
Abstract
User and system behaviour is difficult to predict

for novel systems, and this affects the capacity of the
system (the number of active users that can be sup-
ported with acceptable response delay). This leads to a
range of values, in the form of a feasible or acceptable
region for the potential capacity, conditional on the
uncertain parameters. This work considers uncertain-
ties in the delay between requests (user think time),
network latency, and cache behaviour due to users’
locality of reference. The acceptable region is shown to
be bounded approximately by linear constraints which
are easy to derive. This simple result is useful for sensi-
tivity and scalability analysis, and appears to have
been overlooked. It is applied to a web-based system
for telephony, using VoiceXML for service ranging
from interactive voice response, to voice-based e-mail.

1.0 Introduction

The capacity of an interactive system can be
defined as the number of active users that can be sup-
ported with adequate delay performance. This number
depends on the system, but also on external factors
related to the network and the users’ behaviour. This
paper is motivated by a desire to convey the depen-
dency on the external factors, in a simple and usable
way. In a space of parameter values, including the num-
ber of users, a feasible region defines those values that
give systems that meet the delay specifications. This
work shows that for some parameters the boundaries of
the region have simple properties that make them easy
to establish, and uses them with a system that inte-
grates telephony and web services.

Capacity planning methods such as described by
Menasce et al [8], [9] or Jain [6] seeks to find a config-
uration with acceptable performance, subject to cost
constraints. Acceptable performance may be defined
by a set of service level agreements, which may also
impose requirements on capacity. The steps for capac-
ity analysis of client/server systems described in Chap-
ter 5 of [8] are to characterize the workload and the
environment, to use this information to build a perfor-
mance model and a cost model, and to compare alter-
native solutions, based on cost and performance. A
similar systematic guide is given by Hahn et al [5] spe-
cifically for business intelligence systems.

Variations in parameter values change the perfor-
mance results from the model, and its outcome. They
can be investigated by a sensitivity analysis of the per-
formance results. For example in [4], Borowsky et al
described capacity planning for storage subsystems
with complex streams of operations. They studied the
sensitivity of a performance bound to factors such as
the heterogeneity of the separate streams of requests,
and their degree of correlation.

The next step is to use the sensitivity analysis to
describe a set of acceptable parameter values and their
interactions in some way, but that has not been
described to date. It is the goal of this paper.

2.0 Capacity and External Factors in
Interactive Systems

Figure 1 describes the interactive systems consid-
ered here, with a set of N users sending requests and
receiving responses across a medium which may intro-
duce a round-trip latency L2. Within the system is the
application under study, which requests data from aux-

Describing and Visualizing the Capacity of a System with Behaviour
Uncertainties

Peter Maly1, C. M. Woodside1, G. K. Karam2, Andrew Forrest2

Department of Systems and Computer
Engineering, Carleton University, Ottawa,

Canada, K1S 5B6
{maly, cmw}@sce.carleton.ca

2. AT&T Shannon Labs, 180 Park Avenue,
rm E267, Florham Park, NJ 07932

karam@research.att.com
ajforrest@att.com

1.

iliary components (e.g. a web server) across a Net-
work, introducing another latency. We consider a
single class of requests first.

Each request from the user to the system follows a
think time with a mean of Z seconds, and the applica-
tion has parameters p1, p2... which may affect delay.
Parameters which we will consider later include
• a cache hit rate which is governed by the popularity

of selections made by users, and their locality of
reference in sequences of operations.

• the mean file size to be fetched across a network in
order to respond to a users’ request.

The application makes requests across a network
which introduces a total round trip latency of mean L,
to fetch data from the auxiliary components.

The capacity is defined as the largest N such that
the mean response delay R satisfies a specified value R*

seconds:

QOS constraint on delay: R < R* sec

The discussion can be generalized to multiple classes
of requests, different specifications of response delay
(such as 95% of response delays are less than R*), and
specifications on multiple QoS measures. These are
however not considered in the present paper.

2.1 Capacity and the Effect of Parameters

Figure 2(a) shows how R might vary with N for
certain values of some parameter p1, defining a set of
feasible values of N that satisfy the constraint R < R*.
The capacity N* is defined as the largest feasible value
of N.

