
The Influence of Layered System Structure on Strategies for Software
Rejuvenation

Olivia Das, C. Murray Woodside
Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

email: odas@sce.carleton.ca, cmw@sce.carleton.ca

Abstract

Hardware components exhibit degradation faults. Sim-
ilar to hardware components, several recent studies have
described the phenomenon of “ software aging” where the
performance and reliability of the software system
degrades with time. In an attempt to decrease the
unplanned outages due to aging, a proactive technique
called “ software rejuvenation” can be employed. This
technique involves stopping the running software, clean-
ing its internal state and restarting it. This extended
abstract describes avenues for evaluating the effective-
ness of software rejuvenation for multi-layered systems,
where the failure of a service depends on other services in
lower layers.

1. Introduction

Software aging [1] is a phenomenon where a software
exhibits increasing failure rate and performance
degradation over time. The primary causes for this
degradation are exhaustion of system resources, data
corruption and accumulation of errors. Software
rejuvenation [1] is a proactive technique devised for
reducing the probability of unpredicted system outages
due to aging. This technique involves halting the running
software, cleaning its internal state and restarting it.
Examples of cleaning the internal state might be garbage
collection, flushing operating system kernel tables and
reinitializing internal data structures.

Distributed software systems are usually structured in
layers with some kind of user-interface tasks at the
topmost layer, making requests to various layers of
servers. Examples include telecommunication systems
and banking systems. In [2], an approach was developed
to express layered service failure and repair
dependencies, and [3] provided an efficient algorithm for
computing performability measures.

It would be valuable to include the effects of software
aging and rejuvenation on the failures of servers, which
can induce failures of applications at higher layers.
Servers in this context can also include processors. Thus,
this abstract extends the model of layered systems [3],
with:

• aging for hardware as well as software components.
We assume that aging affects both performance and
failure rate of components.

• effect of software rejuvenation.

This work is similar to the models proposed in [1, 4, 5,
6, 7] in that it uses hypoexponentially distributed (which
is a increasing failure rate distribution) time to failure for
modeling aging. Generally distributed time to failure and
service rate being an arbitrary function of time was
considered in [8] for transaction-based systems with a
single queue and [6] analyzed software rejuvenation for
cluster systems. Our work is different since we model
aging in a layered system with multiple layers of queues.

This work assumes a prediction-based rejuvenation
policy as considered in [6, 7] where the rejuvenation
starts whenever a degraded state of the component is
detected by means of analyzing some observable
symptoms. Otherwise, the component eventually goes to
an undetected failed state that usually requires higher
detection and repair time than the rejuvenation time.

2. Layered Model

2.1. Model for individual components

 Figure 1 shows the CTMC model for a processor.
Each processor initially starts in a working state (W). As
time advances, it transits to a “ failure probable state”
(FP) with rate λ1p and eventually fails (state F) with rate

λ2p. There is also a transition from working state (W) to

completely failed state (F) with rate λp to model random
failures caused by random events such as sudden
environmental shocks etc. A failed processor can be
detected and repaired with rate µp. Rejuvenation is not

Copyright © 2003 by Olivia Das and C. Murray Woodside. All rights
reserved.

applied to processors.

Figure 2 shows the CTMC model for a software task,
meaning an operating system process. Each task has the
same model as a processor except that its degraded state
(FP) can be detected with mean detection time 1/δt by
analyzing certain symptoms. After detection, it transits to
state “being rejuvenated” (BR) where the rejuvenation
starts with rate µ2t. Otherwise, it transits from state FP to

the completely failed state (state F) with rate λ2t. In case

of a complete failure, the task can be repaired with rate
µ1t. Since rejuvenation time is usually much smaller than
the repair time, thus, µ1t << µ2t.

The above CTMC’s can be solved to obtain the proba-
bilities of the component being in each of its states.

When a component is in state FP, its performance
parameters are degraded but it is still operating. In state F
(and BR in case of software task), the component is not
operational. While a component is in one of these states, it
is possible for the system to maintain operation by taking
advantage of the standbys or active replicas, if any avail-
able.

