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ABSTRACT

Large distributed client-server systems often contain subsystems
which are either identical to each other, or very nearly so, and
this simplifies the system description for planning purposes. These
replicated components and subsystems all have the same workload
and performance parameters. It is known how to exploit this sym-
metry to simplify the solution of some kinds of performance mod-
els, using state aggregation in Markov Chains. This work considers
the same problem for layered queueing models, using mean value
analysis. The mean values are found for each group of replicas
just once, and then are inserted appropriately into the solution of
the system as a whole. An algorithm has been implemented in the
Layered Queueing Network Solver (LQNS), including approxima-
tions to deal with interactions among the replicas, and is evaluated
for accuracy and for efficiency. The resulting solver is insensitive
(in time of solution) to the number of replicas in a group, and can
efficiently calculate waiting times and throughputs for systems with
tens of thousands of nodes and processes.

1. INTRODUCTION

The design, planning and management of large distributed client-
server systems, based on networks, clusters and grids, requires un-
derstanding of their performance (delays, throughputs, and utiliza-
tions). Methods based on analytic models can be used to predict the
effect of new systems and system changes; this classical problem
is described for example in [10] and [19].

If a server is a bottleneck, the system capacity can be increased by
adding copies of the server in some way. One solution is to add
threads to a software server, and if necessary to run the server on
a multiprocessor. Another solution is to introduce replica servers,
which are separate computing nodes. This is the solution adopted
by cluster and grid computing, by proxy web servers, and in repli-
cated databases, and this is the context of models for replicated
tasks and subsystems. Replication provides redundancy in case
of failures, geographic separation to reduce vulnerability to fires
and other disasters, modular upgrade capability through addition
of nodes, separation of network access traffic, and placement of
services near to distributed users to reduce access latencies.
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This paper describes an analytic model for very large client-server
systems with groups of replicated elements and subsystems which
share load. It addresses layered effects in multi-tiered client server
systems in which the response time of an entity is not only de-
pendent on the server it calls directly but also on other underlying
servers. The entity may spread requests to more than one replica of
a server, and may accept requests from more than one replica of a
higher-layer group.

Replication is a common approach to achieve both scalability and
reliability. The DNS naming service maintains copies of name-
to-address mappings for computers and other resources, and is re-
lied on for day-to-day access to services across the Internet. The
USENET system maintains replicas of items posted to electronic
bulletin boards across the Internet, the replicas being held within or
close to the various organizations that provide access to it. Google
uses replication for better request throughput [1]. The internal ser-
vices are replicated across many machines to obtain sufficient ca-
pacity. Other practical examples include web databases [11], grid
computing [9], and safety critical systems like air traffic control [4].

The present work makes the model complexity insensitive to the
number of replicas, for analytic modeling using layered queueing.
It does this by taking advantage of symmetry in the model, to an-
alyze only one element of each group or pool of replicated com-
ponents (since the elements all have the same performance param-
eters and measures). The results for the one element are used to
represent the others. This is an approximation, because jobs pro-
cessed by some systems do distinguish between instances of repli-
cated components [20]. However the approximation is justified by
the greater simplicity in determining and expressing the model, as
well as expediting the solution time.

Capacity planning is often done with queueing models as in [12].
For software performance, Smith has described queueing and ex-
tended queueing models, and various authors have described lay-
ered queueing (which is used here) [7, 8, 15, 13, 16]. Others
have used state-based techniques such as Stochastic Petri Nets or
Stochastic Process Algebras. Layered queue solvers (described be-
low) have the scalability of mean-value queueing analysis plus the
capability to describe contention for software resources.

Symmetry has been exploited in various ways, particularly in state-
based models. Sanders and Meyer gave algorithms to identify sym-
metrical states in Markov models, and do exact state aggregation
[17]. This idea has been widely used (e.g. in Stochastic Well-
formed nets, using a ‘symbolic reachability graph’ [2]). There
have also been examples in queuing models, such as [21] which



described an unbounded set of nodes in a distributed system by a
model with a single node. For layered queues, Sheikh et. al. in [18]
described a replication scheme based on replicating “areas” in the
model. The present work generalizes it in two useful ways, by al-
lowing a replicated task (area) to have more than one parent, and
by allowing a client to spread its requests across several replicas
(rather than using just one of them). A semantics of replication in
layered queues is defined, and used to define modifications to the
layered solution strategy of the Layered Queueing Network Solver
(LQNS) [6]. Surrogate delays are used to couple the calculations
for one replica into those for its clients and servers. The resulting
approximations are evaluated for accuracy, and demonstrated on
several examples.

