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 I 

Abstract 

 

 

It is important to understand performance aspects of  a computer system from the software 

architecture and its configurations. For a system that has various possible configurations, the 

performance analysis will become difficult. This thesis describes a compositional 

model-building approach which is useful when there are many possible configurations. This 

approach is based on assembling the sub models and is demonstrated in a network software 

router, CGNet. 

 

In addition, the derivation of  parameters must be well addressed for performance modeling. 

The measurements and parameter estimation techniques can be deployed in completing the 

performance model. We apply these approaches and techniques to discussing the real 

problems we encountered in parameterizing the performance model.  

 

The converter tool, which automates the compositional model-building approach, has been 

developed for CGNet. This tool is a solution to bridging the gap between the network 

configurations and the performance analysis. It is a configuration-based model-building tool 

for CGNet. With the tool, we can generate the performance model from configurations. 



 II 

Acknowledgements 

 

 I would like to thank my co-supervisor, Dr. C. Murray Woodside, for his guidance and 

advice throughout my study in Master program, especially during the research for this thesis. 

I would also like to thank my co-supervisor, Dr. Chung-Horng, Lung, for his guidance and 

suggestions throughout this research. Their seasoned guidance, consistent support, wise 

advice, and numerous encouragements have been integral to the success of  this research. 

Here I would like to say, “ thank you very much” to express my deepest gratitude. 

 

 I would like to thank all my friends for everything. You have provided assistance for me 

from study and life when I need it. I would also like to thank the members of RADS Lab for 

creating a wonderful working environment and for their support. The financial assistance 

from Carleton University is greatly appreciated. 

 

Finally, special appreciation goes to my family. Their support, understanding and love 

are never stopped since I was born. I am proud of you and thank you. 

 

 



 III 

Table of Contents 

 

Abstract                                               I 

Acknowledgement                                       II 

Table of Contents                                      III 

List of  Figures                                         IX 

List of  Tables                                          XI 

List of  Symbols                                       XII 

 

Chapter 1 Introduction                                    1 

1.1 The Purpose of Performance Modeling                        1 

1.2 Challenges of Performance Modeling                          2 

1.3 Objectives of This Thesis                                   3 

1.4 Overview of Thesis Work                                   4 

1.5 Thesis Contributions                                       6 

1.6 Thesis Outline                                           7 

 

Chapter 2 Background                                    8 

2.1 Traffic Engineering                                        8 

2.2 Software Performance Engineering                            9 

  2.2.1 SPE Model Procedure                                11 



 IV 

  2.2.2 Performance Modeling                               11 

  2.2.3 Performance Data Collection                          12 

2.3 Use Case Map                                           13 

2.4 Layered Queuing Network Model (LQN)                      17 

  2.4.1 LQN Notation                                     17 

  2.4.2 LQN Tools                                        21 

2.5 Displacement Technique for Measurement                     22 

  2.5.1 Background                                        22 

  2.5.2 Displacement Technique Implementation                 23 

  2.5.3 Discussion                                         25 

 

Chapter 3 Description of CGNet                            26 

3.1 Overview of CGNet                                      26 

3.2 CGNet Configuration                                     29 

3.3 Description of the Software Architecture                      30 

3.4 A CGNet Experiment                                     32 

  3.4.1 Definition of  the Operational Network by CGNet          32 

  3.4.2 Execution of  CGNet                                 33 

  3.4.3 CGNet Output                                     35 



 V 

 

Chapter 4 Constructing a Performance Model for CGNet          36 

4.1 Network Description                                      36 

4.2 Determining Scenarios for Data Traffic across the Network        38 

4.3 Determining Detailed Scenarios in a Node                     41 

4.4 Mapping Scenarios to Node-Path Sub Models                  42 

  4.4.1 Mapping Scenarios to Template Node-Path Sub Models      43 

  4.4.2 Substituting Template Node-Path Sub Models for Atlanta    49 

4.5 Assembling Node-Path Sub Models for a Node                 55 

4.6 Composing Node Sub Models into System Model                58 

4.7 Generality of  Compositional Strategy for Building Models         61 

 

Chapter 5 Data Collection and Measurement                   63 

5.1 Experiment Setup for Measurement                          63 

5.2 Data Collection                                          64 

5.3 Measurement                                           67 

  5.3.1 Motivation                                         67 

  5.3.2 Measurement with Displacement Technique               69 

5.4 Parameter Estimation                                     71 



 VI 

5.5 CPU Cost for a Simple Four-Node Configuration                73 

5.6 Obtaining the Parameters for the Five-Node Configuration        77 

 

Chapter 6 Solving and Validating the Performance Model          82 

6.1 Description of  Experiments for Validation                     82 

6.2 Validation of  the model                                   83 

  6.2.1 Utilization Validation                                 83 

  6.2.2 Throughput Validation                               87 

  6.2.3 Packet Loss Validation                                91 

6.3 Discussion                                             97 

 

Chapter 7 Converter Tool                                 98 

7.1 Overview of  Converter Tool                                98 

7.2 Algorithm of  Converter Tool in Information Collection           99 

  7.2.1 Initialize the Converter Tool                          101 

  7.2.2 Get Node Information from nodeinfo                    101 

  7.2.3 Get Generator Information from generatorinfo             102 

7.2.4 Get Sink Information from sinkinfo                     103 

7.2.5 Get Link Information from linkinfo                     103 



 VII 

7.2.6 Build Routing Table for Each Node                    104 

7.2.7 Add Entries to the Task from Routing Table              105 

7.3 Algorithm of  Converter Tool in Model Output                 106 

7.3.1 Output the Initial Information                         106 

7.3.2 Output the Processor Information                      107 

7.3.3 Output the Task Information                          107 

7.3.4 Output the Entry Information                         108 

7.3.5 Output the Report Information                        108 

7.4 Validation of  the Converter Tool                           109 

  7.4.1 The Linear Unidirectional Configuration Example         110 

  7.4.2 The Linear Bidirectional Configuration Example           111 

  7.4.3 The Five-Node Configuration Example                  114 

 

Chapter 8 Conclusions                                  115 

8.1 Summary                                              115 

8.2 Conclusions                                           117 

8.3 Suggestions for Performance Purpose                        117 

8.4 Contributions                                          119 

8.5 Limitations                                            119 

8.6 Future Work                                           120 



 VIII

References                                           121 

 

Appendix A BNF Description of  Naming Notation of  LQN          126 

Appendix B Code of  compulmt Process                            129 

Appendix C LQN Model Constructed by Hand                     131 

Appendix D LQN Model Generated by Tool                       144 



 IX 

List of  Figures 

 

Figure 1.1 Main components of  the traffic-engineering framework                   6 

Figure 2.1 Basic notation and a simple example of  Use Case Map                   14 

Figure 2.2 An example of  UCM with forking and joining for the upgrading transaction  16 

Figure 2.3 The LQN notation in terms of task, entry and host processor              17 

Figure 2.4 Calls for service requests in LQN models                             18 

Figure 2.5 Time lines of  LQN models synchronous, asynchronous, and forwarding calls 19 

Figure 2.6 A typical example of  an LQN model for the database upgrading transaction   20 

Figure 2.7 The procedure of  “Displacement” technique implementation              24 

Figure. 3.1 A typical network that can be modeled by CGNet                      27 

Figure 3.2 High-level architecture of  the node                                  30 

Figure 4.1 Topology of  an example network model by CGNet                     37 

Figure 4.2 Path view of  a packet going from a generator to a traffic sink              38 

Figure 4.3 High level of  UCMs for packet class (CH, AT) through Network           40 

Figure 4.4 Use Case Maps of  packets going through one node in CGNet             42 

Figure 4.5 Handling of  Packet Class (XX, ZZ) in node XX with the downstream router YY 45 

Figure 4.6 Handling of  Packet Class (XX, ZZ) in node ZZ with the upstream router YY  46 

Figure 4.7 Handling of  Packet Class (XX, ZZ) in node YY with the upstream router XX and 

the downstream router ZZ                                         47 

Figure 4.8 The node-path sub model for packet class (XX, AT) at node AT with the upstream 

router DA                                                     52 

Figure 4.9 The node-path sub model for packet class (XX, AT) at node AT with upstream 

router WA                                                    53 

Figure 4.10 The node-path sub models for packet Classes from local generator in Atlanta 54 

Figure 4.11 The structure of  the node sub model for Atlanta                       57 

Figure 4.12 The components for the high-level sub model                         58 



 X 

Figure 4.13 The labeled high-level sub model for node Atlanta                     59 

Figure 4.14 A High-level performance model for the network                      60 

Figure 5.1 Node sub model for node Atlanta with parameters                      66 

Figure 5.2 An example script of  executing the compulmt process and node executable     70 

Figure 5.3 Simple four-node configuration of  CGNet                            73 

Figure 6.1 Comparison between predicted and measured utilization for each node       87 

Figure 6.2 Comparison between predicted and measured throughput for each node     90 

Figure 7.1 An approach of  building the LQN model from the configuration of  network  99 

Figure 7.2 The LQN model generated by the converter tool from the linear unidirectional 

configuration                                                 111 

Figure 7.3 Linear Bidirectional Configuration of  CGNet with four nodes            112 

Figure 7.4 The LQN model generated by the converter tool from the linear bidirectional 

configuration                                                 113 

 

 

 

 



 XI 

 

List of  Tables 
 

Table 3.1 CGNet components and their attributes                                         28 

Table 3.2 Configuration files for establishing CGNet                                      29 

Table 4.1 Routing tables for part of  nodes in the network                         50 

Table 5.1 Definition of  generator gAT in CGNet                               64 

Table 5.2 Definition of  links AT-DA and AT-WA                               64 

Table 5.3 The comparison of  CPU time from two profilers for one case              68 

Table 5.4 Collection of  sample data for four-node configuration                   75 

Table 5.5 output for all cases for four-node configuration                         75 

Table 5.6 output for light workload for four-node configuration                    76 

Table 5.7 output for heavy workload for four-node configuration                   76 

Table 5.8 Collection of  sample data for five-node configuration                     79 

Table 5.9 output for all cases for five-node configuration                          79 

Table 5.10 output for light workload for four-node configuration                   80 

Table 5.11 output for heavy workload for five-node configuration                   80 

Table 6.1 Statistics of  a node for packets sent and loss                            92 

Table 6.2 Comparison for total received and total sinked and lost packets for each case   93 

Table 6.3 Receiving loss of  each node from the local generator                     96 



 XII 

 

List of  Symbols 

 

Symbols Description 

P
M
 The process whose CPU time is calibrated  

P
I
 The CPU-intensive process 

L
I
 A given number of loops for P

I
 

T
I 
 The execution time of P

I
 

T
M
 The CPU time taken by the process P

M
 

  

Node All routers in an operational network 

OutLinks(XX) All bidirectional links connected to node XX 

Neighbor(XX) All nodes connected to node XX through links in OutLinks(XX) 

G(XX) All elements outside Node that can send the data traffic to node XX 

gXX The merged generator connected to node XX 

XXr  The speed of  the generator gXX 

Destination(XX) All the destination nodes that the generator gXX sends data traffic to 

ZZXXP ,  The proportion of  data traffic for destination ZZ from generator 

gXX 

ZZXXr ,  The speed of  data traffic for destination ZZ from generator gXX 

S(XX) All elements outside Node that can receive the data traffic from 

node XX 

sXX The merged traffic sink connected to node XX 



 XIII

XX-YY The link between node XX and node YY 

Speed(XX-YY) The speed of  link XX-YY 

Cost(XX-YY) The cost of  link XX-YY 

  

XXT  The execution time of  node XX executable 

RGn  Number of  packets received from generator during XXT  

RNn  Number of  packets received from Neighbor(XX) during XXT  

Rn  Number of  packets received and switched during XXT  

SDn  Number of  packets sent to Neighbor(XX) during XXT  

SKn  Number of  packets sent to the traffic sink during XXT  

Sn  Number of  packets sent to the traffic sink and Neighbor(XX) 

during XXT  

Ln  Number of  packets lost in XX during XXT  

GSn  the number of  the packets the local generator has sent 

  

(XX, ZZ) Packet class for packets that are originated from router XX and 

destined to router ZZ 

Path(XX,ZZ) The sequence of  routers along path for packet class (XX, ZZ) 

ForwardR(XX, ZZ) all intermediate routers between XX and ZZ along the path for 

packet class(XX,ZZ) 



 XIV

source router The router which packet class (XX, ZZ) is originated from 

destination router The router which packet class (XX, ZZ) is destined to 

forwarding router The intermediate router between source router and destination router 

along path for packet class (XX,ZZ) 

upstream router The router which sends packet class (XX,ZZ) to the immediate 

next-hop router 

downstream router The router which receives packet class (XX,ZZ) from upstream router 

  

<link_name, packetclass_name [,packetclass_name]> 

 The label of  the interface in the node sub model for link 

<gAA, AAUser> The label of  the interface in the node AA sub model for generator 

  

YYXXd −  The network delay for packet with size 85 bytes through link XX-YY 

T
C
 The execution time of  the compulmt process 

TP The total CPU time for node process 

Ra  CPU time per packet received 

SWa  CPU time per packet switched to outgoing queue 

SDa  CPU time per packet sent to outgoing socket for next hop 

SKa  CPU time per packet sent to outgoing socket for traffic sink 

RSWa  CPU time per packet received and switched to outgoing queue 

Pa  CPU time per packet received, switched and sent to outgoing socket 



 XV

multiplier A multiplier to vary the rates of  all generators in CGNet  

  

N Nodes in the converter tool 

G Generator in the converter tool 

L Links in the converter tool 

S Traffic sinks in the converter tool 

P Host processors in the converter tool 

RT Routing tables for all nodes in the converter tool 

Usr User task of  LQN model in the converter tool 

Rcv Receiving task of  LQN model in the converter tool 

Swi Switching task of  LQN model in the converter tool 

Snd Send task of  LQN model in the converter tool 

Snk Sink task of  LQN model in the converter tool 

Net Network delay task of  LQN model in the converter tool 

RE Routing table entry in the converter tool 

 



 1

Chapter 1 Introduction 

 

This chapter briefly describes the thesis research. Section 1.1 introduces the purpose of  

performance modeling. Section 1.2 discusses the challenges of  performance modeling. 

Section 1.3 presents the objectives of  the thesis. Section 1.4 shows the overview of  the 

thesis. Section 1.5 summarizes the contributions of  thesis. Section 1.6 lists the outline of  

thesis.  

 

1.1 The Purpose of  Performance Modeling 

 

Designing a computer system, or configuring it after implementation to meet certain 

performance criteria is a significant problem. In most cases developers and designers tend to 

ignore performance issues in order to meet tight deadlines and aggressive schedules. This 

may lead to catastrophic results after the application is used in a performance critical 

environment. It may cost a substantial amount of  time and money to identify and correct 

the performance problems. 

 

Depending on measurement data alone is not fully effective in ensuring that the computer 

system will meet performance expectations. It only offers a snap shot of  the computer 

system, and expresses the performance factors exactly for that specific situation.  

 

Performance modeling is a good alternative to ensure that the software architecture will meet 

the performance objective. The performance model is essential to identify serious 

performance problems at the architectural and early design stages of the life cycle in software 

engineering. Performance modeling in the early stage of software design life cycle can not 

only reduce the risk of performance-related failures by giving early warnings to potential 

performance problems, but also avoid the snowball effect of performance problems.  
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Performance models can provide performance predictions under varying environmental 

conditions or design alternatives, and these conditions can be used to help detect problems. 

Performance analysis addresses the sensitivity of the performance in utilization, repetition 

and synchronization, which allows us to rapidly explore alternatives to correct the problems 

before they could arise in the system. Performance analysis offers the feedback on 

performance aspect, which gives us more insight into the system we are building.  

