

A Performance Model for a Network of

Prototype Software Routers

By

Pengfei Wu, B.E.

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements of the degree of

Master of Applied Science

Ottawa-Carleton Institute for Electrical and Computer Engineering
Faculty of Engineering

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario, K1S 5B6
Canada

July 20th, 2003

2003, Pengfei Wu

The undersigned recommend to the Faculty of Graduate Studies

and Research the acceptance of the thesis

A Performance Model for a Network of

Prototype Software Routers

Submitted by Pengfei Wu, B.E in partial fulfillment of the
requirements of the degree of Master of Applied Science

 __

Dr. Rafik Goubran, Chair

Department of Systems and Computer Engineering

__

Dr. C. Murray Woodside, Thesis Co Supervisor

__

Dr. Chung-Horng, Lung Thesis Co Supervisor

 I

Abstract

It is important to understand performance aspects of a computer system from the software

architecture and its configurations. For a system that has various possible configurations, the

performance analysis will become difficult. This thesis describes a compositional

model-building approach which is useful when there are many possible configurations. This

approach is based on assembling the sub models and is demonstrated in a network software

router, CGNet.

In addition, the derivation of parameters must be well addressed for performance modeling.

The measurements and parameter estimation techniques can be deployed in completing the

performance model. We apply these approaches and techniques to discussing the real

problems we encountered in parameterizing the performance model.

The converter tool, which automates the compositional model-building approach, has been

developed for CGNet. This tool is a solution to bridging the gap between the network

configurations and the performance analysis. It is a configuration-based model-building tool

for CGNet. With the tool, we can generate the performance model from configurations.

 II

Acknowledgements

 I would like to thank my co-supervisor, Dr. C. Murray Woodside, for his guidance and

advice throughout my study in Master program, especially during the research for this thesis.

I would also like to thank my co-supervisor, Dr. Chung-Horng, Lung, for his guidance and

suggestions throughout this research. Their seasoned guidance, consistent support, wise

advice, and numerous encouragements have been integral to the success of this research.

Here I would like to say, “ thank you very much” to express my deepest gratitude.

 I would like to thank all my friends for everything. You have provided assistance for me

from study and life when I need it. I would also like to thank the members of RADS Lab for

creating a wonderful working environment and for their support. The financial assistance

from Carleton University is greatly appreciated.

Finally, special appreciation goes to my family. Their support, understanding and love

are never stopped since I was born. I am proud of you and thank you.

 III

Table of Contents

Abstract I

Acknowledgement II

Table of Contents III

List of Figures IX

List of Tables XI

List of Symbols XII

Chapter 1 Introduction 1

1.1 The Purpose of Performance Modeling 1

1.2 Challenges of Performance Modeling 2

1.3 Objectives of This Thesis 3

1.4 Overview of Thesis Work 4

1.5 Thesis Contributions 6

1.6 Thesis Outline 7

Chapter 2 Background 8

2.1 Traffic Engineering 8

2.2 Software Performance Engineering 9

 2.2.1 SPE Model Procedure 11

 IV

 2.2.2 Performance Modeling 11

 2.2.3 Performance Data Collection 12

2.3 Use Case Map 13

2.4 Layered Queuing Network Model (LQN) 17

 2.4.1 LQN Notation 17

 2.4.2 LQN Tools 21

2.5 Displacement Technique for Measurement 22

 2.5.1 Background 22

 2.5.2 Displacement Technique Implementation 23

 2.5.3 Discussion 25

Chapter 3 Description of CGNet 26

3.1 Overview of CGNet 26

3.2 CGNet Configuration 29

3.3 Description of the Software Architecture 30

3.4 A CGNet Experiment 32

 3.4.1 Definition of the Operational Network by CGNet 32

 3.4.2 Execution of CGNet 33

 3.4.3 CGNet Output 35

 V

Chapter 4 Constructing a Performance Model for CGNet 36

4.1 Network Description 36

4.2 Determining Scenarios for Data Traffic across the Network 38

4.3 Determining Detailed Scenarios in a Node 41

4.4 Mapping Scenarios to Node-Path Sub Models 42

 4.4.1 Mapping Scenarios to Template Node-Path Sub Models 43

 4.4.2 Substituting Template Node-Path Sub Models for Atlanta 49

4.5 Assembling Node-Path Sub Models for a Node 55

4.6 Composing Node Sub Models into System Model 58

4.7 Generality of Compositional Strategy for Building Models 61

Chapter 5 Data Collection and Measurement 63

5.1 Experiment Setup for Measurement 63

5.2 Data Collection 64

5.3 Measurement 67

 5.3.1 Motivation 67

 5.3.2 Measurement with Displacement Technique 69

5.4 Parameter Estimation 71

 VI

5.5 CPU Cost for a Simple Four-Node Configuration 73

5.6 Obtaining the Parameters for the Five-Node Configuration 77

Chapter 6 Solving and Validating the Performance Model 82

6.1 Description of Experiments for Validation 82

6.2 Validation of the model 83

 6.2.1 Utilization Validation 83

 6.2.2 Throughput Validation 87

 6.2.3 Packet Loss Validation 91

6.3 Discussion 97

Chapter 7 Converter Tool 98

7.1 Overview of Converter Tool 98

7.2 Algorithm of Converter Tool in Information Collection 99

 7.2.1 Initialize the Converter Tool 101

 7.2.2 Get Node Information from nodeinfo 101

 7.2.3 Get Generator Information from generatorinfo 102

7.2.4 Get Sink Information from sinkinfo 103

7.2.5 Get Link Information from linkinfo 103

 VII

7.2.6 Build Routing Table for Each Node 104

7.2.7 Add Entries to the Task from Routing Table 105

7.3 Algorithm of Converter Tool in Model Output 106

7.3.1 Output the Initial Information 106

7.3.2 Output the Processor Information 107

7.3.3 Output the Task Information 107

7.3.4 Output the Entry Information 108

7.3.5 Output the Report Information 108

7.4 Validation of the Converter Tool 109

 7.4.1 The Linear Unidirectional Configuration Example 110

 7.4.2 The Linear Bidirectional Configuration Example 111

 7.4.3 The Five-Node Configuration Example 114

Chapter 8 Conclusions 115

8.1 Summary 115

8.2 Conclusions 117

8.3 Suggestions for Performance Purpose 117

8.4 Contributions 119

8.5 Limitations 119

8.6 Future Work 120

 VIII

References 121

Appendix A BNF Description of Naming Notation of LQN 126

Appendix B Code of compulmt Process 129

Appendix C LQN Model Constructed by Hand 131

Appendix D LQN Model Generated by Tool 144

 IX

List of Figures

Figure 1.1 Main components of the traffic-engineering framework 6

Figure 2.1 Basic notation and a simple example of Use Case Map 14

Figure 2.2 An example of UCM with forking and joining for the upgrading transaction 16

Figure 2.3 The LQN notation in terms of task, entry and host processor 17

Figure 2.4 Calls for service requests in LQN models 18

Figure 2.5 Time lines of LQN models synchronous, asynchronous, and forwarding calls 19

Figure 2.6 A typical example of an LQN model for the database upgrading transaction 20

Figure 2.7 The procedure of “Displacement” technique implementation 24

Figure. 3.1 A typical network that can be modeled by CGNet 27

Figure 3.2 High-level architecture of the node 30

Figure 4.1 Topology of an example network model by CGNet 37

Figure 4.2 Path view of a packet going from a generator to a traffic sink 38

Figure 4.3 High level of UCMs for packet class (CH, AT) through Network 40

Figure 4.4 Use Case Maps of packets going through one node in CGNet 42

Figure 4.5 Handling of Packet Class (XX, ZZ) in node XX with the downstream router YY 45

Figure 4.6 Handling of Packet Class (XX, ZZ) in node ZZ with the upstream router YY 46

Figure 4.7 Handling of Packet Class (XX, ZZ) in node YY with the upstream router XX and

the downstream router ZZ 47

Figure 4.8 The node-path sub model for packet class (XX, AT) at node AT with the upstream

router DA 52

Figure 4.9 The node-path sub model for packet class (XX, AT) at node AT with upstream

router WA 53

Figure 4.10 The node-path sub models for packet Classes from local generator in Atlanta 54

Figure 4.11 The structure of the node sub model for Atlanta 57

Figure 4.12 The components for the high-level sub model 58

 X

Figure 4.13 The labeled high-level sub model for node Atlanta 59

Figure 4.14 A High-level performance model for the network 60

Figure 5.1 Node sub model for node Atlanta with parameters 66

Figure 5.2 An example script of executing the compulmt process and node executable 70

Figure 5.3 Simple four-node configuration of CGNet 73

Figure 6.1 Comparison between predicted and measured utilization for each node 87

Figure 6.2 Comparison between predicted and measured throughput for each node 90

Figure 7.1 An approach of building the LQN model from the configuration of network 99

Figure 7.2 The LQN model generated by the converter tool from the linear unidirectional

configuration 111

Figure 7.3 Linear Bidirectional Configuration of CGNet with four nodes 112

Figure 7.4 The LQN model generated by the converter tool from the linear bidirectional

configuration 113

 XI

List of Tables

Table 3.1 CGNet components and their attributes 28

Table 3.2 Configuration files for establishing CGNet 29

Table 4.1 Routing tables for part of nodes in the network 50

Table 5.1 Definition of generator gAT in CGNet 64

Table 5.2 Definition of links AT-DA and AT-WA 64

Table 5.3 The comparison of CPU time from two profilers for one case 68

Table 5.4 Collection of sample data for four-node configuration 75

Table 5.5 output for all cases for four-node configuration 75

Table 5.6 output for light workload for four-node configuration 76

Table 5.7 output for heavy workload for four-node configuration 76

Table 5.8 Collection of sample data for five-node configuration 79

Table 5.9 output for all cases for five-node configuration 79

Table 5.10 output for light workload for four-node configuration 80

Table 5.11 output for heavy workload for five-node configuration 80

Table 6.1 Statistics of a node for packets sent and loss 92

Table 6.2 Comparison for total received and total sinked and lost packets for each case 93

Table 6.3 Receiving loss of each node from the local generator 96

 XII

List of Symbols

Symbols Description

P
M
 The process whose CPU time is calibrated

P
I
 The CPU-intensive process

L
I
 A given number of loops for P

I

T
I
 The execution time of P

I

T
M
 The CPU time taken by the process P

M

Node All routers in an operational network

OutLinks(XX) All bidirectional links connected to node XX

Neighbor(XX) All nodes connected to node XX through links in OutLinks(XX)

G(XX) All elements outside Node that can send the data traffic to node XX

gXX The merged generator connected to node XX

XXr The speed of the generator gXX

Destination(XX) All the destination nodes that the generator gXX sends data traffic to

ZZXXP , The proportion of data traffic for destination ZZ from generator

gXX

ZZXXr , The speed of data traffic for destination ZZ from generator gXX

S(XX) All elements outside Node that can receive the data traffic from

node XX

sXX The merged traffic sink connected to node XX

 XIII

XX-YY The link between node XX and node YY

Speed(XX-YY) The speed of link XX-YY

Cost(XX-YY) The cost of link XX-YY

XXT The execution time of node XX executable

RGn Number of packets received from generator during XXT

RNn Number of packets received from Neighbor(XX) during XXT

Rn Number of packets received and switched during XXT

SDn Number of packets sent to Neighbor(XX) during XXT

SKn Number of packets sent to the traffic sink during XXT

Sn Number of packets sent to the traffic sink and Neighbor(XX)

during XXT

Ln Number of packets lost in XX during XXT

GSn the number of the packets the local generator has sent

(XX, ZZ) Packet class for packets that are originated from router XX and

destined to router ZZ

Path(XX,ZZ) The sequence of routers along path for packet class (XX, ZZ)

ForwardR(XX, ZZ) all intermediate routers between XX and ZZ along the path for

packet class(XX,ZZ)

 XIV

source router The router which packet class (XX, ZZ) is originated from

destination router The router which packet class (XX, ZZ) is destined to

forwarding router The intermediate router between source router and destination router

along path for packet class (XX,ZZ)

upstream router The router which sends packet class (XX,ZZ) to the immediate

next-hop router

downstream router The router which receives packet class (XX,ZZ) from upstream router

<link_name, packetclass_name [,packetclass_name]>

 The label of the interface in the node sub model for link

<gAA, AAUser> The label of the interface in the node AA sub model for generator

YYXXd − The network delay for packet with size 85 bytes through link XX-YY

T
C
 The execution time of the compulmt process

TP The total CPU time for node process

Ra CPU time per packet received

SWa CPU time per packet switched to outgoing queue

SDa CPU time per packet sent to outgoing socket for next hop

SKa CPU time per packet sent to outgoing socket for traffic sink

RSWa CPU time per packet received and switched to outgoing queue

Pa CPU time per packet received, switched and sent to outgoing socket

 XV

multiplier A multiplier to vary the rates of all generators in CGNet

N Nodes in the converter tool

G Generator in the converter tool

L Links in the converter tool

S Traffic sinks in the converter tool

P Host processors in the converter tool

RT Routing tables for all nodes in the converter tool

Usr User task of LQN model in the converter tool

Rcv Receiving task of LQN model in the converter tool

Swi Switching task of LQN model in the converter tool

Snd Send task of LQN model in the converter tool

Snk Sink task of LQN model in the converter tool

Net Network delay task of LQN model in the converter tool

RE Routing table entry in the converter tool

 1

Chapter 1 Introduction

This chapter briefly describes the thesis research. Section 1.1 introduces the purpose of

performance modeling. Section 1.2 discusses the challenges of performance modeling.

Section 1.3 presents the objectives of the thesis. Section 1.4 shows the overview of the

thesis. Section 1.5 summarizes the contributions of thesis. Section 1.6 lists the outline of

thesis.

1.1 The Purpose of Performance Modeling

Designing a computer system, or configuring it after implementation to meet certain

performance criteria is a significant problem. In most cases developers and designers tend to

ignore performance issues in order to meet tight deadlines and aggressive schedules. This

may lead to catastrophic results after the application is used in a performance critical

environment. It may cost a substantial amount of time and money to identify and correct

the performance problems.

Depending on measurement data alone is not fully effective in ensuring that the computer

system will meet performance expectations. It only offers a snap shot of the computer

system, and expresses the performance factors exactly for that specific situation.

Performance modeling is a good alternative to ensure that the software architecture will meet

the performance objective. The performance model is essential to identify serious

performance problems at the architectural and early design stages of the life cycle in software

engineering. Performance modeling in the early stage of software design life cycle can not

only reduce the risk of performance-related failures by giving early warnings to potential

performance problems, but also avoid the snowball effect of performance problems.

 2

Performance models can provide performance predictions under varying environmental

conditions or design alternatives, and these conditions can be used to help detect problems.

Performance analysis addresses the sensitivity of the performance in utilization, repetition

and synchronization, which allows us to rapidly explore alternatives to correct the problems

before they could arise in the system. Performance analysis offers the feedback on

performance aspect, which gives us more insight into the system we are building.

1.2 Challenges of Performance Modeling

Innovations in software not only push software engineering to a higher level, but also call for

careful attentions to the performance. An object-oriented approach as a new technology in

software engineering presents a special problem for software performance engineering.

Performing a given function in object-oriented methods is likely to require the collaborations

among many different objects from several classes. The interactions can be numerous and

complex and often obscured by polymorphism, making the interactions difficult to trace.

Distributed systems challenge the performance intuition. Constructing distributed systems

involves a complex combination of choices about processing and data location, platform

size, network configuration, middleware implementation, etc. How to construct a

performance model for an object-oriented distributed software system has been important in

model-oriented software performance engineering area since the mainstream use of Web

applications, Common Object Request Broker Architecture (CORBA), and Enterprise

JavaBeans.

Once we convert the behaviors and constraints of the computer system into an appropriate

performance model format such as a simulation model, a queueing network model, or a

Petri-net model, the actual demand parameters in terms of execution times and frequency of

 3

their execution should be estimated, measured and inserted. The hardest part of software

performance engineering is getting the data you need for the performance model. Final

performance prediction results are sensitive to budgeted parameters so much that the answer

to how to get the parameters for the model is the first factor to make the model-oriented

approach trustworthy.

Many tools based on queueing networks or stochastic Petri nets and extensions make it easy

to derive the performance prediction with a parameterized performance model. We can

obtain the quantitative characteristics of a computer system from the performance

prediction as well as tell where the problems came from. The real objective of the

performance model is to offer suggestions and practical solutions that software designers

and user are concerned the most.

1.3 Objectives of This Thesis

This thesis discusses how to create a quantitative model for an object-oriented and

distributed application in the Internet, and describes how to integrate a performance model

seamlessly into Internet traffic engineering. The research focuses on the three problems

mentioned in the section 1.2: 1) the compositional approach to building performance model

for the object-oriented distributed application system; 2) the measurement for the

parameters and validation of models for the communication system; 3) the suggestion and

solution for the application system. Instead of designing a case study for the explanation of

pure academic theory, we have chosen one practical system to propose the solutions of

scalability from the performance perspective of the system.

To mitigate the complexity to build the performance model for a complex system, a

compositional approach is proposed for constructing the model in the thesis. The approach

 4

is based on assembling sub-models for different operations in the sub systems. We begin to

study the system by use cases and scenarios at any phase of the development process. We

can review software descriptions such as requirement specifications, design documents, and

source code implementation to understand the scenarios. We build the structure of the sub-

models corresponding to scenarios or scenario fragments, which can be assembled into a

large complex model.

To obtain the parameters characteristics of the performance model, we use the

“Displacement” technique for robust measurement. The measurement can also be used to

verify and validate the models, and monitor the computer system. The computer system can

be so complicated that it requires the estimation techniques to achieve parameters for the

performance model.

We can quantify the performance of the software system’s architecture and design by solving

the SPE models, and identify whether any performance problems may exist. If any problems

exist, the system with proposed suggestions and design alternatives could be re-modeled, re-

parameterized and re-solved until the system meets the performance objectives.

1.4 Overview of Thesis Work

The thesis involves two main different research areas: Software Performance Engineering

and Traffic Engineering for network communication. We can derive traffic characteristics of

the operational network system through measurement and prediction within the realm of

performance evaluation.

Internet routers, the most active elements of the whole network, perform packet-processing

tasks at high rates by dividing the work into hardware and software. To increase the

 5

performance of both large and small routers, it is important to understand performance

aspects of the protocols, the hardware, and also of the software designs. Performance of an

operational network is the outcome of the behaviour of each router, of the interactions

between routers, and the behaviour of the network. CGNet is a prototype software router

of modest scale that was developed to study the interaction of all of these factors. CGNet is

an emulation of an entire network that can run in the lab on one PC or on a network. A

typical network can be modeled by CGNet and all elements in the network can be presented

as components in CGNet.

In the research we investigate CGNet and predict the performance of the overall network in

terms of throughput, packet loss, and utilization of the router. This objective is achieved by

using the Layered Queueing Network (LQN) model. LQN is an extended queueing network

model that specifies the calls between entries so that the layered requests for service and the

layered contention delays in the path are represented in a simple canonical way. In a layered

queueing network, a software process (thread) is represented as an entry in the task can act

as both clients and servers to the other processes. The layered queueing network model has

the same parameters as the queueing network model such as the average number of visits,

the average service time at the device, and their scheduling disciplines. Analytic modeling

techniques based on approximate mean value analysis are used to provide performance

estimates for the behavior of the system being studied.

In this research, a performance model of CGNet was created and evaluated, to see if the

model can be used to supplement emulation and to see if the model gives the same

predictions. A layered queueing network was used to capture the effect of contention for

software thread resources and threading levels. The model can estimate the performance

characteristics such as throughput, utilizations of threads, buffers, and packet losses.

However, some difficulties in the measurements leave some questions unanswered about

 6

models for arbitrary network configurations.

A traffic-engineering framework is proposed in this thesis, which involves three main

components: 1) CGNet model, 2) LQN model, 3) Performance predicted, as illustrated in

Figure 1. The framework consists of three main steps. First, we choose an operational

network we are concerned about and model the overall network by CGNet. Second, we

construct an LQN model of CGNet by hand or automatically generate it by a tool I

developed. Third, we can use the solver of the LQN model, lqns, parasrvn, and spex to solve

the model and obtain the predicted performance of the overall network. After that, we can

propose the solutions of an operational network for reconfiguration and scalability

according to the performance characteristics of a communication system predicted by the

model.

Studied Operational

Network

CGNet Model

Platform

Unix & Linux

Topology & Configuration

link & cost

Traffic demands

load

LQN Model

Performance predicted

Measure
Define

manual

or tools

solver

control

control

Figure 1.1 Main components of the traffic-engineering framework

1.5 Thesis Contributions

There are several contributions of this research, which are as follows:

 7

�� The compositional model building approach based on assembling the sub-models

for different network operations at each node is proposed in the thesis. The sub-

model corresponds to standard scenario fragments, which can be assembled to a

large complex model. (See chapter 4)

�� Performance parameters for the CGNet prototype were determined by

measurements and estimations in which we make use of the “Displacement”

technique and the least square estimation technique. Some discoveries on thread

switching overhead and limitations of LQN solvers were derived from the

observations in the research. (See chapter 5 and chapter 6)

�� The converter tool has been developed in the thesis that can automate the

compositional approach and bridge between the configuration and the LQN

performance model. (See chapter 7)

1.6 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 presents the background of topic in

the thesis such as traffic engineering, software performance engineering, Use Case Maps

(UCM), “Displacement” technique. Chapter 3 introduces CGNet and its components,

which emulate the elements in a network, as well as the configuration and the execution of

CGNet. Chapter 4 describes the compositional model building approach based on

assembling the sub models. The sub models corresponds to scenarios or scenario fragments.

Chapter 5 shows the measurement and parameter estimation for the parameter purpose. It

also discusses the observations in the derivation of parameter. Chapter 6 validates the model

in the three aspects: throughput, packet loss, and utilization of host processor. Chapter 7

offers the converter tool to translate from the configuration to the LQN model and

presented the algorithm of the converter tool. Finally Chapter 8 draws the conclusion and

contains suggestions for the performance purpose.

 8

Chapter 2 Background

This chapter provides the general background of the research presented in this thesis. Traffic

engineering and software performance engineering (SPE) are the basic background of

research. Section 2.1 briefly reviews traffic engineering. Section 2.2 introduces (SPE). Section

2.3 presents Use Case Maps (UCMs). Section 2.4 shows the Layered Queueing Network

(LQN) model. Thus we can understand the basic notations of UCMs and the LQN model.

At last section 2.5 describes the “Displacement” technique for measurement.

2.1 Traffic Engineering

“The aspect of Internet network engineering which deals with the issue of performance

evaluation and performance optimization of operational IP networks” is referred to as

Internet traffic engineering in the IETF [Awduche02]. An important objective of Internet

Traffic Engineering is to enhance the performance of an operational network at both traffic

and resource levels. It addresses the problems of allocating resource efficiently and reliably

in the network so that user constraints are met and operator benefit is maximized.

The major challenge of Internet traffic engineering is network performance evaluation,

which is important for assessing the effectiveness of traffic engineering methods, and for

monitoring and verifying compliance with network performance goals. Results from

performance evaluation can be used to identify existing problems, guide network re-

optimization, and aid in the prediction of potential future problems.

Performance evaluation of a network can be derived in many different ways. The most

typical techniques are analytical methods, simulation, and empirical methods based on

measurements. When we use analytical methods or simulation, we should capture the

 9

operational characteristics of the network elements in the constructed models. These

characteristics include topology of the network, bandwidth of links, buffer size in nodes,

flow rate from outside.

It is quite complicated to evaluate the performance of the operational network contexts. A

number of techniques such as abstraction, decomposition, and approximation can be used to

simplify the analysis. Queueing models and approximation schemes based on asymptotic and

decomposition techniques can be widely used in the network analysis. For example network

calculus [Cruz91] is a mathematical approach to model network behavior. It may simplify

network analysis relative to classical stochastic techniques. When we use analytical

techniques, we should make sure that the models faithfully reflect the relevant operational

characteristics of the modeled network elements for precision purpose. Simulation can be

used to evaluate network performance with computation or to verify analytical

approximations. But simulation can be computationally costly compared to analytical

methods. Empirical methods are also used in the performance evaluation. For instance, the

probe packets are used in MATE [Elwalid01] so that the node can compute the statistics.

An appropriate approach to a given network performance evaluation problem may involve a

hybrid combination of analytical techniques, simulation, and empirical methods.

2.2 Software Performance Engineering

Software Performance Engineering (SPE), an engineering approach to performance, is

defined in the book [Smith02] as “a systematic, quantitative approach to constructing

software systems that meet performance objectives.” SPE is a software-oriented approach

and it focuses on architecture, design, and implementation alternatives of the proposed

 10

software. We can evaluate the performance characteristics of architecture and design

alternatives and select them for the objectives of software performance in responsiveness

and scalability. SPE includes the model-based approach to performance prediction as well as

techniques for data collection, management of uncertainties, model validation, and

performance solution.

Model prediction is a good choice and modeling methodology is the core to SPE. We can

build and analyze the models of proposed software. We can then explore its performance

characteristics to determine if it will meet its requirements. Model prediction is widely

accepted and we hail that model prediction makes it possible to prevent performance

problems from surfacing late in the life cycle of the software development process. But as

systems grow more complex, parameters and related measurements for the performance

model present more challenges in SPE than before. Once we have the parameters and solve

the model, we can quantify the performance of the software’s architecture and design. We

can determine whether it is to meet performance objectives or not. If it does not meet the

objective, the performance characteristics may indicate where problems are and why they

could happen. Performance improvement and solution is the final objective of SPE. We can

deploy performance solutions by applying performance principles, patterns, anti patterns,

and tuning [Smith02]. Therefore, software performance engineering is a combination of

three main steps:

1. Performance modeling

2. Performance measurement

3. Performance solution

In the following subsections, the SPE model procedure is outlined first, and performance

modeling and data collection are described.

 11

2.2.1 SPE Model Procedure

Connie Smith proposed the perform methodology in the book [Smith90] which can be used

in analyzing the performance of a system. It is outlined as follows:

1. Capture performance requirements and understand the system functions.

2. Understand the architecture of the system and develop a performance model.

3. Capture the processing steps and define software execution characteristics.

4. Estimate resource usage and insert them as model parameters.

5. Solve the model and analyze the results and make design suggestions.

The methodology is widely used as SPE approach in the computer system and you can make

some revisions for your specific case study. It can be deployed in any stage of software

development processing if only can you construct models which can indicate the

characteristics of a computer system, and obtain the reasonable parameters of the model.

You repeat the procedures and derive feedback from performance analysis so that you can

adjust your design for performance purposes. After you have modeled a number of design

alternatives, you can tell some of them own good performance characteristics and others do

not. Then you can determine which one is the final software plan.

2.2.2 Performance Modeling

The goal of SPE and model-based approach is to reduce the risk of performance failures.

People [Smith99] notice the benefit of “the earlier, the better” principle in the development

stages. But we cannot deny the fact that our knowledge of the software design processing

and implementation details are sketchy in the early phases of software development. The

insufficiency of knowledge for the proposed software drives us to learn more from the

concept of system, requirement specification and the design descriptions if possible.