2. LAYERED QUEUEING NETWORKMOD-
ELS

To understand the calculation for replicated servers we must first
describe the Layered Queueing Network (LQN) model and how it
is solved by Mean Value Analysis (MVA).

The LQN model is a canonical form for extended queueing net-
works with a layered structure. The layered structure arises from
servers at one level making requests to servers at lower levels as
a consequence of a request from a higher level. LQN was devel-
oped for modeling software systems, but it applies to any extended
queueing network with multiple resource possession, in which mul-
tiple resources are held in a nested fashion. Resources are released
in the reverse order of their acquisition, and resource order is con-
sistent across the system, so higher layer resources are acquired
earlier and released later, than those in lower layers.

Figure 1 illustrates the LQN notation with an example of a web
server. In an LQN, software resources are all called “tasks”, have
queues and provide classes of service which are called “entries”.
In Figure 1, a task is shown as a parallelogram, containing paral-
lelograms for its entries. Processor resources are shown as circles,
attached to the tasks that use them. Stacked icons represent tasks or
processors with multiplicity, making it a multiserver. A multiserver
may represent a multi-threaded task, a collection of identical users,
or a symmetric multiprocessor with a common scheduler. Multi-
plicity is shown on the diagram with a label in braces. For example
there are 20 copies of the task “WebServer’ in Figure 1.

Entries have directed arcs to other entries at lower layers to repre-
sent service requests (requests may jump over layers, which is not
shown here). A request from one entry to another may return a re-
ply to the requester (a synchronous request) indicated in Figure 1 by
solid arrows with closed arrowheads. For example, task AppServer
makes a request to task Database who then makes a request to task
FileServer. While task FileServer is servicing the request, tasks
Database and AppServer are blocked. Alternatively, a request may
be forwarded to another entry for later reply, or may not return any
reply (an asynchronous request); these request types are not used
here.

The parameters of an entry are the mean number of requests for
lower entries (shown as labels in parenthesis on the request arcs),
and the mean total host demand for the entry (in units of time,
shown as a label on the entry in brackets). An entry may con-
tinue to be busy after it sends a reply, in an asynchronous “second
phase” of service [7] so each parameter is an array of values for the
first and second phase. Second phases are a common performance
optimization, for example for transaction cleanup and logging, or
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Figure 1: A layered queuing network.

delayed write operations.

The holding time for one class of service is the entry service time,
which is not a constant parameter but is determined by its lower
servers. Thus the essence of layered queuing is a form of simul-
taneous resource possession. In software systems delays and con-
gestion are heavily influenced by synchronous interactions such as
remote procedure calls (RPCs) or rendezvous, and the LQN model
captures these delays by incorporating the lower layer queueing
and service into the service time of the upper layer server. This
“active server” feature [22] is the key difference between layered
and ordinary queueing networks.

2.1 LQNS Layered Solution Strategy

LQNS constructs queueing submodels for clusters of servers at dif-
ferent layers and applies a fixed-point iteration to the submodels,
to find a steady-state solution for delays and resource utilizations.
There are several strategies for submodel construction, but we will
consider the one illustrated in Figure 2 (corresponding to the web
server model in Figure 1). Tasks that only make requests model
users and load sources, and are placed in the top layer. Other
tasks are ordered by the longest path of requests from the top to
one of their entries. The ith layer submodel is created with two
groups of queuing stations. There is a server station for each server
task at distance 7, and a source station for each client task which
makes a request to any server task in the layer. A task appears as
a server station in exactly one layer submodel, but it also appears
as a source station in each submodel where a lower layer server
appears as a server station. In a submodel, each source station rep-
resents clients of some server or servers as identical customers in
a routing chain [10], with a number equal to the multiplicity of the
client task, and a delay between calls governed by the total behav-
ior of the client tasks. The chain traverses the servers visited by the
clients. Thus, there is one chain for each load source but a server
may be visited by several chains. This method of constructing the
chains is modified for replicated tasks described later in this paper.

