
Software Resource Architecture

C. M. Woodside,
Dept. of Systems and Computer Engineering, Carleton University,

Ottawa, Canada K1S 5B6
email: cmw@sce.carleton.ca

Dec 7, 2000

re

nd
or

is
t-

al
ent
ay
rns
tify
rns

ip-

ers,
es-
ess
at

nt
he
c-
d

i-

are
er-
ave
ce
an
nd
ks,

A later version of this paper will appear in the Int Journal of Software Engineering and Knowledge
Engineering, sometime in 2001.
Abstract
Performance is determined by a system’s resources

and its workload. Some of the resources are software
resources which are embedded in the software architec-
ture; some of them are even created by the software behav-
iour. This paper describes software resources and resource
architecture, and shows how resource architecture can be
determined from software architecture and behaviour. It
considers how resource architecture emerges during
design, the relationship of software and hardware
resources, some classes of resource architecture, and what
they can tell us about system performance. Other uses of
resource architecture are, to analyze deadlocks, to under-
stand special software architectures developed for
demanding situations, and to analyze how subsystems fit
together when they share resources. Resource architecture
can be described using description languages (ADLs)
developed for software architecture.

1 Introduction
Software is just a set of instructions that govern the

use of resources such as processors, memory, buses, and
peripheral devices. The software also introduces artificial
or logical resources into the system to coordinate the use
of physical resources such as memory or peripheral
devices, (for example, a semaphore), to protect the integ-
rity of data (for example, a lock), and for many other pur-
poses.

Together the software and hardware resources govern
the performance of a software system, in the sense of its
response delays or its capacity to handle traffic. They can
prevent a program from proceeding, until some resource
can be allocated to the program. This aspect ofauthority to
proceedis common to both software resources and hard-
ware resources; we wish to emphasize their similarities

and common properties, in an overall resource architectu
for a system.

Resources are seldom treated systematically a
carefully in software design, except perhaps for process
time. This may be intentional, as in a design which
intended to be useable over a wide variety of physical pla
forms (so it deliberately avoids consideration of physic
resources). More often resource usage is an emerg
property of the design, and resource interactions m
introduce undesirable delays. In some systems the patte
of resource use have enough structure that we can iden
a resource architecture, while in other cases the patte
are chaotic and the architecture is not obvious.

Software architecture is essentially a system descr
tion in terms ofcomponentsand theirinteractions. Com-
ponents may be clients and servers, databases, filt
layers, modules or subsystems. Interactions include m
sages, calls, communications protocols, database acc
protocols, and multicasts. An interaction is attached
both ends to distinctports, which are associated with
defined roles for the partners in the interaction.

The value of architecture is that it creates a cohere
overall structure which guides, contains and maintains t
functional details. More discussion of software archite
ture is given by Shaw and Garlan [24], Bass et al. [1] , an
Hofmeister et al. [9].

Coherent overall patterns of resource use are sim
larly important, particularly for efficient operation. Some
software components such as storage (buffers, files)
essentially just resources, while others, such as (e.g. op
ating systems processes, blackboards, databases) h
resource attributes along with other roles. Poor resour
use results in resource holding times that are longer th
necessary, in fragmented operations which acquire a
release resources many times, and in logical bottlenec
which are discussed below.

2

hi-

m
ig-
it

lay
[3],

el
el

to

as
ces

in

m

e

Resource aspects of software are mentioned with
regard to concurrency decisions, for instance in [24], and
in architecture evaluation, for instance in [1], [4]. Klein,
Kazman and Clements specifically considered perform-
ance as an example of attribute-based architecture evalua-
tion, in [12]. Shaw has recently addressed the impact of
changing resource capabilities in “open resource coali-
tions” which may assemble resources dynamically as they
run [25]. However there has been little systematic consid-
eration of resource attributes of software architecture.
What we find are statements along the lines that a certain
alternative software architecture is judged to be good for
performance, because it permits concurrency (see e.g. [4]).

If we understand resource architecture better, we
may be able to:

• develop resource-dominated software architectures
from scratch, for applications in which quality of serv-
ice is important,

• develop a performance model for a given software
architecture, and make performance predictions,

• plan deployment of a given software architecture in
different versions with different resources, for example
over varying scales.

Performance approaches such as layered queueing
models have been developed to study these issues, particu-
larly the latter two. A key notion in layered queueing is a
resource entity that can take the role of a server, in
processing a request, and then turn around and act as a cli-
ent in requesting service from some lower level resource
(e.g. [28], [32], [21]). This is natural behaviour for a soft-
ware server, and leads to a model with abstract entities that
correspond to software resources. Layered queueing has
been applied to web servers [5], transaction processing
[10], data routers [18] and distributed databases [26].

Besides performance-related properties, resource
architecture also identifies possibilities of resource dead-
lock due to resource request patterns.

This paper investigates the connection between a
software architecture and its resources, in order to promote
all three of the goals listed above, and others which may
follow from a clearer understanding. The idea and the
essential features of a resource architecture are described,
including some common styles (some of which resemble
styles of software architecture). We will see that the
resource architecture may be strongly structured, or not,
and that when it emerges from a software architecture, the
resources may or may not have a simple relationship to
each other. The concept of resource architecture was
described in an early version of this work [34]. The
present paper adds detail, an architectural notation, and an

approach to the systematic development of resource arc
tecture models.

2 Resources in software systems
Consider an hypothetical image-processing syste

called HyperCam that executes the scenario shown in F
ure 1, with operations to capture an image, process

according to the user’s instructions, and render and disp
the results. The scenario is shown as a Use Case Map
starting from the filled circle, following a path defined by
the heavy line, and ending at the bar. The three high-lev
operations are shown by labelled boxes. A high-lev
architecture for the software is shown in Figure 2.

