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Abstract

To reverse engineer scenarios from event traces one must infer causal relationships between even

inferences are usually based on a trace with sequence numbers or timestamps corresponding to some kind o

clock. In practice there is an explosion of potentially causal relationships in the trace, which limits one’s abi

extract scenarios. This work defines a more parsimonious form of causality calledscenario causalitythat concentrates

on certain major causal relationships, and ignores more subtle potentially causal links. The influence of an e

restricted to the particular scenario it is part of. An event which is not a message reception is defined to be ca

the previous event in the same software object, while a message reception is caused by a sending event in

object. The events are ordered to form ascenario event graphwhere typed nodes are events and the typed edges

certain causal relationships. Intuitively we might say that most logical clocks, which identify events which “happ

before” a given event and thus are potentially causal, give an upper bound on the set of causal events; scenario

identifies a lower bound. The much smaller lower bound set makes it possible to reverse engineer and autom

analysis of scenarios.

Keywords: logical clock, causal order, software tracing, graph grammar, trace analysis, distrib
programming, reverse engineering, event labelling, debugging

1.0  Introduction

Scenarios are used by developers to specify software, to capture designer intentio

sequences of actions and to relate them to the system structure [Rat97, BRJ99]. Re-engine

scenarios is a different problem since they are derived from source code and from execution

Here we concentrate on deriving scenarios from traces. We may call theserealized scenarios, and

they have many uses for program understanding, debugging, verification, validation,

performance analysis, as well as for re-engineering of the design and for planning re-use

software. For re-engineering, these realized scenarios should express the same informa
Page 1
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specified scenarios, to the greatest extent possible. They should identify the software action

the control flow that causes them to execute. The essence of this information is in thecausalityof

the activities and events in the trace.

Realized scenarios can be extracted from a trace made during the execution of a distr

system, by following the events in a particular causal thread within the trace, and separating

from other system activities that are executed concurrently. The causal links are identifie

“timestamping” the events with a logical clock, which records in some way the predece

successor relationships of the events. ******Curtis: Examples of logical clocks used for var

purposes? POET?

There is a large literature on logical clocks for distributed systems (e.g. [Lam78, SM94, F

Mat88]). They were introduced essentially because local physical clocks may not be synchro

and their original purpose was to give consistent temporal orderings of events (e.g., for

management), rather than for determining cause and effect relationships. In the literature, “e

is sometimes interpreted as “potentially causal”, to give what is called “happened be

causality. However this produces a large set of possible causes for any given event, which q

expands (as you go back in the trace) to include almost all events in the system. We may s

these well-known logical clocks give an explosion of causal connections between events.

In this work a more parsimonious approach is taken, calledscenario causality, which limits the

explosion by ignoring some pathways for causal influence, or (which is the same thing) assu

that they have no important influence. One way this is done is by dividing the execution of

concurrent software object into service periods, and assuming that a service period do

automatically depend causally on the previous service periods of the same object. (Other

clocks, which consider all events that have “happened before” to be causal, identify the entir

of the process as potentially causal.) The assumption of independent service periods is appr

for many service-oriented distributed systems. Scenario causality includes only those relatio

that are certain to be valid within a scenario, so scenario causality gives a lower bound on t

of causal events, whereas potential causality gives an upper bound.
Page 2
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The new logical clock is described as ascenario event graphwith typed and labelled nodes fo

the trace events, and typed directed edges. Following Newton-Smith [New80], a clock may

topological propertiesandmetrication properties; the graph structure serves as the topology of th

clock and the labels convey the metrication. The graph shows causal sequences, forks an

local object actions, and different kinds of message exchanges between objects and subs

Most logical clocks have a partial order topology, which is equivalent to an acyclic directed g

with untyped nodes and edges; the present graph gains its power from its typed nodes and

The metrication property describes how numerical values are defined for the timestamps, s

a series of integers in Lamport’s scalar clock [Lam78]. In the vector time logical clocks desc

by Fidge [REF] and by Mattern[REF], the metrication is a vector of integers, and the topolo

a partial order defined in a particular way over the vectors. The metrication of the new cloc

data structure embedded in the node labels. The purpose of this paper is to define the topol

the new clock formally, using a graph grammar and a set of axioms, and to show how this top

defines requirements for the metrication. A variety of metrications can then be defined; the es

of this family of clocks is in the topology.

Graph grammars have been used before to define software models, for instance to

MASCOTS [Pay95], Ada [Jac87], StateCharts [Gli95], and actor specifications [JR87].

scenario event graph is the first graph grammar definition used for characterizing executions

than intentions.

This paper first introduces scenario causality, and a model for service-struc

computations (which modifies the classical, atomic, simultaneous distributed system event

[SM94, Mat87]). From these it defines a scenario event graph as a description of causality, an

as the topology of a family of logical clocks. The topology determines requirements for

complete definition of a clock. The feasibility of completing the definition has been demonstr

in a particular case, described elsewhere. For re-engineering purposes it is shown how a s

event graph can be used to recover object interaction protocols from traces.
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2.0  Clock Topologies

The topology propertyof a clock defines how events are ordered in relation to each o

and the interpretation of that ordering. Figure 1 illustrates how a clock topology can pro

different event orderings from the same event set [New80].

• A linear graph ordering may be appropriate, if the topology does not characte

concurrency.

• A tree if the topology characterizes concurrency but not the synchronization betw

objects.

• A directed, acyclic graph if concurrency and synchronization between objects

characterized.

In all of these examples the interpretation of the topology could follow that of potential causa

if a path exists between any two nodes then the earlier node on the path may be a cause of t

node, otherwise the events may have occurred concurrently.

The metrication propertyof a logical clock is a data structure containing counters (usua

called timestamps), rules for advancing the counters, and rules for interpreting a timestamp to

the events or to identify if events may have occurred concurrently. The metrication mu

consistent with the topology, so the topology expresses requirements on the metricatio

example, a vector time logical clock [Fid91, Mat88] has a metrication of a vector of integers

Linear Tree

Figure 1: Examples of event ordering topologies expressed by directed acyclic graphs

Object A

Object B

Object C

Object D

Object A

Object B

Object C

Object D

Directed Acyclic Graph

Object A

Object B

Object C

Object D
Page 4



tential

rted in

l for

e only

tocols

lock’s

w of

nodes

diately

erent

into

tion of

ssage

hin a

rive as a

eam of

re the

iately

diately
can be used, with a partial ordering relation, to reconstruct a directed acyclic graph with a po

causal interpretation. Other metrications for vector time have been proposed and are repo

[SK92, FZ90, Val93].

The starting point of this work is the recognition that the well-known clocks are not idea

all purposes, partly because of causal explosion, and partly because they assum

asynchronous communications, which gives difficulties in handling message exchange pro

such as remote procedure calls. This latter difficulty has been addressed by adjusting a c

metrication [Tay92], [CMT95], [Fid91], [DJ92].

