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Abstract - Understanding the interactions between hardware and software is important to perfor-
mance in many systems found in data communications like routers. Responsibilities that traditionally
were programmed in software are being transferred to intelligent devices, and special purpose hard-
ware. With more functionality being transferred to these devices, it becomes increasingly important to
capture them in performance models. Modeling hardware/software systems requires an extended
queueing model like LQN. This paper describes a layered architecture model which represents hard-
ware and software uniformly and which emphasizes resources and performance, called a Resource-
based Model Architecture (RMA). The approach is demonstrated on a remote access or LAN exten-
sion router. The model is created by a systematic tracing of scenarios and is used to explore the router
capacity for different workloads, and to analyze a re-design for scaleup.

1.0  Introduction
Interaction between hardware and software resources are important to the performance of many

systems, for example in data communications, where logical operations are partitioned between soft-
ware tasks and intelligent interface devices or processors. One difficulty in modeling these systems is
they are not well represented by ordinary queueing models, and require an extended queueing model.
Layered Queueing [17] provides a systematic framework which simplifies the model construction and
solution.

This paper describes a “Resource-based Modeling Architecture” (RMA) for modeling this class
of system. It demonstrates the approach with a study of a modest sized LAN Extension Router (LAN/
ER), in which the model is used to estimate performance and evaluate design trade-offs.

The model is created in two stages. First the layered Resource-based Model Architecture (RMA)
is created by inspecting the hardware and software and tracing the involvement of components in sce-
narios. Then the parameters of the architecture are determined by various means, including profiling.
The architecture itself gives guidance as to what to collect and how to combine the parameter infor-
mation. The model is completed by adding environmental information.

The RMA model is an abstraction that shows how the software and hardware together create
delays and bottlenecks under different workloads. The model is used to predict performance charac-
teristics like capacity and delay, using either analytic or simulation techniques [17]; in this case simu-
lation was used.

The first purpose of the model is evaluation of the capability of the given design. The second pur-
pose is to expose performance bugs, by establishing expectations for performance tests. The third
purpose is to provide insight to guide the evolution of the design. The special value of the layered
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structure of RMA is that it conceptually organizes a complicated flat assembly of queues and func-
tions, according to how they compete for resources. This gives insight into the effects that software
and hardware have on each other.

2.0  Application of RMA to a LAN Extension Router
Routers make extreme demands on the performance of software and hardware, to execute com-

munication protocols and direct the traffic to the correct destination network. To increase the perfor-
mance of routers, research has been done in improving various aspects of the software and hardware.
Examples of software research include router table look ups [6], [11], [15] to significantly speed up
routing decisions, heuristic techniques for implementation of protocols [16], general ways of han-
dling packets in routers efficiently [4], and comparisons of queueing strategies [10]. Hardware
research has proposed different architectures to deal with the increasing demands [2], [7], [9], [10],
[12], [13]. Each of these studies is focused on using a single aspect of router design to enhance perfor-
mance. However the overall performance comes from the interaction of many factors, and RMA pro-
vides an approach to study the overall combination.

The router studied here and shown in Figure 1 is a small device, not necessarily at the cutting edge
of technology, but it nicely illustrates the use of the modeling approach. It extends the LAN on the left
so that the remote users on the right (which are connected to the router by ISDN links) operate as if
they were connected to the LAN directly. The users have a Basic Rate Interface ISDN service, which
can consist of one or two B channels. The LAN/ER is capable of handling up to 120 B channel con-
nections at one time.

The LAN/ER is also connected to an 10 Mbits/sec LAN network which uses a standard Ethernet
protocol. Frames being received on the ISDN network side can be bridged to the LAN, or be routed
back to another B channel on the ISDN network side. Conversely packets arriving on the LAN will be
routed to the appropriate B channel. Each B channel uses a synchronous Point to Point Protocol (PPP)
at the network layer, and a HDLC protocol at the data link layer.

2.1   A more detailed description of the LAN/ER

The LAN/ER has a single bus, single processor architecture as shown in Figure 2.