Within each layer submodel, the solver applies standard Mean Value
Analysis approximations to solve the model, and special approxi-
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Figure 2: Submodels for the LQN model of Figure 1.

mations to deal with special features, as described in the thesis [7].
These features include non-exponential service with multiclass FIFO
queues, servers with second phases and parallel branches within a
service. The basic idea of MVA is to find the arrival-instant mean
queue length and use it to find the residence time of an average
customer. Then the delays along a customer path are used to deter-
mine the system delays, throughputs and utilizations. In iterative
MVA approximations such as Bard-Schweitzer and Linearizer [3]
these results define a new mean queue length. These are used in an
iterative calculation for the submodel.

Between the submodels, LQNS implements a fixed point iteration
based on surrogate delays [10]. In each submodel, the tasks out-
side the submodel are represented by delays computed from their
behavior, in other submodels. Thus delays for higher level tasks
are represented in the think time” of source stations, and delays at
lower level tasks are represented in the service time of the server
stations. The submodels essentially define a set of simultaneous
nonlinear equations for the performance measures, which are usu-
ally solved by a Gauss-Seidel iteration (e.g. [5]).

3. LAYERED QUEUEING WITH REPLICAT-

ED SERVERS

In Figure 1, the groupings surrounded by dashed lines could be
replicated. There could be Kg replicas of the server node, includ-
ing the web server task and its disk and the application task, and
K p replicas of the database with its file server, to provide scalabil-
ity of the service. There could also be K r replicas of the remote
web server, to represent different web services used by the system.

We first consider replication of a single task in a LQN model. In a
replicated system the requests from a set of clients for a particular
service are distributed across a set of copies of the service. The
approach taken here to model the identical replicas of a task, is

1. represent the set of replicas in the model as a single task, an-
notated to represent the replication, and determine the work-
load of a single replica

2. solve for the contention delays and service times of only one
replica, and

3. distribute the contention and service time results to the clients
of all the replicas.

3.1 Assumptions and Notation

Figures 3 and 4 illustrate the notation for replicated servers, using
a replication parameter K, and a simple base model of four tasks,
each with just one entry. Figure 3(a) shows one of each task; Fig-
ure 3(b) shows replicas indicated by parameters K 4, etc. Figure 4

gives an expanded representation, showing all the replicas explic-
itly, numbering the replicas of each task as A1, A2, ..., BI, ... etc.
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Figure 3: Notation for replicated servers.

Figure 4: View of the replicated servers in Figure 3(b).

A request arc from a set of replicas represents a request made dur-
ing one service by one replica. The requests made to a set of repli-
cas are distributed across them uniformly. If a single service by a
client task makes Y requests to a set of replicas, and the requests go
to all of them, then each request is made once and on average Y/ K
requests go to each replica. A more sophisticated model used here
allows a client task to deliberately replicate its request to O out of
K replicas of its server. So it makes O x Y requests, and Y re-
quests go to each of these. This fan-out parameter allows for active
replication, where multiple servers are used by each transaction.

A client task may have K¢ replicas, each with mC' threads (mul-
tiplicity), giving a total of K¢ x mC potential customers to its
servers. The request count label of a request arc from the task gives
the mean number of requests made during an invocation of one of
these. The host demand attached to a replicated server is for one
service by any of the replicas.

The fan-out parameter O of an arc may be an integer from 1 to
K, if there are K replicas in the server. Similarly the fan-in of
an arc from a particular replicated client, represents the number of
instances from that group of replicas, that direct requests to each of
the server replicas. If O4p and I, represent the fan-out and fan-in



parameters for requests from entry a of task A, to entry b of task
B, then it is clear that K4 X Oup = I4, X Kp. That is, in the
expanded model, the number of arcs leaving group A equals the
number arriving at group B. It is assumed that the connection of
selected replicas of A and B is static, so the same replicas interact
in all responses.

The visit rate defined on the arc of the replica-annotated notation of
the system corresponds to the visit rate along any single represen-
tative arc in the full representation. Thus, the visit rate from entry
a to entry c in Figure 3 is the same as that from any A; to any C;
in Figure 4, such as task Al to task C1 (Yg1.1) of Figure 4 is equal
to the visit rate defined for the arc between task A and C (Y.) of
Figure 3.

