
Failure Detection and Recovery Modelling for Multi-layered Service Systems

Olivia Das, C. Murray Woodside
Dept. of Systems and Computer Engineering

Carleton University, Ottawa, Canada
email: odas@sce.carleton.ca, cmw@sce.carleton.ca

Date: June 22, 2001
tus
rom
ss

tus
lar
of

in
t

el
nt
-5,
n
an
ive
ask
he
re
r a
he
the
the

ts
ch

ts,

m
nal
e

Abstract
Existing approaches to combined performance and

availability modelling of multi-layered service systems do
not consider the delays associated with the detection of fail-
ure (repair) and subsequent reconfiguration. The detection
delay influences the runtime overhead while both of them
together affects the system downtime. The effect of these two
types of delays should therefore be considered for precise
modelling of the system. This position paper describes the
avenues for extending a previous model on layered systems
by considering detection delay incurred due to the propaga-
tion of failure or repair information through the layers and
the delay induced due to system reconfiguration, thereby
enhancing the modelling accuracy.

1. Introduction
Distributed software systems are usually structured in

layers with some kind of user-interface tasks as the topmost
layer, making requests to various layers of servers. Client
server systems and Open distributed processing systems
such as DCE, ANSA and CORBA are structured this way.
[Woodside96] introduced an elegant approach to express
the layered failure and repair dependencies while [Das98,
Das01] provided an efficient algorithm for identifying
equivalent system states from performance viewpoint, in
these systems. However, the work done in [Woodside96,
Das98, Das01] is limited to instantaneous perfect detection
and reconfiguration, and independent failures and repairs.

This position paper describes avenues for extending the
previous work on layered systems, by considering:

• a heartbeat mechanism for detecting failures (repairs)
of processes and processors,

• an architecture for reporting on operational status (fail-
ures and repairs), with its own delays and dependen-
cies,

• delays for detection and reconfiguration

Initially the attention will remain focussed on crash-stop
failures [Schneider93]. Related to failure detection, it is

assumed that every host in the system runs a single sta
detector process. A status detector receives heartbeats f
the locally running processes in order to detect the proce
failures and it exchanges heartbeats with other sta
detectors in order to detect the processor failures. Simi
heartbeat-based mechanism for detecting failures
processes or processors has already been employed
systems like Tandem’s NCAPS [Laranjeira98], NT-Swif
[Huang98] and Globus toolkit [Stelling98].

2. Layered Models capturing Failure
Occurrence and Repair Behavior

Figure 1 shows a typical example of a layered mod
proposed in [Woodside96, Das98, Das01] with one clie
task, Task 1, at the top and three layers of servers, Task 2
the intermediate layers and Task 6, the bottom layer. A
arrow represents a request-reply interaction, such as
RPC. Processors are represented by ovals. Alternat
targets for the service, Service 1, needed by Task 2 are T
3-5 with an order of preference. Figure 1 describes both t
architecture of the software and its configuration. Failu
and repair rates are provided for each component (eithe
task or a processor) as availability parameters. T
performance parameters attached to such model are
mean total demand for execution on the processor and
mean number of requests for each interaction.

In a layered model, there are two kinds of componen
that can undergo failure: tasks and processors. Ea
component has its own structure statesi (0 for failed and 1
for operational). Considering that there areN components
in the system, thesystem configuration state S[Das98] is
defined as the vector of structure states of componen
given by S = (s1, s2, ..., sN). Because of the layered
structure of such models, more than one syste
configuration state may correspond to a single operatio
configuration of the system from the performanc
viewpoint [Das98].

se
ry

er
the
n
g
hat

be

s

ed
nd

in
he
of

is

c
ith
ts
le
of
In order to model the effect of delay associated with
failure (repair) detection, we need a detection architecture
in addition to the software architecture. The next section
discusses the detection architecture used in this work.

3. Detection Architecture
Each host runs a status detector (SD) task. An SD

receives periodic status messages (heartbeats) from the
locally running tasks in order to detect task failures
(repairs). It exchanges heartbeats with other status detectors
in order to detect processor failures (repairs) and to
propagate information about a failure (repair). The
exchange of heartbeats among SDs is based on the
following assumption: if a task (primary or backup)
provide service to another remote task, then the local SD of
service provider task would send heartbeats to the SD that
is local to the service requester task. Figure 2 shows the
detection architecture for Figure 1. An SD detects a failure
based on a missing heartbeat. An SD receiving heartbeats
from a remote SD cannot distinguish between remote SD’s
failure or its associated host failure. Therefore, failure of an
SD is interpreted as the corresponding host failure.