The shift in perspective we wish to adopt in this
work is to map the curves in Figure 2(a) into the
boundary of an acceptable or feasible region in a

Figure 1. Class of system under consideration

N Users Z Think time

Application

Mean response delay R

Network

Latency L

(round-trip)
Auxiliary

component(s)under study

Parameters p1, p2... Parameters

System

Latency L2 (optional)(round-trip)

p1’, p2’...

parameter space, as indicated for the parameter vector
(N, p1) in Figure 2(b). Then if another parameter p2
varies, the boundary moves as shown in Figure 3.

The value of a plot like Figure 3 is that a great vol-
ume of exploration results can be summarized com-
pactly. The direction of influence of a parameter is
shown by how the feasible space expands or contracts.
Sensitive parameters are obvious: contour lines close
together show insensitivity, while far apart they show
high sensitivity. In a common case described next, the
boundaries also have a simple form which is easy to
estimate.

N

R

N3
*

R*

N2
*N1

*

Figure 2. The effect of a typical parameter p on the
maximum feasible user population N*

p1=y1p1=y2p1=y3

p1 increasing

(a) Effect of parameter p1 on R

feasible

N3
*

N2
*

N1
*

N*

y1 y2 y3 p1

N*(p1)
infeasible

feasible

(b) Dependence of N*(p1) expressed directly

N*

p1

N*(p1)

infeasible
feasible

The influence of a second parameter p2

p2 increasing

p2 decreasing

Figure 3. Sensitivity of N*(p1) to other parameters

2.2 Capacity boundaries for User-related
Delays (Think times)

Study of a web-based telephony system showed
that user think times significantly affected its capacity.
If, in Figure 2(a) the varying parameter p is taken to be
the think time Z, and the performance curves are taken
from the well-known asymptotic bounds for delay [7],
we get Figure 4(a). The straight line asymptotes are the
bounds; the curves sketched in above them indicate the
actual relationship.

The asymptotes are shown for three values of Z.
As Z decreases the capacity decreases, and it turns out
that if the upper asymptotic line is used to approximate
the response delay, the relationship is linear. The upper
asymptote applies for N sufficiently
large, above the junction of the two asymptotes. Dmax
is a constant signifying the largest single execution
demand per response, of any device in the system. The
horizontal lower asymptote is the no-waiting
total demand of the response.

The assumption we will make is that the system is
operating above the junction of the asymptotes, which
we will denote by

The assumption is reasonable if the system is intended
to be quite busy at capacity, and not grossly under-
loaded. For a constant value R*>D, the capacity value
N* given by the upper asymptote is

N* = (R*+Z)/Dmax

and the value of Z at the capacity N* is given by

Z = N* Dmax - R
*

This is our capacity boundary. The constant Dmax is (in
the asymptotic analysis) also given by the inverse of
the saturation throughput fmax, so we can write this
alternatively as:

(1)

This relationship represents a linear bound of feasibil-
ity as shown in Figure 4(b) for a given R*.

The linear relationship also simplifies parameter
exploration because only one point along the boundary
has to be obtained, compared to obtaining results for
the all the permutations of the Z and N parameter space
to determine the boundary. In reality for the class of
systems we are dealing with (closed queueing net-
works), as N increases and Z is varied to achieve a con-

R N Dmax Z–=

R D=

N N> ′ Z D+()
Dmax

-------------------=

Z
N

f max
---------- R

*
–=

stant R*, the system throughput actually decreases a
little, which we shall ignore if N is large.

The linear relationship follows when the delay
requirement R* corresponds to a nearly constant sys-
tem throughput, as in nearly saturated systems. Also,
for large populations (but below the asymptotic region)
Pittel [10] showed a constant limit in throughput. The
delay solution of a closed product-form queueing sys-
tem with independent think times and large N
approaches the open queueing model solution:

where Di is the total demand (in sec.) on device i per
response and f is the throughput of the system. A con-
servative bound can be placed on the decreasing
throughput as N increases by the limiting solution

 given R = R*. This justifies a constant in the
denominator of our relationship (1), with value

.