The notion of “identical” tasks that is required for replica analy-
sis is quite strict. Tasks in a group of replicas must have the same
entries, and the entries must have the same number of phases, the
phase service times, the entries, and number of visits to the same
servers (or groups of servers). They must therefore have symmet-
rical deployment, either on a replicated group of processors, or on
the same processor. They must also have symmetrical clients at
all entries, thus each client of any task is a client of them all. A
client may be a single task (possibly with multiplicity) or itself be a
group of replicas. The model may consist of a mixture of replicated
and non-replicated components. Replication of model subsystems
is represented by replicating their component tasks. When three
or more groups of replicas interact, an interpretation is placed on
which elements of each group interact, which results in replicated
subsystems being solved as units. This “local replication” interpre-
tation defined in [14] is essentially that the static binding of replicas
described above extends to any path through the system. Thus if all
the servers are replicated with the same K and all O = I = 1, the
result is K separate and non-interacting replications of a subsystem
with one of each server.

4. SOLVING MODELS WITH REPLICATION

The LQNS replication algorithm described in [14] solves for the
contention delays and the service times of just one replica of each
set.

The algorithm constructs a reduced version of any layer submodel
that contains servers that represent replicated tasks. It includes only
one server for each group of replicas, and a simplified set of chains
for its clients. For each server, one chain is constructed for each
group of replicated client tasks whose instances visit it, with a pop-
ulation defined by the number of potential customers to the server.
This is equal to the product of the client task multiplicity and the
fan-in parameter to the server task (representing replication of the
client tasks). Each chain visits just one source station and one
server station, but a server and a source station may be traversed
by many chains. The chains for the example of Figure 3 and Fig-
ure 4 are constructed as follows:

Chainl: Nj=1I,.=2 V/,=1V.=2
Chain2: Njy=Ie=2, Vagy=1Vs =3
Chain3: Ni=ITu=1 Vi =1Vi,=4

where V., is the number of visits by a client of chain  to a server
y and N, is the number of customers in the chain.

4.1 Service Time Calculation

To account for the delays of the ‘missing’ servers in the replicated
model, the delays that would be seen at these stations are added
to the service time of the delay servers (client tasks). In essence,
the method of surrogate delays is employed. The delays of the
‘missing’ stations are added to the service time of the delay servers
that also represent the client tasks. The modified service time of
station A for chain 1 is given as:

Sia = S1a+ (Oac — DRic (D)
where:
S14 = Modified service time of station A for chain 1,
S1a = Service time of station A for chain 1,
Ric = Residence time of chain 1 at station C = YicWic,
Yic = Number of visits to station C' by chain 1,

Wic = Waiting time of chain 1 at station C (service time
plus queueing time).

Similarly,
Stz = Sap +(Opc —1)Rac + OppRap, and
S;p = Ssp+ (Ogp —1)Rip + OpcRoc

In general, the equation to be employed in modifying the client
service times for the replicated model is:

Sit = Skt + (Otm — 1) Riem + Z Z OwmRrym (2)

VM VK
where:
m = Server visited by chain k;
t = Client task visited by chain k;
Sh = Modified service time of client station ¢ for chain
k;
Skt = Service time of client station ¢ for chain k;
Oim = Fan-out of client tasks ¢ to server m (LQN
model);
Rim = Residence time of chain k at station m (m is vis-
ited by chain k);
Oim = Fan-out of client task ¢ to server M (LQN
model);
Rrxym = Residence time of chain K at station M
K = Any other chain besides k that visits client ¢;
M = Any other server besides m that is invoked by
client t.

4.2 Implementation

Pseudo-code for the replication algorithm is shown in Figure 5
below (the function SolveLayer is used to solve the submodel).
Within each submodel, the queueing network has parameters which
depend on the solution of the same submodel, which were found by
anew “inner” fixed-point iteration, following the algorithm outline
given below. At each step of this inner iteration the parameters of
the replicated servers are set from the relationships above, and the
resulting queueing network is solved by MVA.

In the implementation, a multivariate Newton-Raphson iteration
step was employed to compute the updates in the inner iteration,
to improve the convergence of the inner iteration. Details are given
in the thesis [14].



SolveLayer(clients, servers, layer number, validity flag)
BEGIN
Initialize values;
MakeChains; %Create chains and associate them with
%clients and servers
Create the clients for the MVA model;
Create the servers for the MVA model;
DO replication iteration
Initialize values;
Set validity flag to false;
IF first iteration
IF layer has replicated tasks
ModifyClientServiceTime for each client;
ELSE
Set validity flag to true;
Set iteration count to limit %Layer has no
Yoreplicated tasks.
Set convergence to false; %Execute loop once.
ENDIF;
ELSE
ModifyClientServiceTime for each client;
ENDIF;
IF convergence
Set validity flag to true;
Exit iteration loop
ENDIF;
Generate MVA model;
Solve Model;
Store results from MVA model to LQNS model;
WHILE (iteration limit not reached);
Cleanup;
RETURN validity flag;
END

%0Open and closed

Figure 5: Pseudo-code for “inner” iteration.