B ChannelLAN
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ISDN Network

64Kbits/sec

FIGURE 1. High level diagram of the LAN/ER’s major input and output ports

LAN
Extension

Router

Remote User(s)

Outbound Traffic Inbound Traffic



3

The two network interface devices in the system are the ISDN Line Control chips and the LAN
chip. The ISDN chip provides a full duplex ISDN interface, with the ability of performing some of
the processing for the HDLC protocol. There are four of these chips in the LAN/ER system, each
capable of supporting 32 B channels simultaneously. Frames which are received and frames to be
transmitted are placed in the ISDN buffers in main memory. When the ISDN chip is not busy it polls
the transmit buffers in main memory every 125 s to check if any new frames to transmit have
appeared. The FIFO buffers within the ISDN chip hold 8 bytes for each direction (receive and trans-
mit) for each B channel. To empty its receive FIFO buffer, or fill its FIFO transmit buffer, the chip
makes a request for the bus and executes a DMA operation on the main memory.

The other network interface is the LAN chip which supports the 10 Mbits/sec IEEE 802.3 Ether-
net protocol. The LAN chip operations are similar to the ISDN chip, except that it does not poll when
it is idle. Instead the LAN chip receives commands from a queue in main memory which tells the chip
what operations to perform. The LAN chip has an on board FIFO buffer of 32 bytes for each of the
receive and transmit directions.

The CPU executes a Worker task to process frames found in the ISDN buffers and transfer them
into the LAN buffers, and vice versa. It runs a real-time kernel that manages the Worker task and ten
other tasks which do the management and maintenance of the system. Their CPU utilization is much
smaller than that of the Worker task.

Main memory is a single centralized memory unit in the LAN/ER, holding the code for the CPU
and all the data and data buffers that it manipulates. The same data buffers are also accessed by DMA
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FIGURE 2. Hardware interconnection in the LAN/ER system
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operations performed by the interfaces (the ISDN chips and the LAN chip). Access to the main mem-
ory is controlled by the bus arbitrator.

The bus arbitration is a pre-emptive “hold till done” priority scheme. The priority order, from low
to high is CPU, LAN chip, ISDN chip. The DMA devices can pre-empt the CPU in use of the bus, but
once any DMA device has the bus, it is not pre-emptable. A special ISDN chip arbiter is used which
blocks ISDN requests for the bus after 4 requests from 4 different ISDN chips. This gives the LAN
chip higher priority and prevents the ISDN chips from dominating the main bus.

The freehand lines running through Figure 3 trace four important scenarios. Each scenario starts
from a filled circle, representing a triggering event, and shows the order in which components are
involved in completing it. This is based on the Use Case Map notation [3].

2.1.1  Outbound data scenario (LAN to ISDN)

The handling of traffic going out from the LAN to a remote user begins when a packet is received
by the LAN chip. Incoming bytes are stored in the on-chip FIFO buffer and then transferred to the
LAN RX buffers. Eventually the Worker task will check the LAN RX buffers for complete received
packets, and process them. First it determines which B channel the packet is destined for, by calling
the bridge/routing functions. Then the packet is queued to its appropriate B channel queue (ISDN
queue). When the B channel is able to accept data, the HDLC portion of the PPP stack
(service_HDLC_TX) processes the packet to a frame. The frame is converted by the
process_ISDN_TX_buffers operation into a format that the ISDN chip can understand and is stored in
the ISDN TX buffers. The ISDN chip polls these buffers, and when it finds a new frame ready to
transmit, it DMAs the frame 8 bytes at a time into its appropriate B channel buffer. Depending on the
sliding flow control window of HDLC on the link, an acknowledgment frame will be received eventu-
ally. This frame is processed the same way as an inbound frame to the point when it reaches the
HDLC_service_RX function, where the acknowledgment is processed and the frame is discarded.

2.1.2  Inbound data scenario (ISDN to LAN)

The ISDN to LAN scenario starts when a frame arrives from a remote user, on a B channel. The
incoming bytes are stored by the ISDN chip into a FIFO buffer for that B channel. As the FIFO buffer
fills up, the chip will transfer its contents into one of the ISDN RX buffers in the main memory. When
the frame is complete, the Worker task will eventually assemble the frame for that B channel through
the process_ISDN_RX_buffers function. The frame is then sent to the service_HDLC_RX function,
which processes the packet, and updates any state information. Depending on the sliding window of
HDLC on the link, an acknowledgment may be sent to the remote user for the successful reception of
frame(s). The frame is then sent to the upper layer of the PPP stack for bridging/routing, and is depos-
ited into the LAN transmit queue. The frame is taken from the LAN queue and moved into the LAN
chip transmit buffers, and the LAN chip is instructed by the Worker task to send the packet off to the
LAN.
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2.1.3  Worker task operation

The Worker task polls the various queues and buffers shown in Figure 3, using a polling sequence
described by pseudo-code in Figure 4. Each service function is repeated until the given buffer is
empty.