D

N

R

N3
’N2

’N1
’

Z=y3Z=y2Z=y1

Z decreasing

feasible

NDmax - Z

R*

Figure 4. Feasible boundary as Z varies.

N3
*N2

*N1
*(a) Effect of varying Z

Z

N*(Z)

-R*
N*=fmaxR

*

1/fmax
infeasible

feasible

(b) Linear boundary in (N, Z) space

N3
*N2

*N1
*

y3

y2

y1

R
Di

1 f Di–

i
∑=

f f ∞=

f max f ∞=

2.3 Capacity boundaries for network latencies
and other delays

Another notoriously unpredictable and uncontrol-
lable parameter is the latency of network connections.
First consider a network with a mean round-trip latency
L seconds between the users and the application. Now
the system must respond more quickly, in a mean of R’

seconds:
R’ = R* - L

Figure 5(a) shows how R’ increases with f and has
a minimum possible value R’

min for an idle system. The
largest network latency for feasible responses is:

Lmax = R* - R’
min

Further, the input rate f’ that gives a mean user
response delay R* is a function of L, with a shape simi-
lar to Figure 5(b). Little’s result can be applied with

N = f’ (L) (Z + L + R’) = f’ (L) (Z + R*),
Z = (N / f’(L)) - R (2)

Equation (2) defines a linear capacity boundary with a
slope of 1/f in this case also, as shown in Figure 6. Now
f’ decreases as L increases, and goes to zero at Lmax.
The internal latency has a pivoting effect on the bound-
ary line around the point (0, -R*) in the (N, Z) plane.

f

R

f’

R*

fmax

(a) Response Time and Latency for a fixed set of parameters

Figure 5. The effect of network latency on the
maximum feasible throughput f’

R’

R’
min

L
Lmax

L

(b) The Dependence of f’ on L

f’

f’(L)

Lmax= R* - R’
min

fmax

For a network delay inside the system, say between
a server and a database that it must access, an amount L
is added to R. The effect is essentially the same as
described in the previous paragraph. If it is a pure
latency with total mean value L during a response, and
does not hold any system resources idle, it simply adds
a mean amount L to each response.

This argument about the impact of variable inter-
nal latency does not apply to other measures, other than
delay. The capacity boundaries for non-latency param-
eters are not straight lines.

3.0 The PhoneWeb system for Interactive
Voice Response

The capacity visualization technique described
above was discovered while analyzing performance
results that were obtained from measurements and
models of a new software system called PhoneWeb,
providing web services to control IVR (Interactive
Voice Response system) sessions over the telephone. In
particular the straight-line boundaries helped us to
interpret the results of a great number of model solu-
tions which we used to extrapolate the system behav-
iour beyond the measured situations.

The system stores the speech segments and scripts
which control the behaviour of a session on a web
server located on the premises of the customer. This
simplifies management of the system by the customer.

A sample PhoneWeb system is shown in Figure 7.
Users call a phone number which is connected to the
IVR subsystem, and are prompted by voice to make
selections (“Press 1 for Sales, 2 for Service”). Custom-
ers are companies that provide a phone number con-
nected to the IVR which will be called by users. A
customer’s web server provides VoiceXML files to
govern session behaviour and sound files to be played

Figure 6. Effect of an internal network
latency on the capacity relationship

Z

N*(Z)

-R*

infeasiblefeasible

L increasing

1/fmax when L = 0

f = 0 when L = Lmax

back to the users (for instance, files in WAV format for
direct sound encoding, or text files for a text-to-speech
system). These files are provided on demand.

3.1 Software architecture

The software architecture of PhoneWeb shown in
Figure 8 has three processes:

Call Manager sets up and tears down calls, and
does the initial processing for each DTMF event (when
a touch tone button is pressed).

PMLI (the PhoneWeb Markup Language Inter-
preter) controls the conversation for each user. It
fetches the script, interprets it to control the sequence
of decisions, and maintains state for each caller. Its
operations include fetching data (like VoiceXML
scripts, or WAV files), and initiating feedback to the
user via WAV file playout. The PMLI uses virtual
threads in which the context for each user is main-
tained in tables.

