Logical Clock Requirements for Reverse Engineering Scenarios from a
Distributed System

C. E. Hrischuk*, C. M. Woodside**

* Department of Electrical and Computer Engineering,
University of Alberta, Edmonton, Canada
curtis@ee.ualberta.ca

** Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada
cmw@sce.carleton.ca

Abstract

To reverse engineer scenarios from event traces one must infer causal relationships between events. The
inferences are usually based on a trace with sequence numbers or timestamps corresponding to some kind of logical
clock. In practice there is an explosion of potentially causal relationships in the trace, which limits one’s ability to
extract scenarios. This work defines a more parsimonious form of causality sediadrio causalityhat concentrates
on certain major causal relationships, and ignores more subtle potentially causal links. The influence of an event is
restricted to the particular scenario it is part of. An event which is not a message reception is defined to be caused by
the previous event in the same software object, while a message reception is caused by a sending event in another
object. The events are ordered to formcenario event graptvhere typed nodes are events and the typed edges are
certain causal relationships. Intuitively we might say that most logical clocks, which identify events which “happened
before” a given event and thus are potentially causal, give an upper bound on the set of causal events; scenario causality
identifies a lower bound. The much smaller lower bound set makes it possible to reverse engineer and automate the
analysis of scenarios.

Keywords logical clock, causal order, software tracing, graph grammar, trace analysis, distributed
programming, reverse engineering, event labelling, debugging

1.0 Introduction

Scenarios are used by developers to specify software, to capture designer intentions for
sequences of actions and to relate them to the system structure [Rat97, BRJ99]. Re-engineering of
scenarios is a different problem since they are derived from source code and from execution traces.
Here we concentrate on deriving scenarios from traces. We may callrdedized scenarigsand
they have many uses for program understanding, debugging, verification, validation, and
performance analysis, as well as for re-engineering of the design and for planning re-use of the

software. For re-engineering, these realized scenarios should express the same information as

Page 1

specified scenarios, to the greatest extent possible. They should identify the software actions, and
the control flow that causes them to execute. The essence of this information isaugedityof
the activities and events in the trace.

Realized scenarios can be extracted from a trace made during the execution of a distributed
system, by following the events in a particular causal thread within the trace, and separating them
from other system activities that are executed concurrently. The causal links are identified by
“timestamping” the events with a logical clock, which records in some way the predecessor-
successor relationships of the events. *****Curtis: Examples of logical clocks used for various
purposes? POET?

There is a large literature on logical clocks for distributed systems (e.g. [Lam78, SM94, Fid91,
Mat88]). They were introduced essentially because local physical clocks may not be synchronized,
and their original purpose was to give consistent temporal orderings of events (e.g., for data
management), rather than for determining cause and effect relationships. In the literature, “earlier”
is sometimes interpreted as “potentially causal’, to give what is called “happened before”
causality. However this produces a large set of possible causes for any given event, which quickly
expands (as you go back in the trace) to include almost all events in the system. We may say that
these well-known logical clocks give an explosion of causal connections between events.

In this work a more parsimonious approach is taken, calbeshario causalitywhich limits the
explosion by ignoring some pathways for causal influence, or (which is the same thing) assuming
that they have no important influence. One way this is done is by dividing the execution of each
concurrent software object into service periods, and assuming that a service period does not
automatically depend causally on the previous service periods of the same object. (Other logical
clocks, which consider all events that have “happened before” to be causal, identify the entire past
of the process as potentially causal.) The assumption of independent service periods is appropriate
for many service-oriented distributed systems. Scenario causality includes only those relationships
that are certain to be valid within a scenario, so scenario causality gives a lower bound on the set

of causal events, whereas potential causality gives an upper bound.

Page 2

The new logical clock is described as@enario event graptwith typed and labelled nodes for
the trace events, and typed directed edges. Following Newton-Smith [New80], a clock may have
topological propertiesindmetrication propertiesthe graph structure serves as the topology of this
clock and the labels convey the metrication. The graph shows causal sequences, forks and joins,
local object actions, and different kinds of message exchanges between objects and subsystems.
Most logical clocks have a partial order topology, which is equivalent to an acyclic directed graph
with untyped nodes and edges; the present graph gains its power from its typed nodes and edges.
The metrication property describes how numerical values are defined for the timestamps, such as
a series of integers in Lamport’s scalar clock [Lam78]. In the vector time logical clocks described
by Fidge [REF] and by Mattern[REF], the metrication is a vector of integers, and the topology is
a partial order defined in a particular way over the vectors. The metrication of the new clock is a
data structure embedded in the node labels. The purpose of this paper is to define the topology for
the new clock formally, using a graph grammar and a set of axioms, and to show how this topology
defines requirements for the metrication. A variety of metrications can then be defined; the essence
of this family of clocks is in the topology.

Graph grammars have been used before to define software models, for instance to define
MASCOTS [Pay95], Ada [Jac87], StateCharts [Gli95], and actor specifications [JR87]. The
scenario event graph is the first graph grammar definition used for characterizing executions rather

than intentions.

This paper first introduces scenario causality, and a model for service-structured
computations (which modifies the classical, atomic, simultaneous distributed system event model
[SM94, Mat87]). From these it defines a scenario event graph as a description of causality, and also
as the topology of a family of logical clocks. The topology determines requirements for the
complete definition of a clock. The feasibility of completing the definition has been demonstrated
in a particular case, described elsewhere. For re-engineering purposes it is shown how a scenario

event graph can be used to recover object interaction protocols from traces.

Page 3

2.0 Clock Topologies

Thetopology propertyof a clock defines how events are ordered in relation to each other
and the interpretation of that ordering. Figure 1 illustrates how a clock topology can produce

different event orderings from the same event set [New80].

* A linear graph ordering may be appropriate, if the topology does not characterize

concurrency.

» A tree if the topology characterizes concurrency but not the synchronization between

objects.

» A directed, acyclic graph if concurrency and synchronization between objects are

characterized.

In all of these examples the interpretation of the topology could follow that of potential causality:
if a path exists between any two nodes then the earlier node on the path may be a cause of the later

node, otherwise the events may have occurred concurrently.

Linear Tree Directed Acyclic Graph
Object A Object A Object A
Object B Object B — Object B
Object 64 Object C Object C
Object D o Object D OoO—po Object D

Figure 1: Examples of event ordering topologies expressed by directed acyclic graphs

The metrication propertyof a logical clock is a data structure containing counters (usually
called timestamps), rules for advancing the counters, and rules for interpreting a timestamp to order
the events or to identify if events may have occurred concurrently. The metrication must be
consistent with the topology, so the topology expresses requirements on the metrication. For

example, a vector time logical clock [Fid91, Mat88] has a metrication of a vector of integers that

Page 4

can be used, with a partial ordering relation, to reconstruct a directed acyclic graph with a potential
causal interpretation. Other metrications for vector time have been proposed and are reported in
[SK92, FZ90, Val93].

The starting point of this work is the recognition that the well-known clocks are not ideal for
all purposes, partly because of causal explosion, and partly because they assume only
asynchronous communications, which gives difficulties in handling message exchange protocols
such as remote procedure calls. This latter difficulty has been addressed by adjusting a clock’s
metrication [Tay92], [CMT95], [Fid91], [DJ92].

Clock topology offers a handle for designing something different. We take the point of view of
scenarios, that causality flows along the scenario. In a topology expressed as a graph, nodes
represent events and there is a directed edge to a node from every other node which is immediately
causal; there is a path from every node which is causal. Different topologies arise from different
criteria for identifying causal links between events.