S. RESULTS AND ANALYSIS

To demonstrate the replicated solver, several models are shown be-
low. The first subsection demonstrates the scalability of the solu-
tion technique. The second subsection consists of several examples
both in their replicated and expanded forms, and are used to demon-
strate the accuracy of the solution. Finally, the technique is used on
an industrial management information system example.

5.1 Scalability

The replicated model in Figure 6 is a hypothetical implementation
of a typical search engine. It consists of one million customers re-
questing services from 100K index servers, which access, in turn,
50K and 10K Document and Ranking servers. The parameter K
was varied to change the replication level of the components from
1 to 10,000. Table 1 shows the number of times the core one-step
MVA calculation is executed to solve the various configurations
and is indication of the complexity of the calculation. The fourth
column shows that the number of steps is approximately 265 on
average regardless of the scaling with the index server saturated.
The algorithm is much more efficient when the model is not bot-
tlenecked because the iterations are sensitive to small changes in
throughputs when the corresponding utilizations are high. The non-
replicated model would not be solvable when K = 10, 000 as there
would be 1.6 million stations. It took less than 20 milliseconds to
solve the LQN for any value of K on Pentium 4 2.8GHz machine
running Windows XP.

5.2 Accuracy
The example system shown in Figures 3 and 4 will be used to
consider the accuracy of the approximations made in the replica-
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Figure 6: LQN model for a typical search engine.

Table 1: Results of solving the LQN model of Figure 6.

K Client IndexServer Number of

Response Utilization | Computational
Time (ms) Steps

1 | 15496600 1 253
100 149935 1.0 263
500 25940 0.993 282
1000 10281.6 0.979 260
2000 3045.98 0.810 190
2500 2092.31 0.666 184
5000 976.27 0.280 86
10000 698.6 0.120 72

tion calculation. The figures do not show processor allocation, but
each task was assigned its own processor. There are two layer sub-
models. Three different MVA queueing network solvers were used
to solve the layer submodels: the Schweitzer approximation, Lin-
earizer, and exact MVA. The results for solving the full expanded
system and for solving the simplified replicated system are shown
in Tables 2, 3 and 4.

Tables 2, 3 and 4 show that the Schweitzer approximation gives
the closest results to the full system. The results of solving the full
model using the exact MVA are used to compare the replication re-
sults. It is seen that the replication algorithm works best with the
Schweitzer approximation with an error of less than 2%. The repli-
cation algorithm using exact MVA and Linearizer provide larger
errors, up to 5%.

Table 2: Cycle time results for the replication example.

Full Replicated Model

f@ Model | (Schweitzer) | (Linearizer) | (Exact MVA)
= | (Exact % % %

MVA) Error Error Error
A | 33.1 33.7 20| 314 | —5.0 | 31.5 —4.9
B | 73.6 74.0 06 | 714 | =3.0 | 714 | —-29
C 3 3 0 3 0 3 0
D 5 5 0 5 0 5 0

The higher errors for the exact MVA and Linearizer may be ex-
plained by inspecting the MVA algorithm. Modifying the service



Table 3: Throughput results for the replication example.

Full Replicated Model

f@ Model (Schweitzer) (Linearizer) | (Exact MVA)
= | (Exact % ) %

MVA) Err Err Err
A | 0.0302| 0.0296 | —1.9 | 0.0318 | 5.2 | 0.0318 | 5.2
B | 0.0136] 0.0135 | —0.6 | 0.0140 | 3.1 | 0.0140 | 3.0
C | 0.2024| 0.1996 | —1.4 | 0.2113 | 4.4 | 0.2111 | 4.3
D | 0.0544| 0.0540 | —0.6 | 0.0560 | 3.1 | 0.0560 | 3.0

Table 4: Task utilization results for the replication example.