Upon detecting the failure of a task, the local SD
attempts to restart it on the same host up to a threshold
number of times within a given interval as part of local
recovery. If the threshold is exceeded within that interval, it
propagates the knowledge about the failure to the SDs of
upper layers, which might result in the system switching
from primary targets to backups. Similar propagation of
information occurs after a repair, that might result in the

system switching back from backups to primaries. In ca
of failure of a processor or its associated SD, the recove
process is initiated by the remote client SDs. Howev
when a processor or its associated SD is repaired,
rejoining process involves obtaining the status informatio
from the lower layers in order to evaluate the resultin
status of the services it provides and then propagating t
information to the upper layers through the heartbeats.

4. Expressing Detection and Reconfiguration

The detection and reconfiguration parameters to
provided in the model are as follows:

• delay of detection propagation from one task to
another. It can be found from the heartbeat interval.

• restart delay of each task
• reconfiguration delay for each service request that ha

alternative targets.
• probability of successful local recovery of a task,

within the given interval.

Given these parameters, we could define a direct
graph that describes the sequence of detection a
reconfiguration actions performed by the system
response to a failure (repair). It can be obtained using t
software architecture, detection architecture and the state
the system at the time of failure (repair). We term th
graph as thedetection-reconfigurationgraph. A sample
illustration of this graph is provided in Figure 3. Each ar
in this graph represents an action and could be labeled w
appropriate rates. The illustration in Figure 3 represen
one detection path. This graph can also have multip
concurrent detection paths originating from the source
failure (repair). In that case, the actions along all

Task 1

Task 3

Task 2

Fig. 1 A Layered model [Das98] with three layers.
Alternative targets for Service1 are Tasks 3-5 in
increasing order of preference.

Service 1

#1 #2 #3

Task 5
(3rd choice)(1st choice)

Task 4
(2nd choice)

Servers

Client

Task 6

SD1 Task 1

SD3 Task 3

SD2 Task 2

SD4 Task 4

Task 5

SD5 Task 6

Fig. 2 Detection Architecture for Figure 1.

SDi is a detector task

represents a processor

i j i sends heartbeats
to j

Figure 3.Detection-Reconfigurationgraph for the system in Figure 1 in response

S1 S2

Task3 fails at a given rate

successful local recovery

to failure of Task 3 where all the components were operational at the time of failure.

S1: system configuration state at the time of failure of Task 3

S2: system configuration state after the system reconfiguration is complete

start point of
global detection

end point of
global detection

detection by SD3
unsuccessful local
recovery failure information

propagation to SD2

Switching of Service 1 request
from Task 3 to Task4

source sink

Figure 4.Detection-Reconfigurationgraph for the system in Figure 1 in response
to failure of Task 6 where all the components were operational at the time of failure.

S1 S3

S1: system configuration state at the time of failure of Task 6

S3: system configuration state after the system reconfiguration is complete

Switching action of Service 1 request

the information that the actions

along all the paths terminating on

node A need to be completed, is

specified as a property of this node

A

detection by SD5

Task6 fails at a given rate

unsuccessful local
recovery

successful local recovery

Concurrent

paths
detection

from Task 3 to Task 5 starts after
the detection along both the terminating
paths have been completed

e

on
e
n
.

at
s,

ed

nd

on
s,

d
s,

d
or

8,

G.
a
n

8.

ic
. 9,

S.
or
d
ry
the paths need to be completed before the system can go to
the next system configuration state. Whenever multiple
detection paths terminate on a node, a property on that
node is specified which determines the path(s) needed to be
traversed before pursuing the next action(s), if any. Figure
4 illustrates an example of multiple detection-paths
terminating at a node, A. It describes the actions performed
by the system in Figure 1 in response to the failure of Task
6 where all the components were operational at the time of
failure. In this case, the arc emanating from node A
represents a switching action of Service 1 request (in Task
2) from Task 3 to Task 5. This action can only commence
after the failure of both Task 3 and Task 4 has been
detected by the detector, SD2. This information is captured
as a property of node A.