FIGURE 4. High level pseudo code describing the Worker task polling order

while (TRUE)
{

for(x=1; x <= number of active channels; x++)
{

hdlc_service_RX(x);
hdlc_service_TX(x);

process_ISDN_RX_buffers(x);
process_ISDN_TX_buffers(x);

}

service_LAN_TX();
service_LAN_RX();

sleep until awakened by Null task or timer tick
}

3.0  Derivation of the model
Once the scenarios have been defined, as they have been in section 2.0, the layered model can be

developed in four steps:

1. Obtain sub-models by tracing out scenarios and grouping responsibilities to resources.

2. Merge sub-models to get a model of the system identifying all the entities but without full opera-
tional detail.

3. Add any missing operational detail.

4. Optionally perform any simplifications on the model.

3.1   Step 1: Obtaining sub-models from scenarios

The transformation starts by identifying all the operations that have to be performed to complete a
scenario. In the model each operation becomes an “entry” of a “task” that represents the entity (soft-
ware or hardware) which executes the operation. Each entity is a resource with some level of resource
provisioning. The ISDN chips for example have are provisioned at a level of four, for the four chips.
The Worker task is single threaded and thus is provisioned at a level of one. In the LAN to ISDN sce-
nario from Figure 3, three resources are identified that play a role in the completion of the scenario.
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These resources are the LAN chip, CPU, and ISDN chip. The entry is just an identifier for the opera-
tion, as executed by that task.

To model the collection of responsibilities in the scenario, an artificial “operation task” one layer
above the resource entities is introduced. This is a pseudo task related to one execution of the sce-
nario, which calls all the entries that belong to the scenario. To set the rate at which the scenario is
triggered, a driver task is introduced in a layer above the operation task.

The transformation gives the model shown in Figure 5. Note each call is synchronous which
means the entry that is making the call waits for it to be completed. Also notice that Figure 5 does not
show the entries in the diagram, to save space. The synchronous calls are denoted by solid arrows in
Figure 5. If the driver task has a multiplicity of N as shown it represents N separate sources of input
events, such that up to N copies of the scenario can be active at once.

The second part of this step is to expand the model by including lower level resources that may
introduce contention into the system. In an embedded system, three types of contention can be found.
One is software competing for software resources, the second is software competing for hardware
resources, and the third is hardware competing for other hardware resources. In order to encapsulate
contention for software resources, it is necessary to add one or more layer(s) into the model. Any
hardware that acts like a master on a bus will in most cases have a set of operations to complete, and
conceptually is no different from software. Therefore any firmware in hardware components can be
represented in the software layer(s) also.

The hardware/software contention patterns in the LAN/ER can be obtained from the descriptions
of the software and hardware in section 2.0 to expand the model to what is shown in Figure 6. (Again
as in Figure 5 the entries are not shown.) The first contention point is the bus, as shown previously in
Figure 2, and represented in Figure 6 by having the three device tasks call a main bus entity, which
calls an entity that represents the memory. The Worker task running on the CPU sees no contention
for the CPU (in this scenario), which is also the case for the firmware running on the ISDN and LAN
chips. In fact the Worker task does contend for the CPU with ten other maintenance tasks, which are
omitted here but are shown later, in Figure 8.
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Worker: HDLC_service_TX

Worker: process_ISDN_TX_buffers

ISDN chip: TX

LAN chip: RX

FIGURE 5. Step 1 (first part): Grouping of responsibilities to resources for LAN to ISDN scenario
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Step 1 has to be applied to all the scenarios in the system before proceeding to step 2. The applica-
tion of step 1 on the other three scenarios is not shown.