 12

Software execution models such as execution graphs can not only help us understand the

processing steps of the system, but also identify serious performance problems at the

architectural and early design phases. Class diagrams, deployment diagrams, sequence and

collaboration diagrams in UML [Gomaa01] support execution graphs and software

execution models well. As we know more completely about the software’s design and

implementation details, we can refine the software execution model in the critical parts. The

results of the software execution model is needed as input parameters for the system

execution model, which capture the software performance characteristics of system with

contention for system resource among workloads and multiple users.

The system execution model is a dynamic model and it characterizes the software’s

performance accounting for the contention effects. The system execution model is

represented as a network of queues and servers, where a queue represents jobs waiting for

service, and a server represents a component providing service. Performance evaluation

tools [Bolch98] have been invented and they have contributed significantly to the design of

complex computer systems and networks. They can be categorized into two sets: one is

based on queueing networks such as LQN [Woodside95A], QNAP2 [Veran85]; and the

other is based on stochastic Petri nets and extensions, for instance, SPNP [Ciardo89]. In

most cases they all provide analytic/numerical methods as well as a simulation-base solution.

2.2.3 Performance Data Collection

When we construct the performance model, we need the necessary data to solve the

software performance model. We can conduct performance walkthroughs [Smith02] by

bringing together the people who can help us understand the workload intensity, the

execution environment, and their interaction with the software. Expert judgement and

 13

experience [Smith99] play important roles in the performance walkthroughs. The precision

of model results depends on the fidelity of the estimates. The verification and validation of

the estimates is important for the precise prediction. Resource requirements are difficult to

estimate and gather in our initial SPE studies. In some cases we employ the mathematical

formula or model to calculate the value we expect to obtain if the specification is inadequate.

Performance measurements [Jain91] also provide the input data for SPE model if the

prototypes or implementations are available. Lots of profiling and kernel instrumentation

tools are available with programming language specifications such as gprof [Graham82], or

paradyn tool [Miller95]. Although these tools are well defined and widespread, they have

difficulties in the complicated cases with many communication operations. Sometimes you

are required to write your own specific measurement program for your application. It is very

difficult to plan research that will provide the general solution and overcome the difficulties

in the performance measurements.

2.3 Use Case Map

The Use Case Map (UCM) model is a high-level design model to help a user express and

reason about a system’s large-grained behaviour, which was contributed by R. J. A. Buhr.

UCMs [Buhr96] are defined as causal scenarios, architectural entities or behavior patterns.

UCMs are a visual notation for use cases [Jacobson92] with extension of a high level of

abstraction. UCMs express behaviour along the paths by sets of responsibilities. The trace of

a set of responsibilities along a path can be referred to a scenario. The scenarios enable a

user to grasp the behaviour of the system without getting lost in execution details. Therefore

Use Case Maps can be the basis of a performance model because both of them can capture

the specification of systems. There is a difference between them: the former unfolds the

scenarios to easy understandings of the system but the latter captures the behaviour with

 14

quantity characteristics. This will be considered in chapter 4.

A UCM map is a collection of elements that describe one or more scenarios unfolding

through a system. The basic elements [Buhr96] in UCM are paths, responsibilities and

components. UCMs are composed of paths with responsibility points that may traverse

components as well as scenarios vs. system.

 Start Point End Point

Path

Responsibility

Component

(a) basic elements in UCM

(b) a simple example path with responsibilities overlaid on a component

Figure 2.1 Basic notation and a simple example of Use Case Map

 15

A path can be interpreted in the behavioural terms as a scenario and its visual representation

is a line with a start point and an end point. A filled circle represents a start point, which

indicates the stimulus and a set of preconditions to start the path. A bar ends a path and

shows the results of the path (see Figure 2.1 (a)). The paths are routes along which chains of

causes and effects propagate through the system.

A rectangular black box shown in Figure 2.1 (a) is a component. The components represent

entities and objects that are encountered during the execution of a scenario. They can

represent both hardware and software resources in a system such as objects or modules,

processes and threads, or physical devices.

There may be named responsibility points along any path so that a path shows more

scenario detail. Responsibilities shown in Figure 2.1 (a) are denoted with crosses along the

path. Responsibilities represent the localized actions and functions that a system must

perform at the specified point.

There is a very simple example in Figure 2.1 (b) that represents a scenario. The scenario is

that a path with responsibilities is overlaid on one component. Although it is simple, it well

indicates the relationship among path, responsibility and component.

Complicated scenarios make UCM construction express the patterns that are not purely

point-to-point. If explicit concurrency appears in the same scenario, it should be expressed

as parallel path segments split by the AND forks or gather by the AND joins. Figure 2.2

shows an example of a Use Case Map for the session of data upgrading with joining and

forking. The AND fork is a single path in the scenario splitting into two or more parallel

paths. The AND fork indicates the beginning of the concurrency. As the parallel paths after

the AND forks are progressing, the AND join is used to end the concurrency. No scenario

 16

can continue executing until all the parallel paths have joined. For example in figure 2.2 only

after upgrading data and progressing display have been done, can done message display be performed.

The OR fork and the OR join represent the alternatives paths. The OR fork expresses that a

single path splits into two or more alternative paths. Only one of the possible branches may

be traversed after the OR fork. The OR join shows the alternative paths to merge in a single

path. The OR join indicates that at least one of the possible paths leading to the OR join

needs to be traversed before proceeding further. In figure 2.2 there are two alternatives after

the system verifies the user: valid user and invalid user. We use an OR fork after verifying user

and an OR join indicates that the transaction for update data is finished.

Verifying

ReqPage

Display

InvalidUser

ResPage

Display

UpgradeData

ReqPage

Display

Done

Message

Display

Web Server

Verifying

User

Upgrading

Data

Data Server

Progressing

Display

Client

OR fork

AND fork

AND join

OR join

Figure 2.2 An example of UCM with forking and joining for the upgrading transaction

 17

2.4 Layered Queueing Network Model (LQN)

Layered Queueing Networks (LQN) [Rolia95] [Woodside95A] was developed as an

extension of the Queueing Networks for performance modeling of the complex and

distributed systems. An LQN model describes the architecture of system by the sets of

resources and expresses the interaction between the resources. It is capable of modeling

most of the features such as multi-threaded processors, devices, locks, communication and

so on [Franks00]. LQN models can be solved to capture the contentions and identify the

performance bottlenecks [Neilson95]. LQN models also provide the comprehensive

descriptions for the performance characteristics of a computer system. An LQN model is

the target performance model for this research.

2.4.1 LQN Notation

Task
Entry1 Entry2

(a) Task and entry for software resource

Processor Disk

(b) Host processor for hardware resource

Figure 2.3 The LQN notation in terms of task, entry and host processor

 18

The LQN model describes a system by the sets of resources such as software and hardware.

The software resources are processes, threads, operations, semaphores and so on. The

hardware resources are CPUs, disks, and interface controller. These resources can be

modeled in LQN in terms of tasks, host processor, and entry. A task is a software object,

which carries operations, and it has the properties of resources, including a queue, a

discipline, and a multiplicity. A task has one or more entries, representing different

operations it may perform. A task has a host processor, which represents the physical entity

that carries out the operations. Hence, the physical execution can be delegated by the logic

of operation expressed by the entry in the task. The processor has a queue and a discipline

for executing its tasks. The visual notation of the elements in the LQN model such as task,

entry, and host processor is shown in Figure 2.3.

 Synchronous Call

Forwarding Call

Asynchronous Call

Figure 2.4 Calls for service request in LQN models

The interactions between software and hardware can be expressed as service requests,

named as calls in LQN models. Calls are shown in LQN by messaging arrows in Figure 2.4

Calls for service request. The tasks may send and receive the service requests and play the

client/server role respectively. If tasks do not receive any requests, they are called reference

tasks and they represent the load generators or users of the system.

 19

Synchronous

Call

Client

Server

t

t

(a) Synchronous Call

Asynchronous Call

Client

Server

t

t

(b) Asynchronous Call

Synchronous

 Call

Forwarding

Call

Client

Server1

Server2

t

t

t

(c) Forwarding Call

Figure 2.5 Time lines of LQN models synchronous, asynchronous, and forwarding calls

There are three types of calls or messages between tasks and they are synchronous,

asynchronous, and forwarding calls. The tasks receive the service request at the designated

interface point as entry. If the server task receives a synchronous call from the client task

(see Figure 2.5 (a) Time lines of LQN models synchronous call), the server task is

responsible for returning a reply after the request has been completed. The client task is

blocked until it receives the reply from the server task. If the server task receives an

asynchronous call from the client task (see Figure 2.5 (b) Time lines of LQN models

asynchronous call), the client task continues executing during the execution of the server

task and does not need to wait for the response from the server task. In the forwarding call,

 20

the client task is blocked until it receives a reply as the synchronous call. The intermediate

server task partially processes the service request and then forwards the request to another

server task. This server task is responsible for sending a reply to the client task and unblocks

the client task. The intermediate server task can continue operation after forwarding the call.

Figure 2.5 (c) shows the time lines of LQN models forwarding call.

LQN models also define the demands, which include the total average amounts of host

processing and average number of calls for service operations required to complete an entry.

VerifyR

[0.5,0]

UpgradeR

[0.6,0]

Verifying

[1,0]

Upgrading

[1.2,0]

UGDoneMe

[0.3,0]

DataServer

WebServer

Client

Entry1

[Z=5]

Ndelay

[2,0]

inf.

WebSP

DataSPNetwork

ClientP

Figure 2.6 A typical example of an LQN model for the database upgrading transaction

Figure 2.6 illustrates a typical LQN model with the basic notation in terms of tasks, entries,

host processors, calls and demands. It has modeled the behaviour of the web database

 21

system for the upgrading transaction. Users send requests to upgrade the database. Two

main steps should be performed: user validation and database upgrade. The information for

user and data upgrading should be input on the web page and these information have been

sent to the database server to validate and update the database server. There is a network

delay between web server and database server. Once the upgrading has been done, the

webpage with finished information should be shown on web server.

2.4.2 LQN Tools

This subsection introduces LQN tools available to support the LQN notation. There are two

solvers for LQN models that share the same input file format. One is named as Layered

Queueing Network Solver (LQNS) and the other is ParaSRVN, a simulator.

LQNS is an analytical solver [Franks00] that breaks the LQN model into separate queueing

network sub-models. The individual queueing network can be solved by using mean-value

analysis (MVA). The MVA results of each sub-model can be used as the MVA parameters to

other sub-models. ParaSRVN simulates the LQN model by creating tokens for each call and

following those tokens through the system.

The experiment controller SPEX uses an expanded modeling syntax and supports repetitive

sequences of model to run. It deploys parameter controls and extracts specified results of

performance characteristics.

For the case study in this thesis, we use the simulator ParaSRVN and experiment controller

SPEX to predict the performance of a system with the confidence intervals.

 22

2.5 Displacement Technique for Measurement

There have been significant advances in modeling formalism and model solution techniques

so that it makes performance modeling relatively easy. We need the necessary data to

parameterize the performance models and solve them. Data collection for solving models,

validating performance models, and monitoring the system can be the most difficult task in

SPE processing. The trustable parameters are also the most challenging in the trustable

performance prediction from performance models. “Displacement” technique [Woodside97]

is chosen as a solution for the measurements in the research.

2.5.1 Background

Traditional implementations of the UNIX operating system provide coarse grained,

statistical measurements of CPU utilization. In the standard CPU demand tool the running

process is charged with CPU time including two parts: 1) user time if the processor is in user

mode, and 2) system time if the processor is in system mode. In fact there could be three

relevant CPU states: user mode, system mode, and interrupt mode. In some

implementations a significant amount of the execution in interrupt mode is conducted, but

the CPU demand tools in the usual kernel instrumentation can not capture it. McCanne and

Torek have documented that the standard CPU-demand tools cannot capture Interrupt

Service Routine (ISR) execution in UNIX in the paper [McCanne93].

In fact it is difficult to directly measure the CPU demand of communications protocols and

middleware such as sockets and RPCs. For some applications there is a significant amount of

the protocol execution done by interrupt service routines (ISRs). If there is no process

switching, the clock ticks that occur during the ISR execution can be allocated to the

interrupted process. But if there is process switching, it is impossible to know which process

 23

is the destination of a message at the moment of the interruption and which process should

be charged. That is because the information of the interrupt has not yet been processed.

The “Displacement” technique does not focus on the process under measurement any more

and introduces the measurable CPU-intensive process. It records the displacement of a

CPU-intensive process P
I
 by the process under measurement P

M
 and the prerequisite is the

process P
I
 that can be measured accurately. Then we can compute the CPU effort taken by

the process P
M
.

2.5.2 Displacement Technique Implementation

The original paper presents the displacement procedure and assumes that the process under

measurement P
M
 is or can be configured with a repetition of the operation to be measured. It

requires that there is no interaction for P
M
 in the calibration experiment and the behaviour of

the operation is repeatable. Thus, the CPU demand per operation can be calculated. Here we

modify this procedure to remove the use of a repeated execution in P
M
.

We are going to calibrate the normal process P
M
. We choose the CPU-intensive process P

I
 to

execute a fairly short loop over some arithmetic operations. The duration of its loop affects

the resolution of the measurements to be obtained. P
I
 is configured to run for a given

number L
I
 of loops. The wall-clock time is obtained and printed out at the beginning and

the end of P
I
. The procedure of “Displacement” techniques is shown in Figure 2.7.

Step 1: The CPU time per loop of P
I
 is calibrated by running it alone on a workstation for

some number L
I
(1) as illustrated in Figure 2.7 (a); let the wall-clock time interval be T

I
(1)

seconds. The estimated CPU time for one loop traversal of P
I
 is

τ
I
 = T

I
(1)/ L

I
(1) sec/loop (2-1)

 24

T
M
(2)

P
I

P
M

Process P
M

CPU-intensive process P
I

Processor Idle

T
M

(1)

T
I
(1)

(a) CPU-intensive process P
I
running alone on a workstation

(b) P
M

alone on a workstation

(c) P
I
and P

M
 running on a workstation

P
M

displaces some of the time of P
I

Figure 2.7 The procedure of “Displacement” technique implementation

Step 2: The two processes P
M
 and P

I
 are then run together in such a way that P

I
 starts a little

before and ends a little after the other, as illustrated in Figure 2.7 (c). The loop counter is set

to the values L
I
(2) for P

I
; it may require some experiments to adjust L

I
(2) to be long enough.

The wall-clock time interval for P
I
 is recorded as T

I
(2) seconds. Then the CPU time taken by

the P
M
 during Step 2 is

T
M

(2) = T
I
(2) – L

I
(2) τ

I
 (2-2)

 25

Figure 2.7 (b) only shows that P
M
 is executed alone on one machine. It is obvious that P

M
 has

higher priority than P
I
 when both of them are running together. Figure 2.7 (c) indicates P

M

replaces the execution time of process P
I
 and P

I
 can fill the gap of CPU idle during the

execution of P
M
.

2.5.3 Discussions

This displacement procedure in subsection 2.5.2 assumes that the two processes are running

on a quiet workstation and there are only P
M
 and P

I
 during the two tests. We also assume the

overhead for loop count in P
I
 can be ignored. Thus we can obtain the CPU demand for the

process P
M
 with the interaction. The trade off is that if P

M
 consists of different operations,

we cannot obtain the CPU demand for each operation.

The solution of the overhead for loop count in P
I
 is that we rerun P

I
 alone with the loop

account set to L
I
(2) on one quiet machine to obtain the wall-clock time T

I
(3) as step 1. The

difference between T
I
(2) and T

I
(3) is the total CPU time of process P

M
 we expected.

 26

Chapter 3 Description of CGNet

This chapter briefly provides a description of CGNet, including main components, and

network description files to model the typical network. Section 3.1 presents an overview of

CGNet including the component descriptions. It offers the general information for CGNet.

Section 3.2 describes the configuration of CGNet. Section 3.3 shows a high-level

architecture of CGNet and the related scheduling policy. Section 3.4 describes how to define,

run, and collect information from CGNet for an operational network.

3.1 Overview of CGNet

CGNet [Hobbs01] is a network emulation tool. CGNet was designed as prototype at Nortel

Networks to emulate a network in the laboratory. The tool was developed to test the

feasibility of the traffic engineering technology, and it can be used to support general tests

of many different kinds of networks.

The CGNet model includes nodes, sources (generator) and destinations (sinks) for the traffic,

a connection topology with stated link capacities, and controller which can send control

commands to the nodes. The capacity of generator and the proportion traffic which should

be sent to each destination can be adjusted. We can also configure the capacity of links

according to the variability of a real network. Periodic statistic reports are generated from

each node once a network is running. They are sent to a statistics sink as normal traffic. The

operator can send control commands through the manual controller to control the network.

Figure 3.1 [Hobbs01] shows a typical network modeled by CGNet. All routers, links and

traffic in a real network are abstracted into the components of CGNet and in sub section

3.4.1, there are more detailed discussions on how to model a real network into components

and connections by CGNet.

 27

CGNet is an object-oriented application. CGNet software was written in C++, but many

portions were in C style with about 30,000 lines of code. It contains complicated data

structures and algorithms. It also includes the complex logical interactions between

functionalities and expert knowledge in network communication and traffic controlling.

Node(Router or switch)

Traffic sink

Traffic generator

Bi-directional traffic link

Uni-directional traffic link
Statistics sink

Manual controller

Control link

Figure. 3.1 A typical network that can be modeled by CGNet

We can configure the components of CGNet through network description files and run

CGNet executables on one or more workstations. Table 3.1 shows the components of

 28

CGNet with illustration as well as their descriptions [Hobbs01].

CGNet Components

Node: a node in CGNet represents a router in the real network. But for

special use and purposes, a node in CGNet could be imaged as a switch.

Generator: A generator stands for a payload traffic source, which can

generate traffic at a pre-configured speed. The proportion of traffic is sent to

each destination in the network.

Traffic sink: A traffic sink is a destination for generated traffic.

Statistics sink: Each node in the network generates periodic statistic reports

while CGNet is running on the machines. The statistic reports are sent as

normal traffic to a statistics sink.

Manual controller: This device is used to send control commands to a node

to control the network manually. In CGNet, each node’s control port can be

accessed from multiple controllers.

 Bi-directional traffic link: This represents the transport media between

nodes in the network. It can be thought as two unidirectional links with the

same speed and cost. The traffic on these links can be conventional payload

traffic as well as administration traffic, such as routing updates and statistics

reports.

 Uni-directional traffic links: These links carry traffic from a node to a

traffic sink or from a traffic generator to a node. In CGNet the

implementation of a uni-directional link is identical to that of a bi-directional

link but in general only one direction is used.

 Control link: a manual or intelligent controller sends commands to a node

through it.

Table 3.1 CGNet components and their attributes

 29

3.2 CGNet Configuration

CGNet has defined network description files [Hobbs01]. Once CGNet executables read

them, the connections can be established and the network can be setup according to network

description files. Table 3.2 shows the network description files and the description of each

file.

File Name Descriptions

globalinfo This file contains a variety of global information that applies to the

entire networks.

nodeinfo It defines the characteristics of all the nodes within the network and

might contain statistics interval and host name of execution platform

for the nodes.

generatorinfo It shows the characteristics of the network’s generators so that

generator knows which node it connects with, its total capacity, the

proportion of traffic that should be sent to each destination in the

network, and host name of execution platform for the generators.

sinkinfo It describes the characteristics of each traffic sink including

connected node name, statistics filename, and host name of

execution platform for the traffic sink.

linkinfo It offers the characteristics of the network inter-node links, which

are bi-directional and symmetric in speed and cost. The link

information includes the bandwidths and cost of each link between

nodes in the network.

Table 3.2 Configuration files for establishing CGNet

 30

3.3 Description of the Software Architecture

From local
generator

From other
node

To local
sink

From other
node

From other
node

To other
node

To other
node

To other
node

Switching/
Routing

Sinking Sending Sending Sending

Sources

Destinations

Incoming
Sockets

Outgoing
Queueings

Figure 3.2 High-level architecture of the node

This section focuses on the software architecture and the behaviour such as scheduling

policy, and packet handling during the execution of CGNet. Each component such as a

node, generator, traffic sink, statistics sink and controller requires one executable to run on

 31

the machines and other link components can be established after CGNet starts up on the

machines.

The generator sends packets with the pre-configured speed to the node to which the

generator is connected. The destination for each packet has been randomly defined once it

has been generated. The packets traverse the node along the path specified in the routing

table and arrive at the destination, traffic sink. The traffic sink just consumes the packets

when the sink receives it.

The node process has the same operations: the main thread receives packets from the

incoming sockets, parses packets and switches them to the outgoing queue; the sending or

sinking thread sends packets the outgoing sockets; the sending thread also emulates the

network delay for the link. Once a packet comes into the node from its local generator or

some other node, it waits in the buffer space of the incoming socket. The packet is

processed when the switching/routing server selects that socket and reads the packet from it.

The switching/routing server polls all the incoming sockets within one node to process the

packets with the round-robin cyclic service discipline [Takagi90]. The packet is read and

parsed, then switched to the corresponding outgoing queue according to the routing table.

There is one thread associated with each outgoing queue. The thread can be either a sinking

thread or a sending thread. For the sink thread, it just dequeues the packet and writes it to

the outgoing socket. But for the sending thread, it also dequeues the packet and writes it to

the outgoing destination socket, and then emulates the network delay. The network delay is

emulated by the UNIX select function with a timeout value which does not block the CPU

processor. High level architecture for the node has been shown in Figure 3.2.

 32

3.4 A CGNet Experiment

In this section we focus on how to run CGNet and what kind of information we can obtain

from it. Subsection 3.4.1 describes the definition of CGNet for the operational network and

how to configure it. Subsection 3.4.2 shows how to run and terminate it. Subsection 3.4.3

presents the output of CGNet

3.4.1 Definition of the Operational Network by CGNet

We choose an operational network that we study and focus on all routers within the network.

We define the routers as nodes in CGNet. The set of nodes within the network is denoted

Node and let Node= {AA, BB, CC, ……}. For each node in set Node, we identify all

connections to the node. If the other end of the connection is also the element of Node,

we define the connection as a link. For each XX ∈ Node, all links connected to node XX

can be defined as a link set OutLinks(XX) = { XX-AA, XX-BB, XX-CC, ……}, and the

set of neighbor nodes Neighbor(XX) = {AA, BB, CC, ……}. Obviously XX ∉

Neighbor(XX) and for each YY ∈ Neighbor(XX) we have XX-YY ∈ OutLinks(XX).

All elements outside Node that can send the data traffic to node XX are defined as

generators G(XX)= {gXX1, gXX2, ……}. All elements outside Node that can receive the

data traffic from node XX are defined as traffic sinks S(XX)= {sXX1, sXX2, ……}. We

repeat to define links, the generators and traffic sinks for each node. Thus we define the

elements in the operational network as the components of CGNet. For simplicity, we merge

all generators for one node into one generator and combine all traffic sinks for one node in

one traffic sink. For each node XX ∈ Node, we can denote the merged generator as gXX

for G(XX), and the combined traffic sink sXX for S(XX) respectively. The corresponding

data rates are also combined together.

 33

We define the attributions and quantify the quantity characteristics for each element in the

network. We choose the host name of execution platform such as nodes, generators and

sinks because each of them requires one running instance of the appropriate executable. In

addition for each link we should collect link information, the speed Speed(XX-YY) and the

cost Cost(XX-YY). All bi-directional links are assumed to be symmetric in speed and cost.

For a generator and a traffic sink we should define the node name, for instance the node of

the generator gXX and the traffic sink sXX is XX. The generator supports a Constant Bit

Rate (CBR). We measure the traffic speed of generators and proportion of traffic sent to the

destination. For example, the data traffic generated by the generator gXX is sent to traffic

sinks sAA, sBB, sCC, …… respectively. We let Destination(XX) = { AA, BB, CC,……}

Here XX, AA, BB, CC, …… ∈ Node and XX ∉ Destination(XX). We can define

packet class as (XX, YY) that has a unique source-destination pair, and here YY ∈

Destination(XX). We use r XX to denote the speed (capacity) of generator gXX. Then we

investigate the destinations of packets generated by gXX for a period long enough. For each

destination ZZ ∈ Destination(XX) there are),(ZZXXgn) packets sent to sZZ from

generator gXX. We can then define XXr and pair (ZZ,),(ZZXXgn) for each destination. It is

easy to obtain the proportion of data traffic for destination ZZ from generator gXX is

ZZXXP , =
�

∈)(
),(

),(

XXnDestinatioYY
YYXXg

ZZXXg

n

n
. Then the speed of data traffic for destination ZZ from

generator gXX is ZZXXr , = ZZXXXX Pr ,* =
�

∈)(
),(

),(*

XXnDestinatioYY
YYXXg

ZZXXg
XX n

n
r .

3.4.2 Execution of CGNet

From the subsection 3.4.1 we define CGNet for an operational network and store the

configuration information into network description files. This subsection focuses on the

execution of CGNet.

 34

Starting up a network requires many commands to be executed. We create scripts to start the

various network components such as nodes, generators, traffic sinks and statistics sinks. We

choose the machines on which we start up the network and the host name of the machine

should be consistent with the definition of the components in the network description files.

We can choose one or more machines to run CGNet for the purpose of experiments. We

put the CGNet executables somewhere on the UNIX/LINUX path, and start the

executables from the directory where network configuration files are stored. The programs

are tolerant to different start-up sequences, each waiting patiently for neighbors to initialize

if they are started first. The generator will not send packets until the connected node starts

up. The CGNet executables read the configuration files, network description files during

initialization so that they can configure themselves and connect to each other. Once all the

components and connections are setup, the communication is established.

The original version of CGNet uses an infinite loop to keep reading the packets in the

incoming sockets and processes them. If you want to terminate an experiment, you can kill

one node process. It causes the broken pipe error if other processes try to write the sockets

of the node you have killed. The broken pipe signal can be used to terminate the executables,

nodes, generators and traffic sinks so that CGNet is terminated. In this research, each node

terminates after a set number of received packets. The termination is propagated by broken

pipe after the first node terminates. Thus we can adjust the running time and measured

packet number arbitrarily for our purpose. We use XXT to express the execution time of

node XX, XX ∈ Node. Thus there are XXXX Tr × packets sent from generator gXX to

node XX.

 35

3.4.3 CGNet output

Once a network is running, special network statistics are captured by statistics executable we

call it as statistics sink

The node process in the network updates statistics information for every data packet. These

statistics are gathered for a statistics interval as defined in the nodeinfo file. The node sends

the statistics report to its selected statistics sink at the end of each statistics interval and the

statistics database is reset. Each statistic represents only the events of the previous statistics

interval.

A tool to collect all statistics information for each node has been developed in the research.

We can obtain the statistics information for each node XX, XX ∈ Node as follows.

Number of packets received from generator: RGn

Number of packets received from Neighbor(XX): RNn

Number of packets sent to Neighbor(XX) : SDn

Number of packets sent to the traffic sink: SKn

Number of packets lost in XX because the outing queues are full: Ln

We define Rn = RNRG nn + as number of received and switched packets and Sn =

SKSD nn + as the number of sent packets. In fact, each node performs the statistics for every

packet it receives, which means all the packets received should be processed. There is

LSR nnn += and it covers the case where there is no packet loss, Ln =0.