Now consider the resources that might be needed
execute the activities in Scenario 1. The termresourceis
often used to refer to three different kinds of entities:

1. execution resources, which host the execution of the
operations and are usually system devices such
processors, interface devices, buses, and disk devi
and controllers;

2. logical resourcesor software resources, which are
essentially rights to proceed, and to execute certa
operations which we shall callresource-operations.
Examples of software resources include progra

FIGURE 1. Scenario 1: a sequence of activities to b
performed by the HyperCam system

processimage rendercapture
start end

FIGURE 2. Conceptual software architecture for the
HyperCam system

User Interface

Application

Control

Image Capture

Render and

Display

3

and
.

g-

e

r a
hi-
c-
re

n.
a

ce
le
o-
k.

is

m-
of

or
er

s
eed
of
A

-

ity.
threads, semaphores, locks, buffers, access control per-
missions, and window flow control permissions.

3. data resources, being information which the program
must access. The term Universal Resource Locator
(URL) refers to this kind of resource, as does the
Resource Description Framework (RDF) [15], which
essentially refers to resources which are documents.

This work refers only to the first two types, because it con-
centrates on entities with access limitations, that must
grant permission to proceed. Data resources as pure infor-
mation are therefore not included, except the aspect of
access permission to the data, which is regarded as a soft-
ware resource.

Resource context
Figure 3 displays the use of resources for Scenario 1

as a shaded zones. At a point where the program must

acquire a resource, the path enters a rounded shaded box
representing the resource. The path stays in the box until it
reaches a point where it gives up the resource. Each activ-
ity is thus surrounded by a set of shaded zones represent-
ing the resources that it requires.

The first resource shown is the program thread,
which represents the operating system resources required
to run a processor or thread. When the program is invoked
the shell waits until these are assigned, and the program is
started. The inner zones are the execution resources of the
individual activities.

For simplicity of the diagram, the operations in the
scenario have been broken down into small activities
which are each executed by just one of the system devices.
Thus “capture” in Figure 1 has been broken into “cp1”
executed on the user interface device (perhaps a PC), and
“cp2” executed on the digital image capture interface. The
execution resources are the user interface device (UI), the
image capture device (cap), the main image processor
(cpu), and a disk subsystem, (disk). At a point where the
execution path enters any shaded zone the program must
request the resource and wait until it is granted. Each
resource has a controller, scheduler or arbiter which makes

the decision and manages a queue of waiting requests,
these controllers are implied in the figure, but not shown

The set of resources surrounding each activity in Fi
ure 3 is itsresource context.The resource context of activ-
ity “cp1”, for example, is the user interface UI and th
program thread.

Using scenario analysis some of the resources fo
program can be analyzed even before the software arc
tecture is determined. Additional resources such as pro
esses and threads will be created later in the softwa
design.

Additional types of software resources are commo
Figure 4 shows a modified version of Scenario 1 using
file server and a lock. The lock is an exclusive resour
which is obtained before storing the image data as a fi
(and reading and writing additional files as processing pr
ceeds). The program connot proceed until it has the loc
Similarly a file server thread is a resource which
required for file server operations.

Figure 4 shows that resource contexts may be co
plex and may change rapidly. The Figure conceals some
this behaviour, as it is drawn in a rather abstract form. F
instance the program may switch between the file serv
cpu (fsc) and the disk (dsk) many times.

Resource multiplicity
A resource identified in a context may be provided a

a single resource, such that only one request can proc
at a time, or as a multiple resource, which is a pool
equivalent resources managed by a single controller.
multiple CPU could be provided by a symmetric multi

FIGURE 3. Scenario 1, with resources and resource
contexts indicated for finer-grained activities

UI cap disk cpu disk cpu UI

program thread

start
cp2 pr1 pr2 pr3 ren1 ren2cp1

end

(processimage) (render)(capture)

FIGURE 4. Scenario 2, with lock and file server
resources, showing the resource context for each activ

(processimage) (render)(capture)

cap cpudsk cpu UI

program thread

FSthread

fsc fscUI dsk

Lock

FSthread

cp1 cp2 pr1 pr2 pr3 ren1 ren2pr4 pr5

4

the
f it

he
ral

rio
e
ra-
in
a),

in
as

i-
e
ct,
ce

is
),
text
te
the
d

of

l
th
the
e

l
nd
sts
k)

f
any
e.
e
ses
is

ces
processor; a counting semaphore allows multiple requests
to pass up to its limit; a multi-threaded task allows multi-
ple instances of the program to execute; a buffer pool can
allocate all its elements separately. All these are examples
of resource multiplicity.

A process with unlimited threads, such as a server
which creates a thread per request, is an infinite set of
resource tokens which actually cannot withhold permis-
sion to proceed. In this sense an unlimited resource pool is
missing one of the key attributes of a resource, and
removes the limitations associated with that resource in
the architecture. On the other hand the removal may be
illusory, for instance an unlimited thread pool is still lim-
ited by the availability of memory to instantiate the threads
in.

Nested contexts
The resource contexts in the above figures are strictly

nested, one within the other. Commonly, resource con-
texts are nested like this, however within a particular
resource context there may be a variety of choices for fur-
ther nested resources. This means essentially that
resources are released in the reverse order to which they
are obtained. One way to ensure this, when multiple pro-
gram threads are in competition for a variety of resources,
is to have a global ordering of resources and to always
obtain multiple resources in this order. This strategy is
used for instance with locks, to avoid locking deadlock,
and it also ensures against deadlock with other resources.
A weaker condition is to that a directed acyclic graph
should exist, with resources as nodes, and all resource
requests are made in the order given by the graph. This
does not require a prior global ordering.

Strictly nested resource contexts lead to layered
queueing models for performance, as described in Section
6. Non-nested resource contexts are certainly possible, as
illustrated in Figure 5, However they are more difficult to

represent and to understand than strictly nested ones, and
much of this paper concentrates on strictly nested con-
texts.