3.2   Step 2: Merge sub-models to create a single model of the system

Merging of the sub-models is done by identifying the same task (by name) in different sub-mod-
els. Entries defined in different sub-models for a given task are grouped together in the task. The
merged model of the LAN/ER is shown in Figure 7. To save space the entries in the merged model
found in Figure 7 are not shown (entries representing software operations will be shown in Figure 8).
Since entries are not shown in Figure 7 one must keep in mind that entries within tasks call other
entries. Therefore Figure 7 can mislead one into thinking that tasks are calling other tasks, when it is
the entries within the tasks making and receiving requests which represent certain services (responsi-
bilities) offered by the entity. These entries have a one to one correspondence with the responsibilities
defined in section 2.0. This is how the merged model retains all the scenario operations and call struc-
ture encapsulated in the other submodels.

LANISDN CPU
chip chip

LAN_op

LANISDN

Main

Worker

Memory
ops

LAN
driver

FIGURE 6. Step 1 (second part): Expanded submodel which includes all resources for LAN to ISDN scenario
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3.3   Step 3: Adding behavioral detail to model

The transformation step has captured the behavior defined by the Use Case Maps found in Figure
3. This step will now add the behavioral detail which was ignored in the Use Case Maps.

Maintenance tasks

In section 2.0 there was mention of other tasks (maintenance) which run on the system when the
Worker task is idle. The model represents them by a single aggregate Maintenance task which is trig-
gered once a poll cycle by an entry Sleep in the Worker task.

Main bus arbitration

The arbitration mechanism for the main bus as described in section 2.1 has priorities with some
pre-emption. This is approximated by a pre-emptive priority scheduling which is supported by the
layered modeling tools. In the model when the ISDN, CPU and LAN “tasks” make requests to the
memory/bus “task”, their requests are handled by priority. The ISDN and LAN bus “tasks” are given
equal priority because they cannot pre-empt each other, but the CPU bus task has lower priority
because it can be pre-empted at any time. The priority is indicated by a number at the lower left cor-
ner of ISDN, LAN, and CPU tasks in the first hardware layer.

FIGURE 7. Layered model covering all four scenarios
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Adding detail to the ISDN chip

There is one important feature of the ISDN chip that has to be included in the model which is not
represented in Figure 7. This property will be represented in the software layer, because it is a
description of the ISDN chip’s firmware.

The ISDN chip polls all the ISDN TX buffers periodically, for the channels which are not cur-
rently transmitting a frame. A poll of all the idle channels is initiated every 125 s, a delay which will
be the think time of each ISDN chip task in the model. The probability that a channel buffer is idle
(and thus is polled) is , given by

Maximum transmission speed of a B channel, being 8000 bytes/sec.
Average size of the frame to be transmitted.
Frames per second to be transmitted on a B channel.

To represent the polling overhead for empty polls, an “ISDN Poll” task is introduced which acti-
vates the empty polls. One ISDN poll task on average requests * polls if ISDN channels served
by the ISDN chip are connected.

Polling Discipline of the Worker Task

The data waiting to be processed by the worker task is contained in several queues, and the task
itself polls these queues, emptying each queue before going on to the next. When it completes a cycle
it waits for a timer to trigger the next cycle. In the model all the queues are attached to the worker
task, and the execution of each operation is represented by an entry whose workload includes the poll-
ing overhead and the operation itself. On the other hand the work defined above, to poll the empty
queues which are not connected to processing a request, is represented as part of the workload of the
“Sleep” entry, which is triggered once per poll cycle.

Concurrency in scenarios and scaling of the model

It is important to identify concurrency in scenarios as this can have a significant effect on the
results the model gives. Up to Figure 7 the model exclusively uses synchronous calls which is not
entirely correct. When a frame or packet is completely processed, it is left in memory for the DMA
device to handle. The operation as far as the CPU is concerned is complete, and the CPU can continue
other processing, while the DMA device concurrently will deal with the frame or packet. Therefore
any driver task that calls a DMA device will call it asynchronously. An asynchronous call means a
task that makes the call does not wait for a reply to continue doing other work. These asynchronous
calls are denoted by the open arrowhead in Figure 8. Also since the LAN/ER system is an open sys-
tem, requests from the driver tasks to the operation tasks are also asynchronous.