Following this scenario point of view, the execution of each software object is divided into
service periods. The start of a new service period cuts the causal link to the previous execution of
the same object. A new service period is triggered by an external event, or the arrival of a message
requesting a servidat is causally unrelated to the previous activitiébis looks like a circular
definition, but is not. Scenario causality propagates forward in the execution of an object within a
service period, and through messages to other objects. A causally related message may arrive as a
reply to a previous message, or as a second request from some source, or from a stream of
operations resulting from a prior fork operation.

In the definition of scenario causality used here, an event is causal if it must occur before the
given event can occur.

Definition: Event el is an immediate scenario cause of event e2 if:

* in the case that e2 is not a message reception or a join, event el is the immediately
preceding event executed by the same object. In this case e2 has only one immediately

causal event,

Page 5

* inthe case that e2 is a message reception, el is the event of the sending of the message
from some other object. If the message reception is not also a join event, el is the only
immediately causal event,

* inthe case that e2 is a join event, it has two immediately causal events, one of which is

is a message reception and one, the preceding event executed by the same object.

To use this definition one must be able to

1) identify events with particular concurrent software objects,

2) identify join events without ambiguity

and the concept of the “same” object requires clarification. The word “object” is used to mean a
concurrent software entity such as an operating system process or a process thread. Two threads of
the same class are treated as separate objects. Forking of the flow can only be done (in this view)
by sending an asynchronous message to another object, and joining, by receiving an asynchronous
message.

When a process receives a message it is either a reply to a previous request, a join event, or the
start of a new service period. The tracing must contain enough information to resolve this. In
service-oriented software, new service periods begin at well-defined home states so it is not
difficultin principle to record this fact in a trace event. Replies are identified from their relationship
to a previous request message. Other message receptions within the scenario are then implicitly
join events.

We will be satisfied to ignore other pathways for causality. For example, if a program reads a
data value, we will not insist on treating the instructions that wrote the value as causal to the
instruction that reads; we will ignore their influence, if any, or treat it as a non-deterministic
influence. This point of view is common in designing and analyzing systems that give service or
execute transactions. Each transaction, or each service, is separated from previous and later
services. There is a dependency, but it can be expressed as a dependency on the starting state, rather

than on the operations in the previous transactions. This separation is not suitable for debugging,

Page 6

where an error in one service is only detected during a later service and it is important to go back
to the cause. It is suitable for program understanding and for performance analysis.

2.1 Example

An example will clarify these definitions. Figure 2 shows a single interaction scenario in a

three-tier client-server system with three objects, using the UML Sequence Diagram notation
augmented by event labels. This distributed application consists of data entry clerks submitting
requests to a corporate database. The Client Object is the graphical interface from which a clerk
initiates a scenario. The Client Object interfaces with the Middle Object using an RPC to exchange
information. The Middle Object interacts with the corporate database (the Bottom Object) using a

deferred RPC.

e, —Client Object Middle Object Bottom Object
I | I
€ I I
e - I I
| * I
| € P> €5
I €10 €16
| e €17
| €2 N g
| ['
I I
€5 | I
|

Figure 2: UML Sequence Diagram of the Distributed Application Example

Figure 3 shows a graph model for the same scenario, based on the node and arc types to be
defined below. For the moment we can ignore most of the details of the node and arc types in
Figure 3, and concentrate on the topology of the graph. It is actually a union of four subgraphs, one
for each of the three objects and one for the path of the scenario, which are shown superimposed.
The object subgraphs are horizontal, with a different level for each object. They have dotted arcs

and are divided into service periods that begin with a node shaped like a diamond, such as at e2.

Page 7

Environmer‘? e

st

Client Object
(tier 1)

€)
Middle Object .. p., CF g i T O rap. >

(tier 2) T
f f
_ €14 ers €16 €17 €1
Bottom Object ——— > i,_,D...p.;. FE].. 1
(tier 3)
Connects succeeding events of the Connects succeeding events
— same process (scenario) o rnreee I of the same object

Figure 3: Example Execution of a Three Tiered Distributed System

The graph for the entire scenario traces through the objects, with solid arcs. It begins with a filled
circle node (e2) and ends with a filled square node (e5). Events are mostly shared by two
subgraphs, for instance e2 is the start of the scenario and also the start of a service period for the
Client Object.

The events el and e20 are external to the software execution, but represent external events
which can trigger the beginning of a new scenario. Fragments of other scenarios are also shown at
the left and the right sides of the Figure.

The message receptions at e2, e8 and e15 are explicit “service period begin” nodes, so they are
causally disconnected from previous events at the same object. The message receptions atell and

e4 are not service period begin nodes, so they must be joins. The message receptions at €6, e13 and

Page 8

el9 are also “service period begin” nodes, so they are causally disconnected from their
predecessors in the same object, and thus from the rest of the scenario that begins at el.
2.2 Communications Protocols

The new topology has also, with very little additional effort, been made “protocol aware”. That
is, one can recognize in the event patterns the occurrence of certain common high-level protocols
for object interaction, such as varieties of remote procedure calls. Alternatively, if the trace records
the use of a certain protocol it can be used to assist in analyzing causality.

Figure 3 provides examples of a synchronous RPC and an asynchronous RPC. The
synchronous RPC is a single path in the solid arcs of the scenario graph, from the Client Object
into the Middle Object and back. Nested within it is the asynchronous RPC giving a fork at the
Middle Obiject, with two paths that join with the reply from the Server. Discussion

This section has defined scenario causality and informally described the reasoning behind it,
based on following the flow of control through a scenario. It has also explored the consequences
of the definition in terms of causal connections between events, in an example. The example uses
graph notation which is yet to be fully defined.

In general, logical clocks have a topology which can be described by a graph grammar. Many
clocks define a partial order among the events, in which case their topology is that of an acyclic
directed graph, which is defined by a simple graph grammar with one node type and one edge type.
In these clocks every event (node) has an arc from the previous event executed by the same object,
with no cutoff at “period begin nodes”, and a node can have any in-degree and out-degree.

To control causal explosion and represent service periods, a type of node called “period-begin”
has been identified as part of the new topology, and relationships within an object will be identified
separately from relationships along the scenario. Other types of nodes, and typed arcs, will be
needed to identify interaction protocols. The result will be a graph grammar defining the new
topology, to be addressed next.

The new logical clock topology based on scenario causality must be able to characterize all

possible executions of the system. This requires a description of the possible executions by a model

Page 9

of computation, which in this work will be based on a model of objects providing services. Beyond
this, the characterization should be unambiguous, and we would prefer a graph with a minimum

number of different types of entities.

3.0 Events and Causality in Service-Structured

Computations

This section is concerned with the relationships between events that may be recorded from the
execution of a certain class of systems, which we will call “service-structured”. It is not completely
general but it does include a large proportion of practical distributed systems. Examples of service-
structured computations include client-server systems, systems based on remote procedure calls,
the Open Distributed Processing standard, or ORB technology.

Service-structured systems are made up of concurrent objects which execute sequentially in
cycles, and communicate by messages. Each object has a “home state” at which it accepts fresh
service request messages and starts a new cycle. A scenario in a service-structured system will be
defined in terms of actions and messages connected by causal dependencies which trigger their
execution. Such a scenario could be described by a process in CCS [Mil80], a Petri net [Pet77], or
an activity diagram in UML [RJB98]; we will use the terpmocess We assume non-interleaving
of actions, as in Petri nets, and linear time.

A scenario is then a combination of a process with the behavior of the objects that execute it.
Objects only execute on behalf of a process (there is no unexplained execution), and processes
include events executed by objects, and external events. External events represent any triggers in
the environment that might initiate or modify a scenario.

First we shall define graph grammars for the object events and the process events separately,

then look at the combination.