 

1.2 Challenges of  Performance Modeling 

 

Innovations in software not only push software engineering to a higher level, but also call for 

careful attentions to the performance. An object-oriented approach as a new technology in 

software engineering presents a special problem for software performance engineering. 

Performing a given function in object-oriented methods is likely to require the collaborations 

among many different objects from several classes. The interactions can be numerous and 

complex and often obscured by polymorphism, making the interactions difficult to trace. 

Distributed systems challenge the performance intuition. Constructing distributed systems 

involves a complex combination of choices about processing and data location, platform 

size, network configuration, middleware implementation, etc. How to construct a 

performance model for an object-oriented distributed software system has been important in 

model-oriented software performance engineering area since the mainstream use of Web 

applications, Common Object Request Broker Architecture (CORBA), and Enterprise 

JavaBeans. 

 

Once we convert the behaviors and constraints of the computer system into an appropriate 

performance model format such as a simulation model, a queueing network model, or a 

Petri-net model, the actual demand parameters in terms of execution times and frequency of 
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their execution should be estimated, measured and inserted. The hardest part of software 

performance engineering is getting the data you need for the performance model. Final 

performance prediction results are sensitive to budgeted parameters so much that the answer 

to how to get the parameters for the model is the first factor to make the model-oriented 

approach trustworthy. 

 

Many tools based on queueing networks or stochastic Petri nets and extensions make it easy 

to derive the performance prediction with a parameterized performance model. We can 

obtain the quantitative characteristics of a computer system from the performance 

prediction as well as tell where the problems came from. The real objective of the 

performance model is to offer suggestions and practical solutions that software designers 

and user are concerned the most. 

 

1.3 Objectives of This Thesis 

 

This thesis discusses how to create a quantitative model for an object-oriented and 

distributed application in the Internet, and describes how to integrate a performance model 

seamlessly into Internet traffic engineering. The research focuses on the three problems 

mentioned in the section 1.2: 1) the compositional approach to building performance model 

for the object-oriented distributed application system; 2) the measurement for the 

parameters and validation of models for the communication system; 3) the suggestion and 

solution for the application system. Instead of designing a case study for the explanation of 

pure academic theory, we have chosen one practical system to propose the solutions of 

scalability from the performance perspective of the system. 

 

To mitigate the complexity to build the performance model for a complex system, a 

compositional approach is proposed for constructing the model in the thesis. The approach 
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is based on assembling sub-models for different operations in the sub systems. We begin to 

study the system by use cases and scenarios at any phase of the development process. We 

can review software descriptions such as requirement specifications, design documents, and 

source code implementation to understand the scenarios. We build the structure of the sub-

models corresponding to scenarios or scenario fragments, which can be assembled into a 

large complex model. 

 

To obtain the parameters characteristics of the performance model, we use the 

“Displacement” technique for robust measurement. The measurement can also be used to 

verify and validate the models, and monitor the computer system. The computer system can 

be so complicated that it requires the estimation techniques to achieve parameters for the 

performance model.  

 

We can quantify the performance of the software system’s architecture and design by solving 

the SPE models, and identify whether any performance problems may exist. If any problems 

exist, the system with proposed suggestions and design alternatives could be re-modeled, re-

parameterized and re-solved until the system meets the performance objectives. 

 

1.4 Overview of Thesis Work  

 

The thesis involves two main different research areas: Software Performance Engineering 

and Traffic Engineering for network communication. We can derive traffic characteristics of  

the operational network system through measurement and prediction within the realm of  

performance evaluation.  

 

Internet routers, the most active elements of  the whole network, perform packet-processing 

tasks at high rates by dividing the work into hardware and software. To increase the 
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performance of  both large and small routers, it is important to understand performance 

aspects of  the protocols, the hardware, and also of  the software designs. Performance of  an 

operational network is the outcome of  the behaviour of  each router, of  the interactions 

between routers, and the behaviour of  the network. CGNet is a prototype software router 

of  modest scale that was developed to study the interaction of  all of  these factors. CGNet is 

an emulation of  an entire network that can run in the lab on one PC or on a network. A 

typical network can be modeled by CGNet and all elements in the network can be presented 

as components in CGNet. 

 

In the research we investigate CGNet and predict the performance of  the overall network in 

terms of  throughput, packet loss, and utilization of  the router. This objective is achieved by 

using the Layered Queueing Network (LQN) model. LQN is an extended queueing network 

model that specifies the calls between entries so that the layered requests for service and the 

layered contention delays in the path are represented in a simple canonical way. In a layered 

queueing network, a software process (thread) is represented as an entry in the task can act 

as both clients and servers to the other processes. The layered queueing network model has 

the same parameters as the queueing network model such as the average number of  visits, 

the average service time at the device, and their scheduling disciplines. Analytic modeling 

techniques based on approximate mean value analysis are used to provide performance 

estimates for the behavior of  the system being studied. 

 

In this research, a performance model of  CGNet was created and evaluated, to see if  the 

model can be used to supplement emulation and to see if  the model gives the same 

predictions. A layered queueing network was used to capture the effect of  contention for 

software thread resources and threading levels. The model can estimate the performance 

characteristics such as throughput, utilizations of  threads, buffers, and packet losses. 

However, some difficulties in the measurements leave some questions unanswered about 
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models for arbitrary network configurations. 

 

A traffic-engineering framework is proposed in this thesis, which involves three main 

components: 1) CGNet model, 2) LQN model, 3) Performance predicted, as illustrated in 

Figure 1. The framework consists of  three main steps. First, we choose an operational 

network we are concerned about and model the overall network by CGNet. Second, we 

construct an LQN model of  CGNet by hand or automatically generate it by a tool I 

developed. Third, we can use the solver of  the LQN model, lqns, parasrvn, and spex to solve 

the model and obtain the predicted performance of  the overall network. After that, we can 

propose the solutions of  an operational network for reconfiguration and scalability 

according to the performance characteristics of  a communication system predicted by the 

model. 

 

Studied Operational

Network

CGNet Model

Platform

Unix & Linux

Topology & Configuration

link & cost

Traffic demands

load

LQN Model

Performance predicted

Measure
Define

manual

or tools

solver

control

control

 

 

Figure 1.1 Main components of  the traffic-engineering framework 

 

1.5 Thesis Contributions 

 

There are several contributions of this research, which are as follows: 
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�� The compositional model building approach based on assembling the sub-models 

for different network operations at each node is proposed in the thesis. The sub-

model corresponds to standard scenario fragments, which can be assembled to a 

large complex model. (See chapter 4) 

�� Performance parameters for the CGNet prototype were determined by 

measurements and estimations in which we make use of the “Displacement” 

technique and the least square estimation technique. Some discoveries on thread 

switching overhead and limitations of LQN solvers were derived from the 

observations in the research.  (See chapter 5 and chapter 6) 

�� The converter tool has been developed in the thesis that can automate the 

compositional approach and bridge between the configuration and the LQN 

performance model. (See chapter 7) 

 

1.6 Thesis Outline 

 

The rest of  the thesis is organized as follows. Chapter 2 presents the background of  topic in 

the thesis such as traffic engineering, software performance engineering, Use Case Maps 

(UCM),  “Displacement” technique. Chapter 3 introduces CGNet and its components, 

which emulate the elements in a network, as well as the configuration and the execution of  

CGNet. Chapter 4 describes the compositional model building approach based on 

assembling the sub models. The sub models corresponds to scenarios or scenario fragments. 

Chapter 5 shows the measurement and parameter estimation for the parameter purpose. It 

also discusses the observations in the derivation of  parameter. Chapter 6 validates the model 

in the three aspects: throughput, packet loss, and utilization of  host processor. Chapter 7 

offers the converter tool to translate from the configuration to the LQN model and 

presented the algorithm of  the converter tool. Finally Chapter 8 draws the conclusion and 

contains suggestions for the performance purpose.  
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Chapter 2 Background  

 

This chapter provides the general background of  the research presented in this thesis. Traffic 

engineering and software performance engineering (SPE) are the basic background of  

research. Section 2.1 briefly reviews traffic engineering. Section 2.2 introduces (SPE). Section 

2.3 presents Use Case Maps (UCMs). Section 2.4 shows the Layered Queueing Network 

(LQN) model. Thus we can understand the basic notations of  UCMs and the LQN model. 

At last section 2.5 describes the “Displacement” technique for measurement. 

 

2.1 Traffic Engineering 

 

“The aspect of  Internet network engineering which deals with the issue of  performance 

evaluation and performance optimization of  operational IP networks” is referred to as 

Internet traffic engineering in the IETF [Awduche02]. An important objective of  Internet 

Traffic Engineering is to enhance the performance of  an operational network at both traffic 

and resource levels. It addresses the problems of  allocating resource efficiently and reliably 

in the network so that user constraints are met and operator benefit is maximized. 

 

The major challenge of Internet traffic engineering is network performance evaluation, 

which is important for assessing the effectiveness of traffic engineering methods, and for 

monitoring and verifying compliance with network performance goals. Results from 

performance evaluation can be used to identify existing problems, guide network re-

optimization, and aid in the prediction of potential future problems. 

 

Performance evaluation of a network can be derived in many different ways. The most 

typical techniques are analytical methods, simulation, and empirical methods based on 

measurements. When we use analytical methods or simulation, we should capture the 
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operational characteristics of the network elements in the constructed models. These 

characteristics include topology of the network, bandwidth of links, buffer size in nodes, 

flow rate from outside.  

 

It is quite complicated to evaluate the performance of the operational network contexts. A 

number of techniques such as abstraction, decomposition, and approximation can be used to 

simplify the analysis. Queueing models and approximation schemes based on asymptotic and 

decomposition techniques can be widely used in the network analysis. For example network 

calculus [Cruz91] is a mathematical approach to model network behavior. It may simplify 

network analysis relative to classical stochastic techniques. When we use analytical 

techniques, we should make sure that the models faithfully reflect the relevant operational 

characteristics of the modeled network elements for precision purpose. Simulation can be 

used to evaluate network performance with computation or to verify analytical 

approximations. But simulation can be computationally costly compared to analytical 

methods. Empirical methods are also used in the performance evaluation. For instance, the 

probe packets are used in MATE [Elwalid01] so that the node can compute the statistics.  

 

An appropriate approach to a given network performance evaluation problem may involve a 

hybrid combination of analytical techniques, simulation, and empirical methods. 

 

 

2.2 Software Performance Engineering 

 

Software Performance Engineering (SPE), an engineering approach to performance, is 

defined in the book [Smith02] as “a systematic, quantitative approach to constructing 

software systems that meet performance objectives.” SPE is a software-oriented approach 

and it focuses on architecture, design, and implementation alternatives of the proposed 
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software. We can evaluate the performance characteristics of architecture and design 

alternatives and select them for the objectives of software performance in responsiveness 

and scalability. SPE includes the model-based approach to performance prediction as well as 

techniques for data collection, management of uncertainties, model validation, and 

performance solution. 

 

Model prediction is a good choice and modeling methodology is the core to SPE. We can 

build and analyze the models of proposed software. We can then explore its performance 

characteristics to determine if it will meet its requirements. Model prediction is widely 

accepted and we hail that model prediction makes it possible to prevent performance 

problems from surfacing late in the life cycle of the software development process. But as 

systems grow more complex, parameters and related measurements for the performance 

model present more challenges in SPE than before. Once we have the parameters and solve 

the model, we can quantify the performance of  the software’s architecture and design. We 

can determine whether it is to meet performance objectives or not. If  it does not meet the 

objective, the performance characteristics may indicate where problems are and why they 

could happen. Performance improvement and solution is the final objective of  SPE. We can 

deploy performance solutions by applying performance principles, patterns, anti patterns, 

and tuning [Smith02]. Therefore, software performance engineering is a combination of 

three main steps: 

1. Performance modeling 

2. Performance measurement 

3. Performance solution 

 

In the following subsections, the SPE model procedure is outlined first, and performance 

modeling and data collection are described. 
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2.2.1 SPE Model Procedure 

 

Connie Smith proposed the perform methodology in the book [Smith90] which can be used 

in analyzing the performance of a system. It is outlined as follows: 

1. Capture performance requirements and understand the system functions. 

2. Understand the architecture of the system and develop a performance model. 

3. Capture the processing steps and define software execution characteristics. 

4. Estimate resource usage and insert them as model parameters. 

5. Solve the model and analyze the results and make design suggestions. 

 

The methodology is widely used as SPE approach in the computer system and you can make 

some revisions for your specific case study. It can be deployed in any stage of  software 

development processing if  only can you construct models which can indicate the 

characteristics of  a computer system, and obtain the reasonable parameters of  the model. 

You repeat the procedures and derive feedback from performance analysis so that you can 

adjust your design for performance purposes. After you have modeled a number of  design 

alternatives, you can tell some of  them own good performance characteristics and others do 

not. Then you can determine which one is the final software plan. 

 

2.2.2 Performance Modeling 

 

The goal of  SPE and model-based approach is to reduce the risk of  performance failures. 

People [Smith99] notice the benefit of  “the earlier, the better” principle in the development 

stages. But we cannot deny the fact that our knowledge of  the software design processing 

and implementation details are sketchy in the early phases of  software development. The 

insufficiency of  knowledge for the proposed software drives us to learn more from the 

concept of  system, requirement specification and the design descriptions if  possible.  
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Software execution models such as execution graphs can not only help us understand the 

processing steps of  the system, but also identify serious performance problems at the 

architectural and early design phases. Class diagrams, deployment diagrams, sequence and 

collaboration diagrams in UML [Gomaa01] support execution graphs and software 

execution models well. As we know more completely about the software’s design and 

implementation details, we can refine the software execution model in the critical parts. The 

results of  the software execution model is needed as input parameters for the system 

execution model, which capture the software performance characteristics of  system with 

contention for system resource among workloads and multiple users. 

 

The system execution model is a dynamic model and it characterizes the software’s 

performance accounting for the contention effects. The system execution model is 

represented as a network of  queues and servers, where a queue represents jobs waiting for 

service, and a server represents a component providing service. Performance evaluation 

tools [Bolch98] have been invented and they have contributed significantly to the design of  

complex computer systems and networks. They can be categorized into two sets: one is 

based on queueing networks such as LQN [Woodside95A], QNAP2 [Veran85]; and the 

other is based on stochastic Petri nets and extensions, for instance, SPNP [Ciardo89]. In 

most cases they all provide analytic/numerical methods as well as a simulation-base solution.  

 

2.2.3 Performance Data Collection 

 

When we construct the performance model, we need the necessary data to solve the 

software performance model. We can conduct performance walkthroughs [Smith02] by 

bringing together the people who can help us understand the workload intensity, the 

execution environment, and their interaction with the software. Expert judgement and 
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experience [Smith99] play important roles in the performance walkthroughs. The precision 

of  model results depends on the fidelity of  the estimates. The verification and validation of  

the estimates is important for the precise prediction. Resource requirements are difficult to 

estimate and gather in our initial SPE studies. In some cases we employ the mathematical 

formula or model to calculate the value we expect to obtain if  the specification is inadequate. 

 

Performance measurements [Jain91] also provide the input data for SPE model if  the 

prototypes or implementations are available. Lots of  profiling and kernel instrumentation 

tools are available with programming language specifications such as gprof [Graham82], or 

paradyn tool [Miller95]. Although these tools are well defined and widespread, they have 

difficulties in the complicated cases with many communication operations. Sometimes you 

are required to write your own specific measurement program for your application. It is very 

difficult to plan research that will provide the general solution and overcome the difficulties 

in the performance measurements. 