Iproxy is a web proxy server that caches data on a
local disk after obtaining it from remote sites. Its pur-
pose is to reduce the system response time by avoiding
the latency of Internet accesses. Every request from the
PMLI goes through the Iproxy cache and is served
locally if possible. Only after a proxy cache miss does
the Iproxy process need to fetch data from the internet.

Also, the WAV playout entity is hardware on the
system bus that can be commanded to play WAV files
to a user, controlled by DMA access to main memory.

3.2 Model of the PhoneWeb System

A Layered Queueing Network (LQN) perfor-
mance model [2], [11] was constructed for the Phone-
Web system, based on two system request types which
together create 98% of the workload:

POTS PhoneWeb

Internet

Users

Web Servers

.

.

.

.

.

.

.

.

.

Cust1

Cust2

Cust3

Telco

Figure 7. High level picture of the PhoneWeb IVR system

• a call setup request from a telephone switch, when
a user connects to the number and triggers a Call
Setup operation in the Call Manager,

• a DTMF event from a user button-press, which trig-
gers a Process Event operation.

The response to either request is a voice playout. The
response time is defined until the start of the playout,
and the user’s think time runs until the next DTMF
event.

The user sees a simple repetition of listening to a mes-
sage, making a request by sending a DTMF signal, and
waiting for the next message, shown in Figure 9. The
user may send a DTMF signal before or after the mes-
sage ends.

The LQN model is shown in Figure 10. Each soft-
ware process in the real system corresponds to a “task”
in the layered model, with a set of “entries” which pro-
vide the operations. Entries make calls to other entries,
shown as synchronous (the calling thread blocks to

Figure 8. Software architecture of PhoneWeb, showing
important software modules and call structure.

Call

PMLI

Iproxy

Hard Disk

WAV

Call Setup Process DTMF

Process State

Request Data

Internet and Customer web server

DTMF or call setup event (external input)

PhoneWeb

Call Setup

Process Event

Manager

playout

Figure 9. Assumed user behavior

DTMF

User reaction time to make

DTMF

Response

Time

selection and send DTMF (think time)

Voice response (playout)
request #1 request #2

Time

wait for a reply, indicated by a solid arrowhead) or
asynchronous (there is no reply; an open arrowhead).
Notice how Process Event in Call Manager uses three
synchronous calls to the entries in PMLI to execute the
three activities shown as a sequence in Figure 8. The
analysis models the queues at tasks and at processors.

Because the tasks use a virtual thread for each
caller, they are modeled as having infinite threads. The
configuration has a single CPU for all three tasks. Each
user in the system is represented by a “DTMF Events”
source task (with its own “processor”) which generates
DTMF requests for the system to process.

As soon as the playout begins, the think time of
the DTMF Events task begins for the next cycle. This is
modeled using a layered queueing feature called a
“second phase” of service [3], in which the reply from
“Process Event” is sent to DTMF Events before the call
to “Play WAV File”. The effects of DMA access from
both the hard disk and WAV playout devices is also
accounted for in the model by a higher priority task
DMA_Activity which occupies the bus.

The Hard Disk “task” models I/O operations, with
a processor to model the disk device. Net Delay is a
delay center to model the network latency of the inter-
net access, and assumes that network bandwidth is not
a bottleneck. A remote Web server called “Page
Server” represents any customer’s web server.

Figure 10. Detailed model of the Phone Web system

Page
Server

Iproxy

Hard DiskReadWrite
OpOp

Cache
Miss

Service
Request

PlayOut
Play WAV

File
WAV

Manager
Process
Event

Call

Activity
DMA

Call
Setup

DMA
request

Events
DTMF
Entry

DTMF

Delay
Prop

Delay
Net

CPU

2

1

1

xN

synchronous call

asynchronous call

PMLIRequestProcessProcessPML_Call
DataStateDTMFSetup

1

3.3 Obtaining model parameters from the
system

Each software task has entries to describe the
operations. CPU demands were obtained from log
traces from a test bed with many callers entering and
leaving the system, and making DTMF requests. The
Intel hardware clock was accessed to obtain approxi-
mately 1 microsecond granularity on times. Since this
was a wall-clock time, the values for each function
were filtered to remove outlier intervals that contained
processing due to pre-emptions. There were virtually
no such outliers. Because the logs did not record the
use of processes other than the three in Figure 8, such
as internet daemons, or miscellaneous kernel process-
ing, an allowance of 30% was made for limitations on
workload capture.