3 Resource-operations within a software
design

Resources are used to carry out the operations of
program. Once a resource is obtained, the use made o
will be termed aresource-operation, including execution
of activities, and requests for additional resources. T
interactions with other resources make up the architectu
relationships in the software resource architecture.

The resource-operation is defined by the scena
fragment that is executed while the program holds th
resource. It includes activities and nested resource-ope
tions. For example, the resource-operation of the lock
Figure 4 has the scenario fragment shown in Figure 6(
including nested operations at the File Server.

The resource-operation definition can be stated
other ways, for example as a UML sequence diagram,
shown in Figure 6(b) (see [2] for a description of the Un
fied Modeling Language for software). The lock resourc
context is indicated by requests to a lock manager obje
to obtain and release the lock. The part of the sequen
diagram showing operations while the lock is held,
shaded lightly in the background. Comparing to part (a
the shaded zone indicates the same lock resource con
in both figures. If we extract this part as a separa
sequence diagram, it defines the resource operation of
lock, within this scenario. The same information coul
also be indicated in a UML collaboration diagram.

The attributes of a resource-operation that are
interest for resource architecture are:

1. the execution resources of the elementary activities,

2. strictly nestedresource requests, identifying additiona
resources that are obtained within this operation, wi
nested contexts (that is, they are released before
end of this resource-operation). In Figure 4 all th
requests are strictly nested.

3. partly nestedresource requests, identifying additiona
resources that are obtained during this operation, a
not released before the end. In Figure 5 all the reque
but on one (indicated by the smallest zone, left blan
are partly nested

During the execution of a program, or of a system o
several processes, a given resource is requested m
times and different operations are carried out each tim
This gives an explosion of resource-operations for th
same resource, which conceals the way the system u
the resource, rather than explaining it. To overcome th
problem, we can pool these resource-operation instan
together.

FIGURE 5. Overlapping, non-nested resource
contexts

5

ted
re
oth
by

o
ed
r

n,

,
e

ny
ce-
be
to

r
e
led
the
as

ey
ts
i-
m-
en

ted,

le
le
ach
ut-
r is
h.
d-
n

o
he
ion
Pooled resource-operation definitions
There might a large number of instances of use of a

single resource like the lock, all with slightly different
resource-operations. To represent the general properties of
the use of a resource by the system, a pooled resource-
operation is derived from all these instances within the
collaborations or scenarios of the system. The attributes of
the pooled operation are its set of possible requests for
other resources. A strictly nested request is represented,
for a resource that occurs this way in one or more of the

operation instances; a partly nested request is represen
for a resource that occurs this way in one or mo
instances. Thus the same resource may occur in b
ways. The processing operations are represented
requests to their execution resources.

Partial pooling: multiple resource-operations for one
resource

Instead of pooling all the operation instances int
just one resource-operation, they may be partially pool
into groups with significantly different attributes. Fo
example,

• file reads might be identified as one pooled operatio
and writes as another.

• one pool could be formed for purely local operations
and another for variations which give rise to remot
requests over a network

Partial pooling gives each resource aset of pooled
resource-operations, each with different interactions. A
request for the resource is made for a particular resour
operation. The decision as to which operations should
pooled together is a matter of judgement, taking in
account differences in the patterns of nested requests.

4 Resource architecture
An architectural view of resources, similar to that fo

software architecture, can be obtained by viewing th
resources as components, the requests in the poo
resource-operations as interactions or connectors, and
resource-operations as ports. This gives a diagram such
Figure 7. Interactions are typed according to whether th
give strictly nested contexts or not; strictly nested contex
give a call-return or synchronous kind of interaction, ind
cated by filled arrowheads. Partly nested requests rese
ble an asynchronous interaction and are indicated by op
arrowheads. Since all the requests in Figure 7 are nes
only filled arrowheads appear.

Figure 7 shows the program thread with a sing
operation to run the program, and the lock with a sing
operation to run the subscenario discussed above. E
operation has an in-port to connect to requests, and an o
put where the operation makes requests. The File Serve
shown with two resource-operations and a port for eac
The box representing the file server is partitioned for rea
ability, so that each operation has a sub-box and its ow
in-port and out-port.

The device resources (UI, Main-CPU etc.) are als
shown, which is optional, but in this case connects to t
previous discussion and diagrams. They have execut
operations which are not labelled separately.

FIGURE 6. Defining the resource-operation of the
Lock in Scenario 2

cpudsk

FSthread

fsc fscdsk

Lock

FSthread

pr1 pr2 pr3 pr4 pr5

UI Applic’n Capture Render FS Lock

Manager

cp1

cp2

pr1,
pr2

pr3

write, read

write, read

pr4,
pr5

lock request

lock release

ren1

ren2

Lock resource-operation

(b) UML Sequence Diagram

(a) Lock resource-operation defined by a
Use Case Map

6

t),
ra-
n
d.
er-
er-
or
he

o

e
E
le-
The derivation of the architecture diagram may use
an intermediate step, which is illustrated in Figure 8 for
the same system and scenario. A sub-scenario is shown for
each resource-operation, with dashed-outline boxes for the
activities. The activities are not part of the architecture
notation, but are shown as a stepping-stone to capturing
the interactions in the resource-operations. The shaded
resources, activities, and request arrows indicate the activ-
ities which are active in each operation, and the requests
which are at present satisfied, to execute activitypr1 in
Scenario 2. The disk is the active resource and is reading
data, preparatory to processing it. The top-level Thread
resource is in itsprocessimageactivity; the Lock resource
is in its readactivity, the file-server resource is in theread
activity of its Read operation, and the Disk is actually
reading the data. The resource context is indicated by the
shaded resources, activities and request arrows.

The architectural notation for resources in Figures 7
and 8 conveys more information than the nested contexts
shown in Figures 2 to 4. We can see the roles played by a
resource across the system, in combination with different
other resources; We can see the different contexts within
which a given resource may operate; the pooling of
resource-operations gives a picture that includes many dif-
ferent nesting patterns. The architectural notation concen-
trates on the resources, where the nested context notation
focuses on the activities.