 

2.3 Use Case Map  

 

The Use Case Map (UCM) model is a high-level design model to help a user express and 

reason about a system’s large-grained behaviour, which was contributed by R. J. A. Buhr. 

UCMs [Buhr96] are defined as causal scenarios, architectural entities or behavior patterns. 

UCMs are a visual notation for use cases [Jacobson92] with extension of a high level of 

abstraction. UCMs express behaviour along the paths by sets of responsibilities. The trace of 

a set of responsibilities along a path can be referred to a scenario. The scenarios enable a 

user to grasp the behaviour of the system without getting lost in execution details. Therefore 

Use Case Maps can be the basis of a performance model because both of them can capture 

the specification of systems. There is a difference between them: the former unfolds the 

scenarios to easy understandings of the system but the latter captures the behaviour with 
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quantity characteristics. This will be considered in chapter 4. 

 

A UCM map is a collection of elements that describe one or more scenarios unfolding 

through a system. The basic elements [Buhr96] in UCM are paths, responsibilities and 

components. UCMs are composed of paths with responsibility points that may traverse 

components as well as scenarios vs. system. 

 

 Start Point End Point 

Path 

Responsibility 

Component 

 

 

(a) basic elements in UCM 

 

 

 

 

(b) a simple example path with responsibilities overlaid on a component 

 

Figure 2.1 Basic notation and a simple example of  Use Case Map 
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A path can be interpreted in the behavioural terms as a scenario and its visual representation 

is a line with a start point and an end point. A filled circle represents a start point, which 

indicates the stimulus and a set of preconditions to start the path. A bar ends a path and 

shows the results of the path (see Figure 2.1 (a)). The paths are routes along which chains of 

causes and effects propagate through the system. 

 

A rectangular black box shown in Figure 2.1 (a) is a component. The components represent 

entities and objects that are encountered during the execution of a scenario. They can 

represent both hardware and software resources in a system such as objects or modules, 

processes and threads, or physical devices. 

 

There may be named responsibility points along any path so that a path shows more 

scenario detail. Responsibilities shown in Figure 2.1 (a) are denoted with crosses along the 

path. Responsibilities represent the localized actions and functions that a system must 

perform at the specified point. 

 

There is a very simple example in Figure 2.1 (b) that represents a scenario. The scenario is 

that a path with responsibilities is overlaid on one component. Although it is simple, it well 

indicates the relationship among path, responsibility and component. 

 

Complicated scenarios make UCM construction express the patterns that are not purely 

point-to-point. If  explicit concurrency appears in the same scenario, it should be expressed 

as parallel path segments split by the AND forks or gather by the AND joins. Figure 2.2 

shows an example of  a Use Case Map for the session of  data upgrading with joining and 

forking. The AND fork is a single path in the scenario splitting into two or more parallel 

paths. The AND fork indicates the beginning of  the concurrency. As the parallel paths after 

the AND forks are progressing, the AND join is used to end the concurrency. No scenario 
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can continue executing until all the parallel paths have joined. For example in figure 2.2 only 

after upgrading data and progressing display have been done, can done message display be performed. 

The OR fork and the OR join represent the alternatives paths. The OR fork expresses that a 

single path splits into two or more alternative paths. Only one of  the possible branches may 

be traversed after the OR fork. The OR join shows the alternative paths to merge in a single 

path. The OR join indicates that at least one of  the possible paths leading to the OR join 

needs to be traversed before proceeding further. In figure 2.2 there are two alternatives after 

the system verifies the user: valid user and invalid user. We use an OR fork after verifying user 

and an OR join indicates that the transaction for update data is finished.  

 

Verifying

ReqPage

Display

InvalidUser

ResPage

Display

UpgradeData

ReqPage

Display

Done

Message

Display

Web Server

Verifying

User

Upgrading

Data

Data Server

Progressing

Display

Client

OR fork

AND fork

AND join

OR join

 

 

Figure 2.2 An example of  UCM with forking and joining for the upgrading transaction 
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2.4 Layered Queueing Network Model (LQN) 

 

Layered Queueing Networks (LQN) [Rolia95] [Woodside95A] was developed as an 

extension of the Queueing Networks for performance modeling of the complex and 

distributed systems. An LQN model describes the architecture of system by the sets of 

resources and expresses the interaction between the resources. It is capable of modeling 

most of the features such as multi-threaded processors, devices, locks, communication and 

so on [Franks00]. LQN models can be solved to capture the contentions and identify the 

performance bottlenecks [Neilson95]. LQN models also provide the comprehensive 

descriptions for the performance characteristics of a computer system. An LQN model is 

the target performance model for this research. 

 

2.4.1 LQN Notation 

 

Task
Entry1 Entry2

 

(a) Task and entry for software resource 

 

Processor Disk

 

(b) Host processor for hardware resource 

 

Figure 2.3 The LQN notation in terms of  task, entry and host processor 
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The LQN model describes a system by the sets of  resources such as software and hardware. 

The software resources are processes, threads, operations, semaphores and so on. The 

hardware resources are CPUs, disks, and interface controller. These resources can be 

modeled in LQN in terms of  tasks, host processor, and entry. A task is a software object, 

which carries operations, and it has the properties of  resources, including a queue, a 

discipline, and a multiplicity. A task has one or more entries, representing different 

operations it may perform. A task has a host processor, which represents the physical entity 

that carries out the operations. Hence, the physical execution can be delegated by the logic 

of  operation expressed by the entry in the task. The processor has a queue and a discipline 

for executing its tasks. The visual notation of  the elements in the LQN model such as task, 

entry, and host processor is shown in Figure 2.3. 

 

 

 Synchronous Call 

Forwarding Call 

Asynchronous Call 

 

 

Figure 2.4 Calls for service request in LQN models 

 

The interactions between software and hardware can be expressed as service requests, 

named as calls in LQN models. Calls are shown in LQN by messaging arrows in Figure 2.4 

Calls for service request. The tasks may send and receive the service requests and play the 

client/server role respectively. If  tasks do not receive any requests, they are called reference 

tasks and they represent the load generators or users of  the system. 
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Synchronous

Call

Client

Server

t

t  

(a) Synchronous Call 

 

Asynchronous Call

Client

Server

t

t  

(b) Asynchronous Call 

 

Synchronous

 Call

Forwarding

Call

Client

Server1

Server2

t

t

t  

(c) Forwarding Call 

 

Figure 2.5 Time lines of  LQN models synchronous, asynchronous, and forwarding calls 

 

There are three types of calls or messages between tasks and they are synchronous, 

asynchronous, and forwarding calls. The tasks receive the service request at the designated 

interface point as entry. If the server task receives a synchronous call from the client task 

(see Figure 2.5 (a) Time lines of LQN models synchronous call), the server task is 

responsible for returning a reply after the request has been completed. The client task is 

blocked until it receives the reply from the server task. If the server task receives an 

asynchronous call from the client task (see Figure 2.5 (b) Time lines of LQN models 

asynchronous call), the client task continues executing during the execution of the server 

task and does not need to wait for the response from the server task. In the forwarding call, 
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the client task is blocked until it receives a reply as the synchronous call. The intermediate 

server task partially processes the service request and then forwards the request to another 

server task. This server task is responsible for sending a reply to the client task and unblocks 

the client task. The intermediate server task can continue operation after forwarding the call. 

Figure 2.5 (c) shows the time lines of LQN models forwarding call. 

 

LQN models also define the demands, which include the total average amounts of  host 

processing and average number of  calls for service operations required to complete an entry. 

 

 

VerifyR

[0.5,0]

UpgradeR

[0.6,0]

Verifying

[1,0]

Upgrading

[1.2,0]

UGDoneMe

[0.3,0]

DataServer

WebServer

Client

Entry1

[Z=5]

Ndelay

[2,0]

inf.

WebSP

DataSPNetwork

ClientP

 

 

Figure 2.6 A typical example of  an LQN model for the database upgrading transaction 

 

Figure 2.6 illustrates a typical LQN model with the basic notation in terms of  tasks, entries, 

host processors, calls and demands. It has modeled the behaviour of  the web database 
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system for the upgrading transaction. Users send requests to upgrade the database. Two 

main steps should be performed: user validation and database upgrade. The information for 

user and data upgrading should be input on the web page and these information have been 

sent to the database server to validate and update the database server. There is a network 

delay between web server and database server. Once the upgrading has been done, the 

webpage with finished information should be shown on web server. 

 

2.4.2 LQN Tools 

 

This subsection introduces LQN tools available to support the LQN notation. There are two 

solvers for LQN models that share the same input file format. One is named as Layered 

Queueing Network Solver (LQNS) and the other is ParaSRVN, a simulator. 

 

LQNS is an analytical solver [Franks00] that breaks the LQN model into separate queueing 

network sub-models. The individual queueing network can be solved by using mean-value 

analysis (MVA). The MVA results of  each sub-model can be used as the MVA parameters to 

other sub-models. ParaSRVN simulates the LQN model by creating tokens for each call and 

following those tokens through the system.   

 

The experiment controller SPEX uses an expanded modeling syntax and supports repetitive 

sequences of  model to run. It deploys parameter controls and extracts specified results of  

performance characteristics. 

 

For the case study in this thesis, we use the simulator ParaSRVN and experiment controller 

SPEX to predict the performance of  a system with the confidence intervals.  
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2.5 Displacement Technique for Measurement 

 

There have been significant advances in modeling formalism and model solution techniques 

so that it makes performance modeling relatively easy. We need the necessary data to 

parameterize the performance models and solve them. Data collection for solving models, 

validating performance models, and monitoring the system can be the most difficult task in 

SPE processing. The trustable parameters are also the most challenging in the trustable 

performance prediction from performance models. “Displacement” technique [Woodside97] 

is chosen as a solution for the measurements in the research. 

 

2.5.1 Background 

 

Traditional implementations of the UNIX operating system provide coarse grained, 

statistical measurements of CPU utilization. In the standard CPU demand tool the running 

process is charged with CPU time including two parts: 1) user time if the processor is in user 

mode, and 2) system time if the processor is in system mode. In fact there could be three 

relevant CPU states: user mode, system mode, and interrupt mode. In some 

implementations a significant amount of the execution in interrupt mode is conducted, but 

the CPU demand tools in the usual kernel instrumentation can not capture it. McCanne and 

Torek have documented that the standard CPU-demand tools cannot capture Interrupt 

Service Routine (ISR) execution in UNIX in the paper [McCanne93].  

 

In fact it is difficult to directly measure the CPU demand of communications protocols and 

middleware such as sockets and RPCs. For some applications there is a significant amount of 

the protocol execution done by interrupt service routines (ISRs). If there is no process 

switching, the clock ticks that occur during the ISR execution can be allocated to the 

interrupted process. But if there is process switching, it is impossible to know which process 
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is the destination of a message at the moment of the interruption and which process should 

be charged. That is because the information of the interrupt has not yet been processed.  

 

The “Displacement” technique does not focus on the process under measurement any more 

and introduces the measurable CPU-intensive process. It records the displacement of a 

CPU-intensive process P
I
 by the process under measurement P

M
 and the prerequisite is the 

process P
I
 that can be measured accurately. Then we can compute the CPU effort taken by 

the process P
M
. 

 

2.5.2 Displacement Technique Implementation 

 

The original paper presents the displacement procedure and assumes that the process under 

measurement P
M
 is or can be configured with a repetition of the operation to be measured. It 

requires that there is no interaction for P
M
 in the calibration experiment and the behaviour of 

the operation is repeatable. Thus, the CPU demand per operation can be calculated. Here we 

modify this procedure to remove the use of a repeated execution in P
M
. 

 

We are going to calibrate the normal process P
M
. We choose the CPU-intensive process P

I
 to 

execute a fairly short loop over some arithmetic operations. The duration of its loop affects 

the resolution of the measurements to be obtained. P
I
 is configured to run for a given 

number L
I
 of loops. The wall-clock time is obtained and printed out at the beginning and 

the end of P
I
. The procedure of “Displacement” techniques is shown in Figure 2.7. 

 

Step 1: The CPU time per loop of P
I
 is calibrated by running it alone on a workstation for 

some number L
I 
(1) as illustrated in Figure 2.7 (a); let the wall-clock time interval be T

I 
(1) 

seconds. The estimated CPU time for one loop traversal of P
I
 is 

τ
I
 = T

I
(1)/ L

I
(1) sec/loop                          (2-1) 
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T
M
(2)
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I

P
M
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I
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T
M
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T
I
(1)

(a) CPU-intensive process P
I 
running alone on a workstation

(b) P
M

alone on a workstation

(c) P
I
and P

M
 running on a workstation

P
M

displaces some of the time of P
I

 

 

Figure 2.7 The procedure of  “Displacement” technique implementation 

 

Step 2: The two processes P
M
 and P

I
 are then run together in such a way that P

I
 starts a little 

before and ends a little after the other, as illustrated in Figure 2.7 (c). The loop counter is set 

to the values L
I 
(2) for P

I
; it may require some experiments to adjust L

I 
(2) to be long enough. 

The wall-clock time interval for P
I
 is recorded as T

I 
(2) seconds. Then the CPU time taken by 

the P
M
 during Step 2 is 

T
M 

(2) = T
I 
(2) – L

I 
(2) τ

I 
                      (2-2) 
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Figure 2.7 (b) only shows that P
M
 is executed alone on one machine. It is obvious that P

M
 has 

higher priority than P
I
 when both of them are running together. Figure 2.7 (c) indicates P

M
 

replaces the execution time of process P
I
 and P

I
 can fill the gap of  CPU idle during the 

execution of  P
M
. 

  

2.5.3 Discussions 

 

This displacement procedure in subsection 2.5.2 assumes that the two processes are running 

on a quiet workstation and there are only P
M
 and P

I
 during the two tests. We also assume the 

overhead for loop count in P
I
 can be ignored. Thus we can obtain the CPU demand for the 

process P
M
 with the interaction. The trade off is that if P

M
 consists of different operations, 

we cannot obtain the CPU demand for each operation.  

 

The solution of the overhead for loop count in P
I
 is that we rerun P

I
 alone with the loop 

account set to L
I 
(2) on one quiet machine to obtain the wall-clock time T

I 
(3) as step 1. The 

difference between T
I 
(2) and T

I 
(3) is the total CPU time of process P

M
 we expected. 
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Chapter 3 Description of  CGNet 

 

This chapter briefly provides a description of  CGNet, including main components, and 

network description files to model the typical network. Section 3.1 presents an overview of  

CGNet including the component descriptions. It offers the general information for CGNet. 

Section 3.2 describes the configuration of  CGNet. Section 3.3 shows a high-level 

architecture of  CGNet and the related scheduling policy. Section 3.4 describes how to define, 

run, and collect information from CGNet for an operational network. 

 

3.1 Overview of  CGNet 

 

CGNet [Hobbs01] is a network emulation tool. CGNet was designed as prototype at Nortel 

Networks to emulate a network in the laboratory. The tool was developed to test the 

feasibility of  the traffic engineering technology, and it can be used to support general tests 

of  many different kinds of  networks.  

 

The CGNet model includes nodes, sources (generator) and destinations (sinks) for the traffic, 

a connection topology with stated link capacities, and controller which can send control 

commands to the nodes. The capacity of  generator and the proportion traffic which should 

be sent to each destination can be adjusted. We can also configure the capacity of  links 

according to the variability of  a real network. Periodic statistic reports are generated from 

each node once a network is running. They are sent to a statistics sink as normal traffic. The 

operator can send control commands through the manual controller to control the network. 