Page 10

3.1 The Object Event Graph

In a service-structured computation, a concurrent object executes a cyclic algorithm beginning
always from a home state. In this state, it receives a message, it exesatgga periogdand then
it waits for the next message. The service period expresses the role which the object plays in the
scenario [BRJ99]. A single object completes one service period before beginning another one. The
objects are sequential programs, with a sequential flow of control, so the events occurring during
the execution form a linear sequence. The first event in the period is caused by the request message;
each later event is caused by the event before it.

The object event graphs an attributed, edge labeled, directed, linear graph with nodes
representing the events in order, made up of subgraphs representing service periods. It has two

types of nodes and two types of edges:

<> “Period start” node this is the first node of each object's service period.

[] “Object action” node represents an event that records some action that the object
performed. It is the default node type.

----- - “Next-in-object” edge its target is the next node in the same service period.

--Ph. “Object’s next period” edgeits source is the last node of an object’s service period

and its target is the period start node of the object’s next service period.
Scenario causality states that the next period edge does not represent a causal influence, but the
next node edge does. Some of the events during a service period may involve messages and
interactions with other objects; their special nature is represented in the process event graph to be

described next.

3.2 The Process Event Graph
A process event graptepresents a realized scenario, and consists of the events in the scenario,

as nodes, and the direct causal connections under scenario causality, as edges. It may include

Page 11

concurrent threads of execution as linear sub-graphs gaitenbss threadsand there are special

node and edge types to characterize the causal relationships between threads.

The process event grapls a typed, node labeled, finite, directed, acyclic graph, with the

following node types and edge types. Except for the and-fork and-join types, all nodes have a

maximum in-degree and out-degree of one.

e

“External” node: represents an external stimulus event, such as a system input or

exception condition.

“Thread begin” node it is the beginning of a process thread.

“Process action” node for an event recording an action that is performed in the

process. This is the default node type. In this paper, an object sending a message to
itself is considered to be an action node.

“And-fork” node: records the forking of one new process thread, with an out-degree of

two, including one fork edge.

“And-join” node: is a synchronization between two process threads that join into a

single process thread, with an in-degree of two.

“Thread end” node ends a process thread.

“Start the process” edgést): its source node is an external node and its target node is a

thread begin node. A start edge identifies a process thread caused by an external
stimulus.

“Next-in-process” edgeits target is the succeeding node in the same process thread. It
will be abbreviated as process

Page 12

—f# “Process thread’s fork” edg€f): its source is an and-fork node and its target is the
thread begin node of the forked thread.

There is no ‘process thread join edge’ because the and-join node is unambiguous.
3.3 The Scenario Event Graph and a Global Event Graph

A scenario event graph combines a process event graph with several object event subgraphs.
We start from the process subgraph of the scenario, and superpose those parts of the object
subgraphs representing service periods within the scenario as overlays. Two nodes representing the
same event are merged, and have a dual type, one type for the scenario subgraph and one for the
object subgraph. Similarly where an edge exists in both the scenario and the object subgraphs it
has a dual type, one type for each.

Finally, where the event records include many scenarigit@al event grapls defined as the
superposition of all of the object event graphs and scenario event graphs in the system.
3.4 Example

The example of Figure 3 can now be seen with the definitions of all the node and edge types in
mind. For each object, one service period from its object event graph is shown, with fragments of
previous and succeeding periods. Notice the next period edges that terminate a service period. The
external node is not part of a service period because it is generated by the environment and it is not

associated with an object.

There are several partial process event graphs but griy{P;, &), €3, &4, &;, €3, &, €10, €11,
€12 €15 €16 €17, €1 g} IS shown in its entirety. The remaining nodes belong to other process event

graphs. If they were completed, then all together they would comprise a global event graph.
Notice that the other scenarios and their corresponding process event graphs may overlap in

time with P,. For example, there are no causal dependencies that would prevent the action of node

{e7} from having occurred concurrently with the actions of nodesdg e 4}.

Page 13

This example highlights two important characteristics of the event model: (i) that objects are
shared amongst scenarios and (ii) an omniscient observer may see several scenarios occurring
simultaneously and concurrently.

3.5 Complex trace events

An instrumentation system may record a single event which must be split into several events
to correspond to the graph grammar. For example, a trace event for a multicast-aragrfork
has to be translated into a series of binary forks, and a multiway join or gather has to be translated
into a seried of binary joins. If a high-level event includes an activity aspect (some action that takes
time) then it should be represented by a separate activity event. By convention, we will place the

activity before any and-forks (for a multicast: see Figure 6) or after any and-joins (for a gather).

Object A

Object B

Object B,

Object B,

Figure 4: Example of a Multi-cast Communication

3.6 Discussion

In summary, the service-structured computation model assumes scenario causality, linear time,
and non-interleaving of actions. Scenario causality associates events with a process and with
objects, and segments each object's behavior into individual periods of service. Linear-time allows
scenario event graphs to be derived from execution traces. The non-interleaving properly
characterizes concurrency within a scenario and it captures the object architecture. In addition:

* An object only executes on behalf of a process (i.e., all execution has a cause).

Page 14

* For a process to proceed it needs an object to execute on its behalf (i.e., no
unobservable execution).
» A scenario by assumption always completes (i.e., it does not deadlock).
* An object cannot atomically accept a message and send a message in the same event
(i.e., observations are unambiguous).
* The event instrumentation and monitoring records all events. Thisciesgd world
assumption
This completes the service system definition. It is a good match with many distributed systems and
related technologies, such as DCE RPC [Ope92], CORBA[Obj93], Java [LY96, GJS97], and
mobile agents [Pra96]. Real-world distributed systems often resemble this class of systems. Server
objects respond to RPCs, asynchronous messages, signals, and exceptions. Server objects are
shared amongst many simultaneously occurring scenarios. Objects are static or dynamic entities
that may exist over the lifetime of many scenarios. Actions take time.
3.7 Scenario Event Graph Axioms
The node and edge definitions given above lead to just fifteen ways in which a node can be
connected if a SEG (for instance, an “external event” node always has a “start” edge coming from
it). These 15 connections are shown in Table 1, and formal proof of their completeness is given in

the appendix. The Table includes some object interaction roles which are discussed further below.

4.0 Object Interactions

Considering message exchanges between objects, as in (for instance) [CL94b, CL94a],
scenario causality can distinguish at least the following eight kinds of interactions:

* an external message exchange,

» ablocking RPC [Ope92, BN83],

« an asynchronous message exchange,

Page 15

» adeferred RPC (also called an asynchronous RPC),
* an RPC exception,
* a multi-cast message exchange,
» asynchronous bi-directional communication, and
» asynchronization between software components.
These patterns in turn are a useful part of re-engineering for understanding the application.
4.1 Characterizing Message Exchange Protocols in a Scenario Event Graph
Characterizing a message exchange protocol requires using information from both the process
event graph and the object event graph parts of a scenario event graph. In Figure 3, consider the

remote procedure call made from the Client Object to the Middle Object. The subgraeh, &,
ey} of Figure 3 corresponds to a pattern for a blocking RPC, with the properties:

» the process subgraph aspect is linear,
» the beginning and end are in one object, with no nodes between them in the object
subgraph aspect
* The middle is associated with other objects
Note that the RPC could not be identified whtre two subgraph types were examined

separately

Client Object ~ «------ |.|:| ||.|:| -

Mlddle ObjeCt pi|.<> ------ ||.|:| l|.|:| ||.D ----- “'I:l"p'“"
Figure 5: Object Execution Graph of an RPC Message Exchange

€3 € € €10 € S €y

Process P >G »O >] >O > ’O >

Figure 6: Process Event Graph of an RPC Message Exchange

Page 16

Figure 3 also has a deferred RPC message exchange which is identified as the sub-graph pattern

{eq, €10, €11, &5 €17} The distinguishing characteristic of the deferred RPC is that the client object
can engage in actions(g between the initiation of the RPCdleand the reception of the reply
(e19)- This is visible in the object subgraph aspect of the scenario event graph.