3.4 Assumed parameter values

Some parameters values were assumed without
measurement, including:
• The remote web server was modeled with 50

threads and an average access time of 61 ms to
fetch a document of average size 62.5 Kbytes [1].
This time was scaled to the average file size used.

• DMA activity was accounted for in the model,
based on the I/O bus speed. It assumed that the
entire WAV file is played out every time, and thus
may overestimate the demand.

• the average size of a web file was taken as F = 80
Kbytes, corresponding to a WAV file playout time
of about 10 seconds.

• Operations on the local disk (for PLMI to check the
cache) were estimated at 15 ms for an 80 Kbyte
file, and file caching by the kernel was ignored.

Some other parameters were assumed to take a range
of values, as discussed next.

4.0 Determining PhoneWeb capacity

PhoneWeb is complex, and does not fit into the
category of simple product form queueing networks.
Even though the model is simpler than the system, it is
difficult to understand intuitively. This section presents
the application of the ideas presented earlier to a real
system.

The capacity of the PhoneWeb system was
explored with more than 3,800 model simulation runs
of many parameter variations, including the think time
and the user population. The simulations were stopped

when waiting times, processor and task utilizations had
a 95% confidence interval of less than +/- 0.5% of the
stated result. The linear approximation for the feasible
boundary was developed to abstract the results.

The user response time was sensitive to many
model parameters, and was the result of primary inter-
est. Parameters with substantial uncertainty were var-
ied, including:
• proxy cache hit ratios H, from 0.5 to 1.0 (we con-

sidered steps of 0.1).
• an average round-trip network delay L, incurred

after a Proxy cache miss. A value of 100ms was
used to represent a transfer across a LAN (80
Kbytes at 800 Kbytes/sec). A value of 1 second
was used to model a transfer across the Internet at
80Kbytes/sec.

Also, the user population and user think time were var-
ied:
• the average user think times Z ranged from 2 to 14

seconds in steps of 4 seconds,
• the user population N ranged from 10 to 290 active

users on one PhoneWeb system in steps of 40
users. As soon as one user session ends, the model
begins another for that user.

The stated requirement was that 95% of waiting times
should be less than 1 second, however results con-
firmed that waiting times were close to exponentially
distributed. The 95% value is thus ensured by a target
mean response time R* of 0.33 sec.

Data was gathered for all combinations of H, L, N
and Z described above, contour plots in the (N, Z) plane
were created for each pair (H, L), and straight lines
were fitted by eye. Figure 11 shows results for a range
of values of H, and L = 0.1; Figure 12 has results for L
= 1.0. The term “waiting time” in these figures is the
quantity R that has been defined here.

The contours for different mean waiting-time val-
ues (meaning our R) are in line with the linear approxi-
mation described in Section 2.2. The plots are roughly
linear and take on the form of:

N = fmax(R
* + Z)

where

• R* is the negative Z-intercept of the line, in this
case 0.33 seconds

• fmax is the inverse slope of the line

and each contour can be summarized by its values for
(R*, fmax).

4.1 Parameter set for sensitivity analysis

An initial set of parameters were considered:
• Proxy Cache hit ratios of H = 0 to 1.
• WAV file size from F = 80 KB to F = 120 KB.
• the length d of a user session in DTMF events var-

ied from 5 to 20 in steps of 5 (nominal 20). This
affects the ratio of connection processing opera-
tions to DTMF handling.

• Hit ratio for PMLI peeking in the cache, with val-
ues h = 0 to 1.

As in Section 4.0, R* = 0.33 seconds was used for
the mean waiting time. The results to these experi-
ments can be found in Tables 1, 2, 3, and 4.