Figure 3.1 [Hobbs01] shows a typical network modeled by CGNet. All routers, links and 

traffic in a real network are abstracted into the components of  CGNet and in sub section 

3.4.1, there are more detailed discussions on how to model a real network into components 

and connections by CGNet. 
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CGNet is an object-oriented application. CGNet software was written in C++, but many 

portions were in C style with about 30,000 lines of  code. It contains complicated data 

structures and algorithms. It also includes the complex logical interactions between 

functionalities and expert knowledge in network communication and traffic controlling. 

 

Node(Router or switch)

Traffic sink

Traffic generator

Bi-directional traffic link

Uni-directional traffic link
Statistics sink

Manual controller

Control link

 

Figure. 3.1 A typical network that can be modeled by CGNet 

 

We can configure the components of  CGNet through network description files and run 

CGNet executables on one or more workstations. Table 3.1 shows the components of  
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CGNet with illustration as well as their descriptions [Hobbs01]. 

 

CGNet Components 

 
 

Node: a node in CGNet represents a router in the real network. But for 

special use and purposes, a node in CGNet could be imaged as a switch. 

 

 
 

Generator: A generator stands for a payload traffic source, which can 

generate traffic at a pre-configured speed. The proportion of  traffic is sent to 

each destination in the network. 

 

 

 

Traffic sink: A traffic sink is a destination for generated traffic. 

 

 

 
 

Statistics sink: Each node in the network generates periodic statistic reports 

while CGNet is running on the machines. The statistic reports are sent as 

normal traffic to a statistics sink.  

 

 

Manual controller: This device is used to send control commands to a node 

to control the network manually. In CGNet, each node’s control port can be 

accessed from multiple controllers. 

 

  Bi-directional traffic link: This represents the transport media between 

nodes in the network. It can be thought as two unidirectional links with the 

same speed and cost. The traffic on these links can be conventional payload 

traffic as well as administration traffic, such as routing updates and statistics 

reports. 

 

  Uni-directional traffic links: These links carry traffic from a node to a 

traffic sink or from a traffic generator to a node. In CGNet the 

implementation of  a uni-directional link is identical to that of  a bi-directional 

link but in general only one direction is used. 

 

  Control link: a manual or intelligent controller sends commands to a node 

through it. 

 

 

Table 3.1 CGNet components and their attributes 
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3.2 CGNet Configuration 

 

CGNet has defined network description files [Hobbs01]. Once CGNet executables read 

them, the connections can be established and the network can be setup according to network 

description files. Table 3.2 shows the network description files and the description of  each 

file. 

 

File Name Descriptions 

globalinfo This file contains a variety of  global information that applies to the 

entire networks. 

 

nodeinfo It defines the characteristics of  all the nodes within the network and 

might contain statistics interval and host name of  execution platform 

for the nodes. 

 

generatorinfo It shows the characteristics of  the network’s generators so that 

generator knows which node it connects with, its total capacity, the 

proportion of  traffic that should be sent to each destination in the 

network, and host name of  execution platform for the generators. 

 

sinkinfo It describes the characteristics of  each traffic sink including 

connected node name, statistics filename, and host name of  

execution platform for the traffic sink. 

 

linkinfo It offers the characteristics of  the network inter-node links, which 

are bi-directional and symmetric in speed and cost. The link 

information includes the bandwidths and cost of  each link between 

nodes in the network. 

 

 

Table 3.2 Configuration files for establishing CGNet 
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3.3 Description of  the Software Architecture 

 

From local
generator

From other
node

To local
sink

From other
node

From other
node

To other
node

To other
node

To other
node

Switching/
Routing

Sinking Sending Sending Sending

Sources

Destinations

Incoming
Sockets

Outgoing
Queueings

 

 

Figure 3.2 High-level architecture of  the node 

 

This section focuses on the software architecture and the behaviour such as scheduling 

policy, and packet handling during the execution of  CGNet. Each component such as a 

node, generator, traffic sink, statistics sink and controller requires one executable to run on 
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the machines and other link components can be established after CGNet starts up on the 

machines.  

 

The generator sends packets with the pre-configured speed to the node to which the 

generator is connected. The destination for each packet has been randomly defined once it 

has been generated. The packets traverse the node along the path specified in the routing 

table and arrive at the destination, traffic sink. The traffic sink just consumes the packets 

when the sink receives it. 

 

The node process has the same operations: the main thread receives packets from the 

incoming sockets, parses packets and switches them to the outgoing queue; the sending or 

sinking thread sends packets the outgoing sockets; the sending thread also emulates the 

network delay for the link. Once a packet comes into the node from its local generator or 

some other node, it waits in the buffer space of  the incoming socket. The packet is 

processed when the switching/routing server selects that socket and reads the packet from it. 

The switching/routing server polls all the incoming sockets within one node to process the 

packets with the round-robin cyclic service discipline [Takagi90]. The packet is read and 

parsed, then switched to the corresponding outgoing queue according to the routing table. 

There is one thread associated with each outgoing queue. The thread can be either a sinking 

thread or a sending thread. For the sink thread, it just dequeues the packet and writes it to 

the outgoing socket. But for the sending thread, it also dequeues the packet and writes it to 

the outgoing destination socket, and then emulates the network delay. The network delay is 

emulated by the UNIX select function with a timeout value which does not block the CPU 

processor. High level architecture for the node has been shown in Figure 3.2. 
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3.4 A CGNet Experiment 

 

In this section we focus on how to run CGNet and what kind of  information we can obtain 

from it. Subsection 3.4.1 describes the definition of  CGNet for the operational network and 

how to configure it. Subsection 3.4.2 shows how to run and terminate it. Subsection 3.4.3 

presents the output of  CGNet 

 

3.4.1 Definition of  the Operational Network by CGNet 

 

We choose an operational network that we study and focus on all routers within the network. 

We define the routers as nodes in CGNet. The set of  nodes within the network is denoted 

Node and let Node= {AA, BB, CC, ……}. For each node in set Node, we identify all 

connections to the node. If  the other end of  the connection is also the element of  Node, 

we define the connection as a link. For each XX ∈  Node, all links connected to node XX 

can be defined as a link set OutLinks(XX) = { XX-AA, XX-BB, XX-CC, ……}, and the 

set of  neighbor nodes Neighbor(XX) = {AA, BB, CC, ……}. Obviously XX ∉  

Neighbor(XX) and for each YY ∈  Neighbor(XX) we have XX-YY ∈  OutLinks(XX). 

All elements outside Node that can send the data traffic to node XX are defined as 

generators G(XX)= {gXX1, gXX2, ……}. All elements outside Node that can receive the 

data traffic from node XX are defined as traffic sinks S(XX)= {sXX1, sXX2, ……}. We 

repeat to define links, the generators and traffic sinks for each node. Thus we define the 

elements in the operational network as the components of  CGNet. For simplicity, we merge 

all generators for one node into one generator and combine all traffic sinks for one node in 

one traffic sink. For each node XX ∈  Node, we can denote the merged generator as gXX 

for G(XX), and the combined traffic sink sXX for S(XX) respectively. The corresponding 

data rates are also combined together. 

 



 33

We define the attributions and quantify the quantity characteristics for each element in the 

network. We choose the host name of  execution platform such as nodes, generators and 

sinks because each of  them requires one running instance of  the appropriate executable. In 

addition for each link we should collect link information, the speed Speed(XX-YY) and the 

cost Cost(XX-YY). All bi-directional links are assumed to be symmetric in speed and cost. 

For a generator and a traffic sink we should define the node name, for instance the node of  

the generator gXX and the traffic sink sXX is XX. The generator supports a Constant Bit 

Rate (CBR). We measure the traffic speed of  generators and proportion of  traffic sent to the 

destination. For example, the data traffic generated by the generator gXX is sent to traffic 

sinks sAA, sBB, sCC, …… respectively. We let Destination(XX) = { AA, BB, CC,……} 

Here XX, AA, BB, CC, …… ∈  Node  and XX ∉  Destination(XX). We can define 

packet class as (XX, YY) that has a unique source-destination pair, and here YY ∈  

Destination(XX). We use r XX to denote the speed (capacity) of  generator gXX. Then we 

investigate the destinations of  packets generated by gXX for a period long enough. For each 

destination ZZ ∈  Destination(XX) there are ),( ZZXXgn )  packets sent to sZZ from 

generator gXX. We can then define XXr  and pair (ZZ, ),( ZZXXgn ) for each destination. It is 

easy to obtain the proportion of  data traffic for destination ZZ from generator gXX is 

ZZXXP , = 
�

∈ )(
),(
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YYXXg

ZZXXg

n

n
. Then the speed of  data traffic for destination ZZ from 

generator gXX is ZZXXr , = ZZXXXX Pr ,* = 
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3.4.2 Execution of  CGNet 

 

From the subsection 3.4.1 we define CGNet for an operational network and store the 

configuration information into network description files. This subsection focuses on the 

execution of  CGNet. 
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Starting up a network requires many commands to be executed. We create scripts to start the 

various network components such as nodes, generators, traffic sinks and statistics sinks. We 

choose the machines on which we start up the network and the host name of  the machine 

should be consistent with the definition of  the components in the network description files. 

We can choose one or more machines to run CGNet for the purpose of  experiments. We 

put the CGNet executables somewhere on the UNIX/LINUX path, and start the 

executables from the directory where network configuration files are stored. The programs 

are tolerant to different start-up sequences, each waiting patiently for neighbors to initialize 

if they are started first. The generator will not send packets until the connected node starts 

up. The CGNet executables read the configuration files, network description files during 

initialization so that they can configure themselves and connect to each other. Once all the 

components and connections are setup, the communication is established.  

 

The original version of  CGNet uses an infinite loop to keep reading the packets in the 

incoming sockets and processes them. If  you want to terminate an experiment, you can kill 

one node process. It causes the broken pipe error if  other processes try to write the sockets 

of  the node you have killed. The broken pipe signal can be used to terminate the executables, 

nodes, generators and traffic sinks so that CGNet is terminated. In this research, each node 

terminates after a set number of  received packets. The termination is propagated by broken 

pipe after the first node terminates. Thus we can adjust the running time and measured 

packet number arbitrarily for our purpose. We use XXT  to express the execution time of  

node XX, XX ∈  Node. Thus there are XXXX Tr ×  packets sent from generator gXX to 

node XX. 
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3.4.3 CGNet output 

 

Once a network is running, special network statistics are captured by statistics executable we 

call it as statistics sink  

 

The node process in the network updates statistics information for every data packet. These 

statistics are gathered for a statistics interval as defined in the nodeinfo file. The node sends 

the statistics report to its selected statistics sink at the end of  each statistics interval and the 

statistics database is reset. Each statistic represents only the events of  the previous statistics 

interval.  

 

A tool to collect all statistics information for each node has been developed in the research. 

We can obtain the statistics information for each node XX, XX ∈  Node as follows. 

Number of  packets received from generator: RGn  

Number of  packets received from Neighbor(XX): RNn  

Number of  packets sent to Neighbor(XX) : SDn  

Number of  packets sent to the traffic sink: SKn  

Number of  packets lost in XX because the outing queues are full: Ln  

We define Rn  = RNRG nn +  as number of  received and switched packets and Sn  = 

SKSD nn +  as the number of  sent packets. In fact, each node performs the statistics for every 

packet it receives, which means all the packets received should be processed. There is 

LSR nnn +=  and it covers the case where there is no packet loss, Ln  =0. 
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Chapter 4 Constructing a Performance Model for CGNet  

 

This chapter describes how to build the performance model for CGNet system with one 

sample configuration. The network and its topology are introduced in section 4.1. We trace 

the scenarios in the system so that we can understand the behaviour of  the system. We build 

the template model for each scenario and merge them into a sub model for each node. All 

the sub models for nodes are assembled and composed into a complex performance model 

for the network. The procedures of  constructing the performance model for CGNet are 

broken down into the following sections: 

4.2 Determining scenarios for data traffic across the network 

4.3 Determining detailed scenarios in a node 

4.4 Mapping scenarios to the node-path sub models 

4.5 Assembling the node-path sub models into a node sub model 

4.6 Composing the node sub models into the system model 

The compositional strategy has been generalized in the section 4.7, and a tool for building 

the model will be described in chapter 7. 

 

4.1 Network Description 

 

To present the compositional modeling approach, we choose one sample network and focus 

on the performance characteristics of  the stable state of  the network. In this section we 

briefly introduce the network for which we build the performance model on its topology and 

components.  

 

The topology of  the sample network modeled by CGNet is shown in Figure 4.1. There are 

five nodes in the network and each node has a generator, a traffic sink and a statistics sink. 

The network includes bi-directional traffic links between the nodes so that they can 
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communicate with one another. The definition of  nodes, generators, sinks and links are 

configured in the network description files in CGNet as described in chapter 3. The 

generators, traffic sinks and statistics sinks for all nodes are running on one machine but 

each node is executing on its other machine separately. 
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Figure 4.1 Topology of  an example network model by CGNet 

 

One may notice that the controller components of  CGNet are absent in the network. It is 

reasonable to leave them out because here we pursue the performance analysis of  the stable 

state of  the network. 
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4.2 Determining Scenarios for Data Traffic across the Network 

 

This section presents the operations of  the routers for a typical packet traversing across the 

network to help us understand the behaviour of  the network. We focus on the main 

components, and understand the interactions between them so that we can derive a 

panorama of  the system especially in the performance characteristics.  
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Figure 4.2 Path view of  a packet going from a generator to a traffic sink 

 

The path of  a data packet follows the same pattern for all routers through the network. Each 

packet starts from a generator and ends at a sink. It traverses the routers along the path 

defined in the routing table. We can define the packet class for the packets that share the 

same generator and the traffic sink. For each packet class (XX, ZZ) defined in section 3.4.1, 
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node XX is the source router and node ZZ is the destination router. Certainly there is some 

packet class that is related to routers other than the source router and the destination router. 

The forwarding router is the intermediate router to forward this packet class. We define 

ForwardR(XX, ZZ) = {AA, BB, CC, ……}. For each packet class, the number of  elements 

in ForwardR(XX, ZZ) could be zero or more and XX, ZZ ∉  ForwardR(XX, ZZ) . We 

also can define the path for packet class (XX, ZZ) as Path(XX,ZZ) = <XX, AA, BB, 

CC, …, ZZ>. Among Path(XX,ZZ) , AA, BB, CC, … stand for the elements in the set 

ForwardR(XX, ZZ). In the sequence of  Path(XX,ZZ) , any neighbor nodes EE, FF have 

been further defined: EE is the upstream router of  FF for packet class (XX,ZZ) and FF is the 

downstream router of  EE for packet class (XX,ZZ). We can have a node XX that has no 

upstream router for packet class (XX,ZZ) and node ZZ that has no downstream router for 

packet class (XX,ZZ). The path of  the packet class has been defined when the network was 

established.  

 

The path view [Woodside95B] for a packet traversing from generator to traffic sink through 

the network is described by the Use Case Maps in figure 4.2. As the path illustrated in figure 

4.2 we define the packet class (CH, AT) for the path and the path has been overlaid on the 

router in the network. The source router is node Chicago (CH); the destination router is node 

Atlanta (AT) and the forwarding router is node Washington (WA). We have ForwardR(CH, 

AT) ={WA}, and Path(CH, AT) = <CH, WA, AT>. 