Events in the scenario event graph take on identifiable roles in message exchange protocols. In
Table 1 we can identify:
» External request initiationA request (or exception) was externally generated from
outside the system being monitored and it begins a process thread. This is row {A}.
» Blocking request initiationThe initiating object cannot proceed until it receives a reply
to a request it has just made. This is row {D}.
* Non-blocking request initiatianThe initiating object sends a message to another object
and the initiating object does not block.This is row {H}.
* Reguest acceptance to start a service peridlocked responding object accepts a
new message and begins a new period (rows {E, |, M}).
» Synchronization acceptancé responding object has already began a service period
but it is blocked, until it accepts another message. These are rows {J, L, N}.
» Sending a reply to a blocking request replying object sends a reply to the blocked
initiating object. These are rows {F, H}.
* Acceptance of a replyA blocked initiating object receives the reply to its blocking
request. These are rows {G, K}.
During the execution of a message exchange protocol element, an object will act out a role in the

message exchange protocol. The different message exchange protocol roles are discusses next.

Page 17

Allowed

Node Connection

Node Connection Interpretation Protocol :
Role(s) Figure
(A) External system request. No object e
st
(B) End of the object period and process thread. Any role
(C) A process action event. Any role
(D) Initiation of an RPC message exchange. Initiator or
Forwarder

(E) Acceptance of a message sent using an RPC message exchang

Forwarder or
Replier

eResponder or|

(F) Sending the reply to an RPC message exchange. The respondirgReplier

object’s service period ends.

(G) A blocked initiating object in an RPC message exchange receive

5 thigiator

reply. The replying object ended its service period after it sent the reply.
An and-join node is not used because there is only one process thrgad.

(H) There are three possible interpretations of this node connection
axiom:

(1) An initiating object initiates an asynchronous message exchangsg. (1) Initiator or

(2) A replier object sends the reply to an RPC message exchange a
does not end it service period but continues executing.

(3) A forwarding object forwards the message to another responding
object.

Ng@2¥ Replier or

(3) Forwarder

() A blocked object that isiot executing in a service period now accegtResponder or,

a message that was sent asynchronously.

Forwarder or

Replier é 3
"p'“" T
(J) A blocked object that is executing in a service period completes a sResponder or|
chronization by accepting a message. The message was sent using|aforwarder or ¢
RPC message exchange. Replier

Table 1: Scenario Event Graph Node Connection Axioms

Page 18

Allowed Node Connection

Node Connection Interpretation Protocol :
Role(s) Figure
(K) A blocked initiating object in an RPC message exchange receives th@iator |
reply to its message. The replying object did not end its service period f

after it sent the reply.

(L) A blocked object that is executing in a service period completes asResponder or I
chronization by accepting a message. The message was sent as an| a&yiwarder or
chronous message exchange. Replier

(M) A blocked object that isiot executing in a service period now begindnitiator
executing because of an external request. st

(N) A blocked object that is executing in a service period completes @gResponder or .

synchronization by accepting an external request. Forwarder or st
Replier
—
N &- ..||.
(O) An RPC exception condition which unblocks the initiating object|innitiator '
an RPC message exchange. st
N & LR |

Table 1: Scenario Event Graph Node Connection Axioms

4.2 Roles of Objects in Message Exchange Protocols

Scenario causality takes advantage of the observation that, from an application viewpoint,
whenan object is involved in a message exchange, its future execution is restricted so that it does
not violate the semantics of the message exchange proidwse restrictions are identified by the
protocol rolean object plays in the message exchange protocol. The role is important because it
limits the future events (i.e., scenario event graph nodes) the object may record. For example, a
client object that initiates an RPC cannot execute until it receives a reply or an exception.

By inspection, the four types of message exchange protocol roles are:

* An initiating objectsends messages to request services from other objects.

* A responding objeciccepts a message from an initiating object and provides a service.

Page 19

* A forwarding objectaccepts a message, executes, and then forwards the message to
another object for further processing.

* A replier objectsends a reply to an initiating object to indicate the initiating object’s
request has been completed and the initiator can continue.

The object roles that are identified for each node connection axiom and the corresponding
interpretation are given in the middle column in Table 1.
4.3 Examples of Interactions

To clarify the semantics of the scenario event graph and the message exchange protocol role
types, example scenario event sub-graphs are presented for: an asynchronous RPC, object
synchronization, bidirectional synchronous communication, the RPC exception, and the
forwarding message exchange. The scenario event graph figures follow these conventions: time
proceeds from left to right, the consecutive nodes of an object are at the same vertical level, and
the consecutive nodes of a process thread can crossover to different objects (e.g., blocking RPC).
Prior examples of the RPC, asynchronous, and deferred RPC are given in Figure 3. A multi-cast

message exchange was shown in Figure 4.

4.3.1 Asynchronous RPC

An asynchronous RPQs an RPC message exchange protocol that is constructed from
asynchronous messages and this is shown in Figure 7. It is a paired set of asynchronous messages
with the first one being the initiating RPC message and the second being the reply. It is deduced
that this is an RPC because the initiating object (Object A) does not record further events so it is
assumed to be blocked until it receive the reply message from Object B. In this example, Object B
continues executing once the reply message is sent to Object A. This deduction relies on the closed

world assumption.

4.3.2 Synchronization

A synchronizatioroccurs when the synchronizing object has started a service period and it

must accept another message to continue execution. There are four possible ways a

Page 20

synchronization occurs. The first case is where the message was sent using a blocking protocol
(Figure 8). The second case is where the initiating object uses an asynchronous protocol to send
the message (Figure 9). The third case occurs where a blocked initiating object receives its reply

to a message that used an RPC protocol (Figure 10). This third case is characterized as a new
process thread being forked for the reply. The last synchronization case involves an external event
being accepted (Figure 11).

Figure 12 is an example of laidirectional synchronous communicatievhere two objects
exchange messages by sending and receiving messages simultaneously. In this example, the and-
fork node represents the sending of the message, the and-join node represents the reception of the
message, and the action nodes represent the duration of the message exchange. Note that the and-
fork event, and-join event sequence are interpreted as happening simultaneously even though an

order is implied by the graph.

4.3.3 Frwarding

A forwarding message exchangecurs when the initiating object blocks on its message
request and the first responding object asynchronously sends the message to another responding
object [HWRI99]. Each responding object can continue to forward the message to other
responding objects. The last responding object in the series sends a reply directly to the blocked
initiating object. This type of message exchange protocol occurs when an object acts as a request
dispatcher [Gen81] or as a form of rate control for an object pipeline. An example forwarding
message exchange is shown in Figure 13, where: the initiating object (Object A) sends the message
and blocks, the first forwarding object (Object B) handles the message, and forwards it in an
asynchronous fashion to another forwarding object (Object C), Object C handles the message

further and forwards it to Object D which replies to the initiating object.