0 50 100 150 200 250 300
2

4

6

8

10

12

14
Exploring the effect of Proxy Cache Hit ratio when Net delay is 0.1 sec

T
hi

nk
 T

im
e

(s
ec

on
ds

)

Number of Users

Proxy Cache Hit Ratio 50%
Proxy Cache Hit Ratio 60%
Proxy Cache Hit Ratio 80%
Proxy Cache Hit Ratio 100%

Figure 11. Summary of capacity results for a Net
Delay of 0.1 sec

0 50 100 150 200 250 300
2

4

6

8

10

12

14
Exploring the effect of Proxy Cache Hit ratio when Net delay is 1.0 sec

T
hi

nk
 T

im
e

(s
ec

on
ds

)

Number of Users

Proxy Cache Hit Ratio 80%
Proxy Cache Hit Ratio 90%
Proxy Cache Hit Ratio 100%

Figure 12. Summary of capacity results for a Net
Delay of 1 sec

These tables show that hard drive caching, and
increasing WAV file sizes from 80 Kbytes to 120
Kbytes have a negligible effect on capacity due to the
insensitivity of fmax. Shorter phone calls have a larger
effect in decreasing capacity, but have less impact than
varying the proxy cache hit ratio for higher network
latencies. The other interesting observation is that the
system cannot achieve R < R* = 0.33 seconds with
proxy cache hit rates of less then 0.8 when the Net
Delay is 1.0 second.

TABLE 1. Results exploring Proxy cache hit rate H

H

L = 0.1 sec L = 1.0 sec

fmax -R* fmax -R*

0 7.82 -0.1030 infeasible

--

--

--

--

0.1 9.51 -0.1397

0.3 13.45 -0.3850

0.5 17.78 -0.2840

0.6 19.41 -0.3727

0.8 21.44 -0.4144 13.32 -0.434

1.0 23.40 -0.3347 23.53 -0.362

TABLE 2. Results exploring effect of shorter phone
calls.

d, L

H = 0.5 H = 1.0

fmax -R* fmax -R*

5, 0.1 16.18 -0.324 22.18 -0.416

10, 0.1 17.06 -0.316 22.83 -0.383

15, 0.1 17.84 -0.248 23.21 -0.356

20, 0.1 17.78 -0.284 23.40 -0.335

5, 1.0 infeasible

--

--

--

22.06 -0.583

10, 1.0 22.77 -0.449

15, 1.0 23.40 -0.370

20, 1.0 23.53 -0.362

TABLE 3. Results exploring effect of increasing WAV files
from 80Kbytes to 120 Kbytes.

W (KB),
L (sec)

H = 0.5 H = 1.0

fmax -R* fmax -R*

80, 0.1 17.82 -0.297 23.40 -0.338

120, 0.1 15.82 -0.329 22.54 -0.379

80, 1.0 13.75 -0.293 23.49 -0.365

80, 1.0 11.54 -0.141 22.84 -0.382

The Z-intercept of -R* is quite close to -0.33 in
every case, validating the approximation of Section 2.
The two most sensitive parameters are the Think Time
Z and the Proxy cache hit ratio H.

4.2 More parameters considered for
sensitivity analysis

Supplemental analysis was done on a larger range
of parameters described in Section 4.1:
• proxy cache hit ratios of H = 0, 0.3, 0.5, 1.0
• WAV file sizes of F = 80 K, 120 K, 512 K, 1024 K

bytes
• longer net delays of L = 1, 5, 10 seconds.

It is impractical to demand a 0.33 second mean delay
in most of these cases, so the users were assumed to be
more patient, and to take the network delay into
account. An allowance for network latency was added
to the target delay, by adding an “effective network
latency” (ENL) value to the required delay. This made:

R* = ENL = L (1 - H) + target delay,

with the target delay chosen to be 1.0 second.
Tables 5, 6, and 7 are the same experiments as

shown in Section 4.1, except using R* = ENL. Figures
13, 14, and 15 also examine more extreme variations of
Net Delay and WAV file sizes.