Clock topology offers a handle for designing something different. We take the point of vie

scenarios, that causality flows along the scenario. In a topology expressed as a graph,

represent events and there is a directed edge to a node from every other node which is imme

causal; there is a path from every node which is causal. Different topologies arise from diff

criteria for identifying causal links between events.

Following this scenario point of view, the execution of each software object is divided

service periods. The start of a new service period cuts the causal link to the previous execu

the same object. A new service period is triggered by an external event, or the arrival of a me

requesting a servicethat is causally unrelated to the previous activities.This looks like a circular

definition, but is not. Scenario causality propagates forward in the execution of an object wit

service period, and through messages to other objects. A causally related message may ar

reply to a previous message, or as a second request from some source, or from a str

operations resulting from a prior fork operation.

In the definition of scenario causality used here, an event is causal if it must occur befo

given event can occur.

Definition: Event e1 is an immediate scenario cause of event e2 if:

• in the case that e2 is not a message reception or a join, event e1 is the immed

preceding event executed by the same object. In this case e2 has only one imme

causal event,
Page 5
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• in the case that e2 is a message reception, e1 is the event of the sending of the m

from some other object. If the message reception is not also a join event, e1 is the

immediately causal event,

• in the case that e2 is a join event, it has two immediately causal events, one of wh

is a message reception and one, the preceding event executed by the same object.

To use this definition one must be able to

1) identify events with particular concurrent software objects,

2) identify join events without ambiguity

and the concept of the “same” object requires clarification. The word “object” is used to me

concurrent software entity such as an operating system process or a process thread. Two th

the same class are treated as separate objects. Forking of the flow can only be done (in thi

by sending an asynchronous message to another object, and joining, by receiving an asynch

message.

When a process receives a message it is either a reply to a previous request, a join even

start of a new service period. The tracing must contain enough information to resolve th

service-oriented software, new service periods begin at well-defined home states so it

difficult in principle to record this fact in a trace event. Replies are identified from their relation

to a previous request message. Other message receptions within the scenario are then im

join events.

We will be satisfied to ignore other pathways for causality. For example, if a program rea

data value, we will not insist on treating the instructions that wrote the value as causal t

instruction that reads; we will ignore their influence, if any, or treat it as a non-determin

influence. This point of view is common in designing and analyzing systems that give servi

execute transactions. Each transaction, or each service, is separated from previous an

services. There is a dependency, but it can be expressed as a dependency on the starting sta

than on the operations in the previous transactions. This separation is not suitable for debu
Page 6
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where an error in one service is only detected during a later service and it is important to go

to the cause. It is suitable for program understanding and for performance analysis.

2.1  Example

An example will clarify these definitions. Figure 2 shows a single interaction scenario

three-tier client-server system with three objects, using the UML Sequence Diagram no

augmented by event labels. This distributed application consists of data entry clerks subm

requests to a corporate database. The Client Object is the graphical interface from which a

initiates a scenario. The Client Object interfaces with the Middle Object using an RPC to exch

information. The Middle Object interacts with the corporate database (the Bottom Object) us

deferred RPC.

Figure 3 shows a graph model for the same scenario, based on the node and arc type

defined below. For the moment we can ignore most of the details of the node and arc typ

Figure 3, and concentrate on the topology of the graph. It is actually a union of four subgraph

for each of the three objects and one for the path of the scenario, which are shown superim

The object subgraphs are horizontal, with a different level for each object. They have dotte

and are divided into service periods that begin with a node shaped like a diamond, such as

Client Object Bottom Objecte1

e2

e3

e4

e5

e8

e9

e10

e1

e12

e15

e16

e17

e18

Middle Object

Figure 2: UML Sequence Diagram of the Distributed Application Example
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The graph for the entire scenario traces through the objects, with solid arcs. It begins with a

circle node (e2) and ends with a filled square node (e5). Events are mostly shared b

subgraphs, for instance e2 is the start of the scenario and also the start of a service period

Client Object.

The events e1 and e20 are external to the software execution, but represent external

which can trigger the beginning of a new scenario. Fragments of other scenarios are also sh

the left and the right sides of the Figure.

The message receptions at e2, e8 and e15 are explicit “service period begin” nodes, so t

causally disconnected from previous events at the same object. The message receptions at

e4 are not service period begin nodes, so they must be joins. The message receptions at e6,

Figure 3: Example Execution of a Three Tiered Distributed System

Client Object
(tier 1)

Middle Object
(tier 2)

Bottom Object
(tier 3)

Environment

Connects succeeding events of the
same process (scenario)

Connects succeeding events
of the same object

e1

e2 e3
e4 e5 e6

e20

e7 e8 e9 e10
e1 e12

e13

e14 e15
e16 e17

e18 e19

st
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e19 are also “service period begin” nodes, so they are causally disconnected from

predecessors in the same object, and thus from the rest of the scenario that begins at e1.

2.2  Communications Protocols

The new topology has also, with very little additional effort, been made “protocol aware”. T

is, one can recognize in the event patterns the occurrence of certain common high-level pro

for object interaction, such as varieties of remote procedure calls. Alternatively, if the trace re

the use of a certain protocol it can be used to assist in analyzing causality.

Figure 3 provides examples of a synchronous RPC and an asynchronous RPC

synchronous RPC is a single path in the solid arcs of the scenario graph, from the Client O

into the Middle Object and back. Nested within it is the asynchronous RPC giving a fork a

Middle Object, with two paths that join with the reply from the Server. Discussion

This section has defined scenario causality and informally described the reasoning beh

based on following the flow of control through a scenario. It has also explored the consequ

of the definition in terms of causal connections between events, in an example. The examp

graph notation which is yet to be fully defined.

In general, logical clocks have a topology which can be described by a graph grammar.

clocks define a partial order among the events, in which case their topology is that of an a

directed graph, which is defined by a simple graph grammar with one node type and one edg

In these clocks every event (node) has an arc from the previous event executed by the same

with no cutoff at “period begin nodes”, and a node can have any in-degree and out-degree

To control causal explosion and represent service periods, a type of node called “period-b

has been identified as part of the new topology, and relationships within an object will be iden

separately from relationships along the scenario. Other types of nodes, and typed arcs,

needed to identify interaction protocols. The result will be a graph grammar defining the

topology, to be addressed next.

The new logical clock topology based on scenario causality must be able to character

possible executions of the system. This requires a description of the possible executions by a
Page 9
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of computation, which in this work will be based on a model of objects providing services. Bey

this, the characterization should be unambiguous, and we would prefer a graph with a min

number of different types of entities.

3.0  Events and Causality in Service-Structured

Computations

This section is concerned with the relationships between events that may be recorded fro

execution of a certain class of systems, which we will call “service-structured”. It is not comple

general but it does include a large proportion of practical distributed systems. Examples of se

structured computations include client-server systems, systems based on remote procedu

the Open Distributed Processing standard, or ORB technology.