 36

Chapter 4 Constructing a Performance Model for CGNet

This chapter describes how to build the performance model for CGNet system with one

sample configuration. The network and its topology are introduced in section 4.1. We trace

the scenarios in the system so that we can understand the behaviour of the system. We build

the template model for each scenario and merge them into a sub model for each node. All

the sub models for nodes are assembled and composed into a complex performance model

for the network. The procedures of constructing the performance model for CGNet are

broken down into the following sections:

4.2 Determining scenarios for data traffic across the network

4.3 Determining detailed scenarios in a node

4.4 Mapping scenarios to the node-path sub models

4.5 Assembling the node-path sub models into a node sub model

4.6 Composing the node sub models into the system model

The compositional strategy has been generalized in the section 4.7, and a tool for building

the model will be described in chapter 7.

4.1 Network Description

To present the compositional modeling approach, we choose one sample network and focus

on the performance characteristics of the stable state of the network. In this section we

briefly introduce the network for which we build the performance model on its topology and

components.

The topology of the sample network modeled by CGNet is shown in Figure 4.1. There are

five nodes in the network and each node has a generator, a traffic sink and a statistics sink.

The network includes bi-directional traffic links between the nodes so that they can

 37

communicate with one another. The definition of nodes, generators, sinks and links are

configured in the network description files in CGNet as described in chapter 3. The

generators, traffic sinks and statistics sinks for all nodes are running on one machine but

each node is executing on its other machine separately.

chny

chicago
newyork

chda

chwa

dawa

atwa
atda

dallas

atlanta

washington

gch1

sch1

gda1

gat1

gwa1

gny1

sny1

swa1

sat1

sda1

Node(Router or switch)

Traffic sink

Traffic generator

nywa

Bi-directional traffic link

Uni-directional traffic link

Statistics sink

atstats

chstats

dastats

wastats

nystats

Figure 4.1 Topology of an example network model by CGNet

One may notice that the controller components of CGNet are absent in the network. It is

reasonable to leave them out because here we pursue the performance analysis of the stable

state of the network.

 38

4.2 Determining Scenarios for Data Traffic across the Network

This section presents the operations of the routers for a typical packet traversing across the

network to help us understand the behaviour of the network. We focus on the main

components, and understand the interactions between them so that we can derive a

panorama of the system especially in the performance characteristics.

chny

chicago
newyork

chda

chwa

dawa

atwa
atda

dallas

atlanta

washington

gch1

sch1

gda1

gat1

gwa1

gny1

sny1

swa1

sat1

sda1

nywa

atstats

chstats

dastats

wastats

nystats

Figure 4.2 Path view of a packet going from a generator to a traffic sink

The path of a data packet follows the same pattern for all routers through the network. Each

packet starts from a generator and ends at a sink. It traverses the routers along the path

defined in the routing table. We can define the packet class for the packets that share the

same generator and the traffic sink. For each packet class (XX, ZZ) defined in section 3.4.1,

 39

node XX is the source router and node ZZ is the destination router. Certainly there is some

packet class that is related to routers other than the source router and the destination router.

The forwarding router is the intermediate router to forward this packet class. We define

ForwardR(XX, ZZ) = {AA, BB, CC, ……}. For each packet class, the number of elements

in ForwardR(XX, ZZ) could be zero or more and XX, ZZ ∉ ForwardR(XX, ZZ) . We

also can define the path for packet class (XX, ZZ) as Path(XX,ZZ) = <XX, AA, BB,

CC, …, ZZ>. Among Path(XX,ZZ) , AA, BB, CC, … stand for the elements in the set

ForwardR(XX, ZZ). In the sequence of Path(XX,ZZ) , any neighbor nodes EE, FF have

been further defined: EE is the upstream router of FF for packet class (XX,ZZ) and FF is the

downstream router of EE for packet class (XX,ZZ). We can have a node XX that has no

upstream router for packet class (XX,ZZ) and node ZZ that has no downstream router for

packet class (XX,ZZ). The path of the packet class has been defined when the network was

established.

The path view [Woodside95B] for a packet traversing from generator to traffic sink through

the network is described by the Use Case Maps in figure 4.2. As the path illustrated in figure

4.2 we define the packet class (CH, AT) for the path and the path has been overlaid on the

router in the network. The source router is node Chicago (CH); the destination router is node

Atlanta (AT) and the forwarding router is node Washington (WA). We have ForwardR(CH,

AT) ={WA}, and Path(CH, AT) = <CH, WA, AT>.

There may be other sources of stimuli in the original CGNet that cause work in network,

like administration and statistic packets. We can trace out the scenarios other than the one

described in the previous paragraph. Fortunately the frequency of them handled by the node

is so low that we can ignore it during the performance analysis for the network.

 40

chny

chicago
newyork

chda

chwa

dawa

atwa
atda

dallas

atlanta

washington

gch1

sch1

gda1

gat1

gwa1

gny1

sny1

swa1

sat1

sda1

nywa

atstats

chstats

dastats

wastats

nystats

Figure 4.3 High level of UCMs for packet class (CH, AT) through Network

A packet of packet class (XX, ZZ) goes from a generator to a sink along the path

Path(XX,ZZ). Each node along Path(XX,ZZ) performs the same operations. These

operations are briefly described as follows: the main thread receives the packet from the

incoming socket, switches the packet according to the routing table to the corresponding

outgoing queue; and the sending thread sends the packet to the next hop, or the sinking

thread sends it to the traffic sink; In addition to that, the sending thread emulates the

network delay. These operations can be defined as responsibilities in UCMs, which can be

overlaid on the path illustrated as Figure 4.2. The path can be broken into path fragments for

each node and the similarity of responsibilities for each node is more obvious. The scenario

fragment can be traced out through each path fragment. Figure 4.3 shows the high level of

UCMs for the packet class (CH, AT), which traverses the network from the source router to

the destination router.

 41

4.3 Determining Detailed Scenarios in a Node

A Router is an intelligent and complex device. It processes all the packets from the incoming

sockets. The diversity of the packet classes the router processes can drive the router to play

different roles for each packet. The role could be the source router, the forwarding router, or the

destination router. Whichever role it is, it performs the packet processing for each packet class

according to the routing table. We choose a node XX with four incoming sockets and four

outgoing sockets as an example shown in Figure 4.4, to describe the possible UCMs for each

packet class.

Three typical packet classes can traverse through the node XX: packet class (XX, BB), packet

class (AA, XX), or packet class (AA, BB). For packet class (XX, BB), node XX is the source

router. The scenario starts from gXX and the packet class is sent to the downstream router of

node XX for packet class (XX, BB). The scenario for packet class (XX, BB) in node XX is

shown by the UCM in the right of Figure 4.4. For packet class (AA, XX), node XX is the

destination router. The scenario ends at XX’s traffic sink and packet class is received from the

upstream router of node XX for packet class (AA, XX). The scenario packet class (AA, XX)

in node XX is shown by UCM in the left of Figure 4.4. For packet class (AA, BB), node XX

is the forwarding router. The packet class is received from the upstream router of node XX and

sent to the downstream router of node XX for packet class (AA, BB). The scenario packet

class (AA, BB) in node XX is shown by UCM in the middle of Figure 4.4.

Therefore we can identify all packet classes which traverse through the node. The scenario

fragment of each packet class can be traced and responsibilities for each scenario fragment

are well defined. We can derive all the scenario fragments within each node.

 42

From local
generator

From other
node

To local
sink

From other
node

From other
node

To other
node

To other
node

To other
node

Switching/
Routing

Sinking

Sending Sending Sending

NetDelay NetDelay NetDelay

Incoming
Sockets

Packet class
(XX, BB)

Packet class
(AA,XX)

Packet class
(AA,BB)

Outgoing
Queueings

Receiving

Figure 4.4 Use Case Maps of packets going through one node in CGNet

4.4 Mapping Scenarios to Node-Path Sub Models

This section focuses on mapping the scenario for a single path through one node to a sub

model, called a node-path sub model. We choose the node Atlanta in the network shown in

section 4.1 and build all node-path sub models for all scenarios involving node Atlanta. The

 43

work has been broken into two steps: mapping possible scenario to the template node-path

sub model which will be shown in subsection 4.4.1, and identify all scenarios involving node

Atlanta and substitute for the notation name of the template node-path sub model for each

scenario shown in subsection 4.4.2.

4.4.1 Mapping Scenarios to Template Node-Path Sub Models

Before we perform mapping a scenario to the template node-path sub model, we should

define the tasks for our sub model. From previous discussions on the responsibilities of

each node it is clear that we can define the receiving, switching, sending, sinking and network

delay tasks for the sub model. Separate receiving tasks are defined in order to provide a

separate buffer for each task. Thus we can model buffer overflows separately for each link.

The execution demand of each entry in the receiving task is set to 0, and the call to the entry

in the switching task is a synchronous call. For the sending task, we know the sending thread

sends a packet and emulates the network delay with the UNIX select function with a timeout

value. The network delay does not block the processor but can block the sending thread.

The network delay tasks are introduced and they have their own host processor as an infinite

server. Network delay is a pure delay as calculated in the LQN model and will not consume

CPU time on the host processor of receiving, sending, switching and sinking task.

In fact we can associate the tasks with the hardware resources. In one node each receiving

task is associated with an incoming socket. The sending task, together with its network delay

task, is corresponded to an outgoing socket. There is only one switching task that is in

charge of the switching/routing server. The sinking task is connected to the traffic sink that

is connected to the node.

To name the notation of the LQN model in terms of the entry, task, and the host processor

 44

we conveniently define the rules for naming in the LQN model construction. The rule for

the name of a node in LQN model uses the first two capital letters of the node name

defined in the CGNet model. All the names of the receiving, switching, sending, sinking and

network delay task have RCV, SW, SEND, SINK, DELAY respectively as key words.

We choose a typical packet class (XX, ZZ) and explain how to map a scenario fragment to a

template node path sub model. The packets of this packet class are generated by the

generator gXX and the destination of packets is the traffic sink sZZ. Node XX receives the

packet class from gXX, parses and switches it and sends it to YY through link XX-YY

according to the routing table in node XX. YY gets the packet class from XX-YY, and does

the same work to ZZ via link YY-ZZ. ZZ receives it from YY-ZZ, finds that the next hop is

the local traffic sink from the routing table of ZZ, and sinks it to the local traffic sink. The

number of intermediate YY can be zero or more. XX, YY, ZZ represent the source router, a

forwarding router and the destination router respectively for the packet class (XX, ZZ) and

Path(XX, ZZ) is <XX, YY, ZZ>. We build a node-path sub model along the path node by

node for each scenario fragment. The node-path sub models cover all types of scenario

fragments in a node discussed in section 4.3. Each of them can be used as a template node-

path sub model.

At first we define general variable node names AA, BB, CC, DD: AA is the node we built the

model for; BB is the upstream router; CC is the downstream router, and DD is the destination

router. Thus we can express the role changing for node XX, YY, ZZ and define the task and

entry names conveniently.

The receiving task of node AA is in charge of receiving packets from the incoming socket.

Each entry in the receiving tasks should express the operation on the packets with different

destinations. We separate the packets here because they can lead to different path. The

 45

packets come from the local generator or from other nodes as upstream routers. For the

former we can define the receiving task named as “AA_RCV”. For the latter we define it as

“BBAA_RCV”. The receiving task in Figure 4.5 node XX is the “AA_RCV” type and the

receiving tasks in Figure 4.6 node ZZ and in Figure 4.7 node YY are the “BBAA_RCV” type.

In task “AA_RCV” the entry name is “RCV_AA_DD” (see Figure 4.5 node XX). In task

“BBAA_RCV” the entry name is “BBAA_AA_DD” (see Figure 4.7 node YY) if DD ≠ AA;

but if DD = AA, the entry name is “BBAA_AA_SE” (see Figure 4.6 node ZZ).

RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

(a) Use Case Map (b) the LQN model

Figure 4.5 Handling of Packet Class (XX, ZZ) in node XX with the downstream router YY

The switching task is handling parsing and switching packets to the outgoing queues. Each

entry in the switching task is for the packets with different destination. The switching task

 46

name is “AA_SW”. Node XX, YY, and ZZ in Figure 4.5, Figure 4.6, and Figure 4.7

respectively share the same style in the name of the switching task. The entry name is named

as “SW_AA_DD”, and Figure 4.5 Node XX, and Figure 4.7 Node YY follow it for the case

DD ≠ AA. If DD = AA, the entry name is “SW_AA_SE” shown in Figure 4.6 Node ZZ.

YYZZ_RCVYYZZ_ZZ_SE

ZZ_SWSW_ZZ_SE

ZZ_SINKD_ZZ_SINK

YYZZ_RCVYYZZ_ZZ_SE

ZZ_SWSW_ZZ_SE

ZZ_SINKD_ZZ_SINK

(a) Use Case Map (b) the LQN model

Figure 4.6 Handling of Packet Class (XX, ZZ) in node ZZ with the upstream router YY

The sending task represents the sending thread, which dequeues the packet and sends it to

outgoing sockets. It is related to the network delay task. The network delay task emulates the

network delay. Entries in these two tasks are still for different destinations. The sending task

name is “AA_SEND_CC” and the entry for sending task is “SEND_AA_DD”. The

network delay task name is “AACCDELAY” and the entry for the network delay task is

“AACCDELdd” (dd is the small letters of the name of the destination router). There is no

sending task and network delay for packet class (XX, ZZ) in node ZZ. Figure 4.5 Node XX

and Figure 4.7 Node ZZ show the sending tasks and network delay tasks following the

naming rules.

 47

The sinking task performs the same as the sending thread in sending the packet to an

outgoing socket but there is no network delay. There is only one entry because it is only for

the packets at their destination router. The sinking task name is “AA_SINK” and entry name

is “D_AA_SINK”. Only node ZZ has the sink task and Figure 4.6 defines the sinking task.

XXYY_RCVXXYY_YY_ZZ

YY_SWSW_YY_ZZ

YY_SEND_ZZSEND_YY_ZZ

YYZZDELAYYYZZDELzz

XXYY_RCVXXYY_YY_ZZ

YY_SWSW_YY_ZZ

YY_SEND_ZZSEND_YY_ZZ

YYZZDELAYYYZZDELzz

(a) Use Case Map (b) the LQN model

Figure 4.7 Handling of Packet Class (XX, ZZ) in node YY with the upstream router XX and

the downstream router ZZ

When we perform the substitutions of the node-path sub models in the following

subsection, we only substitute for AA, BB, CC, DD and dd. The complete naming rules for

entry, task and host processor in the LQN model are shown in appendix A [Marcotty86].

 48

In the previous definition of naming conventions for entry and task, we have described

mapping the responsibilities to the entries in tasks in the LQN model together. Then we

investigate the interaction between entries and mapping them to the type of calls between

entries in different tasks.

The receiving tasks read all the packets from the socket and these packets come from the

generator or other nodes. The call to the receiving task should be an asynchronous call.

Once the packets are received from the sockets to the workspace, the switching task

performs switching/routing for the packets according to the routing table. Thus the call

from receiving task to the switching task is synchronous.

After the routers make the decision about which link the packet should be switched to, the

packet will be put in the outgoing queue for sending or sinking. The entry in the switching

task does not expect any reply and continues to perform switching/routing again. Hence the

entry in the switching task makes the asynchronous call to the entry of the sending task or

sinking task.

CGNet uses one thread for each outgoing queue, which is in charge of sending/sinking

packets. The sending thread emulates the network delay in the sending case. It is blocked

during the emulated network delay. The synchronous call is used from the sending task to

the network delay task. The thread writes the packets to the outgoing socket and does not

wait for a reply from the processing of the next hop. So from the network delay task to the

receiving task of the next hop, the call is asynchronous. It is consistent with expressing a call

to receiving task in the previous paragraph.

Packet class (XX, ZZ) is generated by gXX and the downstream router of node XX for packet

 49

class (XX, ZZ) is YY. The UCM for packet class (XX, ZZ) in node XX is shown in Figure

4.5 (a). The mapped node-path sub model is shown Figure 4.5 (b).

Packet class (XX, ZZ) arrives at the destination router ZZ and the responsibilities along the

path in node ZZ are shown as the UCM in Figure 4.6 (a). The corresponding node-path sub

model is derived from the UCM and is shown in Figure 4.6 (b). YY is the upstream router of

node ZZ.

Node YY receives packet class (XX, ZZ) from node XX and sends it to node ZZ. Figure 4.7

(a) shows the UCM with responsibilities. The forwarding router YY has the upstream router XX

and the downstream router ZZ for this packet class. We can obtain the node-path sub model

of node YY in Figure 4.7 (b)

4.4.2 Substituting Template Node-Path Sub Models for Atlanta, An illustration

Before we substitute the node-path sub model for node Atlanta for the template LQN sub

model, we must first go through the system and collect information to define the roles of

node Atlanta for each packet class. From topology in Figure 4.1, there are three sources that

can send packets directly to node Atlanta: node Dallas, node Washington and local generator.

We have Neighbor(AT) ={DA, WA}and OutLinks(AT) = {AT-DA, AT-WA}. From the

routing table we can derive the destination router for the packet class and the next hop. If one

packet class comes from node XX ∈ Neighbor(AT), node XX is the upstream router for

node AT and there must be at least an entry in routing table of node XX with next hop AT.

If one packet class goes to node YY ∈ Neighbor(AT), node YY is the downstream

router for node AT and the routing table of node XX with an entry for next hop YY. We

retrieve the routing tables from the relevant nodes, node Atlanta, node Dallas and node

Washington and list them in Table 4.1. The entries in the routing table involving next hop

 50

Atlanta are made bold (see table 4.1(b) (c)).

Sink Name Destination Router Through Link Next hop

sat1 ATLANTA null sat1

sch1 CHICAGO ATWA WASHINGTON

sda1 DALLAS ATDA DALLAS

sny1 NEW YORK ATWA WASHINGTON

swa1 WASHINGTON ATWA WASHINGTON

(a) Routing table for node Atlanta

Sink Name Destination Router Through Link Next hop

sat1 ATLANTA ATDA ATLANTA

sch1 CHICAGO CHDA CHICAGO

sda1 DALLAS null sda1

sny1 NEW YORK DAWA WASHINGTON

swa1 WASHINGTON DAWA WASHINGTON

(b) Routing table for node Dallas

Sink Name Destination Router Through Link Next hop

sat1 ATLANTA ATWA ATLANTA

sch1 CHICAGO CHWA CHICAGO

sda1 DALLAS DAWA DALLAS

sny1 NEW YORK NYWA NEW YORK

swa1 WASHINGTON null swa1

(c) Routing table for node Washington

Table 4.1 Routing tables for part of nodes in the network.

 51

The substitution rules for template node-path sub model are outlined as follows:

1. If node Atlanta receives a packet class from any BB ∈ Neighbor(AT) and sends it to

node CC ∈ Neighbor(AT) , we infer the destination router DD of this packet class

from the routing table. In the template node-path sub model of Figure 4.7 we substitute

AT for “YY”, and BB for “XX”. We substitute CC for “ZZ” in the task name and

substitute DD for “ZZ” in the entries of the receiving, switching and sending task. For

the entry in the network delay task, we substitute CC for “ZZ” and dd for “zz” (‘dd’ is

small letters of the destination router DD). Node AT is the forwarding router.

2. If node Atlanta receives a packet class from any BB ∈ Neighbor(AT) and sinks it in

the local traffic sink, We substitute AT for “ZZ”, and BB for “YY” in the template

node-path sub model of Figure 4.6. Node AT is the destination router.

3. If node Atlanta receives a packet classes from local generator and sends it to any CC ∈

Neighbor(AT), we infer the destination router DD of this packet class from

generatorinfo. In the template node-path sub model of Figure 4.5, we substitute AT for

“XX”, CC for “YY”, DD for “ZZ” and dd for “zz” (‘dd’ is small letters of the

destination router DD). Node AT is the source router.

For each node in Neighbor(AT) we identify the possible traffic to node Atlanta. The

routing table in Table 4.1 (b) for Dallas shows there is an entry with next hop ATLANTA

and the sink name is sat1. We check the routing table of node Atlanta table 4.1 (a) and know

packets are sent to the local traffic sink. It is possible to have packet classes (XX, AT) with

Path(XX,AT) = < XX, …, DA, AT>. These packet classes are sent from node DA through

DA-AT to node AT. Node AT is the destination router and Rule 2 should be used. We can

derive a node-path sub model for packet class (XX, AT) at node AT with the upstream router

DA in Figure 4.8. Here XX is an unknown variable and it could be DA or something else.

 52

DAAT_RCVDAAT_AT_SE

AT_SWSW_AT_SE

AT_SINKD_AT_SINK

From Dallas

Figure 4.8 The node-path sub model for packet class (XX, AT) at node AT with the upstream

router DA

For node Washington, there is only one entry with next hop ATLANTA in the routing table

for node Washington in Table 4.1 (c) and the sink name is sat1 too. We can infer the packet

classes (XX,AT) with Path(XX,AT) = < XX, …, WA, AT> as we did for node Dallas.

These packet classes are sent from node WA through WA-AT to node AT. Rule 2 is used

again. We can also derive the node-path sub model for packet class (XX, AT) at node AT

with the upstream router WA in Figure 4.9. XX is an unknown variable and it could be WA or

something else.

For the local generator, we investigate data traffic from the file generatorinfo and identify the

packet classes. There are four packet classes: (AT, CH), (AT, DA), (AT, NY), and (AT, WA).

The next hop from the routing table of node AT in Table 4.1 (a) provides a hint of the

downstream router for each packet class. Node WA is the downstream router for packet classes

(AT, CH), (AT, NY), and (AT, WA) and node DA is the downstream router for packet class

(AT, DA). For each packet class node AT is the source router and rule 3 should be performed.

 53

We can obtain a bunch of node-path sub models for packet class (AT, XX) at node AT with

a downstream router YY ∈ Neighbor(AT) in Figure 4.10. XX is CH, DA, NY and WA

respectively, and YY depends on the value of XX. We obtain node-path sub models: packet

class (AT, CH) in Figure 4.10 (a), packet class (AT, DA) in Figure 4.10 (b) , packet class (AT,

NY) in Figure 4.10 (c) , packet class (AT, WA) in Figure 4.10 (d).

WAAT_RCVWAAT_AT_SE

AT_SWSW_AT_SE

AT_SINKD_AT_SINK

From Washington

Figure 4.9 The node-path sub model for packet class (XX, AT) at node AT with the upstream

router WA

According to the current configuration, there is no packet class which defines node Atlanta

as a forwarding router. If there was a packet class (XX, ZZ), there could be AT ∈

ForwardR(XX, ZZ) and Path(XX,ZZ) = < XX, …, WA, AT, DA, …, ZZ> or < XX, …,

DA, AT, WA, …, ZZ>. For this packet class, the routing table in the upstream router had an

entry with next hop AT for the destination router ZZ. The routing table in node AT has an

entry with a next hop downstream router for destination router ZZ. We have the packet class

and its upstream router and downstream router, thus rule 1 could be used for the corresponding

node-path sub model. So far we have obtained all node-path sub models for node AT.

 54

RCV_AT_CH AT_RCV

SW_AT_CH AT_SW

AT_SEND_WASEND_AT_CH

ATWADELAYATWADELch

To Washington

From Local

Generator

(a) The packet class (AT, CH) with the

downstream router WA

AT_RCV

AT_SW

To Dallas

RCV_AT_DA

SW_AT_DA

AT_SEND_DASEND_AT_DA

ATDADELAYATDADELda

From Local

Generator

(b) The packet class (AT, DA) with the

downstream router DA

AT_RCVRCV_AT_NY

AT_SWSW_AT_NY

AT_SEND_WASEND_AT_NY

ATWADELAYATWADELny

To Washington

From Local

Generator

(c) The packet class (AT, NY) with the

downstream router WA

AT_RCVRCV_AT_WA

AT_SWSW_AT_WA

AT_SEND_WASEND_AT_WA

ATWADELAYATWADELwa

To Washington

From Local

Generator

(d) The packet class (AT, WA) with the

downstream router WA

Figure 4.10 The node-path sub models for packet Classes from local generator in Atlanta

 55

4.5 Assembling Node-Path Sub Models for a Node

Now we move to merge the node-path sub models so that we can acquire the node sub

model. We still choose a node delegated by node Atlanta.

In section 3.4.1, we know the traffic generated by generator is sent to the destination with

different proportions as well as the capacity of the generator defined in the configuration file.

One user pseudo task with name “XXUserT” is introduced into the node sub model and its

host process is “XXUserProc”. The entry of User task with name “XXUser” can receive the

call as the external arrival rate, which is equal to the capacity of generator XXr . It can send

the request to the receiving task of the generator with different proportions and the

proportion is ZZXXP , for the packet class with destination ZZ. For node Atlanta, the arrival

rate is ATr and the proportions are CHATP , , DAATP , , NYATP , , NYATP , .

We have associated the task with the hardware resources when we defined the task in section

4.4. Different resources separate the tasks and all the tasks for the different resources can

not be merged any more. The type of call between entries in the task will not change in spite

of the assembling and merging. Each entry in one scenario defined in subsection 4.3.1

reflects the responsibility of an operation for one packet class in a node. If the request is an

asynchronous call to the entry, all requests should line in the queue. If the asynchronous

requests are in the same queue, the entries that handle these requests should put all in one

task.

We can define the compositional rules for assembling the node-path sub model as follow:

1. Location principle: If the entries share the same resource, all the entries for these tasks

can be assembled onto one task. Note the number of entries will not change.

 56

2. Similarity principle: If entries handle the packets with the same destination in the tasks,

the entries can be merged in one entry of one task. Rule 1 location principle is a

prerequisite. The currently processing packet in one node is the destination-oriented

policy.

3. Inheritance principle: We notice the sequence of responsibilities in UCM is consistent

with the entry sequence as the LQN model for each packet class. The entry sequence

in the LQN model is defined as from receiving task to switching task, from switching

task to sending/sink task, and from sending task to network delay task, and from the

network delay task to the receiving task in next hop node. If the similarity principle is

applied in the previous entry, the following entries can inherit the similarity principle

from previous entry.

In node Atlanta, all requests (packet classes) from the generator are waiting in a queue

located in the same incoming socket. The entries in the receiving task in Figure 4.10 (a) (b) (c)

(d) share the hardware resource. Rule 1 location principle is deployed and we merge all

entries of the receiving task for the generator in Figure 4.10 (a) (b) (c) (d) in one receiving

task for the incoming socket for the local generator.

All packet classes pass through the switching/routing server. Whichever incoming socket

packet classes come from, all the entries of switching tasks in Figure 4.8, 4.9, and 4.10 (a) (b)

(c) (d) are combined together. Rule 1 location principle is employed here and we can derive

the switching task for the node. In Figure 4.8 and 4.9 the switching tasks handle the packet

class with the same destination. Rule 2 similarity principle is used here. Both entries are

merged into one entry in the switching task.

For the sending and network delay tasks, the routing table indicates that packet classes with

the destinations Chicago, New York, and Washington should go through the link ATWA and

 57

all these packet classes should wait in the same outgoing queue for the outgoing socket. By

rule 1 location principle, we assemble the entries of the sending task and the network delay

tasks in Figure 4.10 (a) (c) (d) into one sending and one network delay for the corresponding

outgoing socket. The sending task and network delay task in Figure 4.10 (b) handle the

packet class with the destination Dallas and can exist as an independent task in the node sub

model for node Atlanta.