Additional architectural properties
The basic elements of resource (as a componen

request (as a connector or interaction) and resource-ope
tion (as a port, or rather a pair if ports) have bee
described so far. Additional properties may be include
For instance, a request may simultaneously demand a c
tain set of resources to be provided as a single atomic p
mission, either all or none. Centralized lock managers f
databases handle requests like this, for a set of locks. T
high-level view of a connector abstraction in the ACME
architecture description language (ADL) is sufficient t
capture such a combined request.

Formal description
A formal description of the resource architectur

described here can be recorded using an ADL like ACM
[14]. The standard elements of ACME represent the e
ments of a resource architecture as follows:

• ACME components represent resources

• connectors represent requests,

FIGURE 7. Graphical notation for Resource
Architectures, related to Scenario 2, showing

resource-operations Read and Write for the File
Server

Program

Read

Lock operation

Thread

Lock

 Write

FileServer

UI

Main-CPU

FS-CPU Disk

FIGURE 8. Resource architecture with added
activity detail in every resource-operation, and with

highlighting of the resources, activities and
interactions for activitypr1 of Secnario 2

processimage rendercapture

compute writeread

cache,reply writeread

Thread

Lock

FileServer

Program

Lock operation

Read Write

CPU
FS-CPU

Disk

7

”
ing
ion

d,
nd
es

s is

t
he
at-

g,
ly
in
es.
he
e-

he

on
he
red
ro-
ns
ss

ic
-
a

ater
s

nd
ed

ty
• ports represent resource-operations, with an in-port
and an out-port for each operation,

• roles capture the requester and acceptor role for a
request

The ACME concept of anarchitecture familycould be
used to create a sub-language for resource architectures.

Architecture parameters
It may be useful to add parameters to a resource or a

resource-operation. Parameters can be used to define the
multiplicity of a resource (a multiprocessor, or a multi-
threaded task, for instance, or a set of replicas of a server);
or to represent the intensity of the dependency of an opera-
tion on its requests made to other resources (for instance
the average number of times each other resource is
requested, or the average execution time of a processing
operation).

5 Styles of resource architecture
Characteristic classes of resource architecture are

used in certain areas of application, corresponding to
styles of software architecture. Four of these, called lay-
ered, restart, asynchronous, and pipeline, will be identified
here.

• Layered style:A common class of systems provides
resources and services on demand. A request for a
service causes the program to add the appropriate
resources to its context, and execute the service, then
release the resources.

This is a kind of client-server resource style, with
strictly nested resource contexts, as just described. Outer
contexts are at a higher layer and inner ones at a lower
layer. Lower level resources are held for shorter time
spans, nested within the holding times of higher level
resources. The “bottom” or innermost resource in any con-
text is normally the device that is actually executing the
current operation.

• Restart style:In real-time systems in which deadlines
must be met every time, deterministic resource behav-
iour is obtained by restarting the resource acquisition
for each task. This style is widely used in automatic
control systems and signal processing. The program is
divided into distinct “tasks” to execute each of the
activities. Deadlines are enforced by the scheduler,
backed up with calculations of schedulability, and
mechanisms like priority inheritance (see, e.g. [17]).
Resource requests are restarted from scratch for each
task; the task scheduler allocates the necessary
resources to a task before it is launched, and they are
released when it ends.

We may call this a “restart” or “operation-centred
resource style; a sequence of separate non-overlapp
resource contexts are created. Figure 9 gives an illustrat

in which each task has its own operating system threa
and a physical resource (RC, RE, or RF in Figure 9), a
each task also has its own collection of logical resourc
(RA, RB, RD, RX). Even though RA is used again in
Task2, it is released after Task1 and then reacquired; thi
in contrast with the case in Figure 4.

• Asynchronous style:each interacting task has (at leas
in principle) a self-contained set of resources, so at t
task-to-task level the system is idealized as cooper
ing machines, without shared resources.

This style is used in telecommunications processin
by using asynchronous messages, providing effective
infinite threads for each process, storing data in ma
memory, and restricting all interactions to be by messag
In this style shared data would be managed by one of t
tasks, and locking of shared data is either avoided som
how, or is minimized and treated as an exception to t
architecture.

The asynchronous style has something in comm
with the restart style, in that both attempt to separate t
resource contexts of operations. This is due to a sha
concern to control response times. However the asynch
nous style is adapted to situations in telecommunicatio
which have more variety of sequence and interactions, le
predictable behaviour and less strict time constraints.

• Pipeline style:Pipelines are widely recognized and
used, in hardware and software, and in their class
form they are a “one-at-a-time” resource style. How
ever they may also appear in a generalized form as
sliding series of overlapping contexts, in which
resources are acquired in some order and released l
in the same order, while operations are carried on. A
an example, a file may be opened in one stage a
closed in some later stage, with ownership pass
along the pipeline.

FIGURE 9. Separate resource context for each activi

Task1

RA

RB

RC

Task2

RA

RD

RE

Task3

RX

RF

Task4

RC

8

th
ce,

ed

ow
s.
-

m
As
he

ine

k-
o
me

r
d
this
rce
nd

s-

he
an
xts,

e
plits
sed
e
tly

es
,

d
nd
by
6 Resource architecture in performance
analysis

In the three-view model for software performance
engineering described in [33] there were views of Maps
(corresponding to software architecture), Paths (corre-
sponding to scenarios), and Resources, which are
described by performance models. Entities in the software
may appear in one, two or in all three views. The relation-
ships between the views were described in [33]. The
resource architecture is a bridge between the software
architecture (Map) and the Resource view.

In a different approach, Hofmeister, Nord and Soni
[9] describe logical and module views which are types of
Map view, and an execution view which takes some
account of resources. However the Resource Architecture
described here is different, in that it may have a signifi-
cantly different structure from the software architecture
which hosts it.