Service-structured systems are made up of concurrent objects which execute sequent

cycles, and communicate by messages. Each object has a “home state” at which it accep

service request messages and starts a new cycle. A scenario in a service-structured system

defined in terms of actions and messages connected by causal dependencies which trigg

execution. Such a scenario could be described by a process in CCS [Mil80], a Petri net [Pet

an activity diagram in UML [RJB98]; we will use the termprocess. We assume non-interleaving

of actions, as in Petri nets, and linear time.

A scenario is then a combination of a process with the behavior of the objects that exec

Objects only execute on behalf of a process (there is no unexplained execution), and pro

include events executed by objects, and external events. External events represent any trig

the environment that might initiate or modify a scenario.

First we shall define graph grammars for the object events and the process events sep

then look at the combination.
Page 10
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3.1  The Object Event Graph

In a service-structured computation, a concurrent object executes a cyclic algorithm beg

always from a home state. In this state, it receives a message, it executes aservice period, and then

it waits for the next message. The service period expresses the role which the object plays

scenario [BRJ99]. A single object completes one service period before beginning another on

objects are sequential programs, with a sequential flow of control, so the events occurring d

the execution form a linear sequence. The first event in the period is caused by the request m

each later event is caused by the event before it.

The object event graphis an attributed, edge labeled, directed, linear graph with no

representing the events in order, made up of subgraphs representing service periods. It h

types of nodes and two types of edges:

“Period start” node: this is the first node of each object's service period.

“Object action” node: represents an event that records some action that the ob

performed. It is the default node type.

“Next-in-object” edge: its target is the next node in the same service period.

“Object’s next period” edge: its source is the last node of an object’s service peri

and its target is the period start node of the object’s next service period.

Scenario causality states that the next period edge does not represent a causal influence

next node edge does. Some of the events during a service period may involve messag

interactions with other objects; their special nature is represented in the process event grap

described next.

3.2  The Process Event Graph

A process event graphrepresents a realized scenario, and consists of the events in the sce

as nodes, and the direct causal connections under scenario causality, as edges. It may

p
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concurrent threads of execution as linear sub-graphs calledprocess threads, and there are specia

node and edge types to characterize the causal relationships between threads.

The process event graphis a typed, node labeled, finite, directed, acyclic graph, with t

following node types and edge types. Except for the and-fork and-join types, all nodes h

maximum in-degree and out-degree of one.

“External” node: represents an external stimulus event, such as a system inp

exception condition.

“Thread begin” node: it is the beginning of a process thread.

“Process action” node: for an event recording an action that is performed in t

process. This is the default node type. In this paper, an object sending a mess

itself is considered to be an action node.

“And-fork” node: records the forking of one new process thread, with an out-degre

two, including one fork edge.

“And-join” node: is a synchronization between two process threads that join int

single process thread, with an in-degree of two.

“Thread end” node: ends a process thread.

“Start the process” edge(st): its source node is an external node and its target node

thread begin node. A start edge identifies a process thread caused by an ex

stimulus.

“Next-in-process” edge: its target is the succeeding node in the same process threa

will be abbreviated as process

E

&

st
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“Process thread’s fork” edge(f): its source is an and-fork node and its target is t

thread begin node of the forked thread.

There is no ‘process thread join edge’ because the and-join node is unambiguous.

3.3  The Scenario Event Graph and a Global Event Graph

A scenario event graph combines a process event graph with several object event sub

We start from the process subgraph of the scenario, and superpose those parts of the

subgraphs representing service periods within the scenario as overlays. Two nodes represen

same event are merged, and have a dual type, one type for the scenario subgraph and on

object subgraph. Similarly where an edge exists in both the scenario and the object subgr

has a dual type, one type for each.

Finally, where the event records include many scenarios, aglobal event graphis defined as the

superposition of all of the object event graphs and scenario event graphs in the system.

3.4  Example

The example of Figure 3 can now be seen with the definitions of all the node and edge ty

mind. For each object, one service period from its object event graph is shown, with fragme

previous and succeeding periods. Notice the next period edges that terminate a service peri

external node is not part of a service period because it is generated by the environment and

associated with an object.

There are several partial process event graphs but only P1 = {e1, e2, e3, e4, e5, e8, e9, e10, e11,

e12, e15, e16, e17, e18} is shown in its entirety. The remaining nodes belong to other process e

graphs. If they were completed, then all together they would comprise a global event graph

Notice that the other scenarios and their corresponding process event graphs may ove

time with P1. For example, there are no causal dependencies that would prevent the action o

{e7} from having occurred concurrently with the actions of nodes {e2, e3, e14}.

f
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This example highlights two important characteristics of the event model: (i) that object

shared amongst scenarios and (ii) an omniscient observer may see several scenarios oc

simultaneously and concurrently.

3.5  Complex trace events

An instrumentation system may record a single event which must be split into several e

to correspond to the graph grammar. For example, a trace event for a multicast or ann-way fork

has to be translated into a series of binary forks, and a multiway join or gather has to be tran

into a seried of binary joins. If a high-level event includes an activity aspect (some action that

time) then it should be represented by a separate activity event. By convention, we will plac

activity before any and-forks (for a multicast: see Figure 6) or after any and-joins (for a gath

3.6  Discussion

In summary, the service-structured computation model assumes scenario causality, linea

and non-interleaving of actions. Scenario causality associates events with a process an

objects, and segments each object's behavior into individual periods of service. Linear-time

scenario event graphs to be derived from execution traces. The non-interleaving pro

characterizes concurrency within a scenario and it captures the object architecture. In addi

• An object only executes on behalf of a process (i.e., all execution has a cause).

Figure 4: Example of a Multi-cast Communication

Object B1

Object A

fObject B2

Object Bn

f

f

e1 e2 e3 e4

e5 e6

e7 e8

e9 e10

e8
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• For a process to proceed it needs an object to execute on its behalf (i.e

unobservable execution).

• A scenario by assumption always completes (i.e., it does not deadlock).

• An object cannot atomically accept a message and send a message in the sam

(i.e., observations are unambiguous).

• The event instrumentation and monitoring records all events. This is aclosed world

assumption.

This completes the service system definition. It is a good match with many distributed system

related technologies, such as DCE RPC [Ope92], CORBA[Obj93], Java [LY96, GJS97],

mobile agents [Pra96]. Real-world distributed systems often resemble this class of systems.

objects respond to RPCs, asynchronous messages, signals, and exceptions. Server ob

shared amongst many simultaneously occurring scenarios. Objects are static or dynamic

that may exist over the lifetime of many scenarios. Actions take time.

3.7  Scenario Event Graph Axioms

The node and edge definitions given above lead to just fifteen ways in which a node c

connected if a SEG (for instance, an “external event” node always has a “start” edge coming

it). These 15 connections are shown in Table 1, and formal proof of their completeness is gi

the appendix. The Table includes some object interaction roles which are discussed further

4.0  Object Interactions

Considering message exchanges between objects, as in (for instance) [CL94b, C

scenario causality can distinguish at least the following eight kinds of interactions:

• an external message exchange,

• a blocking RPC [Ope92, BN83],

• an asynchronous message exchange,
Page 15
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• a deferred RPC (also called an asynchronous RPC),

• an RPC exception,

• a multi-cast message exchange,

• a synchronous bi-directional communication, and

• a synchronization between software components.