Full Replicated Model

f@ Model | (Schweitzer) (Linearizer) (Exact MVA)
= | (Exact % ) )

MVA) Error Error Error
Al 1l 1.0 0 1.0 0 1.0 0
B 1 1.0 0 1.0 0 1.0 0
C | 0.617 | 0.599 | —1.4 | 0.634 4.4 | 0.633 4.3
D | 0.272 | 0.270 | —0.6 | 0.280 3.1 | 0.280 3.0

time of the client delay server with the delay at the *missing’ sta-
tions is essentially estimating the R values (resident times of chains
at the stations) in the MVA algorithm. However, in the case of ex-
act MVA and Linearizer, the R values for different populations are
required in the MVA iteration. For the exact MVA, the R values
for the populations from O to N are required. For Linearizer, the R
values for population N and N — 1. are required. By modifying
the service time of the client, an estimation of R for a population
N is used, which is fixed throughout the iteration. That is, it is used
even though for the exact MVA and R value for the range of pop-
ulations from O to N is needed. The estimation for R is incorrect
and therefore produces big errors in the exact MVA and Linearizer.

The error for the Schweitzer approximation is low since, in this
algorithm, only the delays for population IN are needed. In this
case, the estimated R is correct, or nearly so. The error in the re-
sults is due to the Schweitzer approximation itself. The Schweitzer
approximation results for the full models are very close to their cor-
responding replicated model results also using Schweitzer. In addi-
tion, the error for the cycle time result is increased since the cycle
time is obtained by multiplying the calculated delay at the client by
the number of visits to a server. In other words, the error from the
replication algorithm appears in the delay result of the client (de-
lay server) which is magnified in the client cycle time result by the
number of visits.

Despite the errors, the advantages of the replication are obvious
when comparing the calculation time, the ease of reading the re-
sults, and the simplification of the model between the full model
and the replicated model (compare Figure 3(b) with Figure 4). Fur-
ther, changing the level of replication with the replicated model
amounts a simple parameter change which can simplify parametric
analysis.

Since the Schweitzer MVA approximation gives the best results, the
space and time complexity relative to this algorithm is discussed.
The space requirements for Schweitzer is proportional to the prod-
uct of the number of chains, C, and the number of stations, IV,
i.e. O(C'N). The time requirement per iteration of the algorithm is
also proportional to this product. The replication algorithm reduces

the number of chains and the number of stations needed, thereby
reducing the space and time requirement for each Schweitzer iter-
ation by O(X"M_ (K, — 1)), where K, is the number of repli-
cas at server m and M is the total number of replicated task sets
(N = Zﬁf:l Kr,). The replication iteration introduced for solv-
ing each submdel increases the time by an unknown factor, Finally,
the time complexity for one iteration of the LQNS inter-layer sub-
model solution is O(LN?) or O(L(YM_, K:n)?), where L is the
number of layers [16]. (This is derived from the time complexity
of one iteration of Schweitzer which is (O(C'N).) Since the repli-
cation algorithm reduces the number of stations by representing a
set of replicas by one station, the time complexity of one LQNS
iteration is reduced to (LN?) or by a factor of (N/M)?. Finally,
in executing test cases, the times for solving the replicated models
were found to be shorter than for the full models. All test cases
were run on 2.8GHz Pentium 4 running Windows XP. With test
cases of around 20 tasks, the time difference was especially visi-
ble with the replication model taking less than a 50 milliseconds to
solve in contrast to the full model which took around 5.33 seconds.

5.3 Industrial Management Information Sys-

tem

This example has two configurations shown in Figure 7 and 8. It
describes a large Management Information System, who access
two backend databases (called RF and BC) through local servers
(“LAN servers”) which do routing and some processing. Some of
the LANs are connected to the backbone network and others are
connected to a wide area network (WAN). The configurations dif-
fer in that the second has “regional servers” to off-load work from
the one of the two databases.

WS B
l15]
WS B<Rep 20>

2),1=10 0133) =10
(0.667), 1= I(J (0.667). I=10

LAN_B / LSB_DB | LSB_L LAN_W / LSW_DB | LSW_L
10.000391 | [0.01] [0.03] 10.00039] | [0.01] [0.03]
A}
LAN_B {inf} <ch:z%/ LS_B <Rep=2> ” I_/\N7W(inf)<ch=2>ﬁ//l‘siw<kcp:2> ”
! ) ! 1] \
@) 1=2 (0.0833),1=2 @)1=
(0.0833), 1=2 o (0.417), 1=2 - 1=2
/ (0.417),1=2
(0.0833),1=2  (0.0833), =2 (0.417), 1=2
(0417),1=2
oV BN 4
BC_DB_H | BC_DB_L Backbone RF_DB_H | RE_DB_L WAN
[0.16] [0.08] [0.02] [0.08] [0.04] [0.04]
I BC_DB I Backbone {inf) I RF_DB I WAN {inf}

Figure 7: LQN for the base case of the database system.
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Figure 8: LQN for the regional servers’ case.