RCV_AT_CH AT_RCVRCV_AT_WARCV_AT_NYRCV_AT_DA

ATUserTATUser

DAAT_RCVDAAT_AT_SE WAAT_RCVWAAT_AT_SE

SW_AT_CH AT_SWSW_AT_WASW_AT_NYSW_AT_DA SW_AT_SE

AT_SINKD_AT_SINK

AT_SEND_DASEND_AT_DA AT_SEND_WASEND_AT_NYSEND_AT_CH SEND_AT_WA

ATDADELAYATDADELda ATWADELAYATWADELnyATWADELch ATWADELwa

ATUserProc

ATServer

ARRIVAL RATE

From Dallas From Washington

To Dallas To
Washington

Network
(i)

Network
(i)

Figure 4.11 The structure of the node sub model for Atlanta

 58

The sinking tasks in Figure 4.8 and Figure 4.9 deal with the operations that sink the packet

classes in node Atlanta and should be combined in one task with one entry. Rule 3

Inheritance principle can be used here and the sinking task inherit the similarity in the

switching task.

After the combining and merging of the node-path sub models for the scenarios in node

Atlanta, we derive the node sub model for node AT, which is shown in detail in Figure 4.11.

The host processor for each task depends on the physical entity that carries out the

operations.

4.6 Composing node sub models into System Model

The behaviour of the network includes interactions between routers. In fact the scenarios of

section 4.5 are the scenario fragments of the packet classes within one node. The assembling

of node-path sub models for scenario fragments can be used to capture the interaction

among the components within one node. The complete scenarios can describe all the

behaviour of the packet class in the network to reflect performance characteristics for the

network. This section focuses on the composition of the node sub model derived from

scenarios within a node into a system model.

Atlanta

Atlanta

(a) Sub Model (b) Interface (c) Complete sub model

Figure 4.12 The components for the high-level sub model

 59

Building the sub model for node Atlanta based on the scenario fragment has been described

in section 4.5 and we can repeat the procedures for the other four nodes: Chicago, Dallas,

New York, and Washington. In Figure 4.12 (a), we use a box to express the sub model and

the LQN notation for the sub model is put in the box.

Each sub model has defined some tasks that interact with other models. The communication

is the request from one entry in the network delay task to the other entry in the other node.

Each sub model also receives the arrival flow from the local generator. A circle in Figure

4.12(b) represents a packet class that can be grouped by link to stand for the interface. A

rectangle in Figure 4.12(b) is the link’s graphic expression in the components of the high-

level sub model. But if the link is from local generator to node, we use a circle to represent

entry in the User task. If this node receives the packet class, or packets from the local

generator, we overlay the interface in the upper line of the sub model box. If this node

sends the packet class to its neighbor node, we overlay the interface in the lower line of sub

model box. Figure 4.12 (c) is an example of the complete expression of the high-level sub

model of node Atlanta.

<gAT, ATUser> <DA-AT, (XX, AT)> <WA-AT, (XX, AT)>

<AT-WA, (XX, CH),(XX, NY), (XX, WA)><AT-DA, (XX, DA)>

Atlanta

Figure 4.13 The labeled high-level sub model for node Atlanta

We use node AA, its upstream router BB, its downstream router CC and a packet class with its

destination router DD to make further explanations for labeling the interface. We use XX to

 60

stand for the source router of the packet class. For node AA, the interface on the upper line

of sub model box can be labeled as <BB-AA, (XX, DD)>, and the number of (XX, DD)

can be one or more. We can label the interface on the lower line of sub model box as <AA-

CC, (XX, DD)>, and the number of (XX, DD) can be more than one. The interface on the

upper line of sub model box can be labeled as <gAA, AAUser>. Figure 4.13 shows the

labeled high-level sub model for node Atlanta.

Chicago

Atlanta

Washington

Dallas

New York

CHWA

CHDA

CHNY

DAWA

NYWA

ATWA
ATDA

CHWA

ATDA
ATWA

CHDA
CHNY

DAWA
NYWA

Local Generator
<AT-WA, (AT, CH),(AT, NY), (AT, WA)>

<AT-WA, (AT, CH),(AT, NY), (AT, WA)>

<gAT, ATUser>

Figure 4.14 A high-level performance model for the network

We associate the calls defined in the LQN node sub model with the interface of the node

component. For the incoming interface, we connect the call which is to the entry

 61

“BBAA_AA_DD” in the receiving task BBAA_RCV with the interface <BB-AA, (XX,

DD)>. We also connect open arrive calls for the generator which is to the entry AAUser in

the user task “XXUsr” to the interface <gAA, AAUser>. For the outgoing interface, we can

connect the call, which is from the entry “AACCDELdd” in the network delay task

“AACCDELAY”, to the interface <AA-CC, (XX, DD)>.

For each link, we connect the outgoing interface on the lower line of the sending node to

the incoming interface on the upper line of the receiving node by packet class. Thus <AA-

CC, (XX, DD)> in the lower line of node AA can be joined to <CC-AA, (XX, DD)> in the

upper line of node CC. For instance, Figure 14 shows the connection from the outgoing

interface <AT-WA, (AT, CH), (AT, NY), (AT, WA)> in node Atlanta to the incoming

interface <AT-WA, (AT, CH), (AT, NY), (AT, WA)> in node Washington. The label of the

open arrival call to the node Atlanta is also indicated in Figure 14. We obtain a high-level

performance model for the network in Figure 14.

4.7 Generality of Compositional Strategy for Building Models

This section describes the generic compositional strategy derived from the model building

practice in section 4.2, 4.3, 4.4, 4.5 and 4.6.

In general, in any computer system we begin by identifying the requests to traverse this

system. We trace the request from its origin to its destination. The request may consume

software and hardware resources. We treat the resources as servers. For simplicity, we can

decompose the request into pieces and trace the path for each piece. If we can identify the

path for each request (or request piece), we can then apply the compositional strategy for

building the performance model. The compositional strategy is outlined as follows:

 62

1. Define the scenario and trace the path for each request;

2. Decompose the scenarios into fragments within the component. Here a component is a

generic object, for example a node in CGNet;

3. Map the scenario fragments into the component-path sub models in terms of entry, task,

and call used in the LQN model. If the system is an Object-Oriented design, we can

identify the alternatives of the scenario fragment of each class, then map all possible

alternatives of the scenario fragment to the template sub model;

4. Assemble the component-path sub models to a component sub model for each

component. Here we assemble the entries of the task for the resource. The assembling

rules illustrated in section 4.5 are summarized as follows:

I. Location principle: If the entries share the same resource, all the entries for these

tasks can be assembled to one task.

II. Similarity principle: If entries handle the requests that have the same responsibilities

including the execution demand along the path after this point in the tasks, the

entries can be merged into one entry to one task. The Location principle is a

prerequisite.

III. Inheritance principle: The responsibility in the scenario is corresponding to the entry

in the model. The sequence of entries in the LQN model is the same as that of

responsibilities in UCM. If the Similarity principle is applied to the entry in the

previous task, the entries for the following responsibilities can inherit the Similarity

principle.

5. Compose the component sub models into the system model. Following the path of the

request piece traversing the different components, we can join the call of the incoming

interface in one component to that of the outgoing interface in another. This gives the

performance model for the system.

6. The assembling and composition in step 5 can, in principle, be applied recursively at

multiple levels of component decomposition.

 63

Chapter 5 Data Collection and Measurement

In chapter 4 we have developed the structure of the LQN model. This chapter focuses on

the techniques for data collection for various scenarios, measurement for the execution

information of the system, and parameter estimation for the LQN model. We begin by

presenting the experiment setup for measurement purposes. Section 5.2 shows the collection

of necessary parameters for a complete performance model and how the LQN model is

reproduced with those parameters. Section 5.3 provides the procedure for measurement with

the “Displacement” technique. Section 5.4 discusses parameter estimation with the least

square estimation and regression models are also presented. Section 5.5 describes the

derivation of parameters for the simple four-node configuration. Section 5.6 discusses the

parameters we derive from the five-node configuration with complicated topology.

5.1 Experiment Setup for Measurement

As stated above, we assumed in chapter 4 that we had the necessary data such as CPU

demand of an entry and the call’s intensity to create the performance models. To increase the

accuracy of measurement, we ran the node components on separate machines.

For CGNet with its topology shown in Figure 4.1, we choose six SUN SPARCstation 2

machines as an experimental environment. The operating system on these machines is Sun

Solaris 5.7. The NIC and Hub speeds are 10Mbps and all machines are in an isolated local

area network. We run each node on one machine. All the generators and traffic sinks run on

the other one because they only perform the simple task. Experiments indicate that all

generators and traffic sinks can perform the job well as we expect from the configuration

file.

 64

5.2 Data Collection

In this section we present the necessary data collection so that we can complete the

performance model. We can collect data from execution information and derive it from

configuration.

From the current CGNet implementation, the average packet size is 85 bytes in the network.

The maximum length of the outgoing queue is 78000 bytes. Thus the buffer size of the

outgoing queue is 78000 /85 = 917 packets.

Destination1 Destination2 Destination3 Destination4
Name

Speed

(bps)
Node

Dest. Weight Dest. Weight Dest. Weight Dest. Weight

gat1 67000 AT NY 204 WA 178 CH 185 DA 103

Table 5.1 Definition of generator gAT in CGNet

From the configuration of CGNet we can obtain the information of generators and links,

which affect the parameters such as external arrival rates and execution demand for entries

of the network delay task in the performance model. Here we use the sample node Atlanta

as before. Table 5.1 shows the information of the generator gAT. The information of links

connected to Atlanta is shown in table 5.2.

Name Node1 Node2 Speed (bps)

atda AT DA 75000

atwa AT DA 105000

Table 5.2 Definition of links AT-DA and AT-WA

 65

Thus based on the previous definition in section 3.4.1 and table 5.1, we have

ATr = 67000bps =67000/(85*8)= 98.53 packets/sec.

CHATP , = 185/(204+178+185+103) = 0.276

DAATP , = 103/(204+178+185+103) = 0.154

NYATP , = 204/(204+178+185+103) = 0.304

WAATP , = 178/(204+178+185+103) = 0.266

We define network delay YYXXd − for a packet through link XX-YY. We have YYXXd − =

packet size/Speed(XX-YY), so based on table 5.2, we obtain.

DAATd − = 85 bytes /75000bps = (85*8)/75000 sec

WAATd − = 85 bytes /105000bps = (85*8)/75000 sec

We define the CPU time for the actions, receiving, switching, sending and sinking a packet as

follow:

Ra = CPU time per packet received (from local generator or from other nodes)

SWa = CPU time per packet switched to outgoing queue

SDa = CPU time per packet sent to outgoing socket for next hop

SKa = CPU time per packet sent to outgoing socket for traffic sink

These are the entry parameters in the LQN model as well as the network delay YYXXd − . In

section 4.4.1, we have discussed the receiving task and know the receiving task is used in the

LQN model only for the purpose of providing a separate buffer for an incoming socket. We

set Ra = 0 and migrate the amount of Ra to SWa when we define the parameters in the

 66

LQN model. We retain Ra for clarity through the rest chapter but keep this fact in mind.

RCV_AT_CH

[a
R
, 0] AT_RCV

RCV_AT_WA

[a
R
, 0]

RCV_AT_NY

[a
R
, 0]

RCV_AT_DA

[a
R
, 0]

ATUserT
ATUser

[0, 0]

DAAT_RCV
DAAT_AT_SE

[a
R
, 0] WAAT_RCV

WAAT_AT_SE

[a
R
, 0]

SW_AT_CH

[a
SW

, 0] AT_SW
SW_AT_WA

[a
SW

, 0]

SW_AT_NY

[a
SW

, 0]

SW_AT_DA

[a
SW

, 0]

SW_AT_SE

[a
SW

, 0]

AT_SINK
D_AT_SINK

[a
SK

, 0]

AT_SEND_DA
SEND_AT_DA

[a
SD

, 0] AT_SEND_WA
SEND_AT_NY

[a
SD

, 0]

SEND_AT_CH

[a
SD

, 0]

SEND_AT_WA

[a
SD

, 0]

ATDADELAY
ATDADELda

[d
AT-DA

, 0] ATWADELAY
ATWADELny

[d
AT-WA

, 0]

ATWADELch

[d
AT-WA

, 0]

ATWADELwa

[d
AT-WA

, 0]

ATUserProc

ATServer

ARRIVAL RATE

From Dallas
From Washington

To Dallas To Washington

Network
(i)

Network
(i)

1111

1111

1
1111

1
1111

11

1

CHATP ,
DAATP ,

NYATP ,
WAATP ,

ATr

Figure 5.1 Node sub model for Atlanta with parameters

We also can infer from the CGNet implementation, that the number of each call from the

entry in receiving tasks to the entry in switching task, from switching task to sending tasks

and sink tasks, from sending task to network delay task, from network delay task to receiving

 67

task in the next hop is 1.

We collect and define the information for each node and insert them into the LQN model.

The parameterized LQN sub model for node AT is shown in Figure 5.1.

5.3 Measurement

In this section we describe our efforts to acquire the parameters for the LQN model.

Measurement with “Displacement” technique should be performed so that we can obtain

the total CPU time of a process.

5.3.1 Motivation

We defined the Ra , SWa , SDa and SKa in section 5.2 but did not offer the value or

solution for them. Measurement is the only way to acquire them. All the parameters indicate

the demands of the operations. There are two potential solutions to obtain them: 1) measure

the operations directly, 2) repeat them to obtain the total time then divide for each. Normally

if the CPU spends much time on one operation, both solutions are feasible. But for CGNet

we can imagine how little the time the system spends on processing one packet. In addition

within CGNet the receiving/switching is the main process, and the sending/sinking is

performed by one thread for each outgoing queue. Also the overhead for operation

switching is ignored in the first approach. The overhead for the environment in the second

approach is also missed. All these overheads cannot be neglected compared to the time the

system spends on one operation. Missing them could lead to an imprecise prediction of the

performance model.

The solution in this thesis is to measure those parameters together. We let CGNet run for a

 68

period of 20 minutes to obtain the CPU time for each node. We can obtain the total CPU

time, then split it to each Ra , SWa , SDa and SKa . Each of those parameters includes a

portion of the overhead. How to split the total CPU time for each parameter will be

discussed in section 5.4.

gprof (sec) time command (sec) Node name

CPU time User CPU time System CPU time Total CPU time

Atlanta 744.51 542.77 325.67 868.44

Chicago 1700.17 1257.97 744.25 2002.22

Dallas 1349.26 1001.76 575.04 1576.8

New York 1576.24 1209.22 632.75 1841.97

Washington 1819.16 1358.04 835.00 2193.04

Table 5.3 The comparison of CPU time from two profilers for one case

Profiler gprof is chosen to measure the C++ program of CGNet following profiling steps

outlined in the manual [Fenlason97]. The time spent in each function or its subroutines can

be obtained from the output. Another profiler, time command [Fink02], can show the CPU

time as well as the elapsed time between invocation of the utility and its termination. We

expect the consistent outputs of these profilers for the same process. Table 5.3 shows the

comparison of results of the two profilers for one case. The gap between column 2 and

column 5 is too large to give confidence in the values.

We can make the hypothesis that the time for interrupt service routine (ISR) execution is not

correctly accounted for by both profilers. In fact each node performs reading packets from

sockets and writing packets to sockets. Most parts of the tasks are executed by the ISR. The

Paper [McCanne93] has well documented the fact an arbitrary amount of the CPU time has

 69

not been charged in the profiler. The paper [Woodside97] for “Displacement” technique

deduces that it is difficult, even impossible, to know which process should be charged when

the ISR is invoked for communication protocol applications. That drives us to adopt the

“Displacement” technique in measurement.

5.3.2 Measurement with Displacement Technique

In this subsection we focus the measurement with “Displacement technique” for CGNet.

The objective is to obtain the CPU time for each node when we run CGNet for each case.

Although the time command does not perform well in accurate measurement, we can use it

to roughly determine how long the node is executed and how much CPU time is used for the

node.

The “Displacement” technique introduces a dummy process compulmt. The compulmt process

is a CPU intensive process. It is introduced to fill the CPU idle time during the execution of

CGNet, so that the CGNet node process can displace the execution time of the compulmt

process. The compulmt process executes a fairly short loop over some arithmetic operations

and the number of loops is programmable. In the beginning and end of the compulmt process,

the “wall-clock” measurement is performed and the difference is the execution time of the

compulmt process. The code of the compulmt process is shown in appendix B and we can

change ITERATIONS to vary the duration of compulmt process execution.

To make sure the compulmt process does not affect the execution of CGNet, priority policy is

applied when we run CGNet and the compulmt process one the same machine. The nice

command [Frank98] is used to set priority for the process.

The procedure of measurement for the CPU cost for each node executable can be outlined

 70

as follows:

1. Run the CGNet executables with time command ahead. Record and estimate the CPU

idle time for each node executable from results of the time command;

2. Choose the suitable compulmt process for each node executable and make sure the

execution time of compulmt process can cover the CPU idle time. The execution time of

compulmt process on quiet machine is T
C
(1).

3. Run the compulmt process first with lower priority followed immediately by the CGNet

node executable with higher priority on the same machine. The two processes can keep

the CPU busy. CGNet node executable can displace the time of the compulmt process by

its high priority. The CGNet node executable yields to the compulmt process when it is

idle. That priority policy of the scripts can be implemented as in figure 5.2.

nice +19 time ~pfwu/binmu5/compulmt &

cd ./nodeat

time ~pfwu/binmu5/node atlanta . $1 0 &

cd ..

Figure 5.2 An example script of executing the compulmt process and node executable

When two processes have finished, we obtain the execution time of the compulmt process

T
C
(2) .

4. Calculate the CPU time for the node process from the difference between two

executions of the compulmt process as T
C
(2) - T

C
(1).

We can obtain the CPU time of CGNet node process through this approach, instead of

some instrumentation techniques that handle the communications operations poorly.

 71

5.4 Parameter Estimation

Section 5.3 has provided the total CPU time for the node executable but not the host

processing demand for each entry or functionality. We try to break the CPU time into piece

and estimate the Ra , SWa , SDa and SKa . The Least Square Estimation techniques (see

[Follenweider93] or any text on regression in statistics) can be used for this purpose.

We can make an acceptable assumption that Ra , SWa , SDa and SKa are consistent and

repeatable in the test while the environment where the node executables run is not changed.

We use TP to denote the total CPU time for a run, then

TP = Rn * (Ra + SWa) + SDn * SDa + SKn * SKa (5-1)

The sending thread and sinking thread share the same code in CGNet. The difference is the

sending thread emulates the network delay with the select statement with timeout but the

sink thread does not. We can assume that the difference is small, so SDa = SKa . The

equation (5-1) yields

TP = Rn *(Ra + SWa) + (SDn + SKn) * SDa

= Rn *(Ra + SWa) + Sn * SDa (5-2)

In the case where there is no packet loss in the outgoing queues, we have SR nn = . We

obtain from the equation (5-2):

TP = Sn *(Ra + SWa + SDa) (5-3)

If there is packet loss with losses Ln , we have LSR nnn += . It is assumed that lost packets

are only processed through the receiving and switching steps. We obtain from the equation

 72

(5-2):

TP = Sn *(Ra + SWa + SDa) + Ln *(Ra + SWa) (5-4)

For simplicity we define Pa = Ra + SWa + SDa and RSWa = Ra + SWa . Substituting

them yields

For case without packet loss: TP = Sn * Pa (5-5)

For case with packet loss: TP = Sn * Pa + Ln * RSWa (5-6)

From equation (5-5) and (5-6) we can hypothesize a simple regression model in (5-7) and a

multiple regression model in (5-8) to model the relationships between the total CPU time

and the number of packets handled by CGNet,

11xY β=

 (5-7)

2211 xxY ββ += (5-8)

One method, the least square approach, chooses the estimators 1β̂ and 2β̂ that minimize

the sum of squared errors (SSE). Here we have Y is TP, x
1
 is Sn and x

2
 is Ln . Further

more the equation (5-8) can cover the case without packet loss if x
2
 is set to 0.

The original CGNet has provided the nominal rates for the generators. We can introduce a

rate multiplier so as to change rates, to vary the workload of CGNet for each case. We have

Rate = multiplier * nominal rate

We collect the sample data TP, Sn and Ln by changing the multiplier. Then we use them to

estimate the unknown parameters in the regression model equations (5-7) and (5-8). The

regression analysis procedures have been outlined in [Scheaffer86] and the statistical tool

 73

SAS [Cary99] is used in the research.

From estimates 1β̂ and 2β̂ we obtain Pa = 1β̂ = Ra + SWa + SDa and RSWa =

2β̂ = Ra + SWa , so SDa = 1β̂ - 2β̂ , Ra + SWa = 2β̂ . In this section we assumed

SDa = SKa and in section 5.2 we have Ra = 0. In summary, we have Ra =0, SWa = 2β̂ ,

SDa = SKa = 1β̂ - 2β̂ .

5.5 CPU Cost for a Simple Four-Node Configuration

We have an LQN model with two parameters, SWa and SDa , and two regression equations

(5-7) and (5-8) for Pa and SWa . A great number of measurements were taken and the

results were difficult to interpret. A simple configuration with four nodes and one packet

class was examined to clarify the issues.

 Vancouver Calgary Toronto Montreal

vastats castats tostats mostats

smo1

gva1

Figure 5.3 Simple four-node configuration of CGNet

In the four-node configuration, there are four nodes: Vancouver, Calgary, Toronto, and

Montreal. Only one packet class generated in gVA traverses through the four nodes and

sinks in sMO. The topology of the network is shown in Figure 5.3. The speed of the

 74

generator gVA is 100000bps and link speed is 105000bps. All the data traffic is one-way

traffic in this linear configuration. The configuration avoids the switching overhead between

the sending/sink threads. We run each node on a machine and the generator, traffic sink and

statistics sink on the fifth machine.

TP (secs)
Sn (packets) Ln (packets)

91.66745114 34424 0

98.62636304 34582 0

96.60449505 34582 0

76.53196609 34554 0

83.91038609 34559 0

80.26346898 34560 0

132.8928231 63577 0

146.5299519 63578 0

133.910804 63887 0

157.6920601 79478 0

166.6995101 77641 0

164.395846 77638 0

207.2725751 97907 0

203.719165 97914 0

204.2064589 98358 0

210.2447071 108119 0

210.771836 108128 0

213.553525 108486 0

243.4811021 126957 0

242.248595 126966 0

239.770828 127558 0

269.7792711 146738 0

267.153322 146747 0

268.1924909 147434 0

280.4792662 158891 0

275.229635 158900 0

280.879622 159345 0

(a) the light workload without packet loss

 75

TP (secs)
Sn (packets) Ln (packets)

276.945847 166060 7425

277.0247301 161368 22607

281.7895311 157021 36966

274.7519361 147570 48670

299.7562981 152192 64696

309.827373 152387 79051

342.3031641 161439 99396

346.7120831 161504 114808

362.4453422 161780 130810

388.2538232 166096 149881

(b) the heavy workload with packet loss

Table 5.4 Collection of sample data for four-node configuration

With the speed of generator increasing, we perform measurements for the CPU time for

each node as in section 5.3 and collect the sample data to estimate parameters as in section

5.4. We tabulate the sample data in table 5.4 and separate them into 5.4 (a) for the light-load

without packet loss cases and 5.4 (b) for the heavy load with packet loss.

Variable Parameter Estimate Standard Error 95% Confidence Limits

1β̂
0.00197 0.00003573 0.00190 0.00205

2β̂
0.00022815 0.00014582 -0.00006276 0.00051905

Root MSE: 37.49628

Table 5.5 output for all cases for four-node configuration

We use a multiple regression model in equation (5-8) for all data in table 5.4. Part of the

results on estimated value and root mean squared error (MSE) from the SAS multiple

regression routine for the CPU time is reproduced in Table 5.5. From 1β̂ and 2β̂ in table

5.5, we know that lost packets do not incur much cost and most efforts of CPU in handling

 76

a packet is in sending, not receiving a packet (derived SWa << derived SDa).

Variable Parameter Estimate Standard Error 95% Confidence Limits

1β̂
0.00200 0.00003297 0.00192 0.00207

Root MSE: 38.34787

Table 5.6 output for light workload for four-node configuration

To see if there is any difference, we consider the light-load cases without loss in table 5.4 (a)

and the heavy-load cases with losses in table 5.4 (b) separately. Table 5.6 shows part of the

output from the SAS simple regression routine for the light load for four-node configuration.

Part of the output from the SAS multiple regression routine for the heavy load for four-node

configuration is reproduced in table 5.7.

Variable Parameter Estimate Standard Error 95% Confidence Limits

1β̂
0.00162 1.11E-05 0.00159 0.00164

2β̂
0.000781 2E-05 0.000735 0.00082709

Root MSE: 2.81795

Table 5.7 output for heavy workload for four-node configuration

1β̂ in table 5.5 and in table 5.6 are very close. The confidence intervals for 1β̂ in table 5.5,

table 5.6 and 5.7 are around %4± . But we see 2β̂ , the regression results are not as good as

1β̂ , especially in table 5.5. The lower boundary of the confidence limits is negative. The

conclusion from table 5.5 is also not acceptable. The receiving part is reading a packet from

the socket and switching it. The sending part is dequeuing it and writing to the socket. The

difference between them, we infer, is not so big as table 5.5 described. We may notice the

 77

Root MSE of table 5.7 is the smallest one among three tables. Thus we choose the

parameters SWa and SDa from 1β̂ and 2β̂ in table 5.7.

The regression theory assumes the variance of measurement errors is constant (Assumption

of homoscedasticity [Mendenhall81]). We may violate the equal variances assumption and

that may affect the accuracy of the prediction. That would be a reason for us to take 1β̂

and 2β̂ of table 5.7 only. Hence we choose SWa and SDa that SWa = 0.000781sec,

SDa = 0.000839sec for four node configuration.

5.6 Obtaining the Parameters for the Five-Node Configuration

The case study configuration is more complex than the simple one mentioned in section 5.5

and the topology is shown in Figure 4.1. There are more generators, traffic sinks, links, and

more sending/sinking threads within one node than the simple four-node configuration.

We perform the procedure of measurement described in section 5.3 and estimation shown in

section 5.4. Table 5.8 presents a collection of sample data for the five-node configuration.

We did a regression analysis as was done in section 5.5 and tabulated the results of the

output from SAS in table 5.9 for all cases, table 5.10 for no packet loss case, and table 5.11

for case with packet losses.

From table 5.9 the multiple regression model equation (5-8) gave the negative value

prediction for 2β̂ . The confident limits almost reach zero. The reason for the problem

could be that the model cannot capture everything properly or the overhead is important.

The cost of the thread switching may drop when there are packet losses. We may assume

2β̂ as zero and give the parameters of the model.