For the results in Tables 5, 6, and 7, capacity
increased slightly by the shift of the value of -R* from -
0.33 to -1.0 to -1.5 depending on the value of ENL.
The same parameters that are sensitive to capacity in
Section 4.1 are still sensitive (think time, proxy cache
hit, and shorter phone calls), and the same goes for the
insensitive parameters (hard disk cache, file sizes from
80 Kbytes to 120 Kbytes). When R* = ENL, proxy

TABLE 4. Results exploring effect of hard drive caching,
using a net delay of 0.1 sec.

h, W (KB)

H = 0.5 H = 1.0

fmax -R* fmax -R*

1, 80 18.64 -0.271 23.46 -0.343

0.7, 80 18.26 -0.332 23.70 -0.319

0.4, 80 17.91 -0.363 23.46 -0.348

0, 80 17.88 -0.306 23.69 -0.360

1, 120 18.03 -0.300 23.1758 -0.356

0.7, 120 17.75 -0.313 23.3419 -0.347

0.4, 120 17.13 -0.316 22.9727 -0.364

0, 120 16.36 -0.241 22.4768 -0.387

cache hit rates greater than 0.5 when Net Delay are 1.0
seconds is now feasible.

TABLE 5. Results exploring effect of shorter phone
calls using ENL

d,
L (sec)

H = 0.5 H = 1.0

fmax -R* fmax -R*

5, 0.1 21.52 -1.337 24.76 -1.168

10, 0.1 23.09 -1.157 25.94 -1.042

15, 0.1 23.43 -1.136 25.93 -1.063

20, 0.1 23.58 -1.121 26.87 -0.939

5, 1.0 21.66 -1.963 24.86 -1.332

10, 1.0 23.06 -1.693 26.20 -1.098

15, 1.0 23.53 -1.605 26.35 -1.067

20, 1.0 23.38 -1.537 26.55 -1.024

TABLE 6. Results exploring effect of hard drive
caching, using a net delay of 0.1 sec. using
ENL

h,
W (KB)

H = 0.5 H = 1.0

fmax -R* fmax -R*

1, 80 23.87 -1.082 26.47 -0.982

0.7, 80 23.7 -1.105 26.65 -0.967

0.4, 80 23.77 -1.083 26.50 -0.987

0, 80 23.60 -1.105 27.05 -0.946

1, 120 23.54 -1.109 26.43 -0.981

0.7, 120 23.53 -1.095 26.32 -0.996

0.4, 120 23.31 -1.134 26.70 -0.952

0, 120 23.00 -1.140 26.66 -0.955

TABLE 7. Results exploring effect of increasing WAV
files from 80Kbytes to 120 Kbytes using ENL

W (KB),
L (sec)

H = 0.5 H = 1.0

fmax -R* fmax -R*

80, 0.1 23.88 -1.073 26.45 -1.001

120, 0.1 23.16 -1.1078 26.36 -0.989

80, 1.0 23.79 -1.566 26.46 -1.036

80, 1.0 23.63 -1.515 26.34 -1.045

In the exploration of larger file sizes and network
latencies (Figures 13, 14, and 15), the curves show
more sensitivity. One interesting observation is for
lower think times, and higher network latencies, the
capacity of the system is greater for lower proxy hit
rates. This phenomena is more pronounced as the WAV
file size decreases. The explanation for this is, user
cycle times increase proportionally as proxy cache hit
rates decrease. Therefore more users can exist in the
system, “trapped” in a high network latency and not
incur work on the system itself. Which means more
users can enter the system, and since R* is adjusted by
the ENL formula, the PhoneWeb itself is not penalized
for the long network delays. As think times and popu-
lations increase, there is a cross over point when it is

Figure 13. Exploring file sizes of 120K, 512K,
1024K bytes, for network delay of 1 sec. using ENL

0 50 100 150 200 250 300
2

4

6

8

10

12

14
Comparing effect of File Sizes (120K, 512K, 1024K) and Proxy Cache hit ratio. Net delay = 1 sec

T
hi

nk
 T

im
e

(s
ec

on
ds

)

Number of Users

1024K 512K 120K

1024K 512K 120K

1024K 512K 120K

0% Proxy cache hit
30% Proxy cache hit
100% Proxy cache hit

0 50 100 150 200 250 300
2

4

6

8

10

12

14
Comparing effect of File Sizes (120K, 512K, 1024K) and Proxy Cache hit ratio. Net delay = 5 sec

T
hi

nk
 T

im
e

(s
ec

on
ds

)

Number of Users

1024K 512K 120K

1024K 512K

120K

1024K 512K 120K

0% Proxy cache hit
30% Proxy cache hit
100% Proxy cache hit

Figure 14. Exploring file sizes of 120K, 512K,
1024K bytes, for network delay of 5 sec. using ENL

beneficial for the capacity of the system to have higher
proxy cache hit rates. These cross over points can be
seen in Figures 14, and 15 for a given file size.