The frequency with which the driver tasks make requests determines the packet or frame arrival
rate. For the ISDN network side, each active channel in the model is represented by a copy of the
ISDN driver task. Each time the ISDN driver task sends a frame, it is handled by an ISDN operation
task through its processing. Thus there is a busy ISDN operation task for each frame being processed,
at a given moment. Since the model assumes the LAN/ER has infinite memory, there can be an infi-
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nite number of packets or frames going through the system, hence the model allows infinite number
of copies of the operation tasks.

3.4   Step 4: Simplifying the model

A final optional step is to perform any simplifications on the model, which will not effect the
results. A motivation for doing this is to reduce solution/simulation time of the model, by reducing the
number of separate entities in the model. The final model is given in Figure 8. The Main Bus and
Memory entities have been merged since the bus does not contend for memory. Similarly the LAN
firmware does not contend for the LAN chip device and has been merged with the device entity. The
ISDN chip logic has been kept separate because it has the polling logic.

ISDN
Firmware

FIGURE 8. Complete model with Asynchronous Calls, Software Detail and Hardware Simplification (Merged Layers)
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4.0  Model parameters and validation

4.1   Parameter gathering

Execution times of code were measured with a profiling tool called CodeTEST [1], which has a
pod that piggybacks the pins on the processor chip. The software is instrumented by calls inserted in
the code with probe IDs, which are also put into a database along with the location of the probe (that
is, the source file and line number). When the instrumented code runs, the probes write the IDs to a
reserved memory location. The CodeTEST unit logs these writes as pairs of values of (ID, time), and
sends the information periodically to the CodeTEST analysis software. The analysis software, with
the help of the instrumentation database, outputs results a human user can understand. The entire
operation is illustrated in Figure 9.

Using the CodeTEST tool, software service demands for the Worker task entries HD_RX,
HD_TX, TX_BUF, RX_BUF, LAN_TX, LAN_RX, and MAINT were obtained for packet and frame
sizes of 64, 128, 256, 500, 1000, 1500 bytes. Polling overhead (cost of an empty poll) for the entries
above were also measured using the CodeTEST tool and put into the model. These measurements
were done under a moderate load with 30 active channels.

The parameters for the interface chip operations were obtained from data books. This gave the
time for the ISDN and LAN chips to read and write data to main memory, and in the case of the ISDN
chip, also provided the time for one poll to the ISDN transmit buffers.

4.2   Model validation experiments

Validation was done by comparing predicted results from the model with measured delays across
the LAN/ER, for both the inbound (LAN to ISDN) or outbound (ISDN to LAN) scenarios. Different
packet sizes and number of active channels were used.

The measurement setup is shown below in Figure 10. It consists of three LAN/ER systems, two of
which are connected back to back to the third LAN/ER. This was done to ensure that LAN/ER 1 will
always bottleneck first by splitting the traffic load across LAN/ER 2 and 3. In Figure 10 there are 4
different slots where packet generators can be inserted. During the experiment three combinations of
slots were used. Throughout the paper the direction in which traffic is flowing is always with respect
to LAN/ER 1. In order for traffic to be flowing in the inbound direction, a packet generator will be

Instrumented
Program

CodeTEST
unit and pod

CodeTEST
analysis software

LAN Experiment Results

to user

Instrumentation
Database

FIGURE 9. Data gathering when code is running
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used in slot 1. In order to generate outbound traffic, packet generators will be used in slots 2, 3 and 4.
For bi-directional traffic there is a packet generator in every slot.

One of the problems with obtaining delay measurements is that the bridge (which converts ISDN
packets to ethernet packets) skews the delay measurements. This bridge was required because the
LAN traffic monitor used to measure packet delay could only measure delay across 2 ethernets.
Therefore any delay measurement made will include the propagation delay across the bridge and the
B channel. Without understanding the performance characteristics of the bridge, the experiment setup
has to be calibrated as shown in Figure 11. The calibration is based on the assumption that with a sin-
gle channel, delay through the LAN/ER (the delay from X to Y) is the sum of the execution times
recorded by the CodeTEST. Subtracting this from the delay measured from W to Z gives the calibra-
tion adjustment for other measurements. This calibration adjustment is then subtracted for all the
experimental measurements to estimate the delay from W to Y.

The calibration adjustment was determined for each packet size and for B channel utilizations of
45% and 90%.