 78

TP (secs)
Sn (packets) Ln (packets)

91.12765 22430 0

113.113 31050 0

149.31465 43914 0

175.37086 51897 0

219.31372 64011 0

299.64372 85237 0

375.59602 113009 0

155.39386 43261 0

218.89731 59725 0

310.10803 83883 0

364.29541 99217 0

421.62298 122198 0

549.46126 162499 0

730.53637 220080 0

901.07699 290276 0

121.2862 32729 0

161.5628 44885 0

244.48669 63302 0

279.42707 74777 0

348.78466 92007 0

441.84533 122603 0

550.05091 162129 0

160.23081 48635 0

238.5233 67355 0

329.3871 95013 0

390.25624 112740 0

450.44263 138880 0

583.39743 185277 0

261.90265 65218 0

371.31325 90192 0

493.8099 127277 0

570.07184 150824 0

661.5285 186111 0

854.09688 248026 0

(a) the light workload without packet loss

 79

TP (secs)
Sn (packets) Ln (packets)

368.90198 137510 2607

428.99966 159523 20753

458.93117 161261 38735

469.97419 153657 51964

530.99505 178503 75851

587.42672 197404 96949

673.61537 212969 122641

1027.0594 371497 11416

1095.5077 407260 26431

608.95458 202723 559

695.68501 248365 17404

765.67243 267607 35027

718.54679 243736 48001

831.59089 288781 70444

933.25368 323871 90729

1036.8922 357500 116137

633.86122 235106 11974

747.99291 263602 56698

918.26021 318420 95021

973.92031 337178 125424

892.36915 297714 144955

986.79767 343384 185388

1075.0217 370967 207307

(b) the heavy workload with packet loss

Table 5.8 Collection of sample data for five-node configuration

Variable Parameter Estimate Standard Error 95% Confidence Limits

1β̂
0.00306 0.00003498 0.00299 0.00313

2β̂
-0.00038554 0.00014389 -0.00067266 -0.00009843

Root MSE: 58.09625

Table 5.9 output for all cases for five-node configuration

 80

Here we also could investigate the data without packet loss and with packet losses. In table

5.11 SWa (2β̂) is still small as in table 5.5 and SDa (1β̂ - 2β̂) is bigger than in other cases.

It is puzzling to us. This is possibly due to more thread switching in the sending process

when there are multiple destinations in a node. We notice 2β̂ is not very significant and its

confidence interval is around %60± . We can choose the parameter value of zero for 2β̂

or a non- zero value, 0.00028019. Choosing zero is for simplicity, but the evidence is not

strong. Table 5.11 and table 5.9 shows that the LQN model with 2 or more sending tasks

would have different parameters for SDa compared with table 5.5 and 5.7. The difference

can be accounted for increased thread switching.

Variable Parameter Estimate Standard Error 95% Confidence Limits

1β̂
0.00343 0.00003799 0.00335 0.00351

Root MSE: 29.65452

Table 5.10 output for light workload for five-node configuration

Variable Parameter Estimate Standard Error 95% Confidence Limits

1β̂
0.00278 0.00003320 0.00271 0.00284

2β̂
0.00028019 0.00009301 0.00008731 0.00047308

Root MSE: 24.89353

Table 5.11 output for heavy workload for five-node configuration

The values of 1β̂ in table 5.9, 5.10, 5.11 are higher than those in table 5.5, 5.6, 5.7. We think

the reason is overhead. Part of the overhead comes from thread switching. Here we infer the

possible overhead including thread switching in a little detail as follows:

��Thread switching: The operating system is forced to reload cache; it will poll the available

 81

thread when one sending thread can be blocked for emulating network delay. The original

configuration requires running more sending/sinking threads for each outgoing queue

than the simple configuration.

��Socket polling: The main process should poll among the incoming sockets after it has

enqueued one packet. There are more incoming sockets and the main process should

monitor and poll among the larger set of incoming sockets of the five-node configuration

than of the four-node configuration.

��Vain socket reading: Once the main process detects the packet available in one socket, it

will read the incoming socket one by one. For original configuration, there could be more

chances to read a socket but no data within the socket. But for the simple configuration,

this problem doesn’t exit because there is only one incoming socket.

��Routing table and related expense of CGNet: In fact both configurations are very simple.

For a five-node configuration, there are five entries in the routing table. But there is only

one entry in the routing table of a simple configuration. Each node spends more time to

keep the link alive because there are more links each node connects with than the simple

configuration.

We do not know the exact amount of overhead for each task and propose to distribute them

evenly to the parameters. Table 5.10 is chosen as a source in this thesis for parameters and

we assume the ratio of SWa / SDa is the same as that in section 5.5 after overhead

distribution. So 1β̂ is 0.00343 sec and SWa / SDa =
000839.0

000781.0
. After calculations, we

have Ra = 0, SWa = 0.0016536 sec, SDa = 0.0017764 sec, and SKa = 0.0017764 sec.

The complete LQN model for CGNet with these parameters is shown in appendix C.

 82

Chapter 6 Solving and Validating the Performance Model

In this chapter we solve the model with the parameters derived in the chapter 5 so that we

can make the validation of the performance model. The validation is on three aspects:

utilization, throughput, and packet loss. We begin by the description of the experiment of

the real system in section 6.1. Measurement procedures should be performed as in chapter 5

to obtain the CPU time so that we can derive the utilization of each node. Section 6.2

validates the performance model in three aspects of performance characteristics: throughput,

utilization, and packet loss and present discussions on them. Section 6.3 summarizes the

validation.

6.1 Description of Experiments for Validation

The case study is CGNet for a five-node network with links between them. Each node has

one generator, one traffic sink and one statistics sink connected. We chose six SUN

SPARCstation 2 machines as the experimental environment. The operating system on these

machines is Sun Solaris 5.7. The NIC and Hub speeds are 10Mbps and all machines are in an

isolated local area network. Each node ran on its own machine and all the generators, traffic

sinks and traffic statistics sinks were executed on the sixth machine.

We performed the measurement procedure described in chapter 5 for each node on each

machine so we could obtain the CPU time for each node. A bunch of the compulmt processes

with different execution time had been prepared before we performed measurement for

validation purpose. Thus it is convenient to pick up the suitable compulmt processes with

different execution time. The experiments were setup for different workloads. We used the

multiplier to vary the workload of CGNet and carried out the observations on the

performance characteristics of CGNet for each case.

 83

6.2 Validation of the model

Validation is the most critical step to gain confidence of the model’s correctness. Comparing

the predicted performance characteristics with the real measurement is the best validation,

although some performance characteristics are difficult to obtain. The measurement

approach with “Displacement” technique for the CPU time of node executable can be

employed in the validation stage of the performance model.

Plenty of experiments with different workloads have been made and some performance

characteristics of the system were collected. We chose the workload in the original

configuration of CGNet and varied it by multiplier. The comparisons between the prediction

from model and the measurement of the real system were made on the following three

aspects: throughput, utilization, and packet loss. The detailed comparison and discussions

have been broken into three subsections: subsection 6.2.1 focuses on utilization for each

node; subsection 6.2.2 is on throughput for each node; and packet loss discussion is shown

in subsection 6.2.3.

We use SPEX to solve the performance model and the solver in spex input file is parasrvn

We controlled the external arrival rate of each node by the multiplier to solve the model in the

format of SPEX (shown in appendix C). The summary of the predicted utilization and

throughput from the LQN model was collected from the file generated from SPEX and

reproduced in figure 6.1 and figure 6.2.

6.2.1 Utilization Validation

The utilization of each node well indicates the situation of the node with the current

 84

configuration. We chose multipliers 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.8, and 1.0 in adjustment

of the speed of the generator.

The time command is used to obtain the execution time XXT of node XX. At the same time

we employed the measurement approach of the CPU time proposed in section 5.3 to obtain

the CPU time TP for each nodeXX. The utilization can be calculated by TP over XXT . The

predicted utilization for each node can be obtained by the utilization of the corresponding

host processor, which includes all tasks’ utilization running on the host processor.

The predicted utilization of the simulation technology in the confidence interval with

confidence coefficient 95% compared to the measured utilization for each node is plotted in

the graphs on Figure 6.1 against multiplier for the speeds of generators in the network within

the range from 0.1 to 1. Figure 6.1 (a), (b), (c), (d) and (e) are for node Atlanta, Chicago,

Dallas, New York, and Washington respectively. For each node we find the curve of the

predicted utilization is close to the curve of the measured utilization within the range from

0.1 to 0.6. The LQN model provides consistent predictions in the utilization. When the

multiplier for the speeds of the generator exceeds 0.6, the node Washington was saturated.

The predicted utilization and measured utilization were inconsistent. The trend is that the

measured utilization can not be predicted by LQN model when the multiplier is greater than

0.6.

The performance characteristics of the Sun Solaris System in time-sharing mode, the goal to

achieve high throughput, are demonstrated in the measured cases where the multiplier is

greater than 0.6. The extra CPU time, compared to the prediction, can be explained as the

system’s efforts in time-sharing mode to achieve the high throughput. But it is different for

the prediction from model. If one node is saturated, the utilization of other nodes will not

increase any more.

 85

Node Atlanta Utilization

0%

10%

20%

30%

40%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
ti

liz
at

io
n

Tested Utilization

Pre. Uti. 95% LCL

Pre. Uti. 95% UCL

(a) Utilization of Atlanta for prediction and measurement against multiplier of workload

Node Chicago Utilization

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
ti

liz
at

io
n

Tested Utilization

Pre. Uti. 95% LCL

Pre. Uti. 95% UCL

(b) Utilization of Chicago for prediction and measurement against multiplier of workload

 86

Node Dallas Utilization

0%

20%

40%

60%

80%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
ti

liz
at

io
n

Tested Utilization

Pre. Uti. 95% LCL

Pre. Uti. 95% UCL

(c) Utilization of Dallas for prediction and measurement against multiplier of workload

Node New York Utilization

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
ti

liz
at

io
n

Tested Utilization

Pre. Uti. 95% LCL

Pre. Uti. 95% UCL

(d) Utilization of New York for prediction and measurement against multiplier of workload

 87

Node Washington Utilization

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
ti

liz
at

io
n

Test Utilization

Pre. Uti. 95% LCL

Pre. Uti. 95% UCL

(e) Utilization of Washington for prediction and measurement against multiplier of workload

Figure 6.1 Comparison between predicted and measured utilization for each node

6.2.2 Throughput Validation

Throughput is an important factor in performance. We can get to know the capacity of node

through the throughput of the node and what kind of workload the system can handle. We

still chose multipliers with 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.8, and 1.0 to vary the speed of

the generator.

 88

Node Atlanta Throughput

0

30

60

90

120

150

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

T
h

ro
u

g
h

p
u

t
(p

ac
/s

ec
)

Tested Throughput

Pre. Thr. 95% LCL

Pre. Thr. 95% UCL

(a) Throughput of Atlanta for prediction and measurement against multiplier of workload

Node Chicago Throughput

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

T
h

ro
u

g
h

p
u

t
(p

ac
/s

ec
)

Tested Throughput

Pre. Thr. 95% LCL

Pre. Thr. 95% UCL

(b) Throughput of Chicago for prediction and measurement against multiplier of workload

 89

Node Dallas Throughput

0

40

80

120

160

200

240

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

T
h

ro
u

g
h

p
u

t
(p

ac
/s

ec
)

Tested Throughput

Pre. Thr. 95% LCL

Pre. Thr. 95% UCL

(c) Throughput of Dallas for prediction and measurement against multiplier of workload

Node New York Throughput

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

T
h

ro
u

g
h

p
u

t
(p

ac
/s

ec
)

Tested Throughput

Pre. Thr. 95% LCL

Pre. Thr. 95% UCL

(d) Throughput of New York for prediction and measurement against multiplier of workload

 90

Node Washington Throughput

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

T
h

ro
u

g
h

p
u

t
(p

ac
/s

ec
)

Tested Throughput

Pre. Thr. 95% LCL

Pre. Thr. 95% UCL

(e) Throughput of Washington for prediction and measurement against multiplier of

workload

Figure 6.2 Comparison between predicted and measured throughput for each node

The measured throughput of the node here is defined as the number of packets Rn

handled by node in a time unit, involving not only the packets sent/sunk but also the packet

loss, which means the throughput of the switching step. The execution time of each node

can be determined by the time command as shown in section 6.2.1. We can obtain the packets

received and switched from the network statistics report when CGNet has been executed.

Following the definition of the measured throughput of the node, we can map it to the

throughput of the switching task in the LQN model.

Figure 6.2 show the comparison between the predicted throughput of the LQN model in the

confidence interval with confidence coefficient 95% and the measured throughput against

the rate of generators in the network within the range from 0.1 to 1. The throughputs for all

 91

nodes, Atlanta, Chicago, Dallas, New York, and Washington for comparison are plotted in

Figure 6.2 (a), (b), (c), (d) and (e) respectively.

From the figure for each node, we find the LQN model provided a good prediction in the

throughput for the experiment with the multiplier for the speed of the generator in the range

0.1- 0.6. The predicted throughput and measured throughput were quite similar and the

difference between them was less than 5%. When the multiplier exceeded 0.6, there was a gap

between the prediction throughput and the real system.

This trend of consistence in light load and inconsistency in heavy loads is the same as the

utilizations discussed in subsection 6.3.1. The inconsistency in the heavy load is due to the

time-sharing mode of the operating system with the goal to achieve high throughput.

6.2.3 Packet Loss Validation

Packet loss is an annoying factor in the performance of the network. The network designs

and implementations try to avoid packet loss. There is no packet loss in the network under

the specific design and configuration and this kind of design and configuration, can be

accepted by us. In this subsection we focus on the packet loss and present the prediction of

the LQN model on this aspect. The range of multipliers is still 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6,

0.8, and 1.0

In CGNet there are two types of buffer defined, one is a hidden buffer and another is an

exposed buffer. The former is the incoming sockets and all the sources such as the local

generator and other nodes connected to this node can send packets to the sockets. The latter

is defined as outgoing queueing. Every send/sinking thread dequeues the packet and sends it.

With either buffer, hidden buffer or exposed buffer, all the packets can line up in the queue.

 92

Once the queue is full, it could lead to packet loss. Here we name them as receiving loss and

link loss respectively.

 Node Atlanta Node Chicago Node Dallas

multiplier Sn Ln Sn Ln Sn Ln

0.1 22430 0 43261 0 32729 0

0.15 31050 0 59725 0 44885 0

0.2 43914 0 83883 0 63302 0

0.25 51897 0 99217 0 74777 0

0.3 64011 0 122198 0 92007 0

0.4 85237 0 162499 0 122603 0

0.6 113009 0 220080 0 162129 0

0.8 137510 2607 290276 0 202723 559

1 159523 20753 371497 11416 248365 17404

 Node New York Node Washington

multiplier Sn Ln Sn Ln

0.1 48635 0 65218 0

0.15 67355 0 90192 0

0.2 95013 0 127277 0

0.25 112740 0 150824 0

0.3 138880 0 186111 0

0.4 185277 0 248026 0

0.6 235106 11974 301038 0

0.8 263602 56698 326810 0

1 318420 95021 363203 0

Table 6.1 Statistics of a node for packets sent and loss

GNet records the link loss in network statisitics report during the execution. We tabulated

the link loss and the packets that each node sent or sinked in Table 6.1. We found that node

NewYork started to drop a packet when the multiplier exceeded 0.6, node Atlanta started to

drop packet at 0.8, and node Chicago and Dallas began to drop packets at 1.0. There is no

 93

link loss in node Washington.

 Atlanta Chicago Dallas New York Washington Summary

multiplier RGn RGn RGn RGn RGn � RGn

0.1 11304 21422 16236 24553 21265 94780

0.15 15582 29625 22403 33897 29408 130915

0.2 21925 41775 31560 47865 41455 184580

0.25 25926 49450 37322 56628 49093 218419

0.3 31986 60975 46085 69756 60526 269328

0.4 42702 81145 61476 92860 80603 358786

0.6 60465 114724 86914 131431 77453 470987

0.8 82815 157335 119203 180199 66019 605571

1 112295 213371 161604 244392 72697 804359

(a) Summary of received packets RGn from generator for each case

 Atlanta Chicago Dallas New York Washington Summary

multiplier SKn + Ln SKn + Ln SKn + Ln SKn + Ln SKn + Ln � SKn + Ln

0.1 11130 21835 16493 24121 21156 94735

0.15 15504 30099 22532 33460 29242 130837

0.2 21990 42118 31778 47214 41307 184407

0.25 26003 49773 37472 56112 48988 218348

0.3 32103 61206 46016 69199 60560 269084

0.4 42593 81347 61212 92525 80863 358540

0.6 52588 105413 75409 128543 107372 469325

0.8 60751 132757 84660 197868 124751 600787

1 89329 181650 122650 264993 139261 797883

(b) Summary of sinked packets SKn and lost packets Ln for each case

Table 6.2 Comparison for total received and total sinked and lost packets for each case

The receiving loss is not recordable in the network statisitcs report because the packets have

 94

been lost when they try to enter the incoming socket. The network statistics report is based

on the incoming socket. Although the receiving loss has not been recorded, we still can get

to know where it is lost. For the packets from the generator, we know how many packets

generators generated and the packets RGn that the nodes really received. For the packets

from other nodes, we can get to know the number of packets the node receives from

upstream nodes and the number of packets the upstream nodes have sent in the network

statistics report.

For the receiving loss from the upstream routers, we tabulated all packets RGn received from

the generators in table 6.2 (a), and the packets sinked SKn and lost Ln in each node in

table 6.2 (b). Comparing the last column in table 6.2 (a) and table 6.2 (b), we know they are

almost the same. The slight difference is due to CGNet performing statistics reports every

30 seconds. Some packets can be received but have not been accounted in the last 30 seconds.

We can infer there is no packet loss in the receiving loss from the upstream router.

For the receiving loss from the generator, we know how long CGNet nodes executable runs

for the time command when we performed the meausurements, and the capacity of the

generator. We can calculate the number of the packets GSn the local generator has sent and

the node receives RGn . The difference is XXg = GSn - RGn for each node. In addition,

we also know every node performs statistics every 30 seconds and writes to statistics reports

to a statistics file. We assume CGNet needs an extra 5 seconds to write a file. That means the

maximum packets XXG could enter the node but the node did not make statistics on them.

They should not count as link loss. We have XXG = 8)* /(8535*XXr packets. We can

tabulate the data collected from network statistics reports and the calculations based on

configurations for each case in Table 6.3. The comparison between XXg and XXG is also

 95

shown in the last two column for each node in table 6.3. If there is a XXg > XXG , there

must be receiving loss in that node at that case. From table 6.3 we can find there is receiving

loss from the generator in node Washington since the multiplier is 0.6. There is no receiving

loss from the generator in the other nodes.

 Node Atlanta Node Chicago

multiplier GSn RGn ATg ATG GSn RGn CHg CHG

0.1 11479 11304 175 345 21808 21422 386 656

0.15 16095 15582 513 517 30548 29625 923 984

0.2 22346 21925 421 690 42417 41775 642 1311

0.25 26751 25926 825 862 50773 49450 1323 1639

0.3 32337 31986 351 1035 61321 60975 346 1967

0.4 43747 42702 1045 1379 83035 81145 1890 2623

0.6 62428 60465 1963 2069 118482 114724 3758 3934

0.8 85366 82815 2551 2759 161273 157335 3938 5246

1 113900 112295 1605 3449 216393 213371 3022 6557

(a) table for packets from generator in for Node Atlanta and Node Chicago

 Node Dallas Node New York

multiplier GSn RGn DAg DAG GSn RGn NYg NYG

0.1 16487 16236 251 496 24910 24553 357 751

0.15 23093 22403 690 744 34823 33897 926 1126

0.2 32067 31560 507 992 48490 47865 625 1502

0.25 38312 37322 990 1240 57931 56628 1303 1877

0.3 46357 46085 272 1489 70096 69756 340 2253

0.4 62717 61476 1241 1985 94835 92860 1975 3004

0.6 89567 86914 2653 2977 135301 131431 3870 4506

0.8 121918 119203 2715 3969 184177 180199 3978 6008

1 163313 161604 1709 4962 246957 244392 2565 7510

(b) table for packets from generator in Node Dallas and Node New York

 96

 Node Washington

multiplier GSn RGn WAg WAG

0.1 21561 21265 296 651

0.15 30165 29408 757 977

0.2 42005 41455 550 1302

0.25 50135 49093 1042 1628

0.3 60664 60526 138 1953

0.4 82076 80603 1473 2604

0.6 117199 77453 39746 3907

0.8 159539 66019 93520 5209

1 213934 72697 141237 6511

(c) table for packets from generator in Node Washington

Figure 6.3 Receiving loss of each node from the local generator

The LQN model can capture the packet loss. It defines the asynchronous call to each entry

of the receiving task and sending task and the corresponding buffer that is associated with

the task. We can also define the buffer size mentioned in section 5.2 when we invoke the

simulator with “messages=917” (see appendix C). The results of the LQN model use the

term as an Asynchronous Message Loss to indicate the packet loss as that we defined in the real

system. If there is packet loss for the receiving task, there is receiving loss; and the sending

task is for link loss. Comparing the output files from the LQN model, we know that the

LQN model provides the prediction of the packet loss when the multiplier is 0.6. That is

consistent with the measurement.

The LQN model also offers which node is the busiest one. From the results, node

Washington’s utilization is 0.99895 and that is the cause for the receiving loss from the

generator. Packet loss is the critical factor to evaluate the design and configuration of the

network. The attractiveness of the LQN can be used to predict what kind of design and

configuration will cause the packet loss and why there is packet loss.

 97

Certainly, there are limitations of the LQN model to capture packet loss for CGNet. Once

there is the asynchronous message loss in the LQN model, it treats all the task fairly. It

distributes the asynchronous message loss to each tasks. Thus, the LQN model results

indicate that there is an asynchronous message loss for every task whose entries receive the

asynchronous call. We cannot use it to make further prediction of the packet loss

proportion.

6.3 Discussion

The LQN model has provided the consistent prediction of CGNet in utilzation and

throughput in the low workload case. It effectively pointed out when packet loss happens

and showed the reason which causes the packet loss in the link level and receiving level.

We noticed that the LQN model can not predict the performance factors of CGNet with a

multiplier more than 0.6. That makes the modeling exercise difficult especially when one node

is saturated. In the following we summarize the assumptions in building the model to help

understand the modeling exercise, and discuss some points addressed in chapter 5.

��Cost per packet in CGNet depends strongly on the number of threads and overhead

from polling among the sockets. (secton 5.6).

��The UNIX system in time sharing mode does not obey the simple assumption that the

CPU spends the same time in communication tasks with high workload as that with low

workload. (secton 5.5, section 5.6)

��Only the CPU time can be derived without more accurate profiling tools because of the

ISR for socket communication processing. (section 5.3)

��Regression modelling is effective to predict the parameter. (secton 5.4)

��Packet loss mechanisms in UNIX suystems is different from the assumption of the LQN

model.(section 6.2.3)

 98

Chapter 7 Converter Tool

In chapter 4, we have developed the compositional approach to building the performance

model through detailed analysis for a typical network. The structure of the performance

model can be constructed from the configuration. Combined with the approach to

measurement and parameter estimation in chapter 5, we can derive the parameters for the

performance model. The converter tool integrating the compositional approach to the

construction of the performance model structure and parameters obtained from

measurements has been developed in the thesis. The tool makes it possible to generate an

LQN model from the configuration files automatically if we assume the execution demands

are the known variables. This chapter focuses on the automated tool and it covers the

overview of the automated tool in section 7.1, the algorithm of the automated tool for

gathering information in section 7.2, the algorithm of the automated tool for outputting the

spex input file in section 7.3 and the validation of the automated tool in section 7.4.

7.1 Overview of Converter Tool

CGNet is a configuration-oriented tool for a test network. Once CGNet starts up, the

CGNet executables read network description files in order to configure them and connect to

each other during the initialization. The routing table is constructed according to the

configuration. Hence the packets traverse the network according to the routing table derived

from the configuration. The compositional model building approach based on packet class

along the path has been well described in chapter 4. This approach makes it possible to

automate the procedure of building the performance model, which integrates the execution

demands derived in chapter 5. The idea can be illustrated in Figure 7.1.

 99

Converter Tool

Configuration

[Network Description Files]

Parameter

[Execution Demand] LQN model

[SPEX]

Figure 7.1 An approach to building the LQN model from the configuration of network.

All description files are formatted as simple ASCII text with lines formatted as follows:

<keyword>:<parameter1>;<parameter2>;....;<parameterN>

Each line consists of a keyword followed by a colon and a series of parameters separated by

semicolons. The converter tool reads each line in the network description files and defines

the characteristics of the nodes, traffic generators, traffic sinks, and links. The routing tables

for all nodes are generated in the same way as in CGNet. We assume that we have known

execution demands for the LQN model, we will now generate the performance model to

implement the compositional approach described in chapter 4. The output of the converter

tool generates the LQN model in the format of the spex input file. The converter tool was

written in Java.

7.2 Algorithm of Converter Tool in Information Collection

In this section we focus on the algorithm of the converter tool in gathering information and

building the routing table. When we gather information, the corresponding host processors,

and tasks are defined together. After building the routing table as CGNet, the entries are

defined for the LQN model.

The procedure of the converter tool may be formalized in the following steps:

 100

1. Initialize the converter tool;

2. Get node information from nodeinfo and process the information;

3. Get generator information from generatorinfo and process the information;

4. Get sink information from sinkinfo and process the information;

5. Get link information from linkinfo and process the information;

6. Build routing table for each node;

7. Add entries to the corresponding task from the routing table;

8. Output the initial information such as Model Title and Description, Setting Pragmas,

Controls, and Parameters and the Global Information to the LQN model for SPEX;

9. Output the processor information;

10. Output the task information;

11. Output the entry information;

12. Output the report information;

We discuss steps 1 through 7 in the following subsections. The remaining will be shown in

section 7.3. Before we get into the detailed discussion, we define the following collection of

objects as array in the converter tool:

a set of nodes N = {n
1
, n

2
, n

3
, ….};

a set of generators G = { g
1
, g

2
, g

3
, ……};

a set of links L = { l
1
, l

2
, l

3
, ……};

a set of sinks S = { s
1
, s

2
, s

3
, ……};

a set of processor P = { p
1
, p

2
, p

3
, ……};

a set of routing table RT = { rt
1
, rt

2
, rt

3
, ……};

for each node n
i
 ∈ N, we define:

 a set of user tasks, Usr n
i
 = { usrni

1
, usrni

2
, usrni

3
,……};

 a set of reveiving tasks, Rcv n
i
 = {rcvni

1
, rcvni

2
, rcvni

3
,……};

 a set of switching tasks, Swi n
i
 = { swini

1
, swini

2
, swini

3
,……};

 101

 a set of sending tasks, Snd n
i
 = { sndni

1
, sndni

2
, sndni

3
,……};

 a set of sinking tasks, Snk n
i
 = { snkni

1
, snkni

2
, snkni

3
,……};

 a set of network delay tasks, Net n
i
 = { netni

1
, netni

2
, netni

3
,……};

for each node n
i
 ∈ N or routing table rt

 i
 ∈ RT , we define:

 a set of routing entry, RE n
i
 = { reni

1
, reni

2
, reni

3
,……};

7.2.1 Initialize the Converter Tool

This subsection describes the initial step of the converter tool and it initializes the variables

that will be used in the following steps.

1. Set a set of nodes N = ; a set of generators G = ; a set of links L = ; a set of sinks

S =

7.2.2 Get Node Information from nodeinfo

This subsection deals with the file nodeinfo and collects information of nodes. The switching

task of the LQN model should be created in this step.