4.3.4 RPC Exception

An RPC exceptiomccurs when an object that initiated an RPC becomes unblocked due to an

exception and not a reply. An exception condition may result from a time-out condition, a signal

Page 21

ObjectA T h (s 7S T —— R

% A
Object B };—ro O

Figure 7: An RPC Message Exchange using Asynchronous Communication

Object A

Object B

....... I
Figure 8: A Responder Object Synchronization from an RPC Message Exchange

Object A

Object B

Figure 10: An Initiating Object Synchronization from an RPC Message Exchange

ObjectA T rOo——erC

Figure 11: An Object Synchronization from an External message

Page 22

Simultaneous

Object A

Object B

Object C

Object D

Figure 13: A Forwarding Message Exchange with Two Levels of Forwarding

Object A P o

Object B

Object C

Object D :
Figure 14: A Forwarding Message Exchange with Blocking Communication

Page 23

from the environment, or a high-priority message interrupting the initiating object. Two example
characterizations of an RPC exception are shown. The first type of RPC exception (Figure 15) is
the result of an external event such as a software interrupt, so the initiating object resumes
execution before receiving the reply to its initial message. The second type of RPC exception
occurs when a blocked initiating object accepts a message in place of a reply but the message is
not causally connected to its initial message. Figure 16 is an example of this situation. In this
example, initiating Object A receives a message from Object C that is interpreted as a reply, but

Object C has no causal connection to the RPC.

Object A --...." h
Object B
Figure 15: An RPC Exception from an External Event
st
Object C (t)

Object A

Object B
Figure 16: An RPC Exception from a Causally Unconnected Event

4.3.5 Message Exchange Roles: Summary

The possible message exchange protocol roles associated with each message exchange are
listed in Table 2. The reader will notice that what initially seems to be a responding object may

later become a forwarding or replier object due to its behavior after receiving a message. The

Page 24

asynchronous message exchange has only two protocol roles: the initiator and the responder. A
multi-cast message exchange is similar because a multi-cast is analogous to a series of
asynchronous message exchanges. An RPC, deferred RPC, or asynchronous RPC message

exchange has two roles: an initiator and the responding object that later becomes a replier object.

Message Exchange Type Initiator Role Responder Rgle Replier Role Forwarder Rgle
Asynchronous, Multi-cast Yes Yes No No
RPC, Deferred, RCP, Asynchronous RRC Yes No Yes No
Bi-directional synchronous Yes Yes No No
Forwarding Yes No Yes Yes
External No Yes No No

Table 2: Protocol Roles that Occur

In a bi-directional synchronous communication message exchange, both objects begin as
initiating objects and then become responding objects to receive the sent message.

A forwarding message exchange (Figure 13) has three roles: the initiating object (Object A)
blocks after sending its message. The first forwarding object (Object B) receives the message from
the initiating object, executes and then forwards it to another object (Object C). Object C receives
the message, executes, and then forwards it again. The last object in the forwarding chain performs
the role of a replier, sending the reply message back to the blocked client.

The last message exchange listed in the table is the externally initiated message exchange. In
this case there is no initiating object because the source of the message is outside of the system.
However, there is a responding object which receives the external message. An example of a
responding object is Object A in Figure 11.

4.4 More Message Exchange Protocol Variations

The message exchange protocols that have been presented can vary in several fashions. First,
all of the RPC message exchanges could be constructed using asynchronous messaging, just like
in Figure 7. Secondly, the forwarding of a message may use internal blocking or asynchronous

message exchanges. Third, in any of the instances, a responding object may accept a message that

Page 25

forms a synchronization. Lastly, a variation of a forwarding message exchange occurs when the
message is forwarded using an RPC protocol (Figure 14). It should also be emphasized that server
objects can be involved in other message exchanges while executing, looking like client objects to

lower layers of servers.

5.0 Comparing Scenario Causality with Potential Causality

STUFF TO FIND A HOME FOR OR REMOVE

The most widely used event ordering relation is callpdténtial causalitybecause it orders
the events temporally [Lam78, SM94otential causalityis the smallest transitive relation that
orders:

» the succeeding events in an object, and
» the send and receive communication events between objects so that a send event
always precedes its corresponding receive event.
Potential causality answers questions such &éd ‘evente; happen before even} in the
distributed systeni?Thus, potential causality has also been callechippened beforeelation.

Potential causality is represented as a partial order where it is assumed that if two events cannot
be ordered then the events may have occurred concurrently. This partial order topology of potential
causality can be expressed as a graph grammar with one node type (an untyped event) and one edge
type that identifies the succeeding node for a given node. Potential causality geneghitial a
event graptwhich orders all of the potentially causal (i.e., predecessor) events and the (potentially)
concurrent events are on parallel branches of the graph.

Scenario causalitincludes only those ordering relationships that are certain to be valid within

a scenario. It is more expressive because it has several edge types to represent different types of

causal relationships. Scenario causality is describedaaseVente; is a scenario cause of event

e, if there is a sequence of events from eegnt to @yent in the same stenario.

Page 26

Scenario causality characterizes several application level communication protocols (or
message exchange protogdisat potential causality cannot characterize. A clarification is needed
about the definition of scenario causality. If event v, = {x « y} which precedes the eyvent
v, = {a < b} inthe same scenario, then event is considered to be a scenario cause @fevent
even though there is no direct dependency between the varigbles v, and . There are two reasons
for this position. First, the developer ordered those two statements so there is an inferred causal
dependency which may later manifest itself. Second, and more practically, the actual ordering of
the program statements ensures that eggnt could not execute withouggvent first occurring in
that scenario.

The next section examines the scenario event graph’s semantics. The scenario event graph
figures will no longershow the icon for the object action node because it is the default node type

for the object event graph.

6.0 A Class of Logical Clocks

The topology defined so far gives the requirements for a metrication and a complete clock.
these requirements can be summarized as:

?7?7?? anything new... or do we refer to items before

Any generic properties of this class, beyond the angio trace example?

The feasibility of creating a complete clock definition has been demonstrated by creating a
logical clock specially for building performance models of software. Include the following two

sections, or some of it. Generic description. refer to proprietary version at the end.

7.0 An Overview of Automated Model Construction

Scenario causality is the basis for a Model Making Automation Process (MMAP) which is a

technique for the (automated) construction of scenario models [Hri98a]. MMAP is based on the

Page 27

novel concept of using several graph grammars to convert execution traces into abstract scenario
models. Using a graph grammar formalism allows the scenario models to be constructed and
analyzed in an automated fashion. MMAP, which is a generalization of a process for the automated
construction of a performance model of distributed applications [HWRI99, Hri98b], is briefly
described here to illustrate how scenario causality and the scenario event graph can be used for
software engineering purposes.

MMAP is a chain of formal transformations. At each step in the chain it converts an input
model into a more abstract or domain specific model. MMAP's general strategy for transforming
a model from its input domain to its target domain is as follows. Firstajyglication specific
domain languagef the input model domain and the target domain are both described as separate
graph grammars. Then a graph transformation from the application specific language of the input
domain (the input graph grammar) to the application specific language of the target domain (the
target graph grammar) is developed using graph rewriting rules to define semantic equivalences of
sub-graphs in the input and output domains.

The several model domains of MMAP are identified in Figure 17. They are listed in the order

in which data flows to construct a model:

(a) Program language statemetihe object’'s source code statements.
(b) AncioTRACE instrumentation Embedded instrumentation that atomically generates and

recordsanGloTRACE events when language statements are executed.

(c) AncioTraceevent recordsThe recorded events which can be ordered in accordance with
scenario causality using special logical timestamp values.

(d) Scenario event graptA graph grammar that characterizes all possible scenarios. It is the
topic of this paper.

(e) Scenario modelA model type that characterizes the execution of a scenario for further
analysis. This includes the involved objects, their individual actions, the messages, and the

message exchange protocol elements.

Page 28

(H Domain specific modelA view of the execution, that may have additional information
included, for domain analysis purposes.
The algorithmic graph grammar formalism is used as the basis for the model transformation
machinery which is implemented by the PROgrammed Graph REwriting System language and its

corresponding toolset [Nag87, Ehr87, Sch90, Sch91b, Sch9la, SWZ95, Sch97].