These patterns in turn are a useful part of re-engineering for understanding the application

4.1  Characterizing Message Exchange Protocols in a Scenario Event Graph

Characterizing a message exchange protocol requires using information from both the p

event graph and the object event graph parts of a scenario event graph. In Figure 3, consi

remote procedure call made from the Client Object to the Middle Object. The subgraph {e3, e4, e8,

e12} of Figure 3 corresponds to a pattern for a blocking RPC, with the properties:

• the process subgraph aspect is linear,

• the beginning and end are in one object, with no nodes between them in the o

subgraph aspect

• The middle is associated with other objects

Note that the RPC could not be identified whenthe two subgraph types were examine

separately.

Figure 5: Object Execution Graph of an RPC Message Exchange

Middle Object

Client Object

e3 e4

e8 e9 e10 e1 e12

p p

Figure 6: Process Event Graph of an RPC Message Exchange

e8 e9 e10 e1 e12

&

e3 e4

Process P1
Page 16



pattern

ject

cols. In

m

ly

ject

a

iod

d

g

in the

s next.
Figure 3 also has a deferred RPC message exchange which is identified as the sub-graph

{e9, e10, e11, e15, e17}. The distinguishing characteristic of the deferred RPC is that the client ob

can engage in actions (e10) between the initiation of the RPC (e9) and the reception of the reply

(e11). This is visible in the object subgraph aspect of the scenario event graph.

Events in the scenario event graph take on identifiable roles in message exchange proto

Table 1 we can identify:

• External request initiation: A request (or exception) was externally generated fro

outside the system being monitored and it begins a process thread. This is row {A}.

• Blocking request initiation: The initiating object cannot proceed until it receives a rep

to a request it has just made. This is row {D}.

• Non-blocking request initiation: The initiating object sends a message to another ob

and the initiating object does not block.This is row {H}.

• Request acceptance to start a service period: A blocked responding object accepts

new message and begins a new period (rows {E, I, M}).

• Synchronization acceptance: A responding object has already began a service per

but it is blocked, until it accepts another message. These are rows {J, L, N}.

• Sending a reply to a blocking request: A replying object sends a reply to the blocke

initiating object. These are rows {F, H}.

• Acceptance of a reply:A blocked initiating object receives the reply to its blockin

request. These are rows {G, K}.

During the execution of a message exchange protocol element, an object will act out a role

message exchange protocol. The different message exchange protocol roles are discusse
Page 17



Node Connection Interpretation
Allowed
Protocol
Role(s)

Node Connection
Figure

(A) External system request. No object

(B) End of the object period and process thread. Any role

(C) A process action event. Any role

(D) Initiation of an RPC message exchange. Initiator or

Forwarder

(E) Acceptance of a message sent using an RPC message exchange.Responder or

Forwarder or

Replier

(F) Sending the reply to an RPC message exchange. The responding

object’s service period ends.

Replier

(G) A blocked initiating object in an RPC message exchange receives the

reply. The replying object ended its service period after it sent the reply.

An and-join node is not used because there is only one process thread.

Initiator

(H) There are three possible interpretations of this node connection

axiom:

(1) An initiating object initiates an asynchronous message exchange.

(2) A replier object sends the reply to an RPC message exchange and it

does not end it service period but continues executing.

(3) A forwarding object forwards the message to another responding

object.

(1) Initiator or

(2) Replier or

(3) Forwarder

(I) A blocked object that isnot executing in a service period now accepts

a message that was sent asynchronously.

Responder or

Forwarder or

Replier

(J) A blocked object that is executing in a service period completes a syn-

chronization by accepting a message. The message was sent using an

RPC message exchange.

Responder or

Forwarder or

Replier

Table 1: Scenario Event Graph Node Connection Axioms
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4.2  Roles of Objects in Message Exchange Protocols

Scenario causality takes advantage of the observation that, from an application view

whenan object is involved in a message exchange, its future execution is restricted so that i

not violate the semantics of the message exchange protocol. These restrictions are identified by th

protocol rolean object plays in the message exchange protocol. The role is important beca

limits the future events (i.e., scenario event graph nodes) the object may record. For exam

client object that initiates an RPC cannot execute until it receives a reply or an exception.

By inspection, the four types of message exchange protocol roles are:

• An initiating object sends messages to request services from other objects.

• A responding objectaccepts a message from an initiating object and provides a serv

(K) A blocked initiating object in an RPC message exchange receives the

reply to its message. The replying object did not end its service period

after it sent the reply.

Initiator

(L) A blocked object that is executing in a service period completes a syn-

chronization by accepting a message. The message was sent as an asyn-

chronous message exchange.

Responder or

Forwarder or

Replier

(M) A blocked object that isnot executing in a service period now begins

executing because of an external request.

Initiator

(N) A blocked object that is executing in a service period completes a

synchronization by accepting an external request.

Responder or

Forwarder or

Replier

(O) An RPC exception condition which unblocks the initiating object in

an RPC message exchange.

Initiator

Node Connection Interpretation
Allowed
Protocol
Role(s)

Node Connection
Figure

Table 1: Scenario Event Graph Node Connection Axioms
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• A forwarding objectaccepts a message, executes, and then forwards the messa

another object for further processing.

• A replier objectsends a reply to an initiating object to indicate the initiating objec

request has been completed and the initiator can continue.

The object roles that are identified for each node connection axiom and the correspo

interpretation are given in the middle column in Table 1.

4.3  Examples of Interactions

To clarify the semantics of the scenario event graph and the message exchange protoc

types, example scenario event sub-graphs are presented for: an asynchronous RPC

synchronization, bidirectional synchronous communication, the RPC exception, and

forwarding message exchange. The scenario event graph figures follow these convention

proceeds from left to right, the consecutive nodes of an object are at the same vertical leve

the consecutive nodes of a process thread can crossover to different objects (e.g., blocking

Prior examples of the RPC, asynchronous, and deferred RPC are given in Figure 3. A mul

message exchange was shown in Figure 4.

4.3.1  Asynchronous RPC

An asynchronous RPCis an RPC message exchange protocol that is constructed f

asynchronous messages and this is shown in Figure 7. It is a paired set of asynchronous m

with the first one being the initiating RPC message and the second being the reply. It is de

that this is an RPC because the initiating object (Object A) does not record further events s

assumed to be blocked until it receive the reply message from Object B. In this example, Ob

continues executing once the reply message is sent to Object A. This deduction relies on the

world assumption.