LAN Traffic

LAN/ER

CodeTEST

Packet
Generator

B channelsLAN

FIGURE 10. Diagram of experiment setup for model validation
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4.3   Model validation results

Figures 12 and 13 show the results of the end to end delay measurements. The delays are given for
the outbound traffic, except for the two inbound traffic experiments in Figure 12. In all cases the num-
ber of active channels was increased up to the point where the router dropped 1% of the packets. This
number of active channels was taken to be the router capacity for that traffic profile. The number of
active channels can only go as high as 120 because this was a limitation of the LAN/ER.

Table 1 gives a summary of the model’s accuracy for a wide variety of experiments. In each exper-
iment the number of active channels was varied, and the table reports the results for the largest num-
ber of active channels that gave acceptable model error (which was taken as 12%). In the experiment
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FIGURE 11. Measurement calibration
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FIGURE 12. Uni-directional measurement results for (X - Y) delay, with every B channel 90% utilized
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there was an upward trend in the error in all cases as the number of active channels increased. Thus
the first row of Table 1, corresponding to the lowest line on the graph in Figure 12, shows that the
accuracy of the delay predictions is within 10% over the entire range of active channels. The same is
true for the last line in Table 1, and is true for all but the last point in the curve for the other lines
except for rows 2, 3 and 4. The experiments of rows 2, 3 and 4 had high CPU utilization and system
congestion at the top ends of their ranges. Row 3 shows saturation for a relatively small number of
channels because each channel carries a lot of short packets, and the CPU effort is dominated by a
fixed amount per packet.

The source of the errors appears to be over simplification in the modeling of the bus. When the
CPU is waiting for the bus it is effectively busy and an error in modeling the bus, which inflates the
time the CPU waits for the bus, will inflate the CPU utilization in the model. When the utilization is
already high, this error has a magnified effect on the end to end delay. The bus modeling simplifica-
tions are:

• the ISDN chip arbiter shown in Figure 2 was not modeled, however this should not influence these
results;

• the CPU locks memory in critical sections (not modeled) and this will prevent higher priority
devices from taking the bus; this could influence the results at saturation;

• the bus arbitration time used in the model was the maximum value, and is a significant fraction
(approaching 10%) of the memory access time which is the service time of the bus/memory ele-
ment at the bottom of Figure 8. The actual arbitration time could be much less, which would affect
the saturation point.

• the priority arbitration between the LAN chip and the ISDN chips was more complex than
described in Section 3.1.2., which might have an effect.

FIGURE 13. Bi-directional measurement results for (X - Y) delay, with either 45% or 90% B channel utilization
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In all cases in Table 1, the bottleneck was the main bus. This result is not surprising, because
every device in the system requires the use of the main bus/memory combination. Overall the inbound
traffic capacity for the LAN/ER predicts roughly 45 to 60 channels less capacity than the outbound
case given same load. This is attributed to the ISDN chip wasting bus time polling empty TX buffers,
when all the traffic is going the other way. For the outbound case the ISDN polling has no significant
effect, because when the chips are busy transmitting frames they do not poll the buffers as often.

5.0  Model-based re-design and evaluation
A validated model can be used both to suggest and to evaluate a proposed re-design. Let us con-

sider a system re-design to increase the capacity of the LAN/ER system so it can handle more B chan-
nels. The previous section showed two characteristics which hampered servicing more channels.
First, the main bus was found to be the bottleneck in the system; second, ISDN polling occupied a lot
of time on the bus when no frames had to be transmitted.

It was decided to consider a re-design which adds a second processor to the system and replaces
the main bus by three buses, a main “DMA bus” for accessing all data and a local bus for each proces-
sor. The ISDN and LAN chips are on the main bus. This should increase capacity by reducing conten-
tion on the main bus. Each CPU will handle all the responsibilities of pushing data through the LAN/
ER in one direction, and will contend only for access to shared data. Also the LAN and ISDN chip
will not hinder the execution of code by the CPU to the same extent as in the old design.

The worker task no longer polls, and the ISDN and LAN chips send interrupts to the appropriate
processor to indicate that a frame or packet is ready to be processed. A diagram of the new hardware
design is given in Figure 14.

TABLE 1. Summary of End-to-End Delay Errors: Range of system operation for adequate prediction accuracy.
Higher utilizations gave errors over 10%.