1. Open the file nodeinfo

2. While getnextline() != null do

2.1 if line is effective

2.1.1 Create node

2.1.1.1 Set this node a set of user tasks Usr = ; a set of receiving tasks Rcv

= ; a set of switching tasks Swi = ; a set of sending tasks Snd = ; a

set of sinking tasks Snk =

2.1.2 Parse the line for characteristics and set the node variable

 102

2.1.3 Add the switching task to a set of switching tasks Swi for this node

2.1.4 Add the node to the set of nodes N

3. Close the file nodeinfo

7.2.3 Get Generator Information from generatorinfo

This subsection handles the file generatorinfo and collects information of the generators. The

user and receiving tasks of the LQN model should be created and the entry for different

traffic destinations should be added in the receiving task and switching task for the node that

this generator is connected to.

1. Open the file generatorinfo

2. While getnextline() != null do

3.1 if line is effective

3.1.1 Create generator

3.1.2 Parse the line for characteristics and set the generator variable

3.1.3 Add the user task to a set of user tasks Usr for the node which the generator

is connected

3.1.4 Add the receiving task to a set of receiving tasks Rcv for the node which the

generator is connected

3.1.5 Parse the line for traffic destinations

3.1.5.1 for each destination do

3.1.5.1.1 Add entry with this destination for the receiving task Rcv for the

node which the generator is connected

3.1.5.1.2 Add entry with this destination for the switching task Swi for the

node which the generator is connected

3.1.6 Add the generator to the set of generators G

 103

3. Close the file generatorinfo

7.2.4 Get Sink Information from sinkinfo

This subsection deals with the file sinkinfo and collects information of the traffic sinks. The

switching task of the LQN model should be created in the following steps.

1. Open the file sinkinfo

2. While getnextline() != null do

3.2 if line is effective

3.2.1 Create sink

3.2.2 Parse the line for characteristics and set the sink variable

3.2.3 Add the sink task to a set of sinking tasks Snk for this node that this traffic

sink is connected to

3.2.4 Add the entry with the destination (its self) for the sink task for this node

that this traffic sink is connected to

3.2.5 Add the entry with the destination (its self) for the switching task for this

node that this traffic sink is connected to

3.2.6 Add the sink to the set of sinks S

3. Close the file sinkinfo

7.2.5 Get Link Information from linkinfo

This subsection describes the collection of information for traffic links from the file linkinfo.

The receiving and sending tasks of the LQN model should be created for each node the link

is connected to.

 104

1. Open the file linkinfo

2. While getnextline() != null do

3.3 if line is effective

3.3.1 Create link

3.3.2 Parse the line for characteristics and set the link variable

3.3.3 Add the receiving task to a set of receiving tasks Rcv for each node that this

link is connected to

3.3.4 Add the sending task to a set of sending tasks Snd for each node that this

link is connected to

3.3.5 Add the network delay task to a set of network delay tasks Net for each node

that this link is connected to

3.3.6 Add the link to the set of links L

3. Close the file linkinfo

7.2.6 Build Routing Table for Each Node

The following algorithm fragment focuses on building the routing table following the same

way as in CGNet. We put the routing tables of all nodes in a set of routing tables RT and

one element in RT is defined for one node. The current routing policy is OSPF, Open

Shortest Path First. For each node we can know the next hop for a packet class from the

routing table and the shortest path to the destination is chosen for the packet class.

1. for each node n
i
 ∈ the set of Node N

1.1 Create routing table rt
i
 for node n

i

1.2 Add routing table rt
i
 to the set of routing table RT

1.3 for each sink s
ij ∈ the set of Sink S

1.3.1 if the sink is connect the node ni

 105

1.3.1.1 add routing table entry for this destination with cost 0

1.3.2 else

1.3.2.1 add routing table entry for this destination with cost ∞

2. do

2.1 for each node ni ∈ the set of Node N

2.1.1 for each link lk ∈ the set of Link L (link lk cost = ck)

2.1.1.1 for each entry rej ∈ the set of routing entry RE for node ni

(destination is dj and cost is cj)

2.1.1.1.1 if link lk is connected to node (the node on the other end of link

is ns)

2.1.1.1.1.1 if (cm + ck < cj) (the cost with the destination dj in node ns)

2.1.1.1.1.1.1 Change entry rej next hop as ns

2.1.1.1.1.1.2 Change entry rej new cost

2.1.1.1.1.1.3 Recording the change in routing table

3. while there is change in routing table

7.2.7 Add Entries to the Task from Routing Table

This subsection focuses the entries in the tasks in the LQN model. The algorithm generates

the entries from the routing table and assigns the entries to the tasks. We traverse all routing

entries in the routing table and define the corresponding entries in the LQN model. Then we

assign the entry to the corresponding task.

1. for each node n i ∈ the set of nodes N

1.1 for each routing entry re j ∈ the set of Routing Entries RE n i

1.1.1 Add the entry of LQN model to the network delay task in node n i

1.1.2 Add the entry of LQN model to the sending task in node n i

 106

1.1.3 Add the entry of LQN model to the receiving task in next hop node

1.1.4 Add the entry of LQN model to the switching task in next hop node

7.3 Algorithm of Converter Tool in Model Output

This section outputs the host processors, tasks, entries generated in section 7.3. Some

necessary information including the parameters for the spex input file are output together.

Thus we output the whole model.

7.3.1 Output the Initial Information

Now we have defined all the tasks and entries for the LQN model. The converter tool

arrives at the stage of outputting the input file for the SPEX tools. This subsection begins to

output the lines of text, which will form the initialization of the model. The initialization of

the model involves the solver the SPEX chooses, the control statements, parameters and

expressions, and the global information. The following algorithm is related to create the

initialization of the spex input file.

1. Open the spex input file

2. Write the solver and related information

3. Write the control statements

4. Write the spex parameters

4.1 Write the speed of generators

4.2 Write the speed of the proportion for different destination

4.3 Write the parameters for execution demand

5 Write the global information

6 Close the spex input file

 107

7.3.2 Output the Processor Information

In this subsection comes the processor information. The algorithm fragment writes the

information of the processor to the spex input file and the host processors of the nodes and

the network processor should be included.

1. Open the spex input file

2. for each node n
i
 ∈ the set of Node N

2.1 Write the user host processor

2.2 Write the node host processor

3. Write the network host processor

4. Close the spex input file

7.3.3 Output the Task Information

The task information is in this subsection. The algorithm fragment outputs the task

information in the spex input file. All the tasks such as user task, receiving task, switching

task, sending task, sinking task and network delay task will be written into the spex input file.

1. Open the spex input file

2. for each node n
i
 ∈ the set of Node N

2.1 Write the user task

2.2 Write the receiving task

2.3 Write the switching task

2.4 Write the sending task

2.5 Write the sinking task

 108

2.6 Write the network delay task

3. Close the spex input file

7.3.4 Output the Entry Information

The entry information follows the task information in the spex input file and is described

below in this subsection. The algorithm fragment implements the entry information in the

spex input file. It not only handles the entries in the task, but also indicates the call between

entries.

1. Open the spex input file

2. for each node n
i
 ∈ the set of Node N

2.1 Write the entries in the user task User

2.2 Write the entries in the receiving task Rcv

2.3 Write the calls from user task to receiving task

2.4 Write the entries in the switching task Swi

2.5 Write the calls from receiving task to switching task

2.6 Write the entries in the sending task Snd

2.7 Write the entries in the sinking task Snk

2.8 Write the calls from switching task to the sending task and the sink task

2.9 Write the entries in the network delay task Net

2.10 Write the call from the sending task to the network delay task

2.11 Write the call from the network delay task to the receiving task

3. Close the spex input file

7.3.5 Output the Report Information

 109

The final section of the spex input file is the report section. The purpose of this section is to

specify which variable values are to be printed in the spex result file. The algorithm fragment

outputs the report information in the utilization of processor and throughput. We can define

the different report information according to different requirement.

1. Open the spex input file

2. for each node n
i
 ∈ the set of Node N

2.1 Write the utilization of the node

2.2 Write the throughput of the switching tasks

3. Close the spex input file

7.4 Validation of the Converter Tool

This section describes the example CGNets used to validate the converter tool algorithm.

The examples are a linear unidirectional configuration of CGNet, a linear bidirectional

configuration of CGNet and a five-node configuration of CGNet. These configurations are

used to validate the converter tool for different purposes

The current LQN model generated by the converter tool is in the format of the input file for

SPEX. SPEX checks both the syntax and the semantics of the LQN models by solver,

LQNS or ParaSRVN tools, which is specified in the spex input file. SPEX generates the

LQN models by variable substitutions, solves them by LQNS or the ParaSRVN tools, and

then collect the data for performance characteristics. The LQN models generated by SPEX

can be used as the input file for JlqnDef, which makes it possible to check the LQN model

by JlqnDef. JlqnDef not only can perform a syntax check, but also can perform a visual

check of the LQN model composition. So it can generate a graphical view of the LQN

model and that makes it different from LQNS and the ParaSRVN tools.

 110

7.4.1 The Linear Unidirectional Configuration Example

We chose the configuration with four nodes. There is only one generator and one sink. The

packets, generated by the generator, traverse the network through four nodes and arrive at

the sink. The topology is shown the Figure 5.5.

This configuration is very simple but is good for testing the converter tool. We get to know

there are three bidirectional traffic links in the network and the links exist between

Vancouver and Calgary, between Calgary and Toronto, and between Toronto and Montreal.

From the current configuration, there is only unidirectional traffic that is from Vancouver to

Montreal along the links. That could be a trick in the converter tool.

The converter tool generates the LQN model for the linear unidirectional configuration.

Figure 7.2 is the visual output from JlqnDef for the LQN model generated by SPEX with

the variable substitutions. The LQN model is solvable by LQNS and ParaSRVN, which

shows that the LQN model generated by the converter tool is both syntactically and

semantically correct.

 111

Figure 7.2 The LQN model generated by the converter tool from the linear unidirectional

configuration.

7.4.2 The Linear Bidirectional Configuration Example

We chose another configuration with four nodes and it is still a linear configuration. There is

 112

two traffic generators located in the end of the line nodes, and two traffic sinks are in each

end of the line. The traffic generated by a generator connected to the edge router traverses

four node and arrives at a traffic sink connected to the other edge router. The topology is

shown in the Figure 5.5.

Vancouver Calgary Toronto Montreal

vastats castats tostats mostats
smo1

sva1

gva1

gmo1

Figure 7.3 Linear Bidirectional Configuration of CGNet with four nodes

This configuration is still simple but it well deploys the bidirectional characteristics of the

traffic links. The traffic generated by two generators follows the links between Vancouver

and Calgary, between Calgary and Toronto, and between Toronto and Montreal. Some nodes

lack traffic generators and traffic sinks. For example in the linear configuration, there are no

traffic generators and traffic sinks that connect to nodes Calgary and Toronto.

We use the converter tool to generate the LQN model for the linear bidirectional

configuration. JlqnDef performs a syntax check for the LQN model generated by SPEX

with variable substitutions. Figure 7.4 shows the visual output for the LQN model generated

by SPEX. The LQN model of the converter tool can be solved with LQNS as well as

simulated with ParaSRVN. The syntactical and semantic correctness has been demonstrated

for the LQN model generated by the converter tool.

 113

Figure 7.4 The LQN model generated by the converter tool from the linear bidirectional

configuration.

 114

7.4.3 The Five-Node Configuration Example

We chose the complicated five-node configuration for a network: there are five nodes, and

there are traffic generators and traffic sinks, which connect to each node. Every bidirectional

traffic links are fully used for data traffic. This configuration is more complex than the two

previous configurations. The topology is shown in Figure 4.1

The converter tool generates a large number of entries, tasks, and call relationships that

correspond to the spex input file. This results in the LQN model with lots of entries. The

graphical view is not presented here because it is constrained by the page size. The spex

input file generated by the converter tool is shown in Appendix D.

The LQN model for the complex configuration can be solved by the LQNS analytic solver

as well as by the ParaSRVN simulator. We can solve it and derive the same result as the

model created by hand. This demonstrates that the output from the converter tool is both

syntactically and semantically correct.

 115

Chapter 8 Conclusions

We draw the conclusions of the thesis in this chapter. This chapter can be broken into the

following sections: firstly, section 8.1 summarizes the thesis; secondly, section 8.2 discusses

the conclusions of thesis; thirdly, section 8.3 provides suggestions for performance purpose;

fourthly, section 8.4 outlines the contributions in detail; next, section 8.5 addresses the

limitations of the research; and finally, in section 8.6, we propose some future works which

focus on the limitations of the research.

8.1 Summary

It is the original motivation to predict the performance of the software system, identify the

performance problems and solve the problems for performance critical systems. The

performance modeling approach is the cornerstone of performance predictions and it also

provides the basis for performance problem detection and performance optimization in the

future. The challenges in the performance modeling approach have been well addressed.

Based on the research for CGNet, We chose the LQN model as the performance model.

One of the characteristics of CGNet is that it can well emulate the behaviour of operational

network. The LQN model for CGNet can bridge the gap between the operational network

and performance analysis. The LQN model is constructed to predict the performance

characteristics and identify performance problems.

During the construction of the performance model, we highlighted the packet class in

CGNet and traced the scenarios of the packet class. With our understanding of CGNet, we

built the template node-path sub models for the scenario fragments. The compositional

approach to merging the sub model has been proposed especially for the application CGNet.

 116

We can derive the node-path sub models by substitution for template node-path sub model

within one node and merge them to the node sub models. We can then acquire the entire

model through the composition of the node sub model for each node.

We parameterized the performance model through the collection of the configuration

information, the measurement of the execution information and the estimation of

parameters. Measurements of CGNet where the model is fully busy with communication

processing were the most challenging in the thesis. We made use of the “Displacement”

technique to obtain the CPU cost of processing for the model. Simple regression and multi

regression models have been used for the least square estimations. Therefore, we completed

the performance model with parameters with our option.

We built the LQN model based on the packet class. In fact, we can derive the packet class

from the configuration of CGNet, and the network description file. That makes the

converter tool possible, which generate the LQN model from the configuration. The thesis

offers a detailed description for the algorithm of the converter tool and validates the

converter tool with three typical configurations.

We can derive the predicted performance by solving the LQN model and obtain the

performance characteristics by collection and measurements of the execution information.

Thus we can validate the performance model in the performance characteristics of CGNet

such as throughput, utilization, and packet loss. This has proven that the LQN model can be

deployed in the prediction of network performance effectively.

From the predicted performance, we can make the analysis and provide the suggestions in

the architecture redesign and reconfiguration for high performance in the network system.

 117

8.2 Conclusions

The compositional framework for the constructing model approach is to be capable of

modeling arbitrary large configurations. The converter tool was developed and it makes

modeling of CGNet convenient and efficient.

Adequate measurements in CGNet for model parameters are difficult. The “Displacement”

technique was good enough to give repeatable measurements for the total execution time.

Parameters were found by regressions; however the values were not stable for different cases,

and sometimes were not reasonable.

A notable discovery in the measurements was the much larger packet-handling cost in the

five-node configuration. It was almost nearly double as that in the four-node configuration.

The most likely cause of this phenomenon is thread switching overhead, as there are more

threads (one per link for sending).

The model structure may not be adequate, in particular due to it ignoring the

thread-switching overhead. The layered queueing framework has not addressed this problem;

but it can be simulated. However, measurement of the thread switching would be necessary.

The contribution of the measurement is not so much for the model, but is the discovery of

these problems during the model building.

8.3 Suggestions for Performance Purpose

Performance optimization is what people are concerned the most with and that meets the

objective of the traffic-engineering framework described in chapter 1. This section discusses

 118

the optimization of performance after the modeling exercise.

Through constructing the LQN model, measuring and estmating parameters for the model,

we derived the behaviour of CGNet from one configuration and understand its execution.

The results of the LQN model and the discussions of the modeling exercise provided the

necessary evidence for the software architecture redesign and network reconfiguration. Some

suggestions are listed as follows:

1. Decreasing the number of threads in the node: The CPU cost in processing a packet in

CGNet depends strongly on the number of threads. We can reduce the number of

threads to decrease the overhead of thread switching.. Currently, there is one thread for

each outgoing link. We can consider to use a reduced number of threads to manage all

the outgoing links.

2. Batching for socket communications: For the main thread, we can change it to read all

the data in the socket through one operation of reading the socket. For the

sending/sinking thread, we can write several packets with the same next hop to the

socket through one operation of writing the socket. The batching operation can save the

overhead of I/O socket operation.

3. Load redistribution: We know there are link level and receiving level packet loss. The

LQN model can predict what kind of load can lead to packet loss. If the arrival rate

exceeds the capacity of the link, that will lead to link loss. For OSPF/IS-IS it could

implement load balance through adjusting the cost of some specific links for its use, we

can refer the paper [Fortz02]. For MPLS [Xiao00], it looks simple and we add an LSP to

reroute the traffic. That means that we can add one packet class on CGNet and add one

request class in the LQN model. We also need to update the converter tool in favor of

widen usage .

 119

8.4 Contributions

One of the contributions of this thesis is that the compositional model building approach

based on assembling the sub models has been proposed. This approach is used in CGNet for

constructing performance models and the sub models describe the network operations based

on the packet class. The packet class can be derived from the configuration of CGNet. The

routing table can be used to determine the path of the packet class.

The converter tool is the glue between the configuration of CGNet and the performance

analysis using Layered Queueing Network (LQN). The converter tool bridges the

configuration to the performance characteristics and enhances the prediction of the

compositional strategy by its automated nature. The output of the tool can be analyzed by

existing performance model tools such as the LQNS analytic solver and the ParaSRVN

simulator. Although the tool is developed for OSPF, it can be changed to fit any

source-destination pair routing algorithm.

The other contribution of the thesis is that the investigation of parameters estimation has been

deployed for the concrete CGNet system. The parameters estimation approach integrates the

“Displacement” technique in measurement and the least square estimation techniques for

parameters from execution information. A notable finding is that the thread-switching

overhead could be significant in a multithreaded application and cannot be ignored in the

performance model building, which could lead to the unstable values of predicted parameters

from the regression models.

8.5 Limitations

There are limitations to the research in the performance model of the communication

 120

system.

The thread-switching overhead has been ignored in the LQN model structure. Actually the

layered queueing framework has not addressed this problem. The solution of this thesis is to

distribute thread-switching overhead evenly; but that may lead to the inconsistency between

predicted and measured performance characteristics in the validation stage. In particular,

there is inconsistency for high loads.

The parameters derived from measurements and estimation may be too coarse. We only

obtained the total CPU execution demand of the process from “Displacement” technique.

Then we broke it into two parts, the receiving part and the sending part per packet. We

detected the overhead of CPU scheduling among threads in our measurement but we still

can not figure out how much the overhead is.

8.6 Future Work

Future work should be done to address the limitations in section 8.5. We can focus on the

improvement of the Layered Queueing framework and make it simulate the overhead of

thread switching.

Kernel measurements can be performed to detect the amount of overhead of thread

switching and the overhead of polling among receiving sockets.

 121

Reference

[Awduche02] D. Awduche, A. Chui, A. Elwalid, I. Widjaja, and X. Xiao, “Overview and

Principles of Internet Traffic Engineering”, Request for Comments 3272, Internet

Engineering Task Force, May. 2002.

[Bolch98] Gunter Bolch, Stefan Greiner, Hermann de Meer, Kishor S. Trivedi “Queueing

Networks and Markov Chains: Modeling and Performance Evaluation with Computer

Science Applications” John Wiley & Sons, August 1998

[Buhr96] R. J. A. Buhr, R. S. Casselman “Use Case Maps for Object-oriented Systems”

Prentice Hall, Inc 1996

[Cary99] Cary “SAS OnlineDoc version eight” http://v8doc.sas.com/sashtml/ SAS Institute

Inc, 1999

[Ciardo89] G. Ciardo, K. S. Trivedi, and J. Muppala, “SPNP: stochastic Petri net package”,

Proceedings of the Third International Workshop on Petri Nets and Performance

Models (PNPM'89) Kyoto, Japan, 1989.

[Cruz91] R. L. Cruz, “A Calculus for Network Delay, Part II: Network Analysis”, IEEE

Transactions on Information Theory, vol. 37, Jan 1991.

[Elwalid01] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja, “MATE: MPLS

Adaptive Traffic Engineering”, IEEE INFOCOM 2001, Apr 2001

 122

[Fenlason97] Jay Fenlason and Richard Stallman “GNU gprof: The GNU Profiler”

Manual, Free Software Foundation Inc. Sep. 1997

[Fink02] Jason R. Fink, Matt Sherer, Kurt Wall, “Linux Performance Tuning and Capacity

Planning” SAMS, 2002, pp. 61

[Follenweider93] R.Follenweider, R.Karcich, G.J.Knafl “A Systematic Approach to Software

Reliability Modeling” IEEE 1993

[Fortz02] B. Fortz, J. Rexford, and M. Thorup, “Traffic Engineering with Traditional IP

Routing Protocols”, IEEE Communications, Oct, 2002, pp.118-124.

[Frank98] H.Frank, Cervone “Solaris Performance Administration: Performance

Measurement, Fine Tunning, and Capacity Planning for Releases 2.5.1 and 2.6”

McGraw-Hill, 1998

[Franks00] G. Franks, "Performance Analysis of Distributed Server Systems", Report

OCIEE-00-01, Ph. D. Thesis, Carleton University, Ottawa, Canada, Jan 2000.

[Gomaa00] Hassan Gomaa, “Designing Concurrent, Distributed, and Real-Time

Applications with UML" Addison-Wesley, August 2000

[Graham82] S. L. Graham, P. B. Kessler, and M. K. McKusick, “gprof: A Call Graph

Execution Profiler” Proceedings of the SIGPLAN '82 Symposium on Compiler

Construction, Association for Computing Machinery, Jun 1982

 123

[Hobbs01] C. Hobbs, G. Young, “CGNet: A User’s guide & designer’s manual” Nortel

internal publications, Jun 2001

[Jacobson92] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. “Object-Oriented

Software Engineering: A Use Case Driven Approach” Addison-Wesley, 1993.

[Jain91] R. Jain, "The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling," John Wiley & Sons,

Apr 1991.

[McCanne93] S. McCanne, C. Torek “ A Randomized Sampling Clock for CPU Utilization

Estimation and code profiling” 1993 Winter USENIX conference, Jan. 1993

[Mendenhall81] W. Mendenhall, J. T. McClave “A second course in business statistics :

regression analysis” Dellen Pub. Co., 1981

[Miller95] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K. L.

Karavanic, K. Kunchithapadam and T. Newhall. “The Paradyn Parallel Performance

Measurement Tools” IEEE Computer, Nov 1995

[Marcotty 86] M. Marcotty & H. Ledgard, The World of Programming Languages,

Springer-Verlag, Berlin 1986.

[Neilson95] J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, "Software

Bottlenecking in Client-Server Systems and Rendez-vous Networks", IEEE Transactions

On Software Engineering, Vol. 21, No. 9, Sep 1995

 124

[Rolia95] J.A. Rolia, K.C. Sevcik,“The Method of Layers”, IEEE Transactions on Software

Engineering, Vol. 21 No. 8, Aug 1995,

[Scheaffer86] Richard L. Scheaffer, James T. McClave “Probability and Statistics for

Engineers” Second Edition, Duxbury Press, 1986

[Smith90] C.U. Smith, “Performance Engineering of Software Systems”, Addison-Wesley,

1990.

[Smith99] C. U. Smith, Murray Woodside, "Performance Validation at Early Stages of

Development", Position paper, Performance 99, Istanbul, Turkey, October 99.

[Smith02] C. U. Smith and L. G. Williams, “Performance Solutions: A Practical Guide to

Creating Responsive, Scalable Software”, Addison-Wesley, 2002.

[Takagi90] Hideaki Takagi, “Stochastic analysis of computer and communication systems”

IFIP, 1990

[Veran85] M. V'eran and D. Potier. “QNAP2: a portable environment for queueing systems

modeling”. Modelling Techniques and Tools for Performance Analysis (ed. by D.

Potier), North Holland, 1985.

[Woodside95A] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar, "The Stochastic

Rendezvous Network Model for Performance of Synchronous Client-Server-Like

Distributed Software", IEEE Transactions on Computers, Vol. 44, No. 1, Jan 1995

 125

[Woodside95B] C.M. Woodside, "A Three-View Model for Performance Engineering of

Concurrent Software", IEEE Transactions On Software Engineering, Vol. 21, No. 9, Sept.

1995.