5.0 Conclusions

This paper has described a visualization of system
capacity as it is affected by various kinds of parame-
ters, and a simple linear capacity boundary that applies
to some parameters. The linear boundary is easy to cal-
ibrate for varying think times and latencies. This can
lead to a very substantial savings in effort to explore
capacity limits. For instance in the PhoneWeb system
studied here, 32 simulations were required to derive
one contour plot for one varying parameter and N,
whereas only two simulations are needed to establish
the constant parameters of the straight line boundary.
Also the compact linear representation makes it easier
to understand how changes will affect capacity, and to
communicate the results to others.

Overall this visualization can speed up the explo-
ration of capacity, even though other parameters do not
provide linear boundaries. It showed which parameters
could be safely ignored in trying to optimize the design
before deployment.

A successor to this system has been deployed
since the study was carried out.

6.0 References

[1] Jussara M. Almeida, Virgilio Almeida, and David J.
Yates, “WebMonitor: a tool for Measuring World-Wide
Web Server Performance”, First Monday, Vol. 2 No. 7 -
July 7th. 1997.

0 50 100 150 200 250 300
2

4

6

8

10

12

14
Comparing effect of File Sizes (120K, 512K, 1024K) and Proxy Cache hit ratio. Net delay = 10 sec

T
hi

nk
 T

im
e

(s
ec

on
ds

)

Number of Users

1024K 512K

120K

1024K 512K

120K

1024K

512K

120K

0% Proxy cache hit
30% Proxy cache hit
100% Proxy cache hit

Figure 15. Exploring file sizes of 120K, 512K, 1024K
bytes, for network delay of 10 sec. using ENL

[2] R.G. Franks, S. Majumdar, J.E. Neilson, D.C. Petriu,
J.A. Rolia and C.M. Woodside, “Performance Analysis
of Distributed Server Systems”, Proc. Sixth
International Conference on Software Quality, Ottawa,
Canada, October 28-30, 1996, pp. 15-26.

[3] R. G. Franks, C. M. Woodside, “Effectiveness of Early
Replies in Client-Server Systems”, Performance
Evaluation, v 36-37, 1999.

[4] E. Borowsky, R. Golding, P. Jacobson, A. Merchant, L.
Schreier, M. Spasojevic, and J. Wilkes, “Capacity
planning with phased workloads”, Proc. First Int.
Workshop on Software and Performance (WOSP98),
Santa Fe, Oct. 98, pp 199 - 207.

[5] Seungrahn Hahn, M.H. Ann Jackson, Bruce Kabath,
Ashraf Kamel, Caryn Meyers, Ana Rivera Matias,
Merrilee Osterhoudt, Gary Robinson, “Capacity
Planning for Business Intelligence Applications:
Approaches and Methodologies”, IBM Redbooks,
2000.

[6] Raj Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling. John Wiley
& Sons, 1991.

[7] E. D. Lazowska, J. Zahorjan, G. S. Graham, K. C.
Sevcik, Quantitative Performance Modeling, Prentice-
Hall, 1984.

[8] Daniel A. Menasce, Virgilio A. F. Almeida, Capacity
Planning for Web Services: Metrics, Models, and
Methods, Prentice-Hall, 1998.

[9] Daniel Menasce, Virgilio Almeida, Lawrence Dowdy,
Performance by Design: Computer Capacity Planning
by Example, Prentice-Hall, 2002.

[10] B. Pittel, “Closed exponential networks of queues with
saturation: The Jackson-type stationary
distribution and its asymptotic analysis”, Mathematics
of Operations Research, Vol. 4, No. 4, November 1979,
pp. 357 – 378.

[11] C. M. Woodside, J.E. Neilson, D. C. Petriu, and S.
Majumdar. “The Stochastic Rendezvous Network
Model for Performance of Synchronous Client-Server-
like Distributed Software”, IEEE Trans. Computers,
Vol 44, No. 1, January 1995, pp. 20 - 34.