 

There may be other sources of  stimuli in the original CGNet that cause work in network, 

like administration and statistic packets. We can trace out the scenarios other than the one 

described in the previous paragraph. Fortunately the frequency of  them handled by the node 

is so low that we can ignore it during the performance analysis for the network. 
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Figure 4.3 High level of  UCMs for packet class (CH, AT) through Network 

 

A packet of  packet class (XX, ZZ) goes from a generator to a sink along the path 

Path(XX,ZZ). Each node along Path(XX,ZZ) performs the same operations. These 

operations are briefly described as follows: the main thread receives the packet from the 

incoming socket, switches the packet according to the routing table to the corresponding 

outgoing queue; and the sending thread sends the packet to the next hop, or the sinking 

thread sends it to the traffic sink; In addition to that, the sending thread emulates the 

network delay. These operations can be defined as responsibilities in UCMs, which can be 

overlaid on the path illustrated as Figure 4.2. The path can be broken into path fragments for 

each node and the similarity of  responsibilities for each node is more obvious. The scenario 

fragment can be traced out through each path fragment. Figure 4.3 shows the high level of  

UCMs for the packet class (CH, AT), which traverses the network from the source router to 

the destination router. 
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4.3 Determining Detailed Scenarios in a Node 

 

A Router is an intelligent and complex device. It processes all the packets from the incoming 

sockets. The diversity of  the packet classes the router processes can drive the router to play 

different roles for each packet. The role could be the source router, the forwarding router, or the 

destination router. Whichever role it is, it performs the packet processing for each packet class 

according to the routing table. We choose a node XX with four incoming sockets and four 

outgoing sockets as an example shown in Figure 4.4, to describe the possible UCMs for each 

packet class. 

 

Three typical packet classes can traverse through the node XX: packet class (XX, BB), packet 

class (AA, XX), or packet class (AA, BB). For packet class (XX, BB), node XX is the source 

router. The scenario starts from gXX and the packet class is sent to the downstream router of  

node XX for packet class (XX, BB). The scenario for packet class (XX, BB) in node XX is 

shown by the UCM in the right of  Figure 4.4. For packet class (AA, XX), node XX is the 

destination router. The scenario ends at XX’s traffic sink and packet class is received from the 

upstream router of  node XX for packet class (AA, XX). The scenario packet class (AA, XX) 

in node XX is shown by UCM in the left of  Figure 4.4. For packet class (AA, BB), node XX 

is the forwarding router. The packet class is received from the upstream router of  node XX and 

sent to the downstream router of  node XX for packet class (AA, BB). The scenario packet 

class (AA, BB) in node XX is shown by UCM in the middle of  Figure 4.4. 

 

Therefore we can identify all packet classes which traverse through the node. The scenario 

fragment of  each packet class can be traced and responsibilities for each scenario fragment 

are well defined. We can derive all the scenario fragments within each node. 
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Figure 4.4 Use Case Maps of  packets going through one node in CGNet 

 

4.4 Mapping Scenarios to Node-Path Sub Models 

 

This section focuses on mapping the scenario for a single path through one node to a sub 

model, called a node-path sub model. We choose the node Atlanta in the network shown in 

section 4.1 and build all node-path sub models for all scenarios involving node Atlanta. The 
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work has been broken into two steps: mapping possible scenario to the template node-path 

sub model which will be shown in subsection 4.4.1, and identify all scenarios involving node 

Atlanta and substitute for the notation name of  the template node-path sub model for each 

scenario shown in subsection 4.4.2.  

 

4.4.1 Mapping Scenarios to Template Node-Path Sub Models 

 

Before we perform mapping a scenario to the template node-path sub model, we should 

define the tasks for our sub model. From previous discussions on the responsibilities of  

each node it is clear that we can define the receiving, switching, sending, sinking and network 

delay tasks for the sub model. Separate receiving tasks are defined in order to provide a 

separate buffer for each task. Thus we can model buffer overflows separately for each link. 

The execution demand of  each entry in the receiving task is set to 0, and the call to the entry 

in the switching task is a synchronous call. For the sending task, we know the sending thread 

sends a packet and emulates the network delay with the UNIX select function with a timeout 

value. The network delay does not block the processor but can block the sending thread. 

The network delay tasks are introduced and they have their own host processor as an infinite 

server. Network delay is a pure delay as calculated in the LQN model and will not consume 

CPU time on the host processor of  receiving, sending, switching and sinking task. 

 

In fact we can associate the tasks with the hardware resources. In one node each receiving 

task is associated with an incoming socket. The sending task, together with its network delay 

task, is corresponded to an outgoing socket. There is only one switching task that is in 

charge of  the switching/routing server. The sinking task is connected to the traffic sink that 

is connected to the node. 

 

To name the notation of  the LQN model in terms of  the entry, task, and the host processor 
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we conveniently define the rules for naming in the LQN model construction. The rule for 

the name of  a node in LQN model uses the first two capital letters of  the node name 

defined in the CGNet model. All the names of  the receiving, switching, sending, sinking and 

network delay task have RCV, SW, SEND, SINK, DELAY respectively as key words.  

 

We choose a typical packet class (XX, ZZ) and explain how to map a scenario fragment to a 

template node path sub model. The packets of  this packet class are generated by the 

generator gXX and the destination of  packets is the traffic sink sZZ. Node XX receives the 

packet class from gXX, parses and switches it and sends it to YY through link XX-YY 

according to the routing table in node XX. YY gets the packet class from XX-YY, and does 

the same work to ZZ via link YY-ZZ. ZZ receives it from YY-ZZ, finds that the next hop is 

the local traffic sink from the routing table of  ZZ, and sinks it to the local traffic sink. The 

number of  intermediate YY can be zero or more. XX, YY, ZZ represent the source router, a 

forwarding router and the destination router respectively for the packet class (XX, ZZ) and 

Path(XX, ZZ) is <XX, YY, ZZ>. We build a node-path sub model along the path node by 

node for each scenario fragment. The node-path sub models cover all types of  scenario 

fragments in a node discussed in section 4.3. Each of  them can be used as a template node-

path sub model. 

 

At first we define general variable node names AA, BB, CC, DD: AA is the node we built the 

model for; BB is the upstream router; CC is the downstream router, and DD is the destination 

router. Thus we can express the role changing for node XX, YY, ZZ and define the task and 

entry names conveniently. 

 

The receiving task of  node AA is in charge of  receiving packets from the incoming socket. 

Each entry in the receiving tasks should express the operation on the packets with different 

destinations. We separate the packets here because they can lead to different path. The 



 45

packets come from the local generator or from other nodes as upstream routers. For the 

former we can define the receiving task named as “AA_RCV”. For the latter we define it as 

“BBAA_RCV”. The receiving task in Figure 4.5 node XX is the “AA_RCV” type and the 

receiving tasks in Figure 4.6 node ZZ and in Figure 4.7 node YY are the “BBAA_RCV” type. 

In task “AA_RCV” the entry name is “RCV_AA_DD” (see Figure 4.5 node XX). In task 

“BBAA_RCV” the entry name is “BBAA_AA_DD” (see Figure 4.7 node YY) if  DD ≠ AA; 

but if  DD = AA, the entry name is “BBAA_AA_SE” (see Figure 4.6 node ZZ). 

 

RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

 

RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

 

(a) Use Case Map (b) the LQN model 

 

Figure 4.5 Handling of  Packet Class (XX, ZZ) in node XX with the downstream router YY 

 

The switching task is handling parsing and switching packets to the outgoing queues. Each 

entry in the switching task is for the packets with different destination. The switching task 
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name is “AA_SW”. Node XX, YY, and ZZ in Figure 4.5, Figure 4.6, and Figure 4.7 

respectively share the same style in the name of  the switching task. The entry name is named 

as “SW_AA_DD”, and Figure 4.5 Node XX, and Figure 4.7 Node YY follow it for the case 

DD ≠ AA. If  DD = AA, the entry name is “SW_AA_SE” shown in Figure 4.6 Node ZZ. 
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ZZ_SWSW_ZZ_SE

ZZ_SINKD_ZZ_SINK

 

YYZZ_RCVYYZZ_ZZ_SE
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(a) Use Case Map (b) the LQN model 

 

Figure 4.6 Handling of  Packet Class (XX, ZZ) in node ZZ with the upstream router YY 

 

The sending task represents the sending thread, which dequeues the packet and sends it to 

outgoing sockets. It is related to the network delay task. The network delay task emulates the 

network delay. Entries in these two tasks are still for different destinations. The sending task 

name is “AA_SEND_CC” and the entry for sending task is “SEND_AA_DD”. The 

network delay task name is “AACCDELAY” and the entry for the network delay task is 

“AACCDELdd” (dd is the small letters of  the name of  the destination router). There is no 

sending task and network delay for packet class (XX, ZZ) in node ZZ. Figure 4.5 Node XX 

and Figure 4.7 Node ZZ show the sending tasks and network delay tasks following the 

naming rules.  
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The sinking task performs the same as the sending thread in sending the packet to an 

outgoing socket but there is no network delay. There is only one entry because it is only for 

the packets at their destination router. The sinking task name is “AA_SINK” and entry name 

is “D_AA_SINK”. Only node ZZ has the sink task and Figure 4.6 defines the sinking task. 
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(a) Use Case Map (b) the LQN model 

 

Figure 4.7 Handling of  Packet Class (XX, ZZ) in node YY with the upstream router XX and 

the downstream router ZZ 

 

When we perform the substitutions of  the node-path sub models in the following 

subsection, we only substitute for AA, BB, CC, DD and dd. The complete naming rules for 

entry, task and host processor in the LQN model are shown in appendix A [Marcotty86]. 
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In the previous definition of  naming conventions for entry and task, we have described 

mapping the responsibilities to the entries in tasks in the LQN model together. Then we 

investigate the interaction between entries and mapping them to the type of  calls between 

entries in different tasks.  

 

The receiving tasks read all the packets from the socket and these packets come from the 

generator or other nodes. The call to the receiving task should be an asynchronous call. 

Once the packets are received from the sockets to the workspace, the switching task 

performs switching/routing for the packets according to the routing table. Thus the call 

from receiving task to the switching task is synchronous.  

 

After the routers make the decision about which link the packet should be switched to, the 

packet will be put in the outgoing queue for sending or sinking. The entry in the switching 

task does not expect any reply and continues to perform switching/routing again. Hence the 

entry in the switching task makes the asynchronous call to the entry of  the sending task or 

sinking task.  

 

CGNet uses one thread for each outgoing queue, which is in charge of  sending/sinking 

packets. The sending thread emulates the network delay in the sending case. It is blocked 

during the emulated network delay. The synchronous call is used from the sending task to 

the network delay task. The thread writes the packets to the outgoing socket and does not 

wait for a reply from the processing of  the next hop. So from the network delay task to the 

receiving task of  the next hop, the call is asynchronous. It is consistent with expressing a call 

to receiving task in the previous paragraph. 

 

Packet class (XX, ZZ) is generated by gXX and the downstream router of  node XX for packet 
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class (XX, ZZ) is YY. The UCM for packet class (XX, ZZ) in node XX is shown in Figure 

4.5 (a). The mapped node-path sub model is shown Figure 4.5 (b).  

 

Packet class (XX, ZZ) arrives at the destination router ZZ and the responsibilities along the 

path in node ZZ are shown as the UCM in Figure 4.6 (a). The corresponding node-path sub 

model is derived from the UCM and is shown in Figure 4.6 (b). YY is the upstream router of  

node ZZ. 

 

Node YY receives packet class (XX, ZZ) from node XX and sends it to node ZZ. Figure 4.7 

(a) shows the UCM with responsibilities. The forwarding router YY has the upstream router XX 

and the downstream router ZZ for this packet class. We can obtain the node-path sub model 

of  node YY in Figure 4.7 (b) 

 

4.4.2 Substituting Template Node-Path Sub Models for Atlanta, An illustration 

 

Before we substitute the node-path sub model for node Atlanta for the template LQN sub 

model, we must first go through the system and collect information to define the roles of  

node Atlanta for each packet class. From topology in Figure 4.1, there are three sources that 

can send packets directly to node Atlanta: node Dallas, node Washington and local generator. 

We have Neighbor(AT) ={DA, WA}and OutLinks(AT) = {AT-DA, AT-WA}. From the 

routing table we can derive the destination router for the packet class and the next hop. If  one 

packet class comes from node XX ∈  Neighbor(AT),  node XX is the upstream router for 

node AT and there must be at least an entry in routing table of  node XX with next hop AT. 

If  one packet class goes to node YY ∈  Neighbor(AT),  node YY is the downstream 

router for node AT and the routing table of  node XX with an entry for next hop YY. We 

retrieve the routing tables from the relevant nodes, node Atlanta, node Dallas and node 

Washington and list them in Table 4.1. The entries in the routing table involving next hop 
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Atlanta are made bold (see table 4.1(b) (c)). 

 

Sink Name Destination Router Through Link Next hop 

sat1 ATLANTA null sat1 

sch1 CHICAGO ATWA WASHINGTON 

sda1 DALLAS ATDA DALLAS 

sny1 NEW YORK ATWA WASHINGTON 

swa1 WASHINGTON ATWA WASHINGTON 

(a) Routing table for node Atlanta 

 

Sink Name Destination Router Through Link Next hop 

sat1 ATLANTA ATDA ATLANTA 

sch1 CHICAGO CHDA CHICAGO 

sda1 DALLAS null sda1 

sny1 NEW YORK DAWA WASHINGTON 

swa1 WASHINGTON DAWA WASHINGTON 

(b) Routing table for node Dallas 

 

Sink Name Destination Router Through Link Next hop 

sat1 ATLANTA ATWA ATLANTA 

sch1 CHICAGO CHWA CHICAGO 

sda1 DALLAS DAWA DALLAS 

sny1 NEW YORK NYWA NEW YORK 

swa1 WASHINGTON null swa1 

(c) Routing table for node Washington 

 

Table 4.1 Routing tables for part of  nodes in the network. 
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The substitution rules for template node-path sub model are outlined as follows: 

1. If  node Atlanta receives a packet class from any BB ∈  Neighbor(AT) and sends it to 

node CC ∈  Neighbor(AT) , we infer the destination router DD of  this packet class 

from the routing table. In the template node-path sub model of  Figure 4.7 we substitute 

AT for “YY”, and BB for “XX”. We substitute CC for “ZZ” in the task name and 

substitute DD for “ZZ” in the entries of  the receiving, switching and sending task. For 

the entry in the network delay task, we substitute CC for “ZZ” and dd for “zz” (‘dd’ is 

small letters of  the destination router DD). Node AT is the forwarding router.  

2. If  node Atlanta receives a packet class from any BB ∈  Neighbor(AT) and sinks it in 

the local traffic sink, We substitute AT for “ZZ”, and BB for “YY” in the template 

node-path sub model of  Figure 4.6. Node AT is the destination router. 

3. If  node Atlanta receives a packet classes from local generator and sends it to any CC ∈  

Neighbor(AT), we infer the destination router DD of  this packet class from 

generatorinfo. In the template node-path sub model of  Figure 4.5, we substitute AT for 

“XX”, CC for “YY”, DD for “ZZ” and dd for “zz” (‘dd’ is small letters of  the 

destination router DD). Node AT is the source router. 

 

For each node in Neighbor(AT) we identify the possible traffic to node Atlanta. The 

routing table in Table 4.1 (b) for Dallas shows there is an entry with next hop ATLANTA 

and the sink name is sat1. We check the routing table of  node Atlanta table 4.1 (a) and know 

packets are sent to the local traffic sink. It is possible to have packet classes (XX, AT) with 

Path(XX,AT) = < XX, …, DA, AT>. These packet classes are sent from node DA through 

DA-AT to node AT. Node AT is the destination router and Rule 2 should be used. We can 

derive a node-path sub model for packet class (XX, AT) at node AT with the upstream router 

DA in Figure 4.8. Here XX is an unknown variable and it could be DA or something else.  
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Figure 4.8 The node-path sub model for packet class (XX, AT) at node AT with the upstream 

router DA 

 

For node Washington, there is only one entry with next hop ATLANTA in the routing table 

for node Washington in Table 4.1 (c) and the sink name is sat1 too. We can infer the packet 

classes (XX,AT) with Path(XX,AT) = < XX, …, WA, AT> as we did for node Dallas. 

