 20.  At this point, two 
initial interaction trees are formed.  At t = 100, process D sends a 
message to process E with process B sending a message to process 
D at t = 110.  Since process D is in another tree, this interaction 
causes vertex D in the interaction to become inert.  This inert node 
allows process E to finish its interaction by a having a forwarding 

request to send a message back to process C, as it is done at t = 
150, instead of having a reply back to process D which is 
currently in use.   

 

Figure 11: A Nested Forwarding Communication Pattern 

After the reply from process E to process C, we have finished the 
forwarding interaction as stated in case 16 of the tree 
transformation technique.   

 

Figure 12: Concurrent System 



At t = 160, process D sends a message back to A, and this is also 
another forwarding interaction.  We can see the results produced 
from the interaction tree in the diagram.  These are used to 
generate the LQN model as shown in figure 13. 
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Figure 13: Concurrent System LQN Model 

From the above six test cases, we were able to validate the 
techniques that were used to identify the different communication 
pattern to generate the appropriate performance model.  The 
following section describes a case study using SAME to model 
the performance of a complex system. 

 

6. CASE STUDY: RADSBookStore  
RADSBookStore is an application created to evaluate and verify 
the logic of the SAME Technique. It is a prototype of a 
computerized book store system supporting most of the operations 
one can do on a book store computer terminal, with the Use Cases 
in Figure 14. 

 

 
Figure 14 Use cases for the RADSBookStore system 

The RADSbookstore application is a three tier system comprising 
of the client, the application and the database layer.   

 

 
Figure 15 Classes in the RADSBookStore software 

 

The client layer serves as the front-end of the system from where 
requests of various sorts originates.  The application layer consists 
of a main server which is responsible for serving clients requests 
by creating new customer accounts, sending requests to the billing 
and shipping departments, query books’ and customers’ 
information and maintaining shopping carts for the customers 
involved in current sessions.  Further, there is also a replenish 
thread that serves the purposes of replenishing the inventory upon 
which the billing and the shipping department serves the 
backorders which were created due to inventory shortfall. 

For the purposes of obtaining execution traces from the 
application, RADSBookStore was instrumented with trace 
messages which were then recorded in a file while executing the 
use cases shown in Figure 14. For the BrowseProducts operation, 
the sequence diagram shown in Figure 16 shows the messages that 
will be recorded during one execution. 

 



 
Figure 16 The sequence diagram for the BrowseProducts 

operation 

 

When this operation was executed on the prototype it produced 
the trace in Table 1. 

 

Table 1 Trace for BrowseProducts 

Time Event Process Message Type 

4052950 send Client browse_STARTC 

4053220 receive Server browse_STARTC 

4053500 send Server display_START 

4053720 receive Inventory display_START 

4053990 send Inventory getName_START 

4054270 receive Book getName_START 

4054490 send Book getName_END 

4054760 receive Inventory getName_END 

4055030 send Inventory getName_START 

4055310 receive Book2 getName_START 

4055530 send Book2 getName_END 

4055750 receive Inventory getName_END 

4056020 send Inventory display_END 

4056240 receive Server display_END 

4056460 send Server browse_ENDC 

4056740 receive Client browse_ENDC 

 

Each of these traces was processed using the Interaction Tree 
Analysis algorithm to first identify different types of interactions 
and then, in Part D, to create an LQN model for each scenario.  
The LQN models created were sufficiently syntactically and 
semantically correct to satisfy the model parser for the solver, in 
all 12 cases. The models gave reasonable solutions. 

The scenarios were then merged by creating a Client task which 
makes all the initial requests, in proportions corresponding to a 
usage profile for the scenarios. The tasks were merged by name 
(so the merged task has the combined entries from all the 
submodels) and Step D was applied to simplify the entries of this 
combined model. A composite model of two scenarios is shown in 
Figure 17. The model at this point has no meaningful CPU-
demand parameters, but with default values of 1 ms for each entry 
the model can be solved with the LQNS solver [3] to give a 
system throughput of about 10 responses/sec. 

Scalability 
Traces of up to 650 events were collected from the bookstore 
prototype and processed into models. Other applications which 
were successfully analyzed include traces from an executable 
design model with about 50000 events, and from a running system 
with nearly half a million events. This demonstrates the scalability 
of the technique to large traces. For very large traces, the memory 
requirements for Steps C and D can be improved by doing them 
incrementally. 

7. CONCLUSIONS 
This paper has described an approach to automating the 
construction of performance models of software, from traces of 
behavior of running systems, prototypes or executable models. A 
strength of this SAME technique is that it uses conventional trace 
data which is available from many tracing tools, compared to a 
previous technique which required special traces. The price paid 
for this simplicity is that the joining of flows that previously 
forked cannot be identified, however the existence of the parallel 
sub-path and its workload is captured here. 

The layered (LQN) performance model that is derived captures 
the software workload, and also the effect of concurrent 
interacting processes with various kinds of interactions 
(synchronous, forwarding and asynchronous). This class of model 
is useful for studying concurrency, threading levels, and other 
kinds of logical resources. 

The interactions between software components are identified by 
an Interaction Tree analysis which is efficient and scales up well 
to large traces (hundreds of thousands of trace events). The 
performance model clusters similar interactions into single 
architectural units called entries in LQN notation, which reduces 
the complexity so that it distinguishes only those interactions 
which have different behavior. 

The technique is demonstrated on a moderate sized three-tier 
application, called RadsBookStore. From the results generated 
from the test case scenarios, we obtained LQN models that are 
syntactically and semantically correct and are essentially the same 
as those generated by hand. When performance parameters were 
inserted, the models could be solved with the LQN solver to 
obtain the performance results. 

 



 
Figure 17. A view of a composite LQN model for the bookstore case study combining the behavior of two scenarios. The 

parallelograms are tasks; the entries are not shown. The numerical substrings identify object instances. 

 

The tool has also been applied to a large trace of a production 
system with over a hundred threads, and a quarter-million events, 
to generate a model. 

The approach has limitations. First, the trace events must have 
globally ordered timestamps, or unique message ids. Second, if 
there are multiple threads, traces must identify the thread. Third, if 
there is no unique message identifier, then we must be able to 
assume the messages between components are served in FIFO 
order. Fourth, the approach cannot identify the joining of two 
parallel flows.  

Currently, one research area is to automate the trace generation 
from an executing system to make traces that are compatible with 
the SAME tool. The target for this trace generation is on the J2EE 
platform.  This can be useful since a performance model can be 
generated from the execution of the program without extra 
instrumentation. It allows the developers to get instant 
performance measurements during the testing phase of the system.  
This can be very useful in the development environment. 
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