((a) Program language statemeDt

#1) System execution

((b) Angiotrace instrumentation)

Y . .
69 #2) Instrumentation execution

Y
(_(c) Angiotrace events)

Y
69 #3) Event ordering

Y
(__(d) Scenario event graph)

Y
€D #4) Scenario event graph (SEG) analysis

\
(__(e) Scenario model)

Y
(C_Additional domain information ——(} #5) Domain model construction

\ +

(_(f) Deployment diagram) (_(f) Sequence diagram
(_(f) Performance model EB
] Formal
Figure 17: MMAP Data Flow transformation

For illustrative purposes, there are three domain specific models identified in Figure 17 that
MMAP can construct. It should be apparent that the event traces of Figure 3 can be used to
reconstruct the sequence diagram of Figure 2. If information about the deployment of the software

is added, then a deployment diagram can be produced. It is described in [HWRI99, Hri98b] how a

Page 29

performance model can be constructed from several scenario models. MMAP may also generate

other types of models.

8.0 Implementing the SEG as a Logical Clock

The two steps in Figure 17 which move from the program language statement to a scenario

event graph are linked by a new type of logical clock callednmorrace.! TheancioTrRACE is the
metrication for the scenario event graph topology. This section provides an informal discussion of
how the ANGlOTRACE events can form a scenario event graph, providing insight into the
development of the logical clock metrication and implementation. When referring to an angiotrace
the termeventwill be used in place of the temode

The nameancioTRACE is derived by analogy from an angiogram. An angiogram is a
visualization of an individual's blood flow that is produced by injecting a radio-opaque dye into the
blood stream and taking an X ray of the dye dispersion. SimilarlygnarTrRACE assigns a different
software dye to each scenario so that each scenario's event records can be distinguished and
ordered. The software dye consists ofanject timestampo construct the object event graph and
a process timestampo construct the process event graph. The underlying formalism of the
angiotrace is that of partial order multi-sets [Pra86] because it has more than one timestamp and
more than one type of edge.

Instead of a single event ordering relation panioTRACE uses a set of partial ordering relations
to construct the scenario event graph. There are six event ordering relations for identifying the
causal relationships that exist between a given event’'s succeeding or preceding event(s). These
relations are used to construct a scenario event graph because each ordering relations will add a
specific edge type between two nodes when it is satisfied; (if an ordering relation cannot be

satisfied then an edge is not added. The ordering relations that are provided are:

1. It should be noted that a form of ANGIOTRACE was described in [HRW95, HWRI99] but the ANGIOTRACE instrumentation
that is compatible with scenario event graph is described in [Hri98b].

Page 30

» Find the succeeding node in the object event graph and adibjact’'s next period

edgeif the succeeding node is a period start node, otherwise raekt abject edge

» Find the succeeding node in the same process thread and the same object event graph
and add a next process edge between the two nodes.

* Find a succeeding process event graph node that is not in the same object event graph
and add sstart the process edgéthe source event is an external node, otherwise add a
process thread’s fork edge

The three remaining ordering relations are used to find the preceding node given its successor
event.

Like most other logical clocks, the angiotrace timestamps are counter values with prescribed
rules for incrementing the counters to guarantee uniqueness and event ordering. The rules for
incrementing the counters and ordering the events using the timestamps must be able to identify
and reconstruct each possible ordering relationship in Table 4. If the metrication satisfies this
requirement then it will be able to characterize all possible executions of the distributed system

since these are the only valid events orderings.

9.0 Conclusions

Scenario causalithas been defined here for the purpose of identifying and order the events
that are recorded for a scenario, recovering important contextual information that cannot be
retrieved using conventional means. There are several new applications that should be able to make
use of scenario causality. For example, the ability to identify a type of scenario would enable the
provision and enforcement of a quality of service for a type of scenario. Identification of a scenario
could allow for more efficient approaches to checkpointing for roll back [PK93] or the detection
of consistent cuts [CB89] because unimportant scenarios types could be ignored. The scenario
information is useful for understanding applications with persistent objects that can remain
dormant because, in this situation, wall clock time cannot be used to establish any causal links

between events.

Page 31

A new, event based reference model of distributed system execution was developed called the
scenario system event mod&lnovel aspect of the scenario system event model is that it uses the
process and the object views in a distributed system to construct the scenario and global, system
level view. A graph type is defined for each of these views. The scenario system event model
defines the minimum information needed to reverse engineer scenarios. In particular, it specifies
that the start and end of a process, as well as the start and end of object service periods must be
characterized. This is in addition to the local actions and communication actions of the objects.

The logical clock topology defined for scenario causality is a graph grammar with events that
are represented as typed nodes and different types of causal relationships are captured as typed
edges. Ascenario event grapis formed using this graph grammar. The family of valid graphs that
can be constructed are defined by the node connection axioms of Table 1l and the node
connectability table (Table 4). Together, these two tables defines the topology of a logical clock
that is consistent with scenario causality and they serves as the specification for a logical clock
implementation.

The definition of scenario causality presented here is a for message passing distributed system.
Scenario causality characterizes more application level, message exchange protocols than
conventional techniques. The message exchange protocols that are characterized are: an external
message exchange, a blocking RPC, an asynchronous message exchange, a deferred RPC (also
called an asynchronous RPC), an RPC exception, a multi-cast message exchange, a synchronous
bi-directional communication, and a synchronization between software components. The results
can be also applied to software systems which are a sub-set of a message passing system (e.g., a
single threaded object-oriented application or a parallel message passing application).

In principle, scenario causality should be extensible so that it can characterize additional
application specific message exchange protocols, such as replication [Bir87], atomic transactions
[Lis88], object migration [SHK92], or tuple spaces [ACG86, CG89]. Extensions to characterize
scenario causality for non-message based exchanges between objects may also be possible (.e.g,

semaphore, condition variable, synchronization barriers). The development of an extension would

Page 32

follow the methodology outlined in section 2.0, modifying or adding to the scenario system event
model, the node connection axioms of Table 1, and the node connectability table of Table 4.
Using a graph grammar to define scenario causality enables graph grammar community to
participate in the analysis of scenarios [Sch90, Nag79]. For example, sophisticated tools for
programming with graph languages (e.g., PROGRES [SWZ95, Nag96]) can be used for system
analysis. In particular, the use of a graph grammar has allowed different types of models to be

automatically generated from a scenario event graph model [Hri98a].

The results of this research can be applied to give sharper results in areas that have been
studied previously with potential causality: distributed algorithm implementation [Mor85], system
feature implementation (e.g. causal memory [AHJ91], causal message ordering [BSS91]), design
recovery [KB95], global state recording [CL85, FZ90, Mat93, SK86], global predicate evaluation
[CM91, HWS88, HK90], trace replay [NM92, LM87], design recovery [KB95], describing event
patterns [LKA+95, Fid91], the visualization of system execution [KB95], automatically
constructing software performance models [HRW95, HWRI99], and race detection [HMW93].

A novel aspect of this work is that it is the first time that a logical clock’s topology has been
directly addressed as an attribute. A significant result from this is the idea that there is more than
one form of cause-and-effect relationships which can be characterized and exploited in analysis.
In support of this four types of causality are listed that have been identified in the logical clock
literature:

» Real causalityis the event ordering that is consistent with both the purpose of the
software and a particular execution of that software. Recovering real causality is
impossible in practice because it necessitates full knowledge of each: object’s behavior,
the variables’ initial values, the processes, and the execution environment.