[Woodside97] C. M. Woodside, Marc Courtois, Cheryl Schramm, “A "Displacement"

Technique for Robust Portable Measurement of Communications Processing

Overheads”, Internal Report, Real-time And Distributed Systems (RADS) Lab,

Carleton University, May 5, 1997

[Xiao00] X. Xiao, A. Hannan, B. Bailey, “Traffic Engineering with MPLS in the Internet”

IEEE Network, March/April 2000

 126

APPENDIX A BNF Description of Naming Notation of LQN Model

Rule of Naming Notation of LQN model for CGNet

<host_node_name> ::=

 The first two capital letter of the name for the node

<destination_node_name> ::=

 The first two capital letter of the name for the node

<from_node_name> ::=

 The first two capital letter of the name for the node

<to_node_name> ::=

 The first two capital letter of the name for the node

<Hostprocessor_def> ::=

<User_processor> | <node_host_processor> | <network_processor>

<User_processor> ::= <host_node_name>UserProc

<node_host_processor> ::= <host_node_name>Server

<network_processor> ::= Network

<Task_def> ::= <User_task> | <Receiving_task>| <Switching_task>| <Sending_task>|

<Sinking_task>| <NetworkDelay_task>

<User_task> ::= <host_node_name>UserT

Based on generator connected to node

<entry_def> ::= <host_node_name>User

 127

<Receiving_task> ::= <Rcv_generator_task> | <Rcv_node_task>

<Rcv_generator_task> ::= <host_node_name>_RCV

Based on generator

<entry_def> ::= RCV_<host_node_name>_<destination_node_name>

<Rcv_node_task> ::= <from_node_name><host_node_name>_RCV

Based on link connected to node

<entry_def> ::=

 <from_node_name><host_node_name>_<host_node_name>_<destination_node_name> |

<from_node_name><host_node_name>_<host_node_name>_SE

 (if <host_node_name> = <destination_node_name>)

<Switching_task> ::= <host_node_name>_SW

<entry_def> ::= SW_<host_node_name>_<destination_node_name>|

 SW_<host_node_name>_SE

(if <host_node_name> = <destination_node_name>)

<Sending_task> ::= <host_node_name>_SEND_<to_node_name>

Based on link associated to node

<entry_def> � SEND_<host_node_name>_<destination_node_name>

<Sinking_task> ::= <host_node_name>_SINK

Based on sink associated to node

<entry_def> ::= D_<host_node_name>_SINK

<NetworkDelay_task> ::= <host_node_name><to_node_name>DELAY

 128

Based on link associated to node

<entry_def> ::= <host_node_name><to_node_name>DEL<destination_node_name>*

 (*<destination_node_name> are in the small letter)

 129

Appendix B the Code of compulmt Process

#include <stdio.h>

#include <time.h>

#include <math.h>

#define ITERATIONS 60000000

int do_something(int CPU_loops)

{

double temp, temp2;

int i, max_i;

static int flip_flop = 0;

max_i = CPU_loops;

for (i=0; i< max_i; i++) {

temp = 0.0;

temp = sin(1.4);

temp = cos(temp);

temp = sin(temp);

temp = cos(temp);

temp = sin(temp);

temp2 = sin(1.4);

temp2 = cos(temp2);

temp2 = sin(temp2);

temp2 = cos(temp2);

temp2 = sin(temp2);

}

return 1;

}

double output_timespec(struct timespec *t)

{

double res;

res=(double)(t->tv_sec) + (double)(t->tv_nsec)/1.000000000e9;

// printf("\n The time is %d.%09ld = %.9lf% ", (double) t->tv_sec, t->tv_nsec,

 130

res);

return res;

}

int main()

{

int i;

struct timespec start, end;

double starttime, endtime, elaptime;

clock_gettime(CLOCK_REALTIME, &start);

do_something(ITERATIONS);

clock_gettime(CLOCK_REALTIME, &end);

starttime = output_timespec(&start);

endtime = output_timespec(&end);

elaptime = endtime - starttime;

printf("\nelapsed from \t %.9lf\t to \t %.9lf\t and difference is \t %.9lf\n.",

starttime, endtime, elaptime);

}

 131

Appendix C LQN Model Constructed by Hand for Five-Node Network

$solver = parasrvn -B 10,100000,150000 -P messages=917

$factor1=0.2:2,0.2

$ATrate=0.0985294*$factor1 #67000/(85*8)=98.5294

$CHrate=0.1873529*$factor1 #127400/(85*8)=187.3529

$DArate=0.1417647*$factor1 #96400/(85*8)=141.7647

$NYrate=0.2145588*$factor1 #145900/(85*8)=214.5588

$WArate=0.1860294*$factor1 #126500/(85*8)=186.0294

$factor2=1

$Delay075=9.067*$factor2 #8*85/75000=0.009067

$Delay105=6.476*$factor2 #8*85/105000=0.006476

$Delay120=5.667*$factor2 #8*85/120000=0.005667

$Delay150=4.533*$factor2 #8*85/150000=0.004533

$RCVp1=0

$RCVp2=0

$ATSWIp1=1.6536

$ATSWIp2=0

$CHSWIp1=1.6536

$CHSWIp2=0

$DASWIp1=1.6536

$DASWIp2=0

$NYSWIp1=1.6536

$NYSWIp2=0

$WASWIp1=1.6536

$WASWIp2=0

$SNDp1=1.7764

$SNDp2=0

$SNKp1=1.7764

$SNKp2=0

G "Router Software System" .000001 100 1 0.9 -1

P 0

p ATUserProc f i

 132

p ATServer f %u $ATRU

p DAUserProc f i

p DAServer f %u $DARU

p CHUserProc f i

p CHServer f %u $CHRU

p NYUserProc f i

p NYServer f %u $NYRU

p WAUserProc f i

p WAServer f %u $WARU

p NETProc f i

-1

T 0

t ATUserT n ATUser -1 ATUserProc # Pseudo AT Task

t AT_RCV n RCV_AT_CH RCV_AT_DA RCV_AT_NY RCV_AT_WA -1 ATServer %f $ATGThr %pu $ATGU

Task for AT generator

t DAAT_RCV n DAAT_AT_SE -1 ATServer %pu $ATDARU # Task for ATDA link (rcv)

t WAAT_RCV n WAAT_AT_SE -1 ATServer %pu $ATWARU # Task for ATWA link (rcv)

t AT_SW n SW_AT_SE SW_AT_CH SW_AT_DA SW_AT_NY SW_AT_WA -1 ATServer %f $ATAThr %pu

$ATSWU

t AT_SINK n D_AT_SINK -1 ATServer %f $ATSThr %pu $ATSINKU # Thread Task for AT sink

t AT_SEND_DA n SEND_AT_DA -1 ATServer %f $ATDAThr %pu $ATDASU

Thread Task for ATDA link (send)

t AT_SEND_WA n SEND_AT_CH SEND_AT_NY SEND_AT_WA -1 ATServer %f $ATWAThr %pu $ATWASU

Thread Task for ATWA link (send)

t CHUserT n CHUser -1 CHUserProc # Pseudo CH Task

t CH_RCV n RCV_CH_AT RCV_CH_DA RCV_CH_NY RCV_CH_WA -1 CHServer %f $CHGThr %pu $CHGU

Task for CH generator

t DACH_RCV n DACH_CH_SE -1 CHServer %pu $CHDARU # Task for CHDA link (rcv)

t NYCH_RCV n NYCH_CH_SE -1 CHServer %pu $CHNYRU # Task for CHNY link (rcv)

t WACH_RCV n WACH_CH_SE -1 CHServer %pu $CHWARU # Task for CHWA link (rcv)

 133

t CH_SW n SW_CH_SE SW_CH_AT SW_CH_DA SW_CH_NY SW_CH_WA -1 CHServer %f $CHAThr %pu

$CHSWU

t CH_SINK n D_CH_SINK -1 CHServer %f $CHSThr %pu $CHSINKU # Thread Task for CH sink

t CH_SEND_DA n SEND_CH_DA -1 CHServer %f $CHDAThr %pu $CHDASU # Thread Task for CHDA

link (send)

t CH_SEND_NY n SEND_CH_NY -1 CHServer %f $CHNYThr %pu $CHNYSU # Thread Task for CHNY

link (send)

t CH_SEND_WA n SEND_CH_AT SEND_CH_WA -1 CHServer %f $CHWAThr %pu $CHWASU

Thread Task for CHWA link (send)

t DAUserT n DAUser -1 DAUserProc # Pseudo DA Task

t DA_RCV n RCV_DA_AT RCV_DA_CH RCV_DA_NY RCV_DA_WA -1 DAServer %f $DAGThr %pu $DAGU

Task for DA generator

t ATDA_RCV n ATDA_DA_SE -1 DAServer %pu $DAATRU # Task for ATDA link (rcv)

t CHDA_RCV n CHDA_DA_SE -1 DAServer %pu $DACHRU # Task for CHDA link (rcv)

t WADA_RCV n WADA_DA_SE -1 DAServer %pu $DAWARU # Task for WADA link (rcv)

t DA_SW n SW_DA_SE SW_DA_AT SW_DA_CH SW_DA_NY SW_DA_WA -1 DAServer %f $DAAThr %pu

$DASWU

t DA_SINK n D_DA_SINK -1 DAServer %f $DASThr %pu $DASINKU # Thread Task for DA

sink

t DA_SEND_AT n SEND_DA_AT -1 DAServer %f $DAATThr %pu $DAATSU

Thread Task for ATDA link (send)

t DA_SEND_CH n SEND_DA_CH -1 DAServer %f $DACHThr %pu $DACHSU

Thread Task for CHDA link (send)

t DA_SEND_WA n SEND_DA_NY SEND_DA_WA -1 DAServer %f $DAWAThr %pu $DAWASU

Thread Task for DAWA link (send)

t NYUserT n NYUser -1 NYUserProc # Pseudo NY Task

t NY_RCV n RCV_NY_AT RCV_NY_CH RCV_NY_DA RCV_NY_WA -1 NYServer %f $NYGThr %pu $NYGU

Task for NY generator

t CHNY_RCV n CHNY_NY_SE -1 NYServer %pu $NYCHRU # Task for CHNY link (rcv)

t WANY_RCV n WANY_NY_SE -1 NYServer %pu $NYWARU # Task for NYWA link (rcv)

t NY_SW n SW_NY_SE SW_NY_AT SW_NY_CH SW_NY_DA SW_NY_WA -1 NYServer %f $NYAThr %pu

$NYSWU

 134

t NY_SINK n D_NY_SINK -1 NYServer %f $NYSThr %pu $NYSINKU # Thread Task for NY

sink

t NY_SEND_CH n SEND_NY_CH -1 NYServer %f $NYCHThr %pu $NYCHSU

Thread Task for CHNY link (send)

t NY_SEND_WA n SEND_NY_AT SEND_NY_DA SEND_NY_WA -1 NYServer %f $NYWAThr %pu $NYWASU

Thread Task for NYWA link (send)

t WAUserT n WAUser -1 WAUserProc # Pseudo WA Task

t WA_RCV n RCV_WA_AT RCV_WA_CH RCV_WA_DA RCV_WA_NY -1 WAServer %f $WAGThr %pu $WAGU

Task for WA generator

t ATWA_RCV n ATWA_WA_CH ATWA_WA_NY ATWA_WA_SE -1 WAServer %pu $WAATRU # Task for

ATWA link (rcv)

t CHWA_RCV n CHWA_WA_AT CHWA_WA_SE -1 WAServer %pu $WACHRU # Task for ATWA link (rcv)

t DAWA_RCV n DAWA_WA_NY DAWA_WA_SE -1 WAServer %pu $WADARU # Task for ATWA link (rcv)

t NYWA_RCV n NYWA_WA_AT NYWA_WA_DA NYWA_WA_SE -1 WAServer %pu $WANYRU # Task for

ATWA link (rcv)

t WA_SW n SW_WA_SE SW_WA_AT SW_WA_CH SW_WA_DA SW_WA_NY -1 WAServer %f $WAAThr %pu

$WASWU

t WA_SINK n D_WA_SINK -1 WAServer %f $WASThr %pu $WASINKU # Thread Task for WA

sink

t WA_SEND_AT n SEND_WA_AT -1 WAServer %f $WAATThr %pu $WAATSU

Thread Task for WAAT link (send)

t WA_SEND_CH n SEND_WA_CH -1 WAServer %f $WACHThr %pu $WACHSU

Thread Task for WACH link (send)

t WA_SEND_DA n SEND_WA_DA -1 WAServer %f $WADAThr %pu $WADASU

Thread Task for WADA link (send)

t WA_SEND_NY n SEND_WA_NY -1 WAServer %f $WANYThr %pu $WANYSU

Thread Task for WANY link (send)

t ATDADELAY n ATDADELAYda -1 NETProc

t DAATDELAY n ATDADELAYat -1 NETProc

t ATWADELAY n ATWADELAYch ATWADELAYny ATWADELAYwa -1 NETProc

t WAATDELAY n ATWADELAYat -1 NETProc

t CHDADELAY n CHDADELAYda -1 NETProc

t DACHDELAY n CHDADELAYch -1 NETProc

t CHNYDELAY n CHNYDELAYny -1 NETProc

t NYCHDELAY n CHNYDELAYch -1 NETProc

 135

t CHWADELAY n CHWADELAYwa -1 NETProc

t WACHDELAY n CHWADELAYat CHWADELAYch -1 NETProc

t DAWADELAY n DAWADELAYny DAWADELAYwa -1 NETProc

t WADADELAY n DAWADELAYda -1 NETProc

t NYWADELAY n NYWADELAYat NYWADELAYda NYWADELAYwa -1 NETProc

t WANYDELAY n NYWADELAYny -1 NETProc

-1

E 0

s ATUser 0 0 0 -1

#Z ATUser 0 0 0 -1

a ATUser $ATrate

z ATUser RCV_AT_CH 0.276 0 -1 #185/(185+103+204+178)=185/670=0.2761

z ATUser RCV_AT_DA 0.154 0 -1 #103/(185+103+204+178)=103/670=0.1537

z ATUser RCV_AT_NY 0.304 0 -1 #204/(185+103+204+178)=204/670=0.3045

z ATUser RCV_AT_WA 0.266 0 -1 #178/(185+103+204+178)=178/670=0.2657

y RCV_AT_CH SW_AT_CH 1 0 -1

y RCV_AT_DA SW_AT_DA 1 0 -1

y RCV_AT_NY SW_AT_NY 1 0 -1

y RCV_AT_WA SW_AT_WA 1 0 -1

z SW_AT_SE D_AT_SINK 1 0 -1

z SW_AT_CH SEND_AT_CH 1 0 -1

z SW_AT_DA SEND_AT_DA 1 0 -1

z SW_AT_NY SEND_AT_NY 1 0 -1

z SW_AT_WA SEND_AT_WA 1 0 -1

s RCV_AT_CH $RCVp1 $RCVp2 -1

s RCV_AT_DA $RCVp1 $RCVp2 -1

s RCV_AT_NY $RCVp1 $RCVp2 -1

s RCV_AT_WA $RCVp1 $RCVp2 -1

s DAAT_AT_SE $RCVp1 $RCVp2 -1

s WAAT_AT_SE $RCVp1 $RCVp2 -1

s SW_AT_SE $ATSWIp1 $ATSWIp2 -1

s SW_AT_CH $ATSWIp1 $ATSWIp2 -1

s SW_AT_DA $ATSWIp1 $ATSWIp2 -1

s SW_AT_NY $ATSWIp1 $ATSWIp2 -1

s SW_AT_WA $ATSWIp1 $ATSWIp2 -1

 136

s D_AT_SINK $SNKp1 $SNKp2 -1

s SEND_AT_CH $SNDp1 $SNDp2 -1

s SEND_AT_DA $SNDp1 $SNDp2 -1

s SEND_AT_NY $SNDp1 $SNDp2 -1

s SEND_AT_WA $SNDp1 $SNDp2 -1

s CHUser 0 0 0 -1

#Z CHUser 0 0 0 -1

a CHUser $CHrate

z CHUser RCV_CH_AT 0.145 0 -1 #185/(185+314+450+325)=185/1274=0.1452

z CHUser RCV_CH_DA 0.247 0 -1 #314/(185+314+450+325)=314/1274=0.2465

z CHUser RCV_CH_NY 0.353 0 -1 #450/(185+314+450+325)=450/1274=0.3532

z CHUser RCV_CH_WA 0.255 0 -1 #325/(185+314+450+325)=325/1274=0.2551

y RCV_CH_AT SW_CH_AT 1 0 -1

y RCV_CH_DA SW_CH_DA 1 0 -1

y RCV_CH_NY SW_CH_NY 1 0 -1

y RCV_CH_WA SW_CH_WA 1 0 -1

z SW_CH_SE D_CH_SINK 1 0 -1

z SW_CH_AT SEND_CH_AT 1 0 -1

z SW_CH_DA SEND_CH_DA 1 0 -1

z SW_CH_NY SEND_CH_NY 1 0 -1

z SW_CH_WA SEND_CH_WA 1 0 -1

s RCV_CH_AT $RCVp1 $RCVp2 -1

s RCV_CH_DA $RCVp1 $RCVp2 -1

s RCV_CH_NY $RCVp1 $RCVp2 -1

s RCV_CH_WA $RCVp1 $RCVp2 -1

s DACH_CH_SE $RCVp1 $RCVp2 -1

s NYCH_CH_SE $RCVp1 $RCVp2 -1

s WACH_CH_SE $RCVp1 $RCVp2 -1

s SW_CH_SE $CHSWIp1 $CHSWIp2 -1

s SW_CH_AT $CHSWIp1 $CHSWIp2 -1

s SW_CH_DA $CHSWIp1 $CHSWIp2 -1

s SW_CH_NY $CHSWIp1 $CHSWIp2 -1

s SW_CH_WA $CHSWIp1 $CHSWIp2 -1

s D_CH_SINK $SNKp1 $SNKp2 -1

s SEND_CH_AT $SNDp1 $SNDp2 -1

 137

s SEND_CH_DA $SNDp1 $SNDp2 -1

s SEND_CH_NY $SNDp1 $SNDp2 -1

s SEND_CH_WA $SNDp1 $SNDp2 -1

s DAUser 0 0 0 -1

#Z DAUser 0 0 0 -1

a DAUser $DArate

z DAUser RCV_DA_AT 0.107 0 -1 #103/(103+314+295+252)=103/964=0.1068

z DAUser RCV_DA_CH 0.326 0 -1 #314/(103+314+295+252)=314/964=0.3257

z DAUser RCV_DA_NY 0.306 0 -1 #295/(103+314+295+252)=295/964=0.3060

z DAUser RCV_DA_WA 0.261 0 -1 #252/(103+314+295+252)=252/964=0.2614

y RCV_DA_AT SW_DA_AT 1 0 -1

y RCV_DA_CH SW_DA_CH 1 0 -1

y RCV_DA_NY SW_DA_NY 1 0 -1

y RCV_DA_WA SW_DA_WA 1 0 -1

z SW_DA_SE D_DA_SINK 1 0 -1

z SW_DA_AT SEND_DA_AT 1 0 -1

z SW_DA_CH SEND_DA_CH 1 0 -1

z SW_DA_NY SEND_DA_NY 1 0 -1

z SW_DA_WA SEND_DA_WA 1 0 -1

s RCV_DA_AT $RCVp1 $RCVp2 -1

s RCV_DA_CH $RCVp1 $RCVp2 -1

s RCV_DA_NY $RCVp1 $RCVp2 -1

s RCV_DA_WA $RCVp1 $RCVp2 -1

s ATDA_DA_SE $RCVp1 $RCVp2 -1

s CHDA_DA_SE $RCVp1 $RCVp2 -1

s WADA_DA_SE $RCVp1 $RCVp2 -1

s SW_DA_SE $DASWIp1 $DASWIp2 -1

s SW_DA_AT $DASWIp1 $DASWIp2 -1

s SW_DA_CH $DASWIp1 $DASWIp2 -1

s SW_DA_NY $DASWIp1 $DASWIp2 -1

s SW_DA_WA $DASWIp1 $DASWIp2 -1

s D_DA_SINK $SNKp1 $SNKp2 -1

s SEND_DA_AT $SNDp1 $SNDp2 -1

s SEND_DA_CH $SNDp1 $SNDp2 -1

s SEND_DA_NY $SNDp1 $SNDp2 -1

 138

s SEND_DA_WA $SNDp1 $SNDp2 -1

s NYUser 0 0 0 -1

#Z NYUser 0 0 0 -1

a NYUser $NYrate

z NYUser RCV_NY_AT 0.140 0 -1 #204/(204+450+295+510)=204/1459=0.1398

z NYUser RCV_NY_CH 0.308 0 -1 #450/(204+450+295+510)=450/1459=0.3084

z NYUser RCV_NY_DA 0.202 0 -1 #295/(204+450+295+510)=295/1459=0.2022

z NYUser RCV_NY_WA 0.350 0 -1 #510/(204+450+295+510)=510/1459=0.3496

y RCV_NY_AT SW_NY_AT 1 0 -1

y RCV_NY_CH SW_NY_CH 1 0 -1

y RCV_NY_DA SW_NY_DA 1 0 -1

y RCV_NY_WA SW_NY_WA 1 0 -1

z SW_NY_SE D_NY_SINK 1 0 -1

z SW_NY_AT SEND_NY_AT 1 0 -1

z SW_NY_CH SEND_NY_CH 1 0 -1

z SW_NY_DA SEND_NY_DA 1 0 -1

z SW_NY_WA SEND_NY_WA 1 0 -1

s RCV_NY_AT $RCVp1 $RCVp2 -1

s RCV_NY_CH $RCVp1 $RCVp2 -1

s RCV_NY_DA $RCVp1 $RCVp2 -1

s RCV_NY_WA $RCVp1 $RCVp2 -1

s CHNY_NY_SE $RCVp1 $RCVp2 -1

s WANY_NY_SE $RCVp1 $RCVp2 -1

s SW_NY_SE $NYSWIp1 $NYSWIp2 -1

s SW_NY_AT $NYSWIp1 $NYSWIp2 -1

s SW_NY_CH $NYSWIp1 $NYSWIp2 -1

s SW_NY_DA $NYSWIp1 $NYSWIp2 -1

s SW_NY_WA $NYSWIp1 $NYSWIp2 -1

s D_NY_SINK $SNKp1 $SNKp2 -1

s SEND_NY_AT $SNDp1 $SNDp2 -1

s SEND_NY_CH $SNDp1 $SNDp2 -1

s SEND_NY_DA $SNDp1 $SNDp2 -1

s SEND_NY_WA $SNDp1 $SNDp2 -1

 139

s WAUser 0 0 0 -1

#Z WAUser 0 0 0 -1

a WAUser $WArate

z WAUser RCV_WA_AT 0.141 0 -1 #178/(178+325+252+510)=178/1265=0.1407

z WAUser RCV_WA_CH 0.257 0 -1 #325/(178+325+252+510)=325/1265=0.2569

z WAUser RCV_WA_DA 0.199 0 -1 #252/(178+325+252+510)=252/1265=0.1992

z WAUser RCV_WA_NY 0.403 0 -1 #510/(178+325+252+510)=510/1265=0.4032

y RCV_WA_AT SW_WA_AT 1 0 -1

y RCV_WA_CH SW_WA_CH 1 0 -1

y RCV_WA_DA SW_WA_DA 1 0 -1

y RCV_WA_NY SW_WA_NY 1 0 -1

z SW_WA_SE D_WA_SINK 1 0 -1

z SW_WA_AT SEND_WA_AT 1 0 -1

z SW_WA_CH SEND_WA_CH 1 0 -1

z SW_WA_DA SEND_WA_DA 1 0 -1

z SW_WA_NY SEND_WA_NY 1 0 -1

s RCV_WA_AT $RCVp1 $RCVp2 -1

s RCV_WA_CH $RCVp1 $RCVp2 -1

s RCV_WA_DA $RCVp1 $RCVp2 -1

s RCV_WA_NY $RCVp1 $RCVp2 -1

s ATWA_WA_CH $RCVp1 $RCVp2 -1

s ATWA_WA_NY $RCVp1 $RCVp2 -1

s ATWA_WA_SE $RCVp1 $RCVp2 -1

s CHWA_WA_AT $RCVp1 $RCVp2 -1

s CHWA_WA_SE $RCVp1 $RCVp2 -1

s DAWA_WA_NY $RCVp1 $RCVp2 -1

s DAWA_WA_SE $RCVp1 $RCVp2 -1

s NYWA_WA_AT $RCVp1 $RCVp2 -1

s NYWA_WA_DA $RCVp1 $RCVp2 -1

s NYWA_WA_SE $RCVp1 $RCVp2 -1

s SW_WA_SE $WASWIp1 $WASWIp2 -1

s SW_WA_AT $WASWIp1 $WASWIp2 -1

s SW_WA_CH $WASWIp1 $WASWIp2 -1

s SW_WA_DA $WASWIp1 $WASWIp2 -1

s SW_WA_NY $WASWIp1 $WASWIp2 -1

s D_WA_SINK $SNKp1 $SNKp2 -1

s SEND_WA_AT $SNDp1 $SNDp2 -1

 140

s SEND_WA_CH $SNDp1 $SNDp2 -1

s SEND_WA_DA $SNDp1 $SNDp2 -1

s SEND_WA_NY $SNDp1 $SNDp2 -1

s ATDADELAYda $Delay075 0 -1 #8*85/75000=0.009067

s ATDADELAYat $Delay075 0 -1

s ATWADELAYch $Delay105 0 -1 #8*85/105000=0.006476

s ATWADELAYny $Delay105 0 -1

s ATWADELAYwa $Delay105 0 -1

s ATWADELAYat $Delay105 0 -1

s CHDADELAYda $Delay105 0 -1 #8*85/105000=0.006476

s CHDADELAYch $Delay105 0 -1

s CHNYDELAYny $Delay120 0 -1 #8*85/120000=0.005667

s CHNYDELAYch $Delay120 0 -1

s CHWADELAYat $Delay150 0 -1 #8*85/150000=0.004533

s CHWADELAYwa $Delay150 0 -1

s CHWADELAYch $Delay150 0 -1

s DAWADELAYny $Delay120 0 -1 #8*85/120000=0.005667

s DAWADELAYwa $Delay120 0 -1

s DAWADELAYda $Delay120 0 -1

s NYWADELAYat $Delay120 0 -1 #8*85/120000=0.005667

s NYWADELAYda $Delay120 0 -1

s NYWADELAYwa $Delay120 0 -1

s NYWADELAYny $Delay120 0 -1

y SEND_AT_DA ATDADELAYda 1 0 -1

z ATDADELAYda ATDA_DA_SE 1 0 -1

y ATDA_DA_SE SW_DA_SE 1 0 -1

y SEND_AT_CH ATWADELAYch 1 0 -1

z ATWADELAYch ATWA_WA_CH 1 0 -1

y ATWA_WA_CH SW_WA_CH 1 0 -1

y SEND_AT_NY ATWADELAYny 1 0 -1

 141

z ATWADELAYny ATWA_WA_NY 1 0 -1

y ATWA_WA_NY SW_WA_NY 1 0 -1

y SEND_AT_WA ATWADELAYwa 1 0 -1

z ATWADELAYwa ATWA_WA_SE 1 0 -1

y ATWA_WA_SE SW_WA_SE 1 0 -1

y SEND_CH_DA CHDADELAYda 1 0 -1

z CHDADELAYda CHDA_DA_SE 1 0 -1

y CHDA_DA_SE SW_DA_SE 1 0 -1

y SEND_CH_NY CHNYDELAYny 1 0 -1

z CHNYDELAYny CHNY_NY_SE 1 0 -1

y CHNY_NY_SE SW_NY_SE 1 0 -1

y SEND_CH_AT CHWADELAYat 1 0 -1

z CHWADELAYat CHWA_WA_AT 1 0 -1

y CHWA_WA_AT SW_WA_AT 1 0 -1

y SEND_CH_WA CHWADELAYwa 1 0 -1

z CHWADELAYwa CHWA_WA_SE 1 0 -1

y CHWA_WA_SE SW_WA_SE 1 0 -1

y SEND_DA_AT ATDADELAYat 1 0 -1

z ATDADELAYat DAAT_AT_SE 1 0 -1

y DAAT_AT_SE SW_AT_SE 1 0 -1

y SEND_DA_CH CHDADELAYch 1 0 -1

z CHDADELAYch DACH_CH_SE 1 0 -1

y DACH_CH_SE SW_CH_SE 1 0 -1

y SEND_DA_NY DAWADELAYny 1 0 -1

z DAWADELAYny DAWA_WA_NY 1 0 -1

y DAWA_WA_NY SW_WA_NY 1 0 -1

y SEND_DA_WA DAWADELAYwa 1 0 -1

z DAWADELAYwa DAWA_WA_SE 1 0 -1

y DAWA_WA_SE SW_WA_SE 1 0 -1

y SEND_NY_CH CHNYDELAYch 1 0 -1

z CHNYDELAYch NYCH_CH_SE 1 0 -1

y NYCH_CH_SE SW_CH_SE 1 0 -1

y SEND_NY_AT NYWADELAYat 1 0 -1

z NYWADELAYat NYWA_WA_AT 1 0 -1

y NYWA_WA_AT SW_WA_AT 1 0 -1

y SEND_NY_DA NYWADELAYda 1 0 -1

z NYWADELAYda NYWA_WA_DA 1 0 -1

y NYWA_WA_DA SW_WA_DA 1 0 -1

 142

y SEND_NY_WA NYWADELAYwa 1 0 -1

z NYWADELAYwa NYWA_WA_SE 1 0 -1

y NYWA_WA_SE SW_WA_SE 1 0 -1

y SEND_WA_AT ATWADELAYat 1 0 -1

z ATWADELAYat WAAT_AT_SE 1 0 -1

y WAAT_AT_SE SW_AT_SE 1 0 -1

y SEND_WA_CH CHWADELAYch 1 0 -1

z CHWADELAYch WACH_CH_SE 1 0 -1

y WACH_CH_SE SW_CH_SE 1 0 -1

y SEND_WA_DA DAWADELAYda 1 0 -1

z DAWADELAYda WADA_DA_SE 1 0 -1

y WADA_DA_SE SW_DA_SE 1 0 -1

y SEND_WA_NY NYWADELAYny 1 0 -1

z NYWADELAYny WANY_NY_SE 1 0 -1

y WANY_NY_SE SW_NY_SE 1 0 -1

-1

R 0

$0=$factor1

$factor2

$ATRU1 = $ATGU + $ATDARU + $ATWARU + $ATSWU + $ATDASU + $ATWASU + $ATSINKU

$CHRU1 = $CHGU + $CHDARU + $CHNYRU + $CHWARU + $CHSWU + $CHDASU + $CHNYSU + $CHWASU

+ $CHSINKU

$DARU1 = $DAGU + $DAATRU + $DACHRU + $DAWARU + $DASWU + $DAATSU + $DACHSU + $DAWASU

+ $DASINKU

$NYRU1 = $NYGU + $NYCHRU + $NYWARU + $NYSWU + $NYCHSU + $NYWASU + $NYSINKU

$WARU1 = $WAGU + $WAATRU + $WACHRU + $WADARU + $WANYRU + $WASWU + $WAATSU + $WACHSU

+ $WADASU + $WANYSU + $WASINKU

\

$ATGThr

$ATAThr

$ATSThr

$ATDAThr

$ATWAThr

\

$CHGThr

 143

$CHAThr

$CHSThr

$CHDAThr

$CHNYThr

$CHWAThr

\

$DAGThr

$DAAThr

$DASThr

$DAATThr

$DACHThr

$DAWAThr

\

$NYGThr

$NYAThr

$NYSThr

$NYCHThr

$NYWAThr

\

$WAGThr

$WAAThr

$WASThr

$WAATThr

$WACHThr

$WADAThr

$WANYThr

-1

 144

Appendix D LQN Model Generated by Tool for Five-Node Network

#Define the solver of LQN model with specified option.