Resource models may be used to analyse perform-
ance. Classical performance models described resources
which are used one at a time, and are represented by serv-
ers with queues for jobs that are requesting service. These
models cannot represent software resources, so extended
queueing networks were introduced for this purpose, for
example to represent critical sections [16].

A form of extended queueing model for software
performance modeling, called layered queueing networks
(LQNs), has been developed based on the ideas in Figure
8. The models and tools have been developed by several
authors and are described in [31][32][21][6][7][20]. An
LQN determines the delay in waiting for all resources, at
every level in the layered hierarchy. It accounts for how
the holding time of a resource includes waiting and hold-
ing for lower level resources. LQNs have acyclic request
graphs to avoid resource-based deadlock. That is, because
two concurrent programs within the same architecture
request their resources in the same order, they cannot
deadlock in a situation where each is waiting for a
resource already held by the other.

Applications of LQNs include client-server systems,
web servers [5], transaction processing [10], distributed
databases [26], connection management [11] and “intelli-
gent network” servers in telecommunications [28].

A single-layer LQN, such as would arise from Sce-
nario 1 in Figure 3, is just an ordinary queueing network
model. The Program resource in Figure 3 is the customer
or customers, and the other resources are the servers.

Our resource architecture model can exploit addi-
tional types of interactions defined in LQNs, beyond those
described in the previous section. These include:

• non-blocking requests, in which the execution pa
goes on to a new context when it releases a resour
rather than back to a previous one,

• early release of the requester, while the request
resource continues to be used,

• forwarded requests, which are asynchronous at a l
level while holding some set of higher level resource

• multiple copies of a resource, all identical and man
aged as a resource pool.

These will now be discussed in greater detail.

Resource pipelines and non-blocking interactions
In a classic pipeline a package of data is passed fro

one resource to the next, as a buffer or message or file.
it arrives at the next stage it releases the one before. T
resource-operations are exactly mapped to the pipel
resources.

Passing data like this will be termed anon-blocking
interaction between the resource operations. Non-bloc
ing interactions are not limited to pipelines; they als
occur when a series of resources is triggered one at a ti
to work on a job, in any order.

Also, a chain of non-blocking interactions can occu
in the midst of a layered system, with some blocke
resources also being held throughout the sequence. In
case we may interpret that the request to the first resou
in the chain is being forwarded through the sequence, a
these are calledforwarding interactions. They are remark-
ably common, for example where an input thread di
patches requests to a set of worker threads.

Early release of the requester
We say a requester isreleased earlyif the resource-

operation making a request can resume while t
requested resource is still busy. The two resources c
then be active in separate concurrent resource conte
which increases the system concurrency levels.

In one kind of early release interaction, when th
requester releases a resource R the execution path s
and an independent resource context is started up, ba
on R, in parallel with the continuation in the context of th
requester. This pattern of resource behaviour compac
captures a fairly common behaviour, for instance:

• a server returns a result to an RPC client, and then do
any work which is not in the critical path of the reply
such as buffer clean-up, or logging,

• a pipeline stage accepts its input from a blocke
upstream stage (perhaps using a shared buffer), a
then releases the upstream stage and continues on
itself,

9

a
ny
ad

the
ys-
for
e
is
dic-
s.
r;

f
a

rcs
ce
d
ion
m

ad
d
sts.
rk
es

n

• a task is handed off to a server to be performed inde-
pendently.

In layered queueing terminology the part of the
resource-operation after the early release is called a “sec-
ond phase”.

Resources with delayed release
A common pattern of resource holding, which breaks

the layered structure, makes an interesting study. Consider
a layered system with one exception, a resource which is
obtained in a deeply layered context, and retained when
other resources “above” it are released. For instance, a sys-
tem might obtain rights to a buffer on a remote system,
through the use of remote resources which are then
released, and then later pass the buffer rights to an agent
on the remote system, to use. The agent might then use the
buffer and then pass it back, release it or pass it on. The
resource contexts for such a system are shown in Figure
10, and we can see that they are not nested. This thor-
oughly breaks the layered resource pattern.

If resources are layered except for a subset, the sub-
set can be shown as exceptions. For one isolated delayed-
release resource, the request and entry into the resource-
operation are just as before, but the resource-operation
completes without releasing the resource; this must be
indicated as a special class of resource. Then the release is
a separate interaction, which could be indicated graphi-
cally by a special class of arc. Figure 11 shows a Buffer in
such a special class of resources, labelled (DR) for
delayed release, and the release interaction indicated by an
arc labelled Release. There could be multiple alternative
release points. A weakness of this notation is that the
scope of the resource contexts covered by the Buffer is not
clearly identified.

Multiple copies (multiple threads)
A resource may be provided in multiple copies. For

instance, the buffer described just above would normally
be one of a pool all managed by the Buffer Manager. A
server process may be multi-threaded; a processor may be

a multiprocessor. Multiplicity should be a parameter of
resource. Sometimes a resource is multiple without a
limit, for example a server process which creates a thre
per request.

7 Uses of resource architecture
The resource architecture, and the parameters of

resource-operations, governs the performance of the s
tem. Models based on the architecture can be used
evaluation. This has limitations deriving from the degre
of abstraction in the architecture; if the architecture
abstract and misses some fine-grained resources, a pre
tion based on it will miss the effect of those resource
While this could be regarded as a kind of modeling erro
it is an inevitable aspect ofabstraction. The prediction is
correct at that level of abstraction

Resource deadlocks
A key architectural property is the existence o

cycles in the resource architecture, when it is written as
directed graph with nodes for resources and directed a
for requests. A cycle indicates the possibility of a resour
request deadlock. An acyclic graph with only neste
requests can be arranged in layers, with the execut
resources in the bottom layer and the application progra
threads at the top.