The model uses simplifying assumptions to obtain symmetry in the
entities. In the model, the workstations are identical sources of
workload, and each LAN has the same number of workstations.
The number of LANs attached to the WAN equals that attached
to the backbone. The two databases however are different. The
model is shown in Figure 7. The users and their workstations are
the two sets of client tasks at the top, one set for the backbone and
one for the WAN connection. The LAN servers are in the middle.
The two database servers are modeled as server tasks in the bot-
tom layer. The LANs are modeled as delay servers attached to the
Client workstations which use them, and the WAN and backbone
are similar delay servers attached to the LAN servers. The database
server subsystems have been greatly simplified, and the effects of
the communications front end and the storage are incorporated into
the parameters of the database server tasks.

The LQN model in Figure 7 was used to study the performance of
the system without regional servers, under varying configurations
and parameters. The response time at the workstations was deter-
mined when the number of workstations in the system is increased,
and the results are shown in Figure 9, labeled as the “base case”.
There are ten workstations attached to each LAN. The number of
workstations is increased by attaching new LAN’s to the network.
As expected, the response time increases with the number of work-
stations. The response time increases dramatically at more than
300 clients since the RF database saturates between 300 and 400
clients. The RF database is the first component to saturate and is
the bottleneck of the system. After saturation, the response time
continues to increase linearly.

The second case using regional servers is shown in Figure 8. Three
regional servers were introduced into the design to off-load the
work at the RF database, by handling transactions that are local
to the region of the originating workstation. The regional servers
are given the same parameters and entries as the RF database. The
visit ratios to the regional servers and RF database are determined
by the fraction of RF database requests that are routed to the re-
gional servers. Figure 9 (regional servers’ case) shows the response
time seen at the client with 20% of the RF database traffic routed
to the regional servers. Clearly, the response time at the client is
improved and the RF database now saturates only between 400 and
500 clients.

Base Case ——
Regional Servers ——x—/" |

Reponse time of Client
©
T

100 200 300 400 500 600 700 800 900
Number of Workstations

Figure 9: Performance of database system.

Finally, the effect of changing the fraction of traffic going to the
regional servers is studied. Figure 10 shows the response time at the
client for a system with 600 clients’ workstations when the fraction
of off-loaded traffic is varied. The response time decreases with the
increase in the fraction of RF database traffic going to the regional
servers.

Response time at Clients

0 0.1 0.2 0.3 0.4 0.5
Fraction of requests to regional server

Figure 10: Effect on performance of off-loading to regional
servers.

This example shows a typical use of the replicated solver in a plan-
ning context, and is based on a real industrial system. It also shows
the use of replication level (of the LAN servers) as a parameter,
rather than a structural change in the model.

5.4 Air Traffic Control System

Figure 11 shows an en-route air traffic control system modeled in
[4]. Replicated subsystems provide fault tolerance, and LQNS was
used in to calculate the resulting performance with different num-
bers of replicas active. The analysis in this study used the replica-
tion calculations described in the present paper.
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Figure 11: Air traffic control system.

6. CONCLUSION

The approach to describing and solving models with replicated
components and subsystems, described here, expands our capabil-
ity to use analytic models for planning. It makes it easier to de-
scribe large systems since each group of replicas is described only
once. It is scalable in time and space, since the solution is insensi-
tive to replication levels. Thus it is much faster than the solution of
the full expanded model.



This approach gives an advantage over previous replication-based
solvers using state-based models (providing better scalability due to
use of Mean Value Analysis), over replication analysis in queueing
networks (because it handles extended queueing models with si-
multaneous resource possession) and over other work in replicated
layered queues, (in that it handles replicas with fan-in).

A subtle advantage of the present approach is, that it makes repli-
cation a parameter of the model, so it can be rapidly studied as
a parameter change, rather than requiring re-structuring for each
level of replication.

The approximations necessary to use the present approach intro-
duce some error, as discussed in Section 5.2. Using the Schweitzer
MVA algorithm for the layer sub-model solutions, errors under 2%
were introduced. It is interesting that MVA algorithms which are
more accurate for product-form queueing networks (Linearizer and
exact MVA) gave larger errors.
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