The detection-reconfiguration graph enables us to
conveniently visualize the concurrent detection and
reconfiguration behavior of the system. We utilize this
graph to generate the set of states the system goes through
in response to a failure (repair).

The runtime overhead due to sending and receiving of
heartbeats in the system is modelled by adding a overhead
task in each processor. An overhead task is not added in a
processor where only backup tasks are running since such
tasks do not contribute in providing services. Although
these backup tasks are involved in sending/receiving
heartbeats, the overhead on the processor due to this
activity is negligible and can be ignored. This assumption
helped us in reducing the number of distinct performance
models.

5. Model Solution
We plan to obtain the desired performability measures

for the layered model as follows:

1. Determine all the distinct operational configurations of
the system using the algorithm of [Das98]. In each
configuration, add an overhead task on each processor
representing the performance overhead due to sending
and receiving of heartbeats. Apply the layered queueing
analysis [Woodside89, Woodside95] to obtain the
reward rates for each operational configuration.

2. Find the Markov chain that include the reachable set of
system configuration states S. It incorporates the
detection-reconfiguration submodel in between every
two system configuration states.

3. Associate the reward rate to each state of the resulting
Markov chain based on the operational configuration it
corresponds to.

4. Solve the resulting Markov reward model to obtain th
desired measures.

6. Conclusion
An approach has been described for including detecti

and reconfiguration in a layered performability model. Th
key question to be answered is the complexity of solutio
for the probabilities of different operational configurations

7. References
[Schneider93] F. B. Schneider, What Good are Models and Wh
Models are Good, in Sape Mullender, Editor, Distributed System
ACM Press, 1993.

[Das98] O. Das and C. M. Woodside, The Fault-Tolerant Layer
Queueing Network Model for Performability of Distributed
Systems, IEEE International Computer Performance a
Dependability Symposium (IPDS’98), Sept. 1998, pp. 132-141.

[Woodside96] C. M. Woodside, Performability Modelling for
multi-layered Service Systems, 3rd International Workshop
Performability of Computer and Communication System
Bloomingdale, Illinois, Sept. 1996.

[Das01] O. Das and C. M. Woodside, Evaluating Layere
Distributed Software Systems with Fault-Tolerant Feature
Performance Evaluation, vol. 45, May 2001, pp. 57-76.

[Huang98] Y. Huang, P. Y. Chung, C. M. R. Kintala, D. Liang an
C. Wang, NT-SwiFT: Software implemented Fault-Tolerance f
Windows-NT, Proceedings of 2nd USENIX WindowsNT
Symposium, Aug. 3-5, 1998.

[Laranjeira98] L. A. Laranjeira, NCAPS: Application High
Availability in Unix Computer Clusters, Proc. of 28th Intl.
Symposium on Fault Tolerant Computing (FTCS-28), June 199
pp. 441-450.

[Stelling98] P. Stelling, I. Foster, C. Kesselman, C. Lee and
von Laszewski, A Fault Detection Service for Wide Are
Distributed Computations, in Proc. of 7th IEEE Symposium o
High Performance Distributed Computations, 1998, pp. 268-27

[Woodside89] C. M. Woodside, Throughput Calculation for Bas
Stochastic Rendezvous Networks, Performance Evaluation, vol
no. 2, April 1989, pp. 143-160.

[Woodside95] C. M. Woodside, J. E. Neilson, D. C. Petriu and
Majumdar, The Stochastic Rendezvous Network Model f
Performance of Synchronous Client-Server-like Distribute
Software, IEEE Trans. on Computers, vol. 44, no. 1, Janua
1995, pp. 20-34.

	Failure Detection and Recovery Modelling for Multi-layered Service Systems
	Olivia Das, C. Murray Woodside
	Dept. of Systems and Computer Engineering
	Carleton University, Ottawa, Canada
	email: odas@sce.carleton.ca, cmw@sce.carleton.ca
	1. Introduction
	2. Layered Models capturing Failure Occurrence and Repair Behavior
	3. Detection Architecture
	4. Expressing Detection and Reconfiguration
	5. Model Solution
	6. Conclusion
	7. References