Resource overhead
Acquiring and releasing resources incurs overhe

which is part of every resource-operation. Fine-graine
resource manipulation can cause explosive overhead co
A nice example is data access under the Simple Netwo
Management Protocol (SNMP), where the protocol stat

FIGURE 10. Delayed release of a Buffer resource,
with non-nested resource contexts.

Buffer

Program

Server

Agent

Buffer
Manager

Thread

Program

Thread

Thread

CPU1

CPU2

Buffer

AgentServer

Buffer

Manager (Release)

FIGURE 11. Delayed-release resource shown as a
exception within a layered architecture

Thread

10

as

ri-
d
e-
m-
re
et

ly
ng
ay
is
ay
g-

s-
s
e-
ce
his
ing
er
es,
al
nd

-
vel
ds.
g

om
ted

ay
ce
ed
on

t-
es,
he
gh
s.
to

at
be
rs

ne
that every remote value is retrieved separately from a
Management Information Base (MIB). This can cause
heavy data traffic to be visible in the parameters of the
resource architecture [27].

Software bottlenecks
One consequence of a software architecture may be a

software resource bottleneck. Layered queuing has been
used to investigate this phenomenon, as it relates to proc-
ess threads [19]. A process thread remains “busy” when it
is blocked, waiting for an event or message or reply from
some other process or device. A typical source of blocking
is waiting for disk I/O to complete. While one thread is
blocked, another one could be using the processor, if there
is one ready to run. An insufficient thread pool is an exam-
ple of a software bottleneck, which can relieved by
changes (more threads) which are entirely in the software.
Another cause of resource starvation is long resource hold-
ing times, due to lengthy operations or congested
resources at lower levels (e.g. thread starvation because of
congestion in the file server). In [19] a measure of “bottle-
neck strength” was described, to identify where the cause
of the bottleneck is located.

Abstract resource architecture patterns
Resource architecture can be the same in systems

with very different kinds of resources. Similar software
bottlenecks due to logical resources occur at flow control
windows (provide a larger window), at a locks (provide
finer-grained locking) and even with layered hardware
resources, for instance a bus bottleneck when the bus is
used to access memory and various interfaces [18]. Pat-
terns in resource relationships that lead to bottlenecks, and
strategies for relieving them, have common forms in very
different kinds of system. We can identify resources by
their roles, and apply similar cures to resource problems in
a wide variety of systems.

Complex systems of multiple programs
A resource architecture can also be derived for aset

of programs which interact at certain resources. This is
important for a distributed program which is implemented
as a set of collaborating processes, and it can also be used
to understand the interactions of separate applications that
happen to share software services.

8 Relationship to software architecture
In a given system, how do the resources relate to the

software architecture? We can look at this question in
three ways: resources as an emergent property, software
deliberately designed around its resources, or resources
deliberately kept orthogonal to the software structure.
There is also the real-time separated-resource-context

case, where there is effectively no resource architecture
such.

Emergent resource architecture
The software architecture is determined using a va

ety of relevant criteria, including performance an
resources. A wide-ranging discussion of methods for cr
ating and evaluating architectures is given by Bass, Cle
ents and Kazman [1], and real-time system softwa
architecture evaluation is addressed directly by Kazman
al. in [12]. Some resource issues are dealt with explicit
but other resources for controlling data access, for stori
temporary data, for concurrent threads, and so forth m
just accumulate from the totality of considerations. In th
way a resource architecture emerges, and it may or m
not have a recognizable structure. How can it be reco
nized and extracted?

Kazman and Carriere have considered a similar que
tion for software architecture, and found the relationship
from static analysis [13]. For resources, it is clear that sc
narios or traces must be analyzed to identify resour
demands and holding times of higher level resources. T
is the basis of classic software performance engineer
recommendations by Smith [29], for instance. Howev
Smith concentrated on demands from hardware devic
and gave only limited assistance for dealing with logic
resources and concurrent execution. In [30] Smith a
Williams considered software architecture and perform
ance, but the architecture was at a very fine-grained le
(data objects) and mainly affected the hardware deman
Hrischuk et al. [10] have described an approach for findin
resource contexts and layered performance models fr
traces, even when objects have been dynamically crea
and linked.

The resource issues that emerge during analysis m
also be due to hardware resources. In [12], performan
issues which arose in evaluating a real-time embedd
software architecture centred around a hardware limitati
(a channel bandwidth).

Emergent resource architecture partly follows sof
ware structure. Concurrent processes involve resourc
for instances. Semaphores can be identified, but t
requests may be buried in low level modules even thou
they govern higher-level operations by other module
Thus the scope of a resource-operation may be difficult
determine. Buffer resources pose similar questions.

“Resources first” development
Systems with critical performance requirements, th

are not amenable to separate-context design may
designed around the critical resources. Internet route
come to mind as an example, with the routing table as o
critical resource.

11

-
e

e a
e.
the
n.
n
ver

-
d
on

d,
at

f
ft-

es.
le,
em
of
es
ay
-
ny
n
he
ne
is
ich

n
as
to

per-
ny
he
g

re
for
e

or
re
re

em
d

In designing reactive software systems (systems
where the function is mainly to respond in a timely way,
and in the correct order, to external events) Selic et al.
have insisted that architecture should not only identify
components and interactions, but must also describe
behaviour [23]. This is certainly also true where resources
are considered first. It is implied by the central position of
resource-operations and their interactions, in the architec-
ture. Scratchley and Woodside have considered concur-
rency-related architecture decisions within an integrated
scenario specification in [22], and have evaluated substan-
tial alternatives in software architecture for a group com-
munications system. Some ideas for generating
architectural alternatives around performance concerns
were described in [33].

A general approach is to develop the resource archi-
tecture first, from an analysis of scenarios, then to estimate
budgets for operation times, validate the performance
measures on the basis of the budgets, and finally go on to
develop all the other aspects of the software within the
budgets. This process mimics the way projects are man-
aged to fit within financial budgets, and allows for itera-
tions and adjustments as problems are revealed. This is a
subject of current research.