These packet classes are sent from node WA through WA-AT to node AT. Rule 2 is used 

again. We can also derive the node-path sub model for packet class (XX, AT) at node AT 

with the upstream router WA in Figure 4.9. XX is an unknown variable and it could be WA or 

something else. 

 

For the local generator, we investigate data traffic from the file generatorinfo and identify the 

packet classes. There are four packet classes: (AT, CH), (AT, DA), (AT, NY), and (AT, WA). 

The next hop from the routing table of  node AT in Table 4.1 (a) provides a hint of  the 

downstream router for each packet class. Node WA is the downstream router for packet classes 

(AT, CH), (AT, NY), and (AT, WA) and node DA is the downstream router for packet class 

(AT, DA). For each packet class node AT is the source router and rule 3 should be performed. 
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We can obtain a bunch of  node-path sub models for packet class (AT, XX) at node AT with 

a downstream router YY ∈  Neighbor(AT) in Figure 4.10. XX is CH, DA, NY and WA 

respectively, and YY depends on the value of  XX. We obtain node-path sub models: packet 

class (AT, CH) in Figure 4.10 (a), packet class (AT, DA) in Figure 4.10 (b) , packet class (AT, 

NY) in Figure 4.10 (c) , packet class (AT, WA) in Figure 4.10 (d).    

 

WAAT_RCVWAAT_AT_SE

AT_SWSW_AT_SE

AT_SINKD_AT_SINK

From Washington

 

 

Figure 4.9 The node-path sub model for packet class (XX, AT) at node AT with the upstream 

router WA 

 

According to the current configuration, there is no packet class which defines node Atlanta 

as a forwarding router. If  there was a packet class (XX, ZZ), there could be AT ∈  

ForwardR(XX, ZZ) and Path(XX,ZZ) = < XX, …, WA, AT, DA, …, ZZ> or < XX, …, 

DA, AT, WA, …, ZZ>. For this packet class, the routing table in the upstream router had an 

entry with next hop AT for the destination router ZZ. The routing table in node AT has an 

entry with a next hop downstream router for destination router ZZ. We have the packet class 

and its upstream router and downstream router, thus rule 1 could be used for the corresponding 

node-path sub model. So far we have obtained all node-path sub models for node AT. 
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(a) The packet class (AT, CH) with the 

downstream router WA 
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(b) The packet class (AT, DA) with the 

downstream router DA 
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(c) The packet class (AT, NY) with the 

downstream router WA 

AT_RCVRCV_AT_WA
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ATWADELAYATWADELwa

To Washington

From Local

Generator

 

(d) The packet class (AT, WA) with the 

downstream router WA 

Figure 4.10 The node-path sub models for packet Classes from local generator in Atlanta 
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4.5 Assembling Node-Path Sub Models for a Node 

 

Now we move to merge the node-path sub models so that we can acquire the node sub 

model. We still choose a node delegated by node Atlanta. 

 

In section 3.4.1, we know the traffic generated by generator is sent to the destination with 

different proportions as well as the capacity of  the generator defined in the configuration file. 

One user pseudo task with name “XXUserT” is introduced into the node sub model and its 

host process is “XXUserProc”. The entry of  User task with name “XXUser” can receive the 

call as the external arrival rate, which is equal to the capacity of  generator XXr . It can send 

the request to the receiving task of  the generator with different proportions and the 

proportion is ZZXXP ,  for the packet class with destination ZZ. For node Atlanta, the arrival 

rate is ATr  and the proportions are CHATP , , DAATP , , NYATP , , NYATP , .  

 

We have associated the task with the hardware resources when we defined the task in section 

4.4. Different resources separate the tasks and all the tasks for the different resources can 

not be merged any more. The type of  call between entries in the task will not change in spite 

of  the assembling and merging. Each entry in one scenario defined in subsection 4.3.1 

reflects the responsibility of  an operation for one packet class in a node. If  the request is an 

asynchronous call to the entry, all requests should line in the queue. If  the asynchronous 

requests are in the same queue, the entries that handle these requests should put all in one 

task.  

 

We can define the compositional rules for assembling the node-path sub model as follow: 

1. Location principle: If  the entries share the same resource, all the entries for these tasks 

can be assembled onto one task. Note the number of  entries will not change. 
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2. Similarity principle: If  entries handle the packets with the same destination in the tasks, 

the entries can be merged in one entry of  one task. Rule 1 location principle is a 

prerequisite. The currently processing packet in one node is the destination-oriented 

policy. 

3. Inheritance principle: We notice the sequence of  responsibilities in UCM is consistent 

with the entry sequence as the LQN model for each packet class. The entry sequence 

in the LQN model is defined as from receiving task to switching task, from switching 

task to sending/sink task, and from sending task to network delay task, and from the 

network delay task to the receiving task in next hop node. If  the similarity principle is 

applied in the previous entry, the following entries can inherit the similarity principle 

from previous entry. 

 

In node Atlanta, all requests (packet classes) from the generator are waiting in a queue 

located in the same incoming socket. The entries in the receiving task in Figure 4.10 (a) (b) (c) 

(d) share the hardware resource. Rule 1 location principle is deployed and we merge all 

entries of  the receiving task for the generator in Figure 4.10 (a) (b) (c) (d) in one receiving 

task for the incoming socket for the local generator.  

 

All packet classes pass through the switching/routing server. Whichever incoming socket 

packet classes come from, all the entries of  switching tasks in Figure 4.8, 4.9, and 4.10 (a) (b) 

(c) (d) are combined together. Rule 1 location principle is employed here and we can derive 

the switching task for the node. In Figure 4.8 and 4.9 the switching tasks handle the packet 

class with the same destination. Rule 2 similarity principle is used here. Both entries are 

merged into one entry in the switching task. 

 

For the sending and network delay tasks, the routing table indicates that packet classes with 

the destinations Chicago, New York, and Washington should go through the link ATWA and 
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all these packet classes should wait in the same outgoing queue for the outgoing socket. By 

rule 1 location principle, we assemble the entries of  the sending task and the network delay 

tasks in Figure 4.10 (a) (c) (d) into one sending and one network delay for the corresponding 

outgoing socket. The sending task and network delay task in Figure 4.10 (b) handle the 

packet class with the destination Dallas and can exist as an independent task in the node sub 

model for node Atlanta.  

 

RCV_AT_CH AT_RCVRCV_AT_WARCV_AT_NYRCV_AT_DA
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Figure 4.11 The structure of  the node sub model for Atlanta 
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The sinking tasks in Figure 4.8 and Figure 4.9 deal with the operations that sink the packet 

classes in node Atlanta and should be combined in one task with one entry. Rule 3 

Inheritance principle can be used here and the sinking task inherit the similarity in the 

switching task. 

 

After the combining and merging of  the node-path sub models for the scenarios in node 

Atlanta, we derive the node sub model for node AT, which is shown in detail in Figure 4.11. 

The host processor for each task depends on the physical entity that carries out the 

operations. 

 

4.6 Composing node sub models into System Model  

 

The behaviour of  the network includes interactions between routers. In fact the scenarios of  

section 4.5 are the scenario fragments of  the packet classes within one node. The assembling 

of  node-path sub models for scenario fragments can be used to capture the interaction 

among the components within one node. The complete scenarios can describe all the 

behaviour of  the packet class in the network to reflect performance characteristics for the 

network. This section focuses on the composition of  the node sub model derived from 

scenarios within a node into a system model. 

 

Atlanta

 

 

Atlanta

 

(a) Sub Model (b) Interface  (c) Complete sub model 

 

Figure 4.12 The components for the high-level sub model 
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Building the sub model for node Atlanta based on the scenario fragment has been described 

in section 4.5 and we can repeat the procedures for the other four nodes: Chicago, Dallas, 

New York, and Washington. In Figure 4.12 (a), we use a box to express the sub model and 

the LQN notation for the sub model is put in the box.  

 

Each sub model has defined some tasks that interact with other models. The communication 

is the request from one entry in the network delay task to the other entry in the other node. 

Each sub model also receives the arrival flow from the local generator. A circle in Figure 

4.12(b) represents a packet class that can be grouped by link to stand for the interface. A 

rectangle in Figure 4.12(b) is the link’s graphic expression in the components of  the high-

level sub model. But if  the link is from local generator to node, we use a circle to represent 

entry in the User task. If  this node receives the packet class, or packets from the local 

generator, we overlay the interface in the upper line of  the sub model box. If  this node 

sends the packet class to its neighbor node, we overlay the interface in the lower line of  sub 

model box. Figure 4.12 (c) is an example of  the complete expression of  the high-level sub 

model of  node Atlanta. 

 

<gAT, ATUser> <DA-AT, (XX, AT)> <WA-AT, (XX, AT)>

<AT-WA, (XX, CH),(XX, NY), (XX, WA)><AT-DA, (XX, DA)>

Atlanta

 

 

Figure 4.13 The labeled high-level sub model for node Atlanta 

 

We use node AA, its upstream router BB, its downstream router CC and a packet class with its 

destination router DD to make further explanations for labeling the interface. We use XX to 
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stand for the source router of  the packet class. For node AA, the interface on the upper line 

of  sub model box can be labeled as <BB-AA, (XX, DD)>, and the number of  (XX, DD) 

can be one or more. We can label the interface on the lower line of  sub model box as <AA-

CC, (XX, DD)>, and the number of  (XX, DD) can be more than one. The interface on the 

upper line of  sub model box can be labeled as <gAA, AAUser>. Figure 4.13 shows the 

labeled high-level sub model for node Atlanta. 
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CHDA
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<AT-WA, (AT, CH),(AT, NY), (AT, WA)>

<gAT, ATUser>

 

 

Figure 4.14 A high-level performance model for the network 

 

We associate the calls defined in the LQN node sub model with the interface of  the node 

component. For the incoming interface, we connect the call which is to the entry 
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“BBAA_AA_DD” in the receiving task BBAA_RCV with the interface <BB-AA, (XX, 

DD)>.  We also connect open arrive calls for the generator which is to the entry AAUser in 

the user task “XXUsr” to the interface <gAA, AAUser>. For the outgoing interface, we can 

connect the call, which is from the entry “AACCDELdd” in the network delay task 

“AACCDELAY”, to the interface <AA-CC, (XX, DD)>. 

 

For each link, we connect the outgoing interface on the lower line of  the sending node to 

the incoming interface on the upper line of  the receiving node by packet class. Thus <AA-

CC, (XX, DD)> in the lower line of  node AA can be joined to <CC-AA, (XX, DD)> in the 

upper line of  node CC. For instance, Figure 14 shows the connection from the outgoing 

interface <AT-WA, (AT, CH), (AT, NY), (AT, WA)> in node Atlanta to the incoming 

interface <AT-WA, (AT, CH), (AT, NY), (AT, WA)> in node Washington. The label of  the 

open arrival call to the node Atlanta is also indicated in Figure 14. We obtain a high-level 

performance model for the network in Figure 14. 

 

4.7 Generality of  Compositional Strategy for Building Models 

 

This section describes the generic compositional strategy derived from the model building 

practice in section 4.2, 4.3, 4.4, 4.5 and 4.6.  

 

In general, in any computer system we begin by identifying the requests to traverse this 

system. We trace the request from its origin to its destination. The request may consume 

software and hardware resources. We treat the resources as servers. For simplicity, we can 

decompose the request into pieces and trace the path for each piece. If  we can identify the 

path for each request (or request piece), we can then apply the compositional strategy for 

building the performance model. The compositional strategy is outlined as follows: 
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1. Define the scenario and trace the path for each request; 

2. Decompose the scenarios into fragments within the component. Here a component is a 

generic object, for example a node in CGNet; 

3. Map the scenario fragments into the component-path sub models in terms of  entry, task, 

and call used in the LQN model. If  the system is an Object-Oriented design, we can 

identify the alternatives of  the scenario fragment of  each class, then map all possible 

alternatives of  the scenario fragment to the template sub model; 

4. Assemble the component-path sub models to a component sub model for each 

component. Here we assemble the entries of  the task for the resource. The assembling 

rules illustrated in section 4.5 are summarized as follows: 

I. Location principle: If  the entries share the same resource, all the entries for these 

tasks can be assembled to one task. 

II. Similarity principle: If  entries handle the requests that have the same responsibilities 

including the execution demand along the path after this point in the tasks, the 

entries can be merged into one entry to one task. The Location principle is a 

prerequisite.  

III. Inheritance principle: The responsibility in the scenario is corresponding to the entry 

in the model. The sequence of  entries in the LQN model is the same as that of  

responsibilities in UCM. If  the Similarity principle is applied to the entry in the 

previous task, the entries for the following responsibilities can inherit the Similarity 

principle.  

5. Compose the component sub models into the system model. Following the path of  the 

request piece traversing the different components, we can join the call of  the incoming 

interface in one component to that of  the outgoing interface in another. This gives the 

performance model for the system. 

6. The assembling and composition in step 5 can, in principle, be applied recursively at 

multiple levels of  component decomposition. 
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Chapter 5 Data Collection and Measurement 

 

In chapter 4 we have developed the structure of  the LQN model. This chapter focuses on 

the techniques for data collection for various scenarios, measurement for the execution 

information of  the system, and parameter estimation for the LQN model. We begin by 

presenting the experiment setup for measurement purposes. Section 5.2 shows the collection 

of  necessary parameters for a complete performance model and how the LQN model is 

reproduced with those parameters. Section 5.3 provides the procedure for measurement with 

the “Displacement” technique. Section 5.4 discusses parameter estimation with the least 

square estimation and regression models are also presented. Section 5.5 describes the 

derivation of  parameters for the simple four-node configuration. Section 5.6 discusses the 

parameters we derive from the five-node configuration with complicated topology.  

 

5.1 Experiment Setup for Measurement 

 

As stated above, we assumed in chapter 4 that we had the necessary data such as CPU 

demand of  an entry and the call’s intensity to create the performance models. To increase the 

accuracy of  measurement, we ran the node components on separate machines. 

 

For CGNet with its topology shown in Figure 4.1, we choose six SUN SPARCstation 2 

machines as an experimental environment. The operating system on these machines is Sun 

Solaris 5.7. The NIC and Hub speeds are 10Mbps and all machines are in an isolated local 

area network. We run each node on one machine. All the generators and traffic sinks run on 

the other one because they only perform the simple task. Experiments indicate that all 

generators and traffic sinks can perform the job well as we expect from the configuration 

file. 
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5.2 Data Collection 

 

In this section we present the necessary data collection so that we can complete the 

performance model. We can collect data from execution information and derive it from 

configuration.  

 

From the current CGNet implementation, the average packet size is 85 bytes in the network. 

The maximum length of  the outgoing queue is 78000 bytes. Thus the buffer size of  the 

outgoing queue is 78000 /85 = 917 packets. 

 

Destination1 Destination2 Destination3 Destination4 
Name 

Speed 

(bps) 
Node 

Dest. Weight Dest. Weight Dest. Weight Dest. Weight 

gat1 67000 AT NY 204 WA 178 CH 185 DA 103 

 

Table 5.1 Definition of  generator gAT in CGNet 

 

From the configuration of  CGNet we can obtain the information of  generators and links, 

which affect the parameters such as external arrival rates and execution demand for entries 

of  the network delay task in the performance model. Here we use the sample node Atlanta 

as before. Table 5.1 shows the information of  the generator gAT. The information of  links 

connected to Atlanta is shown in table 5.2.  