4.3.2  Synchronization

A synchronizationoccurs when the synchronizing object has started a service period a

must accept another message to continue execution. There are four possible w
Page 20
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synchronization occurs. The first case is where the message was sent using a blocking p

(Figure 8). The second case is where the initiating object uses an asynchronous protocol t

the message (Figure 9). The third case occurs where a blocked initiating object receives its

to a message that used an RPC protocol (Figure 10). This third case is characterized as

process thread being forked for the reply. The last synchronization case involves an externa

being accepted (Figure 11).

Figure 12 is an example of abidirectional synchronous communicationwhere two objects

exchange messages by sending and receiving messages simultaneously. In this example,

fork node represents the sending of the message, the and-join node represents the receptio

message, and the action nodes represent the duration of the message exchange. Note that

fork event, and-join event sequence are interpreted as happening simultaneously even tho

order is implied by the graph.

4.3.3  Forwarding

A forwarding message exchangeoccurs when the initiating object blocks on its messa

request and the first responding object asynchronously sends the message to another res

object [HWRI99]. Each responding object can continue to forward the message to

responding objects. The last responding object in the series sends a reply directly to the b

initiating object. This type of message exchange protocol occurs when an object acts as a r

dispatcher [Gen81] or as a form of rate control for an object pipeline. An example forwar

message exchange is shown in Figure 13, where: the initiating object (Object A) sends the m

and blocks, the first forwarding object (Object B) handles the message, and forwards it

asynchronous fashion to another forwarding object (Object C), Object C handles the me

further and forwards it to Object D which replies to the initiating object.

4.3.4  RPC Exception

An RPC exceptionoccurs when an object that initiated an RPC becomes unblocked due

exception and not a reply. An exception condition may result from a time-out condition, a s
Page 21



Figure 7: An RPC Message Exchange using Asynchronous Communication

Object B

Object A
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Figure 8: A Responder Object Synchronization from an RPC Message Exchange

Object B

Object A

&

Figure 9: A Responder Object Synchronization from an Asynchronous Message Exchange
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Object A
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Figure 10: An Initiating Object Synchronization from an RPC Message Exchange
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Figure 11: An Object Synchronization from an External message
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Figure 12: An Example of Bidirectional Synchronous Communication
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Object A
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Figure 13: A Forwarding Message Exchange with Two Levels of Forwarding
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Figure 14: A Forwarding Message Exchange with Blocking Communication
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from the environment, or a high-priority message interrupting the initiating object. Two exam

characterizations of an RPC exception are shown. The first type of RPC exception (Figure

the result of an external event such as a software interrupt, so the initiating object res

execution before receiving the reply to its initial message. The second type of RPC exce

occurs when a blocked initiating object accepts a message in place of a reply but the mes

not causally connected to its initial message. Figure 16 is an example of this situation. I

example, initiating Object A receives a message from Object C that is interpreted as a rep

Object C has no causal connection to the RPC.

4.3.5  Message Exchange Roles: Summary

The possible message exchange protocol roles associated with each message excha

listed in Table 2. The reader will notice that what initially seems to be a responding object

later become a forwarding or replier object due to its behavior after receiving a message

Figure 15: An RPC Exception from an External Event

Object B

Object A

st
E

&

Figure 16: An RPC Exception from a Causally Unconnected Event

Object B

Object A
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asynchronous message exchange has only two protocol roles: the initiator and the respon

multi-cast message exchange is similar because a multi-cast is analogous to a se

asynchronous message exchanges. An RPC, deferred RPC, or asynchronous RPC m

exchange has two roles: an initiator and the responding object that later becomes a replier o

In a bi-directional synchronous communication message exchange, both objects be

initiating objects and then become responding objects to receive the sent message.

A forwarding message exchange (Figure 13) has three roles: the initiating object (Obje

blocks after sending its message. The first forwarding object (Object B) receives the messag

the initiating object, executes and then forwards it to another object (Object C). Object C rec

the message, executes, and then forwards it again. The last object in the forwarding chain pe

the role of a replier, sending the reply message back to the blocked client.

The last message exchange listed in the table is the externally initiated message excha

this case there is no initiating object because the source of the message is outside of the

However, there is a responding object which receives the external message. An examp

responding object is Object A in Figure 11.

4.4  More Message Exchange Protocol Variations

The message exchange protocols that have been presented can vary in several fashion

all of the RPC message exchanges could be constructed using asynchronous messaging,

in Figure 7. Secondly, the forwarding of a message may use internal blocking or asynchr

message exchanges. Third, in any of the instances, a responding object may accept a mess

Message Exchange Type Initiator Role Responder Role Replier Role Forwarder Role

Asynchronous, Multi-cast Yes Yes No No

RPC, Deferred, RCP, Asynchronous RPC Yes No Yes No

Bi-directional synchronous Yes Yes No No

Forwarding Yes No Yes Yes

External No Yes No No

Table 2: Protocol Roles that Occur
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forms a synchronization. Lastly, a variation of a forwarding message exchange occurs wh

message is forwarded using an RPC protocol (Figure 14). It should also be emphasized tha

objects can be involved in other message exchanges while executing, looking like client obje

lower layers of servers.

5.0  Comparing Scenario Causality with Potential Causality

STUFF TO FIND A HOME FOR OR REMOVE

The most widely used event ordering relation is called “potential causality” because it orders

the events temporally [Lam78, SM94].Potential causalityis the smallest transitive relation tha

orders:

• the succeeding events in an object, and

• the send and receive communication events between objects so that a send

always precedes its corresponding receive event.

Potential causality answers questions such as, “Did event happen before event in th

distributed system?” Thus, potential causality has also been called thehappened before relation.

Potential causality is represented as a partial order where it is assumed that if two events

be ordered then the events may have occurred concurrently. This partial order topology of po

causality can be expressed as a graph grammar with one node type (an untyped event) and o

type that identifies the succeeding node for a given node. Potential causality generates aglobal

event graphwhich orders all of the potentially causal (i.e., predecessor) events and the (poten

concurrent events are on parallel branches of the graph.

Scenario causalityincludes only those ordering relationships that are certain to be valid wi

a scenario. It is more expressive because it has several edge types to represent different

causal relationships. Scenario causality is described as: “an event is a scenario cause of eve

 if there is a sequence of events from event  to event  in the same scenario.”

e1 e2

e1

e2 e1 e2
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Scenario causality characterizes several application level communication protocol

message exchange protocols) that potential causality cannot characterize. A clarification is nee

about the definition of scenario causality. If event : which precedes the event

in the same scenario, then event is considered to be a scenario cause of ev

even though there is no direct dependency between the variables and . There are two r

for this position. First, the developer ordered those two statements so there is an inferred

dependency which may later manifest itself. Second, and more practically, the actual order

the program statements ensures that event could not execute without event first occur

that scenario.

The next section examines the scenario event graph’s semantics. The scenario even

figures will no longershow the icon for the object action node because it is the default node

for the object event graph.

6.0  A Class of Logical Clocks

The topology defined so far gives the requirements for a metrication and a complete c

these requirements can be summarized as:

???? anything new... or do we refer to items before

Any generic properties of this class, beyond the angio trace example?