Resources orthogonal to software
This name is applied here to systems in which the

software design avoids resource commitments, so it can be
deployed in many different situations, with different
resources. This approach appears to be implicit in many
theoretical ideas of distributed systems. Ideally, resources
can be completely ignored in the software, and included in
a configuration step which specializes the system to a par-
ticular deployment option.

In practice, there are stillresource rolesin the
design, or implied by it. They may be employed only in
some versions of the system. For instance semaphores to
protect data shared by multiple threads are not needed in a
small-scale single-threaded deployment. The resource
architecture is a property of the deployment, and is effec-
tively isolated from the software architecture. However the
semaphore programming has to be provided in the system,
even if its use is made optional.

In this situation there may be many resource archi-
tectures that could be used with a single software architec-
ture, and they may be quite different. For instance a series
of operations in a subsystem might be configured as a
resource pipeline in one deployment and a hierarchical
master-slave style in another. The possibility exists of opti-
mizing the deployments within a general plan, and some
of these issues were explored in a recent study of scalabil-
ity of software architectures [11].

The programming to support multiple resource con
figurations is likely to be complex, which is a negativ
aspect of this concept.

Self-contained tasks
Concurrent software tasks may be designed to us

self-contained set of resources, at least while it is activ
Even the processor is viewed as not being shared while
task is active, by requiring that the task runs to completio
This is a very “resource-aware” form of software desig
and can be used for hard-real-time systems or where
resources are critical. However if a task must run to com
pletion it limits the use of modern schedulability-base
methods for achieving deadlines, since these are based
task pre-emption. If run-to-completion can be relaxe
pre-emption may be permitted by a “compatible” task th
uses a different set of resources.

Separated contexts and central resource management
Deadline driven systems with the “restart” style o

resource architecture tend to have a flattened style of so
ware architecture, as well as self-contained resourc
Shared server tasks with blocking requests, for examp
are absent or discouraged. Central control by the syst
scheduler establishes control over timing of execution
operations, but limits the system’s applications and mak
it sensitive to changes. As examples, the design m
depend critically on a clock rate, or on how many func
tions have to be executed in an execution cycle. Once a
aspect of such a tightly controlled solution breaks dow
the system must be reconsidered from the beginning. T
composition of systems into larger systems has to be do
with great care and may not be possible. As a result, th
approach does not appeal to designers of systems in wh
it is not essential, for instance in telecommunications.

9 Conclusions
A concept of resource architecture has bee

described, which applies to software resources as well
to hardware. There are resource-operations attached
each resource, and resource interactions between the o
ations. A resource architecture can be determined for a
software system, and often has a layered structure. T
layered form is backed up by a performance modelin
methodology called layered queueing. The softwa
resource architecture can also be used to analyze
resource deadlock possibilities, for insight into the rang
of resource contexts that the system will use, and f
insight into the interactions between systems that a
designed separately but which share some softwa
resources.

Resource architecture may be imposed on a syst
from the beginning by its designers, or may be identifie

12

g

,
s
-
-

f
e

-

c.

-
re
i-

e

-
f

:
e
r-

,
/

n
,
r-

k,

,

0,
as an emergent property of a mature system. Identifiable
styles of resource architecture include pipelines, hierar-
chies and layers, and operation-centred styles. A chaotic
architecture, with resource relationships that have no par-
ticular structure, may be subject to inefficient resource use
and to resource deadlock.

The resource architecture is in general not simply a
reflection of the software architecture, but has separate
entities and relationships. However, in two demanding
classes of application, in control and in telecommunica-
tions, there is a strong correspondence between the two.
The restart and asynchronous architecture styles described
above force them to line up, more or less, and also con-
strain the software style. Deeper study is needed into the
general question of alignment of the two aspects of archi-
tecture, and the need in some systems to give primacy to
an effective resource architecture.

For understanding performance issues, and adapting
designs to solve performance problems, software
resources will usually be considered together with hard-
ware resources, in asystem resource architecture, which
can also be described by the approach of this paper. In fact
the examples given here include some hardware resources,
and hardware resources can also be layered. The inte-
grated study of software and hardware resources is essen-
tial for understanding the operation of the system.
However a given software system is likely to be deployed
in many different environments, so its software resource
architecture should be understood first and then consid-
ered as a component in many system architectures.

Acknowledgements
This research was supported by the Natural Sciences

and Engineering Research Council of Canada through its
program of Research Grants.

References
[1] L. Bass, P. Clements, R. Kazman,Software architec-

ture in practice,Addison Wesley, 1998

[2] G. Booch, J. Rumbaugh, I. Jacobson,The Unified
Modeling Language User Guide, Addison-Wesely,
1999.

[3] R.J.A. Buhr, “Use Case Maps in Scenario-Based
Design”, IEEE Trans. on Software Engineering, vol.
24, no 12, Dec. 1998, pp 1131-1155.

[4] L. Cheung, B.A. Nixon, E. Yu, “Using non-func-
tional requirements to systematically select among
alternatives in architectural design”,Proc. of First Int.
Workshop on Architectures for Software Systems, April,
1995, pp 31-43.

[5] J. Dilley, R. Friedrich, T. Jin, J.A. Rolia, “Measure-
ment Tools and Modeling Techniques for Evaluatin
Web Server Performance”,Proc. 9th Int. Conf. on Mod-
elling Techniques and Tools, St. Malo, France, June
1997

[6] R.G. Franks, S. Majumdar, J.E. Neilson, D.C. Petriu
J.A. Rolia and C.M. Woodside, “Performance Analysi
of Distributed Server Systems”, Proc. Sixth Interna
tional Conference on Software Quality, Ottawa, Can
ada, October 28-30, 1996, pp. 15-26.