$solver = parasrvn -B 10,100000,150000 -P messages=917

#Define the speed of generator,proportion of traffic to destinaiton.

#and the networkdelay here.

$factor1=0.05:0.4,0.05

$ATrate =6700*$factor1/(85*8*1000)

$ATNEP =204/(204+178+185+103)

$ATWAP =178/(204+178+185+103)

$ATCHP =185/(204+178+185+103)

$ATDAP =103/(204+178+185+103)

$CHrate =12740*$factor1/(85*8*1000)

$CHNEP =450/(450+185+325+314)

$CHATP =185/(450+185+325+314)

$CHWAP =325/(450+185+325+314)

$CHDAP =314/(450+185+325+314)

$DArate =9640*$factor1/(85*8*1000)

$DANEP =295/(295+252+314+103)

$DAWAP =252/(295+252+314+103)

$DACHP =314/(295+252+314+103)

$DAATP =103/(295+252+314+103)

$NErate =14590*$factor1/(85*8*1000)

$NEATP =204/(204+510+295+450)

$NEWAP =510/(204+510+295+450)

$NEDAP =295/(204+510+295+450)

$NECHP =450/(204+510+295+450)

$WArate =12650*$factor1/(85*8*1000)

 145

$WANEP =510/(510+178+252+325)

$WAATP =178/(510+178+252+325)

$WADAP =252/(510+178+252+325)

$WACHP =325/(510+178+252+325)

$ATDA= 8*85*1000/75000

$ATWA= 8*85*1000/105000

$CHDA= 8*85*1000/105000

$CHNY= 8*85*1000/120000

$CHWA= 8*85*1000/150000

$DAWA= 8*85*1000/120000

$NYWA= 8*85*1000/120000

#Define the CPU demand for each operation on each node.

$RCVp1=0

$RCVp2=0

$ATSWIp1=1.597822

$ATSWIp2=0

$CHSWIp1=1.537822

$CHSWIp2=0

$DASWIp1=1.897822

$DASWIp2=0

$NESWIp1=1.637822

$NESWIp2=0

$WASWIp1=1.437822

$WASWIp2=0

$SNDp1=1.732178

$SNDp2=0

$SNKp1=1.732178

$SNKp2=0

G "Router Software System" .000001 100 1 0.9 -1

#Define the hostprocessors in LQN model.

P 0

p ATUserProc f i

p sputnik f %u $ATRU

 146

p CHUserProc f i

p alouette f %u $CHRU

p DAUserProc f i

p mariner f %u $DARU

p NEUserProc f i

p helicon f %u $NERU

p WAUserProc f i

p mira f %u $WARU

p NETProc f i

-1

#Define the tasks in LQN model.

T 0

t ATUserT n ATUser -1 ATUserProc # Pseudo AT Task

t AT_RCV n RCV_AT_NE RCV_AT_WA RCV_AT_CH RCV_AT_DA -1 sputnik %pu $ATRCVU0

t DAAT_RCV n DAAT_AT_SE -1 sputnik %pu $ATRCVU1

t WAAT_RCV n WAAT_AT_SE -1 sputnik %pu $ATRCVU2

t AT_SW n SW_AT_NE SW_AT_WA SW_AT_CH SW_AT_DA SW_AT_SE -1 sputnik %pu $ATSWIU0 %f

$ATThr0

t AT_SINK n D_AT_SINK -1 sputnik %pu $ATSNKU0

t AT_SEND_DA n SEND_AT_DA -1 sputnik %pu $ATSNDU0

t AT_SEND_WA n SEND_AT_CH SEND_AT_WA SEND_AT_NE -1 sputnik %pu $ATSNDU1

t ATDADELAY n ATDADELda -1 NETProc

t ATWADELAY n ATWADELch ATWADELwa ATWADELne -1 NETProc

t CHUserT n CHUser -1 CHUserProc # Pseudo CH Task

t CH_RCV n RCV_CH_NE RCV_CH_AT RCV_CH_WA RCV_CH_DA -1 alouette %pu $CHRCVU0

t DACH_RCV n DACH_CH_SE -1 alouette %pu $CHRCVU1

t NECH_RCV n NECH_CH_SE -1 alouette %pu $CHRCVU2

 147

t WACH_RCV n WACH_CH_SE -1 alouette %pu $CHRCVU3

t CH_SW n SW_CH_NE SW_CH_AT SW_CH_WA SW_CH_DA SW_CH_SE -1 alouette %pu $CHSWIU0 %f

$CHThr0

t CH_SINK n D_CH_SINK -1 alouette %pu $CHSNKU0

t CH_SEND_DA n SEND_CH_DA -1 alouette %pu $CHSNDU0

t CH_SEND_NE n SEND_CH_NE -1 alouette %pu $CHSNDU1

t CH_SEND_WA n SEND_CH_WA SEND_CH_AT -1 alouette %pu $CHSNDU2

t CHDADELAY n CHDADELda -1 NETProc

t CHNEDELAY n CHNEDELne -1 NETProc

t CHWADELAY n CHWADELwa CHWADELat -1 NETProc

t DAUserT n DAUser -1 DAUserProc # Pseudo DA Task

t DA_RCV n RCV_DA_NE RCV_DA_WA RCV_DA_CH RCV_DA_AT -1 mariner %pu $DARCVU0

t ATDA_RCV n ATDA_DA_SE -1 mariner %pu $DARCVU1

t CHDA_RCV n CHDA_DA_SE -1 mariner %pu $DARCVU2

t WADA_RCV n WADA_DA_SE -1 mariner %pu $DARCVU3

t DA_SW n SW_DA_NE SW_DA_WA SW_DA_CH SW_DA_AT SW_DA_SE -1 mariner %pu $DASWIU0 %f

$DAThr0

t DA_SINK n D_DA_SINK -1 mariner %pu $DASNKU0

t DA_SEND_AT n SEND_DA_AT -1 mariner %pu $DASNDU0

t DA_SEND_CH n SEND_DA_CH -1 mariner %pu $DASNDU1

t DA_SEND_WA n SEND_DA_WA SEND_DA_NE -1 mariner %pu $DASNDU2

t DAATDELAY n DAATDELat -1 NETProc

t DACHDELAY n DACHDELch -1 NETProc

t DAWADELAY n DAWADELwa DAWADELne -1 NETProc

t NEUserT n NEUser -1 NEUserProc # Pseudo NE Task

t NE_RCV n RCV_NE_AT RCV_NE_WA RCV_NE_DA RCV_NE_CH -1 helicon %pu $NERCVU0

t CHNE_RCV n CHNE_NE_SE -1 helicon %pu $NERCVU1

 148

t WANE_RCV n WANE_NE_SE -1 helicon %pu $NERCVU2

t NE_SW n SW_NE_AT SW_NE_WA SW_NE_DA SW_NE_CH SW_NE_SE -1 helicon %pu $NESWIU0 %f

$NEThr0

t NE_SINK n D_NE_SINK -1 helicon %pu $NESNKU0

t NE_SEND_CH n SEND_NE_CH -1 helicon %pu $NESNDU0

t NE_SEND_WA n SEND_NE_WA SEND_NE_AT SEND_NE_DA -1 helicon %pu $NESNDU1

t NECHDELAY n NECHDELch -1 NETProc

t NEWADELAY n NEWADELwa NEWADELat NEWADELda -1 NETProc

t WAUserT n WAUser -1 WAUserProc # Pseudo WA Task

t WA_RCV n RCV_WA_NE RCV_WA_AT RCV_WA_DA RCV_WA_CH -1 mira %pu $WARCVU0

t ATWA_RCV n ATWA_WA_CH ATWA_WA_SE ATWA_WA_NE -1 mira %pu $WARCVU1

t CHWA_RCV n CHWA_WA_SE CHWA_WA_AT -1 mira %pu $WARCVU2

t DAWA_RCV n DAWA_WA_SE DAWA_WA_NE -1 mira %pu $WARCVU3

t NEWA_RCV n NEWA_WA_SE NEWA_WA_AT NEWA_WA_DA -1 mira %pu $WARCVU4

t WA_SW n SW_WA_NE SW_WA_AT SW_WA_DA SW_WA_CH SW_WA_SE -1 mira %pu $WASWIU0 %f $WAThr0

t WA_SINK n D_WA_SINK -1 mira %pu $WASNKU0

t WA_SEND_AT n SEND_WA_AT -1 mira %pu $WASNDU0

t WA_SEND_CH n SEND_WA_CH -1 mira %pu $WASNDU1

t WA_SEND_DA n SEND_WA_DA -1 mira %pu $WASNDU2

t WA_SEND_NE n SEND_WA_NE -1 mira %pu $WASNDU3

t WAATDELAY n WAATDELat -1 NETProc

t WACHDELAY n WACHDELch -1 NETProc

t WADADELAY n WADADELda -1 NETProc

t WANEDELAY n WANEDELne -1 NETProc

-1

#Define the entries of tasks in LQN model.

 149

E 0

s ATUser 0 0 -1

a ATUser $ATrate

z ATUser RCV_AT_NE $ATNEP 0 -1

z ATUser RCV_AT_WA $ATWAP 0 -1

z ATUser RCV_AT_CH $ATCHP 0 -1

z ATUser RCV_AT_DA $ATDAP 0 -1

s RCV_AT_NE $RCVp1 $RCVp2 -1

s RCV_AT_WA $RCVp1 $RCVp2 -1

s RCV_AT_CH $RCVp1 $RCVp2 -1

s RCV_AT_DA $RCVp1 $RCVp2 -1

y RCV_AT_NE SW_AT_NE 1 0 -1

y RCV_AT_WA SW_AT_WA 1 0 -1

y RCV_AT_CH SW_AT_CH 1 0 -1

y RCV_AT_DA SW_AT_DA 1 0 -1

s DAAT_AT_SE $RCVp1 $RCVp2 -1

y DAAT_AT_SE SW_AT_SE 1 0 -1

s WAAT_AT_SE $RCVp1 $RCVp2 -1

y WAAT_AT_SE SW_AT_SE 1 0 -1

s SW_AT_NE $ATSWIp1 $ATSWIp2 -1

s SW_AT_WA $ATSWIp1 $ATSWIp2 -1

s SW_AT_CH $ATSWIp1 $ATSWIp2 -1

s SW_AT_DA $ATSWIp1 $ATSWIp2 -1

s SW_AT_SE $ATSWIp1 $ATSWIp2 -1

s D_AT_SINK $SNKp1 $SNKp2 -1

z SW_AT_SE D_AT_SINK 1 0 -1

s SEND_AT_DA $SNDp1 $SNDp2 -1

 150

z SW_AT_DA SEND_AT_DA 1 0 -1

y SEND_AT_DA ATDADELda 1 0 -1

z ATDADELda ATDA_DA_SE 1 0 -1

s SEND_AT_CH $SNDp1 $SNDp2 -1

s SEND_AT_WA $SNDp1 $SNDp2 -1

s SEND_AT_NE $SNDp1 $SNDp2 -1

z SW_AT_CH SEND_AT_CH 1 0 -1

y SEND_AT_CH ATWADELch 1 0 -1

z ATWADELch ATWA_WA_CH 1 0 -1

z SW_AT_WA SEND_AT_WA 1 0 -1

y SEND_AT_WA ATWADELwa 1 0 -1

z ATWADELwa ATWA_WA_SE 1 0 -1

z SW_AT_NE SEND_AT_NE 1 0 -1

y SEND_AT_NE ATWADELne 1 0 -1

z ATWADELne ATWA_WA_NE 1 0 -1

s ATDADELda $ATDA 0 -1

s ATWADELch $ATWA 0 -1

s ATWADELwa $ATWA 0 -1

s ATWADELne $ATWA 0 -1

s CHUser 0 0 -1

a CHUser $CHrate

z CHUser RCV_CH_NE $CHNEP 0 -1

z CHUser RCV_CH_AT $CHATP 0 -1

z CHUser RCV_CH_WA $CHWAP 0 -1

z CHUser RCV_CH_DA $CHDAP 0 -1

s RCV_CH_NE $RCVp1 $RCVp2 -1

s RCV_CH_AT $RCVp1 $RCVp2 -1

s RCV_CH_WA $RCVp1 $RCVp2 -1

s RCV_CH_DA $RCVp1 $RCVp2 -1

y RCV_CH_NE SW_CH_NE 1 0 -1

y RCV_CH_AT SW_CH_AT 1 0 -1

y RCV_CH_WA SW_CH_WA 1 0 -1

y RCV_CH_DA SW_CH_DA 1 0 -1

 151

s DACH_CH_SE $RCVp1 $RCVp2 -1

y DACH_CH_SE SW_CH_SE 1 0 -1

s NECH_CH_SE $RCVp1 $RCVp2 -1

y NECH_CH_SE SW_CH_SE 1 0 -1

s WACH_CH_SE $RCVp1 $RCVp2 -1

y WACH_CH_SE SW_CH_SE 1 0 -1

s SW_CH_NE $CHSWIp1 $CHSWIp2 -1

s SW_CH_AT $CHSWIp1 $CHSWIp2 -1

s SW_CH_WA $CHSWIp1 $CHSWIp2 -1

s SW_CH_DA $CHSWIp1 $CHSWIp2 -1

s SW_CH_SE $CHSWIp1 $CHSWIp2 -1

s D_CH_SINK $SNKp1 $SNKp2 -1

z SW_CH_SE D_CH_SINK 1 0 -1

s SEND_CH_DA $SNDp1 $SNDp2 -1

z SW_CH_DA SEND_CH_DA 1 0 -1

y SEND_CH_DA CHDADELda 1 0 -1

z CHDADELda CHDA_DA_SE 1 0 -1

s SEND_CH_NE $SNDp1 $SNDp2 -1

z SW_CH_NE SEND_CH_NE 1 0 -1

y SEND_CH_NE CHNEDELne 1 0 -1

z CHNEDELne CHNE_NE_SE 1 0 -1

s SEND_CH_WA $SNDp1 $SNDp2 -1

s SEND_CH_AT $SNDp1 $SNDp2 -1

z SW_CH_WA SEND_CH_WA 1 0 -1

 152

y SEND_CH_WA CHWADELwa 1 0 -1

z CHWADELwa CHWA_WA_SE 1 0 -1

z SW_CH_AT SEND_CH_AT 1 0 -1

y SEND_CH_AT CHWADELat 1 0 -1

z CHWADELat CHWA_WA_AT 1 0 -1

s CHDADELda $CHDA 0 -1

s CHNEDELne $CHNY 0 -1

s CHWADELwa $CHWA 0 -1

s CHWADELat $CHWA 0 -1

s DAUser 0 0 -1

a DAUser $DArate

z DAUser RCV_DA_NE $DANEP 0 -1

z DAUser RCV_DA_WA $DAWAP 0 -1

z DAUser RCV_DA_CH $DACHP 0 -1

z DAUser RCV_DA_AT $DAATP 0 -1

s RCV_DA_NE $RCVp1 $RCVp2 -1

s RCV_DA_WA $RCVp1 $RCVp2 -1

s RCV_DA_CH $RCVp1 $RCVp2 -1

s RCV_DA_AT $RCVp1 $RCVp2 -1

y RCV_DA_NE SW_DA_NE 1 0 -1

y RCV_DA_WA SW_DA_WA 1 0 -1

y RCV_DA_CH SW_DA_CH 1 0 -1

y RCV_DA_AT SW_DA_AT 1 0 -1

s ATDA_DA_SE $RCVp1 $RCVp2 -1

y ATDA_DA_SE SW_DA_SE 1 0 -1

s CHDA_DA_SE $RCVp1 $RCVp2 -1

y CHDA_DA_SE SW_DA_SE 1 0 -1

 153

s WADA_DA_SE $RCVp1 $RCVp2 -1

y WADA_DA_SE SW_DA_SE 1 0 -1

s SW_DA_NE $DASWIp1 $DASWIp2 -1

s SW_DA_WA $DASWIp1 $DASWIp2 -1

s SW_DA_CH $DASWIp1 $DASWIp2 -1

s SW_DA_AT $DASWIp1 $DASWIp2 -1

s SW_DA_SE $DASWIp1 $DASWIp2 -1

s D_DA_SINK $SNKp1 $SNKp2 -1

z SW_DA_SE D_DA_SINK 1 0 -1

s SEND_DA_AT $SNDp1 $SNDp2 -1

z SW_DA_AT SEND_DA_AT 1 0 -1

y SEND_DA_AT DAATDELat 1 0 -1

z DAATDELat DAAT_AT_SE 1 0 -1

s SEND_DA_CH $SNDp1 $SNDp2 -1

z SW_DA_CH SEND_DA_CH 1 0 -1

y SEND_DA_CH DACHDELch 1 0 -1

z DACHDELch DACH_CH_SE 1 0 -1

s SEND_DA_WA $SNDp1 $SNDp2 -1

s SEND_DA_NE $SNDp1 $SNDp2 -1

z SW_DA_WA SEND_DA_WA 1 0 -1

y SEND_DA_WA DAWADELwa 1 0 -1

z DAWADELwa DAWA_WA_SE 1 0 -1

z SW_DA_NE SEND_DA_NE 1 0 -1

y SEND_DA_NE DAWADELne 1 0 -1

z DAWADELne DAWA_WA_NE 1 0 -1

s DAATDELat $ATDA 0 -1

s DACHDELch $CHDA 0 -1

s DAWADELwa $DAWA 0 -1

s DAWADELne $DAWA 0 -1

 154

s NEUser 0 0 -1

a NEUser $NErate

z NEUser RCV_NE_AT $NEATP 0 -1

z NEUser RCV_NE_WA $NEWAP 0 -1

z NEUser RCV_NE_DA $NEDAP 0 -1

z NEUser RCV_NE_CH $NECHP 0 -1

s RCV_NE_AT $RCVp1 $RCVp2 -1

s RCV_NE_WA $RCVp1 $RCVp2 -1

s RCV_NE_DA $RCVp1 $RCVp2 -1

s RCV_NE_CH $RCVp1 $RCVp2 -1

y RCV_NE_AT SW_NE_AT 1 0 -1

y RCV_NE_WA SW_NE_WA 1 0 -1

y RCV_NE_DA SW_NE_DA 1 0 -1

y RCV_NE_CH SW_NE_CH 1 0 -1

s CHNE_NE_SE $RCVp1 $RCVp2 -1

y CHNE_NE_SE SW_NE_SE 1 0 -1

s WANE_NE_SE $RCVp1 $RCVp2 -1

y WANE_NE_SE SW_NE_SE 1 0 -1

s SW_NE_AT $NESWIp1 $NESWIp2 -1

s SW_NE_WA $NESWIp1 $NESWIp2 -1

s SW_NE_DA $NESWIp1 $NESWIp2 -1

s SW_NE_CH $NESWIp1 $NESWIp2 -1

s SW_NE_SE $NESWIp1 $NESWIp2 -1

s D_NE_SINK $SNKp1 $SNKp2 -1

z SW_NE_SE D_NE_SINK 1 0 -1

s SEND_NE_CH $SNDp1 $SNDp2 -1

 155

z SW_NE_CH SEND_NE_CH 1 0 -1

y SEND_NE_CH NECHDELch 1 0 -1

z NECHDELch NECH_CH_SE 1 0 -1

s SEND_NE_WA $SNDp1 $SNDp2 -1

s SEND_NE_AT $SNDp1 $SNDp2 -1

s SEND_NE_DA $SNDp1 $SNDp2 -1

z SW_NE_WA SEND_NE_WA 1 0 -1

y SEND_NE_WA NEWADELwa 1 0 -1

z NEWADELwa NEWA_WA_SE 1 0 -1

z SW_NE_AT SEND_NE_AT 1 0 -1

y SEND_NE_AT NEWADELat 1 0 -1

z NEWADELat NEWA_WA_AT 1 0 -1

z SW_NE_DA SEND_NE_DA 1 0 -1

y SEND_NE_DA NEWADELda 1 0 -1

z NEWADELda NEWA_WA_DA 1 0 -1

s NECHDELch $CHNY 0 -1

s NEWADELwa $NYWA 0 -1

s NEWADELat $NYWA 0 -1

s NEWADELda $NYWA 0 -1

s WAUser 0 0 -1

a WAUser $WArate

z WAUser RCV_WA_NE $WANEP 0 -1

z WAUser RCV_WA_AT $WAATP 0 -1

z WAUser RCV_WA_DA $WADAP 0 -1

z WAUser RCV_WA_CH $WACHP 0 -1

s RCV_WA_NE $RCVp1 $RCVp2 -1

s RCV_WA_AT $RCVp1 $RCVp2 -1

s RCV_WA_DA $RCVp1 $RCVp2 -1

s RCV_WA_CH $RCVp1 $RCVp2 -1

y RCV_WA_NE SW_WA_NE 1 0 -1

y RCV_WA_AT SW_WA_AT 1 0 -1

y RCV_WA_DA SW_WA_DA 1 0 -1

y RCV_WA_CH SW_WA_CH 1 0 -1

 156

s ATWA_WA_CH $RCVp1 $RCVp2 -1

s ATWA_WA_SE $RCVp1 $RCVp2 -1

s ATWA_WA_NE $RCVp1 $RCVp2 -1

y ATWA_WA_CH SW_WA_CH 1 0 -1

y ATWA_WA_SE SW_WA_SE 1 0 -1

y ATWA_WA_NE SW_WA_NE 1 0 -1

s CHWA_WA_SE $RCVp1 $RCVp2 -1

s CHWA_WA_AT $RCVp1 $RCVp2 -1

y CHWA_WA_SE SW_WA_SE 1 0 -1

y CHWA_WA_AT SW_WA_AT 1 0 -1

s DAWA_WA_SE $RCVp1 $RCVp2 -1

s DAWA_WA_NE $RCVp1 $RCVp2 -1

y DAWA_WA_SE SW_WA_SE 1 0 -1

y DAWA_WA_NE SW_WA_NE 1 0 -1

s NEWA_WA_SE $RCVp1 $RCVp2 -1

s NEWA_WA_AT $RCVp1 $RCVp2 -1

s NEWA_WA_DA $RCVp1 $RCVp2 -1

y NEWA_WA_SE SW_WA_SE 1 0 -1

y NEWA_WA_AT SW_WA_AT 1 0 -1

y NEWA_WA_DA SW_WA_DA 1 0 -1

s SW_WA_NE $WASWIp1 $WASWIp2 -1

s SW_WA_AT $WASWIp1 $WASWIp2 -1

s SW_WA_DA $WASWIp1 $WASWIp2 -1

s SW_WA_CH $WASWIp1 $WASWIp2 -1

s SW_WA_SE $WASWIp1 $WASWIp2 -1

s D_WA_SINK $SNKp1 $SNKp2 -1

 157

z SW_WA_SE D_WA_SINK 1 0 -1

s SEND_WA_AT $SNDp1 $SNDp2 -1

z SW_WA_AT SEND_WA_AT 1 0 -1

y SEND_WA_AT WAATDELat 1 0 -1

z WAATDELat WAAT_AT_SE 1 0 -1

s SEND_WA_CH $SNDp1 $SNDp2 -1

z SW_WA_CH SEND_WA_CH 1 0 -1

y SEND_WA_CH WACHDELch 1 0 -1

z WACHDELch WACH_CH_SE 1 0 -1

s SEND_WA_DA $SNDp1 $SNDp2 -1

z SW_WA_DA SEND_WA_DA 1 0 -1

y SEND_WA_DA WADADELda 1 0 -1

z WADADELda WADA_DA_SE 1 0 -1

s SEND_WA_NE $SNDp1 $SNDp2 -1

z SW_WA_NE SEND_WA_NE 1 0 -1

y SEND_WA_NE WANEDELne 1 0 -1

z WANEDELne WANE_NE_SE 1 0 -1

s WAATDELat $ATWA 0 -1

s WACHDELch $CHWA 0 -1

s WADADELda $DAWA 0 -1

s WANEDELne $NYWA 0 -1

-1

#Define the report in LQN model for SPEX.

R 0

$0=$factor1

$ATU = $ATRCVU0 + $ATRCVU1 + $ATRCVU2 + $ATSNDU0 + $ATSNDU1 + $ATSNKU0 + $ATSWIU0

$CHU = $CHRCVU0 + $CHRCVU1 + $CHRCVU2 + $CHRCVU3 + $CHSNDU0 + $CHSNDU1 + $CHSNDU2

+ $CHSNKU0 + $CHSWIU0

$DAU = $DARCVU0 + $DARCVU1 + $DARCVU2 + $DARCVU3 + $DASNDU0 + $DASNDU1 + $DASNDU2

+ $DASNKU0 + $DASWIU0

$NEU = $NERCVU0 + $NERCVU1 + $NERCVU2 + $NESNDU0 + $NESNDU1 + $NESNKU0 + $NESWIU0

 158

$WAU = $WARCVU0 + $WARCVU1 + $WARCVU2 + $WARCVU3 + $WARCVU4 + $WASNDU0 + $WASNDU1

+ $WASNDU2 + $WASNDU3 + $WASNKU0 + $WASWIU0

$ATThr0

$CHThr0

$DAThr0

$NEThr0

$WAThr0

$ATRU

$CHRU

$DARU

$NERU

$WARU

-1