The feasibility of creating a complete clock definition has been demonstrated by creat

logical clock specially for building performance models of software. Include the following

sections, or some of it. Generic description. refer to proprietary version at the end.

7.0  An Overview of Automated Model Construction

Scenario causality is the basis for a Model Making Automation Process (MMAP) which

technique for the (automated) construction of scenario models [Hri98a]. MMAP is based o

e1 v1 x y←{ }= e2

v2 a b←{ }= e1 e2

v1 v2

e2 e1
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novel concept of using several graph grammars to convert execution traces into abstract s

models. Using a graph grammar formalism allows the scenario models to be constructe

analyzed in an automated fashion. MMAP, which is a generalization of a process for the auto

construction of a performance model of distributed applications [HWRI99, Hri98b], is bri

described here to illustrate how scenario causality and the scenario event graph can be u

software engineering purposes.

MMAP is a chain of formal transformations. At each step in the chain it converts an in

model into a more abstract or domain specific model. MMAP's general strategy for transfor

a model from its input domain to its target domain is as follows. First theapplication specific

domain languageof the input model domain and the target domain are both described as sep

graph grammars. Then a graph transformation from the application specific language of the

domain (the input graph grammar) to the application specific language of the target domai

target graph grammar) is developed using graph rewriting rules to define semantic equivalen

sub-graphs in the input and output domains.

The several model domains of MMAP are identified in Figure 17. They are listed in the o

in which data flows to construct a model:

(a) Program language statement: the object’s source code statements.

(b) ANGIOTRACE instrumentation: Embedded instrumentation that atomically generates a

recordsANGIOTRACEevents when language statements are executed.

(c) ANGIOTRACEevent records: The recorded events which can be ordered in accordance

scenario causality using special logical timestamp values.

(d) Scenario event graph: A graph grammar that characterizes all possible scenarios. It is

topic of this paper.

(e) Scenario model: A model type that characterizes the execution of a scenario for fur

analysis. This includes the involved objects, their individual actions, the messages, a

message exchange protocol elements.
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(f) Domain specific model:A view of the execution, that may have additional informatio

included, for domain analysis purposes.

The algorithmic graph grammar formalism is used as the basis for the model transform

machinery which is implemented by the PROgrammed Graph REwriting System language a

corresponding toolset [Nag87, Ehr87, Sch90, Sch91b, Sch91a, SWZ95, Sch97].

For illustrative purposes, there are three domain specific models identified in Figure 17

MMAP can construct. It should be apparent that the event traces of Figure 3 can be us

reconstruct the sequence diagram of Figure 2. If information about the deployment of the so

is added, then a deployment diagram can be produced. It is described in [HWRI99, Hri98b] h

Figure 17: MMAP Data Flow

#2) Instrumentation execution

#3) Event ordering

#4) Scenario event graph (SEG) analysis

(d) Scenario event graph

(e) Scenario model

Formal
transformation

(b) Angiotrace instrumentation

#1) System execution

(a) Program language statement

(f) Performance model

(f) Sequence diagram(f) Deployment diagram

Additional domain information #5) Domain model construction

(c) Angiotrace events
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performance model can be constructed from several scenario models. MMAP may also ge

other types of models.

8.0  Implementing the SEG as a Logical Clock

The two steps in Figure 17 which move from the program language statement to a sce

event graph are linked by a new type of logical clock called anANGIOTRACE.1 TheANGIOTRACE is the

metrication for the scenario event graph topology. This section provides an informal discuss

how the ANGIOTRACE events can form a scenario event graph, providing insight into

development of the logical clock metrication and implementation. When referring to an angio

the termevent will be used in place of the termnode.

The nameANGIOTRACE is derived by analogy from an angiogram. An angiogram is

visualization of an individual's blood flow that is produced by injecting a radio-opaque dye into

blood stream and taking an X ray of the dye dispersion. Similarly, anANGIOTRACEassigns a different

software dye to each scenario so that each scenario's event records can be distinguish

ordered. The software dye consists of anobject timestampto construct the object event graph an

a process timestampto construct the process event graph. The underlying formalism of

angiotrace is that of partial order multi-sets [Pra86] because it has more than one timestam

more than one type of edge.

Instead of a single event ordering relation, anANGIOTRACE uses a set of partial ordering relation

to construct the scenario event graph. There are six event ordering relations for identifyin

causal relationships that exist between a given event’s succeeding or preceding event(s)

relations are used to construct a scenario event graph because each ordering relations wi

specific edge type between two nodes when it is satisfied; (if an ordering relation cann

satisfied then an edge is not added. The ordering relations that are provided are:

1. It should be noted that a form of ANGIOTRACE was described in [HRW95, HWRI99] but the ANGIOTRACE instrumenta
that is compatible with scenario event graph is described in [Hri98b].
Page 30



t graph

graph

d a

cessor

ribed

les for

dentify

s this

stem

ents

ot be

o make

le the

nario

tion

enario

main

l links
• Find the succeeding node in the object event graph and add anobject’s next period

edge if the succeeding node is a period start node, otherwise add anext object edge.

• Find the succeeding node in the same process thread and the same object even

and add a next process edge between the two nodes.

• Find a succeeding process event graph node that is not in the same object event

and add astart the process edgeif the source event is an external node, otherwise ad

process thread’s fork edge.

The three remaining ordering relations are used to find the preceding node given its suc

event.

Like most other logical clocks, the angiotrace timestamps are counter values with presc

rules for incrementing the counters to guarantee uniqueness and event ordering. The ru

incrementing the counters and ordering the events using the timestamps must be able to i

and reconstruct each possible ordering relationship in Table 4. If the metrication satisfie

requirement then it will be able to characterize all possible executions of the distributed sy

since these are the only valid events orderings.

9.0  Conclusions

Scenario causalityhas been defined here for the purpose of identifying and order the ev

that are recorded for a scenario, recovering important contextual information that cann

retrieved using conventional means. There are several new applications that should be able t

use of scenario causality. For example, the ability to identify a type of scenario would enab

provision and enforcement of a quality of service for a type of scenario. Identification of a sce

could allow for more efficient approaches to checkpointing for roll back [PK93] or the detec

of consistent cuts [CB89] because unimportant scenarios types could be ignored. The sc

information is useful for understanding applications with persistent objects that can re

dormant because, in this situation, wall clock time cannot be used to establish any causa

between events.
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A new, event based reference model of distributed system execution was developed cal

scenario system event model. A novel aspect of the scenario system event model is that it uses

process and the object views in a distributed system to construct the scenario and global,

level view. A graph type is defined for each of these views. The scenario system event m

defines the minimum information needed to reverse engineer scenarios. In particular, it sp

that the start and end of a process, as well as the start and end of object service periods m

characterized. This is in addition to the local actions and communication actions of the obje

The logical clock topology defined for scenario causality is a graph grammar with events

are represented as typed nodes and different types of causal relationships are captured a

edges. Ascenario event graphis formed using this graph grammar. The family of valid graphs th

can be constructed are defined by the node connection axioms of Table 1 and the

connectability table (Table 4). Together, these two tables defines the topology of a logical

that is consistent with scenario causality and they serves as the specification for a logical

implementation.