[7] Greg Franks, Murray Woodside, “Performance o
Multi-level Client-Server Systems with Parallel Servic
Operations”,Proc. First Int. Workshop on Software and
Performance (WOSP98), pp. 120-130, Santa Fe, Octo
ber 1998.

[8] D. Garlan, R.T. Monroe, D. Wile, “ACME: An
Architecture Description Interchange Language”, Pro
CASCON 97, Toronto, pp 169-183.

[9] C. Hofmeister, R. Nord, D. Soni,Applied Software
Architecture, Addison-Wesley, 1999.

[10] C.E. Hrischuk, C.M. Woodside, J.A. Rolia, “Trace
Based Load Characterization for Generating Softwa
Performance Models”, IEEE Trans. on Software Eng
neering, v 25, n 1, pp 122-135, Jan. 1999.

[11] Prasad Jogalekar, Murray Woodside, “Evaluating th
Scalability of Distributed Systems”, IEEE Trans. on
Parallel and Distributed Systems, to appear in 2000.

[12] R. Kazman, M. Klein, P. Clements, “Evaluating Soft
ware Architectures for Real-Time Systems”, Annals o
Software Engineering, Vol. 7, 1999, 71-93.

[13] R. Kazman, S. J. Carriere, “Playing Detective
Reconstructing Software Architecture from Availabl
Evidence”, Journal of Automated Software Enginee
ing, 6:2, April, 1999, 107-138.

[14] A. Kompanek, “Modeling a System with ACME”,
ABLE Group report, School of Coimputer Science
Carnegie-Mellon University, 1998. Available at http:/
www.cs.cmu.edu/able

[15] O. Lassila, R. R, Swick (eds), Resource Descriptio
Framework (RDF) Model and Syntax Specification
W3C Recommendation 22, World Wide Web Conso
tium, Feb. 1999.

[16] E. Lazowska, J. Zahorjan, S. Graham, K. Sevci
Quantitative System Performance, Printice Hall, 1984.

[17] S. Levi, A. K. Agarwala,Real Time System Design
McGraw-Hill, 1990.

[18] P. Maly, C.M. Woodside, “Layered Modeling of
Hardware and Software, with Application to a LAN
Extension Router”, Proc. Performance Tools 200
Chicago, March 2000.

13

.

e
-

i-
[19] J.E. Neilson, C.M. Woodside, D.C. Petriu and S.
Majumdar, “Software Bottlenecking in Client-Server
Systems and Rendez-vous Networks”, IEEE Trans. On
Software Engineering, Vol. 21, No. 9, pp. 776-782,
September 1995.

[20] S. Ramesh, H.G. Perros, “A Multi-Layer Client-
Server Queueing Network Model with Synchronous
and Asynchronous Messages”,Proc. of First Int. Work-
shop on Software and Performance (WOSP98), pp.
107-119, Oct. 1998

[21] J.A. Rolia, K.C. Sevcik, “The Method of Layers”,
IEEE Trans. on Software Engineering, v 21, no. 8, pp
689-700, August 1995.

[22] C. Scratchley, C. M. Woodside, “Evaluating Concur-
rency Options in Software Specifications”, Proc 7th Int.
Symp. on Modeling, Analysis and Simulation of Com-
puter and Telecomm Systems (MASCOTS99), College
Park, Md., pp 330 - 338, October 1999.

[23] B. Selic, G. Gulleckson, P. T. Ward, Real Time
Object Oriented Modeling, publisher, 1994.

[24] M. Shaw and D. Garlan,Software Architecture, Pren-
tice-Hall, 1996

[25] M. Shaw, Sufficient Correctness and Homeostasis in
Open Resource Coalitions”, WORKSHOP at Nth Int
Conf on Software Engineering (ICSE2000), Limerick,
June 2000.

[26] F. Sheikh and C.M. Woodside, “Layered Analytic
Performance Modelling of a Distributed Database Sys-
tem”, Proc. 1997 International Conf. on Distributed
Computing Systems, May 1997, pp. 482-490.

[27] F. Sheikh, J.A. Rolia, P. Garg, S. Frolund, A. Shep-
herd, “Performance Evaluation of a Large Scale Dis-
tributed Application Design”,Proc. of World Congress
on System Simulation, Singapore, September, 1997 .

[28] C. Shousha, D.C. Petriu, A. Jalnapurkar, K. Ngo,
“Applying Performance Modelling to a Telecommuni-
cation System”, Proc. of First International Workshop
on Software and Performance (WOSP98), pp. 1-6,
October 1998.

[29] C.U. Smith, Performance Engineering of Software
Systems, Addison-Wesley, 1990.

[30] C.U. Smith, L.G. Williams, “Performance Evalua-
tion of Software Architectures”,Proc First Int. Work-
shop on Software and Performance (WOSP98), pp.
164-177, October 1998

[31] C.M. Woodside, “Throughput Calculations for Basic
Stochastic Rendezvous Networks”, Performance Eval-
uation, v 9, no 2, April 1989.

[32] C.M. Woodside, J.E. Neilson, D.C. Petriu and S.
Majumdar, “The Stochastic Rendezvous Network
Model for Performance of Synchronous Client-Server-

Like Distributed Software”, IEEE Transactions on
Computers, Vol. 44, No. 1, January 1995, pp. 20-34.

[33] C.M. Woodside, “A Three-View Model for Perform-
ance Engineering of Concurrent Software”, IEEE
Trans. On Software Engineering, Vol. 21, No. 9, pp
754-767, Sept. 1995.

[34] C.M. Woodside, “Software Resource Architectur
and Performance Evaluation of Software Architec
tures”, Proc. 34th Hawaii Int. Conf on Systems Sc
ences, Jan. 2001.

	1 Introduction
	2 Resources in software systems
	3 Resource-operations within a software design
	4 Resource architecture
	5 Styles of resource architecture
	6 Resource architecture in performance analysis
	7 Uses of resource architecture
	8 Relationship to software architecture
	9 Conclusions