 

Name Node1 Node2 Speed (bps) 

atda AT DA 75000 

atwa AT DA 105000 

 

Table 5.2 Definition of  links AT-DA and AT-WA  
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Thus based on the previous definition in section 3.4.1 and table 5.1, we have  

ATr = 67000bps =67000/(85*8)= 98.53 packets/sec. 

CHATP ,  = 185/(204+178+185+103) = 0.276 

DAATP ,  = 103/(204+178+185+103) = 0.154 

NYATP ,  = 204/(204+178+185+103) = 0.304 

WAATP ,  = 178/(204+178+185+103) = 0.266 

We define network delay YYXXd −  for a packet through link XX-YY. We have YYXXd −  = 

packet size/Speed(XX-YY), so based on table 5.2, we obtain.  

DAATd −  = 85 bytes /75000bps = (85*8)/75000 sec 

WAATd −  = 85 bytes /105000bps = (85*8)/75000 sec 

 

We define the CPU time for the actions, receiving, switching, sending and sinking a packet as 

follow: 

Ra  = CPU time per packet received (from local generator or from other nodes) 

SWa  = CPU time per packet switched to outgoing queue 

SDa  = CPU time per packet sent to outgoing socket for next hop 

SKa  = CPU time per packet sent to outgoing socket for traffic sink 

 

These are the entry parameters in the LQN model as well as the network delay YYXXd − . In 

section 4.4.1, we have discussed the receiving task and know the receiving task is used in the 

LQN model only for the purpose of  providing a separate buffer for an incoming socket. We 

set Ra  = 0 and migrate the amount of  Ra  to SWa  when we define the parameters in the 
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LQN model. We retain Ra  for clarity through the rest chapter but keep this fact in mind. 
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Figure 5.1 Node sub model for Atlanta with parameters 

 

We also can infer from the CGNet implementation, that the number of  each call from the 

entry in receiving tasks to the entry in switching task, from switching task to sending tasks 

and sink tasks, from sending task to network delay task, from network delay task to receiving 
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task in the next hop is 1. 

 

We collect and define the information for each node and insert them into the LQN model. 

The parameterized LQN sub model for node AT is shown in Figure 5.1. 

 

5.3 Measurement 

 

In this section we describe our efforts to acquire the parameters for the LQN model. 

Measurement with “Displacement” technique should be performed so that we can obtain 

the total CPU time of  a process. 

 

5.3.1 Motivation 

 

We defined the Ra , SWa , SDa  and SKa  in section 5.2 but did not offer the value or 

solution for them. Measurement is the only way to acquire them. All the parameters indicate 

the demands of  the operations. There are two potential solutions to obtain them: 1) measure 

the operations directly, 2) repeat them to obtain the total time then divide for each. Normally 

if  the CPU spends much time on one operation, both solutions are feasible. But for CGNet 

we can imagine how little the time the system spends on processing one packet. In addition 

within CGNet the receiving/switching is the main process, and the sending/sinking is 

performed by one thread for each outgoing queue. Also the overhead for operation 

switching is ignored in the first approach. The overhead for the environment in the second 

approach is also missed. All these overheads cannot be neglected compared to the time the 

system spends on one operation. Missing them could lead to an imprecise prediction of  the 

performance model. 

 

The solution in this thesis is to measure those parameters together. We let CGNet run for a 
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period of  20 minutes to obtain the CPU time for each node. We can obtain the total CPU 

time, then split it to each Ra , SWa , SDa  and SKa . Each of  those parameters includes a 

portion of  the overhead. How to split the total CPU time for each parameter will be 

discussed in section 5.4. 

 

gprof (sec) time command (sec) Node name 

CPU time User CPU time System CPU time Total CPU time 

Atlanta 744.51 542.77 325.67 868.44 

Chicago 1700.17 1257.97 744.25 2002.22 

Dallas 1349.26 1001.76  575.04 1576.8 

New York 1576.24 1209.22 632.75 1841.97 

Washington 1819.16 1358.04  835.00 2193.04 

 

Table 5.3 The comparison of  CPU time from two profilers for one case 

 

Profiler gprof is chosen to measure the C++ program of  CGNet following profiling steps 

outlined in the manual [Fenlason97]. The time spent in each function or its subroutines can 

be obtained from the output. Another profiler, time command [Fink02], can show the CPU 

time as well as the elapsed time between invocation of  the utility and its termination. We 

expect the consistent outputs of  these profilers for the same process. Table 5.3 shows the 

comparison of  results of  the two profilers for one case. The gap between column 2 and 

column 5 is too large to give confidence in the values.  

 

We can make the hypothesis that the time for interrupt service routine (ISR) execution is not 

correctly accounted for by both profilers. In fact each node performs reading packets from 

sockets and writing packets to sockets. Most parts of  the tasks are executed by the ISR. The 

Paper [McCanne93] has well documented the fact an arbitrary amount of the CPU time has 
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not been charged in the profiler. The paper [Woodside97] for “Displacement” technique 

deduces that it is difficult, even impossible, to know which process should be charged when 

the ISR is invoked for communication protocol applications. That drives us to adopt the 

“Displacement” technique in measurement. 

 

5.3.2 Measurement with Displacement Technique 

 

In this subsection we focus the measurement with “Displacement technique” for CGNet. 

The objective is to obtain the CPU time for each node when we run CGNet for each case. 

Although the time command does not perform well in accurate measurement, we can use it 

to roughly determine how long the node is executed and how much CPU time is used for the 

node.  

 

The “Displacement” technique introduces a dummy process compulmt. The compulmt process 

is a CPU intensive process. It is introduced to fill the CPU idle time during the execution of  

CGNet, so that the CGNet node process can displace the execution time of  the compulmt 

process. The compulmt process executes a fairly short loop over some arithmetic operations 

and the number of  loops is programmable. In the beginning and end of  the compulmt process, 

the “wall-clock” measurement is performed and the difference is the execution time of  the 

compulmt process.  The code of  the compulmt process is shown in appendix B and we can 

change ITERATIONS to vary the duration of compulmt process execution. 

 

To make sure the compulmt process does not affect the execution of  CGNet, priority policy is 

applied when we run CGNet and the compulmt process one the same machine. The nice 

command [Frank98] is used to set priority for the process. 

 

The procedure of  measurement for the CPU cost for each node executable can be outlined 
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as follows: 

1. Run the CGNet executables with time command ahead. Record and estimate the CPU 

idle time for each node executable from results of  the time command;  

2. Choose the suitable compulmt process for each node executable and make sure the 

execution time of  compulmt process can cover the CPU idle time. The execution time of  

compulmt process on quiet machine is T
C
(1). 

3. Run the compulmt process first with lower priority followed immediately by the CGNet 

node executable with higher priority on the same machine. The two processes can keep 

the CPU busy. CGNet node executable can displace the time of  the compulmt process by 

its high priority. The CGNet node executable yields to the compulmt process when it is 

idle. That priority policy of  the scripts can be implemented as in figure 5.2. 

 

nice +19 time ~pfwu/binmu5/compulmt & 

cd ./nodeat 

time ~pfwu/binmu5/node atlanta . $1 0 & 

cd .. 

Figure 5.2 An example script of  executing the compulmt process and node executable 

 

When two processes have finished, we obtain the execution time of  the compulmt process 

T
C
(2) .  

4. Calculate the CPU time for the node process from the difference between two 

executions of  the compulmt process as T
C
(2) - T

C
(1). 

 

We can obtain the CPU time of  CGNet node process through this approach, instead of  

some instrumentation techniques that handle the communications operations poorly.  
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5.4 Parameter Estimation 

 

Section 5.3 has provided the total CPU time for the node executable but not the host 

processing demand for each entry or functionality. We try to break the CPU time into piece 

and estimate the Ra , SWa , SDa  and SKa . The Least Square Estimation techniques (see 

[Follenweider93] or any text on regression in statistics) can be used for this purpose.  

 

We can make an acceptable assumption that Ra , SWa , SDa  and SKa  are consistent and 

repeatable in the test while the environment where the node executables run is not changed. 

We use TP to denote the total CPU time for a run, then 

TP = Rn  * ( Ra  + SWa )  +  SDn  * SDa  + SKn  * SKa    (5-1) 

The sending thread and sinking thread share the same code in CGNet. The difference is the 

sending thread emulates the network delay with the select statement with timeout but the 

sink thread does not. We can assume that the difference is small, so SDa  = SKa . The 

equation (5-1) yields 

TP = Rn  *( Ra  + SWa ) + ( SDn  + SKn ) * SDa   

=  Rn  *( Ra  + SWa ) + Sn  *  SDa                 (5-2) 

 

In the case where there is no packet loss in the outgoing queues, we have SR nn = . We 

obtain from the equation (5-2): 

TP = Sn  *( Ra  + SWa + SDa  )               (5-3) 

 

If  there is packet loss with losses Ln , we have LSR nnn += . It is assumed that lost packets 

are only processed through the receiving and switching steps. We obtain from the equation 
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(5-2):  

TP = Sn  *( Ra  + SWa + SDa  ) + Ln  *( Ra  + SWa )     (5-4) 

 

For simplicity we define Pa  = Ra  + SWa + SDa  and RSWa = Ra  + SWa . Substituting 

them yields 

For case without packet loss:  TP = Sn  * Pa                         (5-5) 

For case with packet loss:  TP = Sn  * Pa + Ln  * RSWa                     (5-6) 

 

From equation (5-5) and (5-6) we can hypothesize a simple regression model in (5-7) and a 

multiple regression model in (5-8) to model the relationships between the total CPU time 

and the number of  packets handled by CGNet,  

11xY β=
 

                                (5-7) 

2211 xxY ββ +=                              (5-8) 

One method, the least square approach, chooses the estimators 1β̂  and 2β̂  that minimize 

the sum of  squared errors (SSE). Here we have Y is TP, x
1
 is Sn  and x

2
 is Ln . Further 

more the equation (5-8) can cover the case without packet loss if  x
2
 is set to 0. 

 

The original CGNet has provided the nominal rates for the generators. We can introduce a 

rate multiplier so as to change rates, to vary the workload of  CGNet for each case. We have 

Rate = multiplier * nominal rate 

 

We collect the sample data TP, Sn  and Ln  by changing the multiplier. Then we use them to 

estimate the unknown parameters in the regression model equations (5-7) and (5-8). The 

regression analysis procedures have been outlined in [Scheaffer86] and the statistical tool 
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SAS [Cary99] is used in the research. 

 

From estimates 1β̂  and 2β̂  we obtain Pa  = 1β̂  = Ra  + SWa + SDa  and RSWa  = 

2β̂  = Ra  + SWa , so SDa  = 1β̂  - 2β̂ , Ra  + SWa  = 2β̂ . In this section we assumed 

SDa  = SKa  and in section 5.2 we have Ra  = 0. In summary, we have Ra =0, SWa = 2β̂ , 

SDa  = SKa  = 1β̂  - 2β̂ . 

 

5.5 CPU Cost for a Simple Four-Node Configuration 

 

We have an LQN model with two parameters, SWa  and SDa , and two regression equations 

(5-7) and (5-8) for Pa  and SWa . A great number of  measurements were taken and the 

results were difficult to interpret. A simple configuration with four nodes and one packet 

class was examined to clarify the issues. 

 

 Vancouver Calgary Toronto Montreal 

vastats castats tostats mostats 

smo1 

gva1 

  

Figure 5.3 Simple four-node configuration of  CGNet  

 

In the four-node configuration, there are four nodes: Vancouver, Calgary, Toronto, and 

Montreal. Only one packet class generated in gVA traverses through the four nodes and 

sinks in sMO. The topology of  the network is shown in Figure 5.3. The speed of  the 
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generator gVA is 100000bps and link speed is 105000bps. All the data traffic is one-way 

traffic in this linear configuration. The configuration avoids the switching overhead between 

the sending/sink threads. We run each node on a machine and the generator, traffic sink and 

statistics sink on the fifth machine. 

 

TP (secs) 
Sn  (packets) Ln  (packets) 

91.66745114 34424 0 

98.62636304 34582 0 

96.60449505 34582 0 

76.53196609 34554 0 

83.91038609 34559 0 

80.26346898 34560 0 

132.8928231 63577 0 

146.5299519 63578 0 

133.910804 63887 0 

157.6920601 79478 0 

166.6995101 77641 0 

164.395846 77638 0 

207.2725751 97907 0 

203.719165 97914 0 

204.2064589 98358 0 

210.2447071 108119 0 

210.771836 108128 0 

213.553525 108486 0 

243.4811021 126957 0 

242.248595 126966 0 

239.770828 127558 0 

269.7792711 146738 0 

267.153322 146747 0 

268.1924909 147434 0 

280.4792662 158891 0 

275.229635 158900 0 

280.879622 159345 0 

 

(a) the light workload without packet loss 
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TP (secs) 
Sn  (packets) Ln  (packets) 

276.945847 166060 7425 

277.0247301 161368 22607 

281.7895311 157021 36966 

274.7519361 147570 48670 

299.7562981 152192 64696 

309.827373 152387 79051 

342.3031641 161439 99396 

346.7120831 161504 114808 

362.4453422 161780 130810 

388.2538232 166096 149881 

 

(b) the heavy workload with packet loss 

 

Table 5.4 Collection of  sample data for four-node configuration 

 

With the speed of  generator increasing, we perform measurements for the CPU time for 

each node as in section 5.3 and collect the sample data to estimate parameters as in section 

5.4. We tabulate the sample data in table 5.4 and separate them into 5.4 (a) for the light-load 

without packet loss cases and 5.4 (b) for the heavy load with packet loss.  

 

Variable Parameter Estimate Standard Error  95% Confidence Limits 

1β̂  
0.00197 0.00003573 0.00190 0.00205 

2β̂  
0.00022815 0.00014582 -0.00006276 0.00051905 

Root MSE:  37.49628 

 

Table 5.5 output for all cases for four-node configuration 

 

We use a multiple regression model in equation (5-8) for all data in table 5.4. Part of  the 

results on estimated value and root mean squared error (MSE) from the SAS multiple 

regression routine for the CPU time is reproduced in Table 5.5. From 1β̂  and 2β̂  in table 

5.5, we know that lost packets do not incur much cost and most efforts of  CPU in handling 
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a packet is in sending, not receiving a packet (derived SWa  << derived SDa ).  

 

Variable Parameter Estimate Standard Error 95% Confidence Limits 

1β̂  
0.00200 0.00003297 0.00192 0.00207 

Root MSE:  38.34787 

 

Table 5.6 output for light workload for four-node configuration 

 

To see if  there is any difference, we consider the light-load cases without loss in table 5.4 (a) 

and the heavy-load cases with losses in table 5.4 (b) separately. Table 5.6 shows part of  the 

output from the SAS simple regression routine for the light load for four-node configuration.  

Part of  the output from the SAS multiple regression routine for the heavy load for four-node 

configuration is reproduced in table 5.7. 

 

Variable Parameter Estimate Standard Error  95% Confidence Limits 

1β̂  
0.00162 1.11E-05 0.00159 0.00164 

2β̂  
0.000781 2E-05 0.000735 0.00082709 

Root MSE: 2.81795 

 

Table 5.7 output for heavy workload for four-node configuration 

 

1β̂  in table 5.5 and in table 5.6 are very close. The confidence intervals for 1β̂  in table 5.5, 

table 5.6 and 5.7 are around %4± . But we see 2β̂ , the regression results are not as good as 

1β̂ , especially in table 5.5. The lower boundary of  the confidence limits is negative. The 

conclusion from table 5.5 is also not acceptable. The receiving part is reading a packet from 

the socket and switching it. The sending part is dequeuing it and writing to the socket. The 

difference between them, we infer, is not so big as table 5.5 described. We may notice the 
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Root MSE of  table 5.7 is the smallest one among three tables. Thus we choose the 

parameters SWa  and SDa  from 1β̂  and 2β̂  in table 5.7. 