The definition of scenario causality presented here is a for message passing distributed s

Scenario causality characterizes more application level, message exchange protocol

conventional techniques. The message exchange protocols that are characterized are: an

message exchange, a blocking RPC, an asynchronous message exchange, a deferred R

called an asynchronous RPC), an RPC exception, a multi-cast message exchange, a sync

bi-directional communication, and a synchronization between software components. The r

can be also applied to software systems which are a sub-set of a message passing system

single threaded object-oriented application or a parallel message passing application).

In principle, scenario causality should be extensible so that it can characterize addi

application specific message exchange protocols, such as replication [Bir87], atomic transa

[Lis88], object migration [SHK92], or tuple spaces [ACG86, CG89]. Extensions to characte

scenario causality for non-message based exchanges between objects may also be possi

semaphore, condition variable, synchronization barriers). The development of an extension
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follow the methodology outlined in section 2.0, modifying or adding to the scenario system e

model, the node connection axioms of Table 1, and the node connectability table of Table 4

Using a graph grammar to define scenario causality enables graph grammar commu

participate in the analysis of scenarios [Sch90, Nag79]. For example, sophisticated too

programming with graph languages (e.g., PROGRES [SWZ95, Nag96]) can be used for s

analysis. In particular, the use of a graph grammar has allowed different types of models

automatically generated from a scenario event graph model [Hri98a].

The results of this research can be applied to give sharper results in areas that hav

studied previously with potential causality: distributed algorithm implementation [Mor85], sys

feature implementation (e.g. causal memory [AHJ91], causal message ordering [BSS91]),

recovery [KB95], global state recording [CL85, FZ90, Mat93, SK86], global predicate evalua

[CM91, HW88, HK90], trace replay [NM92, LM87], design recovery [KB95], describing eve

patterns [LKA+95, Fid91], the visualization of system execution [KB95], automatica

constructing software performance models [HRW95, HWRI99], and race detection [HMW9

A novel aspect of this work is that it is the first time that a logical clock’s topology has b

directly addressed as an attribute. A significant result from this is the idea that there is more

one form of cause-and-effect relationships which can be characterized and exploited in an

In support of this four types of causality are listed that have been identified in the logical c

literature:

• Real causalityis the event ordering that is consistent with both the purpose of

software and a particular execution of that software. Recovering real causali

impossible in practice because it necessitates full knowledge of each: object’s beh

the variables’ initial values, the processes, and the execution environment.

• Imposed causalityis an ordering between timestamps imposed by an algorithm and

ordering does not have to correspond to the event order during execution. An exam

the ordering produced by the scalar logical clock [Lam78].

• Potential causalityhas been used to provide a temporal ordering. An example is

event ordering produced by vector logical clocks [Fid91, Mat88].
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• Scenario causalityhas been introduced here to enable the reverse engineerin

scenarios.

The natural progression is to continue to define other application or domain specific form

causality.

Potential causality can be reconstructed from scenario causality, by replacing next period

by causal edges and using the global event graph.
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11.0  Appendix: Proof that Scenario Causality is Complete

and Consistent

This section proves by enumeration that the node connection axioms of Table 1 are th

valid ways to connect nodes and characterize scenario causality. First a general represent

a scenario event graph node and edge is identified. Next, all of the ways in which a scenario

graph node can be connected to its preceding and succeeding node are enumerated. Final

node connection axioms whose causal interpretation is not consistent with scenario causa

eliminated. The result of the proof is a node connectability table that determines all of the

ways each node connection axiom can connect with all other node connection axioms, th

characterizing all valid scenario event graph’s.

11.1  Characterizing Scenario Causality between Any Two Nodes

In the scenario event graph a node is a six-port building block (Figure 18), where aport is the

source or target of a single edge. The position of a port identifies the valid edge type tha

connect with it, as well as the direction of the edge. There are six ports because a scenario
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graph node has at most three incoming and three outgoing edges since it is the super-posit

binary graph (i.e., the process event graph) and a linear graph (i.e., the object event graph

The six port types are:

• InObject: the target of an edge connected to the preceding node in the same o

event graph.

• InProc: the target of an edge connected to the preceding node in the same pr

thread and in the same object event graph.

• InProcExt: the target of an edge connected to the preceding node that is part o

same process event graph but not in the same object event graph. When an externa

occurs or a message is received by an object this port is the target of an edge.

• OutObject: the source of an edge connected to the succeeding node in the same

event graph.

• OutOp: the source of an edge connected to the succeeding node that is in the

process thread and in the same object event graph.

• OutOpExt: the source of an edge connected to a succeeding node that is part o

same process event graph but in another object event graph. This port is the source

edge when an external event occurs or a message is sent by an object.

For this portion of the proof the type of an edge is not important. An edge’s type identifies the

of scenario causality between two nodes, but the proof only needs to identify that a scenario

relation (an edge) exists.

Based on this six-port building block model, consider all the combinations of ways in w

these ports may (or may not) have edges attached to them. For each port, assign a binary va

it has an edge attached or a 0 if not. A binary number, called thenode connection valuein Table 3,

can be constructed where the bit positions are, from most significant bit to least significant 

InProc, InObject, InProcExt, OutOp, OutObject, OutOpExt
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This means there are 64 possible values. However, many of these connections are invalid b

they violate the causal interpretation of the process event graph, the object event graphs, a

scenario event graph.

The constraints due to scenario causality fall into three categories:

• Structural constraints: each node and edge type is unique, having a spec

interpretation that allows (or prevents) it from connecting to other node types.

• Consistency constraints: scenario causality characterized by the object event graph

the process event graph must be consistent.

• Interpretation constraints: the scenario event graph must be unambiguous in

characterization of causality.

Each constraint type and its effect on the possible node connection axioms are considered

The structural constraints ensure each node has unique properties. Thethread end nodeis the

only node type to finish a process thread. Thethread begin nodeis the only node type that is

allowed to begin a process thread. Theexternal nodehas no cause. Theand-join nodehas two

causes from different process threads. Theand-fork nodeis the cause of events in two proces

threads. Theprocess action noderepresents a local action of an object that can have duration.

period start node identifies the beginning of an object’s service period.

Figure 18: A Scenario Event Graph Node as a Six-Port Device

And-fork edge
Next process edge

Start SEG edge

And-fork edge
Next process edge

Start SEG edge

Next process edgeNext process edge

OutObject

OutOp

InObject

InProc InProcExt

OutOpExt
Next object edge

Next object period

Next object edge
Next object period
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The followingconsistency constraintsensure that the scenario event graphs have a consis

causal interpretation:

• For a scenario to proceed it needs an object to execute on its behalf.

• An object only executes on behalf of a scenario.

• A scenario always successfully completes (i.e., it does not deadlock).