* Imposed causalitis an ordering between timestamps imposed by an algorithm and this
ordering does not have to correspond to the event order during execution. An example is
the ordering produced by the scalar logical clock [Lam78].

» Potential causalityhas been used to provide a temporal ordering. An example is the

event ordering produced by vector logical clocks [Fid91, Mat88].

Page 33

» Scenario causalityhas been introduced here to enable the reverse engineering of
scenarios.
The natural progression is to continue to define other application or domain specific forms of
causality.
Potential causality can be reconstructed from scenario causality, by replacing next period edges

by causal edges and using the global event graph.

10.0 Acknowledgments

This research was supported by the Natural Sciences and Engineering Research Council

(NSERC), by Bell Canada, Nortel, and DY-4, through an industrial research chair.

11.0 Appendix: Proof that Scenario Causality is Complete
and Consistent

This section proves by enumeration that the node connection axioms of Table 1 are the only
valid ways to connect nodes and characterize scenario causality. First a general representation of
a scenario event graph node and edge is identified. Next, all of the ways in which a scenario event
graph node can be connected to its preceding and succeeding node are enumerated. Finally, those
node connection axioms whose causal interpretation is not consistent with scenario causality are
eliminated. The result of the proof is a node connectability table that determines all of the valid
ways each node connection axiom can connect with all other node connection axioms, thereby
characterizing all valid scenario event graph’s.

11.1 Characterizing Scenario Causality between Any Two Nodes

In the scenario event graph a node is a six-port building block (Figure 18), wipen ia the

source or target of a single edge. The position of a port identifies the valid edge type that can

connect with it, as well as the direction of the edge. There are six ports because a scenario event

Page 34

graph node has at most three incoming and three outgoing edges since it is the super-position of a
binary graph (i.e., the process event graph) and a linear graph (i.e., the object event graph).
The six port types are:
* InObject the target of an edge connected to the preceding node in the same object
event graph.
* InProc: the target of an edge connected to the preceding node in the same process
thread and in the same object event graph.
» InProcExt: the target of an edge connected to the preceding node that is part of the
same process event graph but not in the same object event graph. When an external event
occurs or a message is received by an object this port is the target of an edge.
» OutObject the source of an edge connected to the succeeding node in the same object
event graph.
* OutOp the source of an edge connected to the succeeding node that is in the same
process thread and in the same object event graph.
» OutOpExt:the source of an edge connected to a succeeding node that is part of the
same process event graph but in another object event graph. This port is the source of an
edge when an external event occurs or a message is sent by an object.
For this portion of the proof the type of an edge is not important. An edge’s type identifies the type
of scenario causality between two nodes, but the proof only needs to identify that a scenario causal
relation (an edge) exists.
Based on this six-port building block model, consider all the combinations of ways in which
these ports may (or may not) have edges attached to them. For each port, assign a binary value 1 if
it has an edge attached or a O if not. A binary number, calleddde connection valua Table 3,

can be constructed where the bit positions are, from most significant bit to least significant bit:

InProc, InObject, InProcExt, OutOp, OutObject, OutOpExt

Page 35

And-fork edge
Next process edge
Start SEG edge

N

Next process edge
—

InProc

InProcExt

ouop] Nextgrocess edge

InObject

OutOpExt

OutObiject |

1
Next object edg

Next object period

N\

And-fork edge
Next process edge
Start SEG edge

.......... i|.,
Next object edge
Next object period

Figure 18: A Scenario Event Graph Node as a Six-Port Device

This means there are 64 possible values. However, many of these connections are invalid because
they violate the causal interpretation of the process event graph, the object event graphs, and the

scenario event graph.

The constraints due to scenario causality fall into three categories:

» Structural constraints each node and edge type is unique, having a specific

interpretation that allows (or prevents) it from connecting to other node types.

» Consistency constraintscenario causality characterized by the object event graph and
the process event graph must be consistent.

* Interpretation constraintsthe scenario event graph must be unambiguous in its
characterization of causality.

Each constraint type and its effect on the possible node connection axioms are considered next.
The structural constraints ensure each node has unique propertigbrddetend nodes the

only node type to finish a process thread. Ttheead begin nodes the only node type that is

allowed to begin a process thread. Téwdernal nodenas no cause. Thand-join nodehas two

causes from different process threads. &@he-fork nodes the cause of events in two process

threads. Th@rocess action nodeepresents a local action of an object that can have duration. The

period start nodedentifies the beginning of an object’s service period.

Page 36

The following consistency constrainensure that the scenario event graphs have a consistent
causal interpretation:

» For a scenario to proceed it needs an object to execute on its behalf.
* An object only executes on behalf of a scenario.
* A scenario always successfully completes (i.e., it does not deadlock).

There are two results that follow from these constraints: a node cannot be the source of a next
object edge without also being the source of a next process edge, and a node cannot be the target
of a next object edge without also being the source of a next process edge. Note that a node can be
the source of a next process edge without being the source of a next object edge because the
scenario can continue in another object (i.e., RPC reply).

There are twanterpretation constraintghat need to be considered. The first constraint is that
an object can either accept a message or send a message but it cannot do both for the same node.
Otherwise the causal ordering is ambiguous because it is not known which action, sending or
receiving, occurs first. The second constraint is that objects do not interleave their service periods.

The set of valid node connection axioms can then be found by enumerating the possible node
and edge connections and then removing the invalid possibilities. This is summarized in Table 3
and expanded in Table 5 of Appendix A. For example, an external node will only be the source of
astart the process edgm the OutOpEXxt port so it has a hexadecimal node connection valie of
The thread begin node is the target aftart the process edgm the InProcExt port and it sources
a rext process edgand anext object edga the same process thread (i.e., OutOp and OutObject
ports). The thread begin node then has the hexadecimal node connection vakieS#veral
example invalid node connections arise from the interpretation constraint preventing a node from
receiving and sending a message, which translates to the node being the target of an edge on the
InProcExt port and a sources of an edge on the OutOpEXxt port. As shown in Table 3 this eliminates
several node connection values, sucB%9B, etc.

The node and edge typing is added to distinguish the cases where a single node connection

value in Table 3 can give rise to several node connection axioms in Table 1 which are distinguished

Page 37

Explanation

Valid Node
Connection
Value (hex)

Invalidated Node
Connection Values
(hex)

Nodes with no edges are not allowed because a process thread must have at

least two nodes: a begin node and an end node.

0

Only an external node is allowed to have an effect without a cause. This i
{A} in Table 1.

ae&m

02,03, 04,05, 06,0

A node cannot both receive a message and send a message.

09, 0B, 0D,
19, 1B, 1D, 1F, 29,
2B, 2D, 2F, 39, 3B,
3D, 3F

The scenario is stopped if there is not an outgoing object edge without
outgoing process edge.

an

0A, 1A, 32, 3A

A next process edge output in the same object period (OutOp) must h3
corresponding next object output edge (OutObject), otherwise the obje
deadlocked.

ve a

ctis

0C, 14, 1C, 24, 2C,
34, 3C

The receiving object is blocked (no InObject edge) and it becomes unbig

ceed

by accepting a message (InProcExt). These are items {E, |, M} in Table¢ 1.

A node must have a next process edge as an input, either InProc or InPr
to proceed to the next node, otherwise the object executes without a sc
which is not allowed in a scenario system event model.

pDCEXxt,
enario

11, 12,13, 15, 16

The object is blocked (i.e., not InProc), becoming unblocked by accept
message on InProcExt, continuing execution of the scenario by sourcing
on OutOp and OutObject. This is items {G, K, O} in Table 1.

rid-a

edges

A node must have an object input edge if it has a process input edge ir
same object period.

the

21, 22, 23, 24, 25,
26, 2A, 2E

The thread end node is the only node type that is allowed to terminate
scenario event graphs. This is item {B} in Table 1.

tBO

08, 10, 18, 20, 28, 3

Sending of the reply to an initiating object in an RPC message exchan

the replying object finishes its service period. This is item {F} in Table 1.

y8land

Initiation of an RPC message exchange. This is item {D} in Table 1.