Experiment Run
Max. Active Channels

 for Error <= 12%
Max Delay
Error (%)

Max CPU
Utilization

1 Outbound 1500 120 9.8 0.512

2 Outbound 500 80 9.6 0.64

3 Outbound 128 30 8.3 0.61

4 Inbound 1500 80 9.3 0.411

5 Inbound 500 60 5.1 0.643

6 Outbound 1500, Inbound 500 60 9.7 0.56

7 Outbound 500, Inbound 500 50 9.0 0.59

8 Outbound 500, Inbound 128 40 9.3 0.588

9 Outbound 128, Inbound 128 40 11.5 0.80
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A layered model of the new hardware/software design is shown in Figure 15. One will notice
looking at Figure 15 how the layered model captures the new system design. The reason for this is the
layered model includes all the resource access patterns in a organized way, so one can look at the
model and understand the new design without looking at Figure 14.

The new model is different in various ways from Figure 8. The maintenance tasks were left out
because they only contribute 0.5% - 2.5% CPU utilization. The Worker task was divided into an
Inbound Worker task on CPU (1) and an Outbound task on CPU (2). Then these tasks were merged, in
the model with their CPUs (since they have no contention for the CPU) and the resulting merged
hardware/software entities labelled Worker/CPU (1) and Worker/CPU (2). The bus/memory entity
was partitioned into three bus entities and three memories. Then the shared memory was merged with
its bus. Notice how the CPU buses access the DMA bus.

With the new model, Worker task polling has been removed and interrupt overhead has to be
accounted for. It is assumed that total CPU cost of a single interrupt is 80 s. This value was obtained
from a context switch measurement on the iRMK RTOS kernel, which turned out to be 40 s. Since
every interrupt has two context switches, a value of 80 s is used. The interrupt overhead is added
into the service time for entries RX_FM and LAN_RX in Figure 15. It was also assumed that for
every operation the CPU performs, it will spend half its execution time in the shared memory.

The new design was evaluated by solving the model for traffic consisting of 1500 byte packets or
frames, either all inbound or all outbound. The results are shown in Figure 16. They are compared to
the results found in Figure 12 for the same frame or packet size to show the improvement in capacity
over the old design.
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In the re-design, the overall average end to end delay has dropped significantly, because the sys-
tem does not perform any polling. The bottleneck device now changes when the traffic switches direc-
tion. For the outbound case, the bottleneck is the LAN to ISDN CPU, CPU(2), but for the inbound
case, the main memory is the bottleneck. In the experiments on the original design in section 4.2, the
bottleneck device was always the main memory and main bus combination.

The capacity of the re-designed system is about 50% higher for both outbound and inbound traf-
fic. Taking the capacity to be the number of channels giving 20 msec. delay, the outbound capacity
has been improved from 150 channels to 230 channels, and the inbound capacity has increased from
60 channels to 90 channels.

6.0  Conclusions
This paper has demonstrated a layered Resource-based Model Architecture (RMA) approach to

modeling router software and hardware together. The layered model shows the dependencies of
resources on other resources, such as the dependencies of CPU (1) bus on the DMA bus to access
shared memory in Figure 15. By showing these dependencies, the model will also show how conten-
tion effects spread upward from a congested resource, such as the bus in the original system.

The process of creating the model is systematic and straightforward. Structure and traffic parame-
ters were found by tracing scenarios, and demand parameters were found by a form of profiling. Of
these, the demand parameters required the greater effort. However once an established measurement
process is in place the effort is less.
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FIGURE 15. Layered model of a hypothetical hardware re-design
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The measurement effort to find the demand parameters took 3.5 man-weeks starting from scratch
with just a basic understanding of the system. The validation measurements took about 7 man-weeks,
but they could be less detailed and less time-consuming in a mature process. Sufficient validation data
could be obtained from routine stress testing, to track the modeling accuracy. Therefore the RMA
approach combined with an established process of gathering measurements is a practical way of
tracking the performance of the system at any point of the development cycle.

Layered modeling has been used before this for distributed software systems, but this is its first
application to a system with layered hardware resources. High-capacity systems like routers often
have significant functionality in hardware and require modeling of the interactions among the hard-
ware components. Layered modeling provides a strategic level of detail. It captures the dependencies
which affect performance, without the high cost of greater detail.
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