There are two results that follow from these constraints: a node cannot be the source of

object edge without also being the source of a next process edge, and a node cannot be th

of a next object edge without also being the source of a next process edge. Note that a node

the source of a next process edge without being the source of a next object edge beca

scenario can continue in another object (i.e., RPC reply).

There are twointerpretation constraintsthat need to be considered. The first constraint is th

an object can either accept a message or send a message but it cannot do both for the sam

Otherwise the causal ordering is ambiguous because it is not known which action, send

receiving, occurs first. The second constraint is that objects do not interleave their service pe

The set of valid node connection axioms can then be found by enumerating the possible

and edge connections and then removing the invalid possibilities. This is summarized in Ta

and expanded in Table 5 of Appendix A. For example, an external node will only be the sour

astart the process edgeon the OutOpExt port so it has a hexadecimal node connection value o01.

The thread begin node is the target of astart the process edgeon the InProcExt port and it source

a next process edgeand anext object edgein the same process thread (i.e., OutOp and OutOb

ports). The thread begin node then has the hexadecimal node connection value of0E. Several

example invalid node connections arise from the interpretation constraint preventing a node

receiving and sending a message, which translates to the node being the target of an edge

InProcExt port and a sources of an edge on the OutOpExt port. As shown in Table 3 this elim

several node connection values, such as09, 0B, etc.

The node and edge typing is added to distinguish the cases where a single node con

value in Table 3 can give rise to several node connection axioms in Table 1 which are distingu
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, 17,
Explanation
Valid Node
Connection
Value (hex)

Invalidated Node
Connection Values

(hex)

Nodes with no edges are not allowed because a process thread must have at
least two nodes: a begin node and an end node.

0

Only an external node is allowed to have an effect without a cause. This is item
{A} in Table 1.

01 02, 03, 04, 05, 06, 07

A node cannot both receive a message and send a message. 09, 0B, 0D, 0E
19, 1B, 1D, 1F, 29,
2B, 2D, 2F, 39, 3B,
3D, 3F

The scenario is stopped if there is not an outgoing object edge without an
outgoing process edge.

0A, 1A, 32, 3A

A next process edge output in the same object period (OutOp) must have a
corresponding next object output edge (OutObject), otherwise the object is
deadlocked.

0C, 14, 1C, 24, 2C,
34, 3C

The receiving object is blocked (no InObject edge) and it becomes unblocked
by accepting a message (InProcExt). These are items {E, I, M} in Table 1.

0E

A node must have a next process edge as an input, either InProc or InProcExt,
to proceed to the next node, otherwise the object executes without a scenario
which is not allowed in a scenario system event model.

11, 12, 13, 15, 16

The object is blocked (i.e., not InProc), becoming unblocked by accepting a
message on InProcExt, continuing execution of the scenario by sourcing edges
on OutOp and OutObject. This is items {G, K, O} in Table 1.

1E

A node must have an object input edge if it has a process input edge in the
same object period.

21, 22, 23, 24, 25,
26, 2A, 2E

The thread end node is the only node type that is allowed to terminate the
scenario event graphs. This is item {B} in Table 1.

30 08, 10, 18, 20, 28, 38

Sending of the reply to an initiating object in an RPC message exchange and
the replying object finishes its service period. This is item {F} in Table 1.

31

Initiation of an RPC message exchange. This is item {D} in Table 1. 33

A node cannot have an output process edge in the same object (OutOp)
without a corresponding object output edge (OutObject) because a scenario
cannot progress in the same object without the object progressing.

35

The scenario continues in the same object. This is item {C} in Table 1. 36

A process thread is forked. This is item {H} in Table 1. 37

A message reception is accepted and the accepting object was already
processing a message (InObject). This is characterized by items {J, L, N} in
Table 1.

3E

Table 3: Enumeration of the Possible Node Connections
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by the node and edge types. Those sets of nodes which are differentiated by the type infor

are: {J, L, N}, {K, G, O}, and {E, M, I}.

11.2  Determining Node Connectability

This sub-section identifies all valid causal relationships between any two events (i.e., sce

event graph nodes), proving that the node connection axioms characterize all valid scenari

This proof of completeness is by enumeration. The connectability table (Table 4) iden

how two nodes may be connected based on the port definition and edge type information

constructed by identifying all of the valid predecessor and successor node connection axio

each node connection axiom of Table 1. This is done by inspection: for each node conn

axiom in Table 1, the set of possible predecessor and successor node connection axio

identified by matching the outgoing and incoming edge types. However, this set must be p

by removing the node connection axioms which are not consistent with the message exchan

or where the scenario causality interpretation is invalid. There are two invalid node connec

which have been removed from the Table 4. They are:

• Node connection axiom D cannot source a next process edge from port OutOpE

the target InProcExt of a node connection axiom G. The justification is that an R

initiation (D) should not be a reply message that unblocks another initiating object alr

in an RPC message exchange (G).

• Node connection axiom F cannot source anext process edgefrom port OutOpExt to the

target port InProcExt of a target node connection axiom E or J. The justification is tha

RPC reply (F) should not be considered to be the initiation of another RPC mes

exchange (E or J).

The usefulness of a proof by enumeration was made evident when, to the author’s surprise

invalid node connections were found.
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Node
Conne
ction

Axiom

Node Type
Previous Node Connection
Axiom in the Same Object

Event Graph
(InProc and InObject)

Previous Node
Connection
Axiom in a
Different

Object Event
Graph

(InProcExt)

Successor Node
Connection Axiom
in the Same Object

Event Graph
(OutOp and OutObject)

Successor Node
Connection
Axiom in a
Different

Object Event
Graph

(OutOpExt)

A External n/a n/a n/a M, N, O

B Thread end C, E, G, H, I, J, K, L, M, N, O n/a E, I, M n/a

C Action C, E, G, H, I, J, K, L, M, N, O n/a B, C, D, F, H, J, L, N n/a

D Action C, E, G, H, I, J, K, L, M, N, O n/a G, K, O E, J

E Action B, F D B, C, D, F, H, J, L, N n/a

F Action C, E, G, H, I, J, K, L, M, N, O n/a E, I, M G

G Action D F B, C, D, F, H, J, L, N n/a

H Fork C, E, G, H, I, J, K, L, M, N, O n/a B, C, D, F, H, J, L, N I, K, L

I Thread

begin

B, F H B, C, D, F, H, J, L, N n/a

J And-join C, E, G, H, I, J, K, L, M, N, O D B, C, D, F, H, J, L, N n/a

K And-join D H B, C, D, F, H, J, L, N n/a

L And-join C, E, G, H, I, J, K, L, M, N, O H B, C, D, F, H, J, L, N n/a

M Thread

begin

B, F A B, C, D, F, H, J, L, N n/a

N And-join C, E, G, H, I, J, K, L, M, N, O A B, C, D, F, H, J, L, N n/a

O And-join D A B, C, D, F, H, J, L, N n/a

Table 4: Node Connectability Table
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