2.2. System-level model

Figure 3 shows a typical example of a layered model
proposed in [2, 3]. This model is an extension to a pure
performance model, called Layered Queueing Network
(LQN) [9], by adding dependability related parameters,
i.e. the redundancies and the constant failure and repair
rates for components, to it. The main difference between

a layered queueing model and a queueing network model
is that a server to which service requests are arriving and
queueing for service might make calls to other servers,
thus giving rise to nested services. This figure has one
client task, Task 1, at the top and three layers of servers,
Task 2-5, the intermediate layers and Task 6, the bottom
layer. A task offers one or more services through methods
called entries (e.g. Task 1 has entry Entry 1), and these
entries execute on its processor and make calls to other
entries in lower layers. An oval represents a processor.
Each processor and a task has its own queue for arriving
service requests. The arrows designate service requests
from one entry to another, with an implied reply. Tasks
block to receive the reply, as in standard remote
procedure calls. The alternative targeting of requests for
Service 1, needed by Entry 2, to Entry 3 or 4 or 5 is
indicated by labels “#n” on arcs showing the priority of
the targets. A service request always goes to the highest-
priority available server.

The performance parameters provided to this model
are:
• the mean CPU demand per invocation for each entry,
• the mean number of calls from an entry to other

entries.
• service rate for each processor.

Aging of a processor is modeled by making its service
rate a decreasing function of its state. Aging of a task is
modeled by making the mean CPU demands of its entries
a decreasing function of its state.

In this layered model, each combination of states of
the components yields a different performance model,

Figure 1. CTMC model for each processor.

Figure 2. CTMC model for each software task.

W FP F
λ1p λ2p

λp

µp

W FP F
λ1t λ2t

λt

µ1t

BR

δt

µ2t

Task 1

Task 3

Task 2

#1 #2 #3

Task 5
(3rd choi ce)

(1st choice) Task 4
(2nd choi ce)

Servers

Cli ent

Task 6

Serv ice 1

F igure 3 . A L ayered M odel w ith th ree layers.
 A lternative targets for Serv ice 1 are
 Task s 3 -5 in increasing order of

Entry 1

Entry 2

Entry 3 Entry 4

Entry 5

Entry 6

 p referen ce .

also called an operational configuration. Each
operational configuration corresponds to an LQN model
and can be solved for various performance measures, for
example, mean throughput, mean response time etc.

3. Model Solution

The general strategy of solving the layered model is
to:

• determine all the operational configurations,
• compute the performance for each configuration by

applying Layered Queueing Analysis [10],
• compute the probability of occurrence of each con-

figuration from its component state probabilities and
then

• combine the probabilities and the performance to find
average performance measure for the system.

This strategy is similar to the Dynamic Queueing Net-
work approach given in [11] for queueing network mod-
els.

3.1. Explosion of Operational Configurations

One serious drawback of the model solution is the
enormous number of operational configurations due to
two working states of each component. This drawback
could be eased by approaching the problem from different
perspectives. Some of them are as follows:

• If we assume that aging only affects failure rate and
degradation in performance is small enough to
ignore, then both the states “ W” and “FP” would
have same performance parameters. This assumption
reduces the number of operational configurations to a
great amount since many combinations of compo-
nents states can be aggregated to one operational con-
figuration. For this case, we can apply the methods
described in [3] to find the probabilities of the config-
urations.

• Another possibili ty might be to explore symmetry in
redundancy. In that case, using the primary or the
backup gives rise to the same performance model and
thus the number of operational configurations can be
reduced.

• Another way is to approximate the solution by con-
sidering only those components that affects the sys-
tem in a greater amount and ignoring others. For
example the components which provide shared ser-
vices are usually more sensitive than others since
their failure triggers multiple failures. Identification
of these components might be done by performing
sensitivity analysis.

4. Example

In order to demonstrate our analysis strategy, let us
consider a simple client-server system (as shown in
Figure 4) with one client task, Client, with entry c1. c1
makes in average, 2 requests to entry s1. The CPU
demand for entries s1 and s2 are 1 and 1.5 secs
respectively. The performance is degraded by 50% for
both tasks Server1 and 2 in the “ failure probable” state. If
Server1 fails or is rejuvenating, the client uses Server2.
Let us assume 1/λ1t, 1/λ2t, 1/λt, 1/µ1t, 1/δt and 1/µ2t for

both the tasks Server1 and 2 to be 10 days, 10 days, 40
days, 1 day, 10 minutes and 1 hour respectively. Also
assume that all the processors (not shown here) and the
client task do not age and are perfectly reliable.

There are four operational configurations for this
system:

• C1: Client using Server1. Server1 is in state W.
• C2: Client using Server1. Server1 is in state FP.