33

A node cannot have an output process edge in the same object (OutO
without a corresponding object output edge (OutObject) because a sce
cannot progress in the same object without the object progressing.

D)

nario

35

The scenario continues in the same object. This is item {C} in Table 1.

36

A process thread is forked. This is item {H} in Table 1.

37

A message reception is accepted and the accepting object was already
processing a message (InObject). This is characterized by items {J, L,

3E
N} in

Table 1.

Table 3: Enumeration of the Possible Node Connections

Page 38

OE, 17,

by the node and edge types. Those sets of nodes which are differentiated by the type information
are: {J, L, N}, {K, G, O}, and {E, M, I}.
11.2 Determining Node Connectability
This sub-section identifies all valid causal relationships between any two events (i.e., scenario
event graph nodes), proving that the node connection axioms characterize all valid scenarios.
This proof of completeness is by enumeration. The connectability table (Table 4) identifies
how two nodes may be connected based on the port definition and edge type information. It is
constructed by identifying all of the valid predecessor and successor node connection axioms for
each node connection axiom of Table 1. This is done by inspection: for each node connection
axiom in Table 1, the set of possible predecessor and successor node connection axioms are
identified by matching the outgoing and incoming edge types. However, this set must be pruned
by removing the node connection axioms which are not consistent with the message exchange role
or where the scenario causality interpretation is invalid. There are two invalid node connections
which have been removed from the Table 4. They are:
» Node connection axiom D cannot source a next process edge from port OutOpEXxt to
the target InProcExt of a node connection axiom G. The justification is that an RPC
initiation (D) should not be a reply message that unblocks another initiating object already
in an RPC message exchange (G).
* Node connection axiom F cannot souraeext process edgeom port OutOpEXxt to the
target port InProcExt of a target node connection axiom E or J. The justification is that an
RPC reply (F) should not be considered to be the initiation of another RPC message
exchange (E or J).

The usefulness of a proof by enumeration was made evident when, to the author’s surprise, these

invalid node connections were found.

Page 39

Previous Node|

Successor Nodég

D

Node Previous Node Connection | ‘aviomna. | Connecion AXom | Adiom i
ction Node Type Event Graph) Ol?leﬁ::?rgczent in tEe Same Object| Different
Axiom (InProc and InObject) JGl‘aph (0ut(\)/§r;1dGOrit%Taject) Objg?;;\]/ent
(InProcEx) (OutOpExt)
A External n/a n/a n/a M, N, O
B Threadend C,E,G,H,I,J,K,L,M,N,O n/a E,ILM n/a
C Action C,E,G,H,ILJ,K,L,M,N,Q nla B,C,D,FH,J, LN n/a
D Action C,E,G,HILJKLMNQO n/a G, K, 0 E,J
E Action B, F D B,C,D,FH,JL N nla
F Action C,E,G,H,ILJ,K,L, M,N,Q nla E,I,M G
G Action D F B,C,D,FH,JL N na
H Fork C,E,GHILJKLMNO nla B,C,D,FH,J LN ILK L
I Thread B, F H B,C,D,FH,J LN n/a
begin
J And-join C,E,G,HLJ K, L,MN O D B,C,D,FH,J LN n/a
K And-join D H B,C,D,FHJ LN n/a
L And-join C,E,G,HI,JKLMNQ H B,C,D,FH,J L|N n/a
M Thread B, F A B,C,D,F,HJ L N n/a
begin
N And-join C,EGHLIJKLMNQ A B,C,D,FH,J L[N n/a
0] And-join D A B,C,D,FH,J LN nla

Table 4: Node Connectability Table

Page

40

	Logical Clock Requirements for Reverse Engineering Scenarios from a Distributed System
	C. E. Hrischuk*, C. M. Woodside**
	* Department of Electrical and Computer Engineering,
	University of Alberta, Edmonton, Canada
	curtis@ee.ualberta.ca
	** Department of Systems and Computer Engineering
	Carleton University, Ottawa, Canada
	cmw@sce.carleton.ca
	Abstract
	1.0 Introduction
	2.0 Clock Topologies
	Figure 1: Examples of event ordering topologies expressed by directed acyclic graphs
	1) identify events with particular concurrent software objects,
	2) identify join events without ambiguity

	2.1 Example
	Figure 2: UML Sequence Diagram of the Distributed Application Example
	Figure 3: Example Execution of a Three Tiered Distributed System

	2.2 Communications Protocols

	3.0 Events and Causality in Service-Structured Computations
	3.1 The Object Event Graph
	3.2 The Process Event Graph
	3.3 The Scenario Event Graph and a Global Event Graph
	3.4 Example
	3.5 Complex trace events
	Figure 4: Example of a Multi-cast Communication

	3.6 Discussion
	3.7 Scenario Event Graph Axioms

	4.0 Object Interactions
	4.1 Characterizing Message Exchange Protocols in a Scenario Event Graph
	Figure 5: Object Execution Graph of an RPC Message Exchange
	Figure 6: Process Event Graph of an RPC Message Exchange
	Table 1: Scenario Event Graph Node Connection Axioms

	4.2 Roles of Objects in Message Exchange Protocols
	4.3 Examples of Interactions
	4.3.1 Asynchronous RPC
	4.3.2 Synchronization
	Figure 7: An RPC Message Exchange using Asynchronous Communication
	Figure 8: A Responder Object Synchronization from an RPC Message Exchange
	Figure 9: A Responder Object Synchronization from an Asynchronous Message Exchange
	Figure 10: An Initiating Object Synchronization from an RPC Message Exchange
	Figure 11: An Object Synchronization from an External message

	4.3.3 Forwarding
	Figure 12: An Example of Bidirectional Synchronous Communication
	Figure 13: A Forwarding Message Exchange with Two Levels of Forwarding
	Figure 14: A Forwarding Message Exchange with Blocking Communication

	4.3.4 RPC Exception
	Figure 15: An RPC Exception from an External Event
	Figure 16: An RPC Exception from a Causally Unconnected Event

	4.3.5 Message Exchange Roles: Summary
	Table 2: Protocol Roles that Occur

	4.4 More Message Exchange Protocol Variations

	5.0 Comparing Scenario Causality with Potential Causality
	6.0 A Class of Logical Clocks
	7.0 An Overview of Automated Model Construction
	(a) Program language statement: the object’s source code statements.
	(b) ANGIOTRACE instrumentation: Embedded instrumentation that atomically generates and records AN...
	(c) ANGIOTRACE event records: The recorded events which can be ordered in accordance with scenari...
	(d) Scenario event graph: A graph grammar that characterizes all possible scenarios. It is the to...
	(e) Scenario model: A model type that characterizes the execution of a scenario for further analy...
	(f) Domain specific model: A view of the execution, that may have additional information included...
	Figure 17: MMAP Data Flow

	8.0 Implementing the SEG as a Logical Clock
	9.0 Conclusions
	10.0 Acknowledgments
	11.0 Appendix: Proof that Scenario Causality is Complete and Consistent
	11.1 Characterizing Scenario Causality between Any Two Nodes
	Figure 18: A Scenario Event Graph Node as a Six-Port Device
	Table 3: Enumeration of the Possible Node Connections

	11.2 Determining Node Connectability
	Table 4: Node Connectability Table