• C3: Client using Server2. Server2 is in state W.
• C4: Client using Server2. Server2 is in state FP.

The probabilities of the configurations and their
rewards is shown in Table 1 for two cases, one involving
rejuvenation of both Server1 and 2 and the other without
rejuvenation.

Table 1: Probabilities and Rewards for Operational
Configuration

Configur
ation

Ci

Probability of Configuration Reward
 = Throughput
of Client task(with

rejuvenation
of Server1
and 2)

(without
rejuvenation)

C1 0.9709 0.47 0.5

C2 0.0006 0.47 0.25

C3 0.0275 0.0282 0.333

#1 #2

Client

Server1 Server2

Figure 4. A simple client-server system

s1

c1

s2

The average throughput for Client task is 0.49
requests/sec and 0.36 requests/sec for with and without
rejuvenation cases. We see that rejuvenation did
improve the throughput of the system significantly.

5. Conclusion

This extended abstract has described an approach
for including the effect of aging and software
rejuvenation in a layered performabili ty model. The
main strength of our model, is its capability of
capturing the aging in a system with layers of queues.
One limitation of our model might be the explosion in
the number of operational configurations. This
limitation can be alleviated in various ways that we
have described in our third section.

References

[1] Y. Huang, C. Kintala, N. Kolettis and N. D. Fulton,
“Software Rejuvenation: Analysis, Module and
Applications” , in Proc. of 25th Symposium on Fault Tolerant
Computer Systems, California, June 1995, pp. 381-390.

[2] C. M. Woodside, “Performability modelling for multi-
layered service systems”, Third International Workshop on
Performability Modeling of Computer and Communication
Systems (PMCCS-3), Il linois, Sept. 1996.

[3] O. Das and C. M. Woodside, “Evaluating layered
distributed software systems with fault-tolerant features”,
Performance Evaluation, 45 (1), 2001, pp. 57-76.

[4] S. Garg, A. Puliafito and K. S. Trivedi, “Analysis of
Software Rejuvenation Using Markov Regenerative
Stochastic Petri Net” , in Proc. of the Sixth Intl. Symposium on
Software Reliability Engineering, France, October 1995, pp.
180-187.

[5] S. Garg, Y. Huang, C. Kintala and K. S. Trivedi, “Time
and Load Based Software Rejuvenation: Policy, Evaluation
and Optimality”, Proc. of First Fault Tolerant Symposium,
India, December 1995.

[6] K. Vaidyanathan, R. E. Harper, S. W. Hunter and K. S.
Trivedi, “Analysis and implementation of software
rejuvenation in cluster systems” , SIGMETRICS/Performance
2001, pp. 62-71.

[7] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter
K. S. Trivedi, K. Vaidyanathan and W. P. Zeggert, “Proactive
Management of Software Aging”, IBM Journal of Research
and Development, 45 (2), 2001, pp. 311-332.

[8] S. Garg, A. Puliafito, M. Telek and K. S. Trivedi,
“Analysis of Preventive Maintenance in Transactions Based
Software Systems”, IEEE Trans. on Computers, 47 (1),
January 1998, pp. 96-107.

[9] C. M. Woodside, J. E. Neilson, D. C. Petriu and S.
Majumdar, “The Stochastic Rendezvous Network Model for
Performance of Synchronous Client-Server-like Distributed
Software” , IEEE Trans. on Computers, vol. 44, no. 1,
January 1995, pp. 20-34.

[10] G. Franks, S. Majumdar, J. Neilson, D. Petriu, J. Rolia,
and M. Woodside, “Performance Analysis of Distributed
Server Systems” , in the Sixth International Conference on
Software Quality (6ICSQ), Ottawa, Ontario, 1996, pp. 15-26.

[11] B. R. Haverkort, I. G. Niemegeers and P. Veldhuyzen
van Zanten, “DYQNTOOL: A performability modelling tool
based on the Dynamic Queueing Network concept” , in Proc.
of the 5th Int. Conf. on Computer Perf. Eval.: Modelling
Techniques and Tools, G. Balbo, G. Serazzi, editors, North-
Holland, 1992, pp. 181-195.

C4 0.00001 0.0282 0.166

System
 failed

0.00099 0.0036 0

Table 1: Probabilities and Rewards for Operational
Configuration

Configur
ation

Ci

Probability of Configuration Reward
 = Throughput
of Client task(with

rejuvenation
of Server1
and 2)

(without
rejuvenation)