 

The regression theory assumes the variance of  measurement errors is constant (Assumption 

of  homoscedasticity [Mendenhall81]). We may violate the equal variances assumption and 

that may affect the accuracy of  the prediction. That would be a reason for us to take 1β̂  

and 2β̂  of  table 5.7 only. Hence we choose SWa  and SDa  that SWa  = 0.000781sec, 

SDa  = 0.000839sec for four node configuration. 

 

5.6 Obtaining the Parameters for the Five-Node Configuration 

 

The case study configuration is more complex than the simple one mentioned in section 5.5 

and the topology is shown in Figure 4.1. There are more generators, traffic sinks, links, and 

more sending/sinking threads within one node than the simple four-node configuration.  

 

We perform the procedure of  measurement described in section 5.3 and estimation shown in 

section 5.4. Table 5.8 presents a collection of  sample data for the five-node configuration. 

We did a regression analysis as was done in section 5.5 and tabulated the results of  the 

output from SAS in table 5.9 for all cases, table 5.10 for no packet loss case, and table 5.11 

for case with packet losses.  

 

From table 5.9 the multiple regression model equation (5-8) gave the negative value 

prediction for 2β̂ . The confident limits almost reach zero. The reason for the problem 

could be that the model cannot capture everything properly or the overhead is important. 

The cost of  the thread switching may drop when there are packet losses. We may assume 

2β̂  as zero and give the parameters of  the model.  
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TP (secs) 
Sn  (packets) Ln  (packets) 

91.12765 22430 0 

113.113 31050 0 

149.31465 43914 0 

175.37086 51897 0 

219.31372 64011 0 

299.64372 85237 0 

375.59602 113009 0 

155.39386 43261 0 

218.89731 59725 0 

310.10803 83883 0 

364.29541 99217 0 

421.62298 122198 0 

549.46126 162499 0 

730.53637 220080 0 

901.07699 290276 0 

121.2862 32729 0 

161.5628 44885 0 

244.48669 63302 0 

279.42707 74777 0 

348.78466 92007 0 

441.84533 122603 0 

550.05091 162129 0 

160.23081 48635 0 

238.5233 67355 0 

329.3871 95013 0 

390.25624 112740 0 

450.44263 138880 0 

583.39743 185277 0 

261.90265 65218 0 

371.31325 90192 0 

493.8099 127277 0 

570.07184 150824 0 

661.5285 186111 0 

854.09688 248026 0 

(a) the light workload without packet loss 
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TP (secs) 
Sn  (packets) Ln  (packets) 

368.90198 137510 2607 

428.99966 159523 20753 

458.93117 161261 38735 

469.97419 153657 51964 

530.99505 178503 75851 

587.42672 197404 96949 

673.61537 212969 122641 

1027.0594 371497 11416 

1095.5077 407260 26431 

608.95458 202723 559 

695.68501 248365 17404 

765.67243 267607 35027 

718.54679 243736 48001 

831.59089 288781 70444 

933.25368 323871 90729 

1036.8922 357500 116137 

633.86122 235106 11974 

747.99291 263602 56698 

918.26021 318420 95021 

973.92031 337178 125424 

892.36915 297714 144955 

986.79767 343384 185388 

1075.0217 370967 207307 

(b) the heavy workload with packet loss 

 

Table 5.8 Collection of  sample data for five-node configuration 

 

 

Variable Parameter Estimate Standard Error  95% Confidence Limits 

1β̂  
0.00306 0.00003498 0.00299 0.00313 

2β̂  
-0.00038554 0.00014389 -0.00067266 -0.00009843 

Root MSE:  58.09625 

 

Table 5.9 output for all cases for five-node configuration 
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Here we also could investigate the data without packet loss and with packet losses. In table 

5.11 SWa  ( 2β̂ ) is still small as in table 5.5 and SDa  ( 1β̂ - 2β̂ ) is bigger than in other cases. 

It is puzzling to us. This is possibly due to more thread switching in the sending process 

when there are multiple destinations in a node. We notice 2β̂  is not very significant and its 

confidence interval is around %60± . We can choose the parameter value of  zero for 2β̂  

or a non- zero value, 0.00028019. Choosing zero is for simplicity, but the evidence is not 

strong. Table 5.11 and table 5.9 shows that the LQN model with 2 or more sending tasks 

would have different parameters for SDa  compared with table 5.5 and 5.7. The difference 

can be accounted for increased thread switching. 

 

Variable Parameter Estimate Standard Error 95% Confidence Limits 

1β̂  
0.00343 0.00003799 0.00335 0.00351 

Root MSE:  29.65452 

 

Table 5.10 output for light workload for five-node configuration 

 

Variable Parameter Estimate Standard Error  95% Confidence Limits 

1β̂  
0.00278 0.00003320 0.00271 0.00284 

2β̂  
0.00028019 0.00009301 0.00008731 0.00047308 

Root MSE: 24.89353 

 

Table 5.11 output for heavy workload for five-node configuration 

 

The values of  1β̂  in table 5.9, 5.10, 5.11 are higher than those in table 5.5, 5.6, 5.7. We think 

the reason is overhead. Part of  the overhead comes from thread switching. Here we infer the 

possible overhead including thread switching in a little detail as follows: 

��Thread switching: The operating system is forced to reload cache; it will poll the available 
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thread when one sending thread can be blocked for emulating network delay. The original 

configuration requires running more sending/sinking threads for each outgoing queue 

than the simple configuration. 

��Socket polling: The main process should poll among the incoming sockets after it has 

enqueued one packet. There are more incoming sockets and the main process should 

monitor and poll among the larger set of  incoming sockets of  the five-node configuration 

than of  the four-node configuration.  

��Vain socket reading: Once the main process detects the packet available in one socket, it 

will read the incoming socket one by one. For original configuration, there could be more 

chances to read a socket but no data within the socket. But for the simple configuration, 

this problem doesn’t exit because there is only one incoming socket.  

��Routing table and related expense of  CGNet: In fact both configurations are very simple. 

For a five-node configuration, there are five entries in the routing table. But there is only 

one entry in the routing table of  a simple configuration. Each node spends more time to 

keep the link alive because there are more links each node connects with than the simple 

configuration. 

 

We do not know the exact amount of  overhead for each task and propose to distribute them 

evenly to the parameters. Table 5.10 is chosen as a source in this thesis for parameters and 

we assume the ratio of  SWa / SDa  is the same as that in section 5.5 after overhead 

distribution.  So 1β̂  is 0.00343 sec and SWa / SDa  =
000839.0

000781.0
. After calculations, we 

have Ra  = 0, SWa  = 0.0016536 sec, SDa  = 0.0017764 sec, and SKa  = 0.0017764 sec. 

The complete LQN model for CGNet with these parameters is shown in appendix C.  

 

 

 



 82

Chapter 6 Solving and Validating the Performance Model 

 

In this chapter we solve the model with the parameters derived in the chapter 5 so that we 

can make the validation of  the performance model. The validation is on three aspects: 

utilization, throughput, and packet loss. We begin by the description of  the experiment of  

the real system in section 6.1. Measurement procedures should be performed as in chapter 5 

to obtain the CPU time so that we can derive the utilization of  each node. Section 6.2 

validates the performance model in three aspects of  performance characteristics: throughput, 

utilization, and packet loss and present discussions on them. Section 6.3 summarizes the 

validation.  

 

6.1 Description of  Experiments for Validation 

 

The case study is CGNet for a five-node network with links between them. Each node has 

one generator, one traffic sink and one statistics sink connected. We chose six SUN 

SPARCstation 2 machines as the experimental environment. The operating system on these 

machines is Sun Solaris 5.7. The NIC and Hub speeds are 10Mbps and all machines are in an 

isolated local area network. Each node ran on its own machine and all the generators, traffic 

sinks and traffic statistics sinks were executed on the sixth machine.  

 

We performed the measurement procedure described in chapter 5 for each node on each 

machine so we could obtain the CPU time for each node. A bunch of  the compulmt processes 

with different execution time had been prepared before we performed measurement for 

validation purpose. Thus it is convenient to pick up the suitable compulmt processes with 

different execution time. The experiments were setup for different workloads. We used the 

multiplier to vary the workload of  CGNet and carried out the observations on the 

performance characteristics of  CGNet for each case.  
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6.2 Validation of  the model 

 

Validation is the most critical step to gain confidence of  the model’s correctness. Comparing 

the predicted performance characteristics with the real measurement is the best validation, 

although some performance characteristics are difficult to obtain. The measurement 

approach with “Displacement” technique for the CPU time of  node executable can be 

employed in the validation stage of  the performance model. 

 

Plenty of  experiments with different workloads have been made and some performance 

characteristics of  the system were collected. We chose the workload in the original 

configuration of  CGNet and varied it by multiplier. The comparisons between the prediction 

from model and the measurement of  the real system were made on the following three 

aspects: throughput, utilization, and packet loss. The detailed comparison and discussions 

have been broken into three subsections: subsection 6.2.1 focuses on utilization for each 

node; subsection 6.2.2 is on throughput for each node; and packet loss discussion is shown 

in subsection 6.2.3. 

 

We use SPEX to solve the performance model and the solver in spex input file is parasrvn  

We controlled the external arrival rate of  each node by the multiplier to solve the model in the 

format of  SPEX (shown in appendix C). The summary of  the predicted utilization and 

throughput from the LQN model was collected from the file generated from SPEX and 

reproduced in figure 6.1 and figure 6.2.  

 

6.2.1 Utilization Validation 

 

The utilization of  each node well indicates the situation of  the node with the current 
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configuration. We chose multipliers 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.8, and 1.0 in adjustment 

of  the speed of  the generator. 

 

The time command is used to obtain the execution time XXT of  node XX. At the same time 

we employed the measurement approach of  the CPU time proposed in section 5.3 to obtain 

the CPU time TP for each nodeXX. The utilization can be calculated by TP over XXT . The 

predicted utilization for each node can be obtained by the utilization of  the corresponding 

host processor, which includes all tasks’ utilization running on the host processor. 

 

The predicted utilization of  the simulation technology in the confidence interval with 

confidence coefficient 95% compared to the measured utilization for each node is plotted in 

the graphs on Figure 6.1 against multiplier for the speeds of  generators in the network within 

the range from 0.1 to 1. Figure 6.1 (a), (b), (c), (d) and (e) are for node Atlanta, Chicago, 

Dallas, New York, and Washington respectively. For each node we find the curve of  the 

predicted utilization is close to the curve of  the measured utilization within the range from 

0.1 to 0.6. The LQN model provides consistent predictions in the utilization. When the 

multiplier for the speeds of  the generator exceeds 0.6, the node Washington was saturated. 

The predicted utilization and measured utilization were inconsistent. The trend is that the 

measured utilization can not be predicted by LQN model when the multiplier is greater than 

0.6.  

 

The performance characteristics of  the Sun Solaris System in time-sharing mode, the goal to 

achieve high throughput, are demonstrated in the measured cases where the multiplier is 

greater than 0.6. The extra CPU time, compared to the prediction, can be explained as the 

system’s efforts in time-sharing mode to achieve the high throughput. But it is different for 

the prediction from model. If  one node is saturated, the utilization of  other nodes will not 

increase any more. 
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(a) Utilization of  Atlanta for prediction and measurement against multiplier of  workload 

 

 

Node Chicago Utilization
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(b) Utilization of  Chicago for prediction and measurement against multiplier of  workload 
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Node Dallas Utilization
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(c) Utilization of  Dallas for prediction and measurement against multiplier of  workload 

 

 

Node New York Utilization

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 1.2
Multiplier

U
ti

liz
at

io
n

Tested Utilization

Pre. Uti. 95% LCL

Pre. Uti. 95% UCL

 

(d) Utilization of  New York for prediction and measurement against multiplier of  workload 
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Node Washington Utilization
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(e) Utilization of  Washington for prediction and measurement against multiplier of  workload 

 

Figure 6.1 Comparison between predicted and measured utilization for each node 

 

6.2.2 Throughput Validation 

 

Throughput is an important factor in performance. We can get to know the capacity of  node 

through the throughput of  the node and what kind of  workload the system can handle. We 

still chose multipliers with 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 0.8, and 1.0 to vary the speed of  

the generator. 
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Node Atlanta Throughput
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(a) Throughput of  Atlanta for prediction and measurement against multiplier of  workload 
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(b) Throughput of  Chicago for prediction and measurement against multiplier of  workload 
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Node Dallas Throughput
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(c) Throughput of  Dallas for prediction and measurement against multiplier of  workload 

 

Node New York Throughput
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(d) Throughput of  New York for prediction and measurement against multiplier of  workload 
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Node Washington Throughput
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(e) Throughput of  Washington for prediction and measurement against multiplier of  

workload 

 

Figure 6.2 Comparison between predicted and measured throughput for each node 

 

The measured throughput of  the node here is defined as the number of  packets Rn  

handled by node in a time unit, involving not only the packets sent/sunk but also the packet 

loss, which means the throughput of  the switching step. The execution time of  each node 

can be determined by the time command as shown in section 6.2.1. We can obtain the packets 

received and switched from the network statistics report when CGNet has been executed. 

Following the definition of  the measured throughput of  the node, we can map it to the 

throughput of  the switching task in the LQN model. 

 

Figure 6.2 show the comparison between the predicted throughput of  the LQN model in the 

confidence interval with confidence coefficient 95% and the measured throughput against 

the rate of  generators in the network within the range from 0.1 to 1. The throughputs for all 
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nodes, Atlanta, Chicago, Dallas, New York, and Washington for comparison are plotted in 

Figure 6.2 (a), (b), (c), (d) and (e) respectively. 

 

From the figure for each node, we find the LQN model provided a good prediction in the 

throughput for the experiment with the multiplier for the speed of  the generator in the range 

0.1- 0.6. The predicted throughput and measured throughput were quite similar and the 

difference between them was less than 5%. When the multiplier exceeded 0.6, there was a gap 

between the prediction throughput and the real system.  

 

This trend of  consistence in light load and inconsistency in heavy loads is the same as the 

utilizations discussed in subsection 6.3.1. The inconsistency in the heavy load is due to the 

time-sharing mode of  the operating system with the goal to achieve high throughput.  

 

6.2.3 Packet Loss Validation 

 

Packet loss is an annoying factor in the performance of  the network. The network designs 

and implementations try to avoid packet loss. There is no packet loss in the network under 

the specific design and configuration and this kind of  design and configuration, can be 

accepted by us. In this subsection we focus on the packet loss and present the prediction of  

the LQN model on this aspect. The range of  multipliers is still 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6, 

0.8, and 1.0 

 

In CGNet there are two types of  buffer defined, one is a hidden buffer and another is an 

exposed buffer. The former is the incoming sockets and all the sources such as the local 

generator and other nodes connected to this node can send packets to the sockets. The latter 

is defined as outgoing queueing. Every send/sinking thread dequeues the packet and sends it. 

With either buffer, hidden buffer or exposed buffer, all the packets can line up in the queue. 
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Once the queue is full, it could lead to packet loss. Here we name them as receiving loss and 

link loss respectively.  

 

 Node Atlanta Node Chicago Node Dallas 

multiplier Sn  Ln  Sn  Ln  Sn  Ln  

0.1 22430 0 43261 0 32729 0 

0.15 31050 0 59725 0 44885 0 

0.2 43914 0 83883 0 63302 0 

0.25 51897 0 99217 0 74777 0 

0.3 64011 0 122198 0 92007 0 

0.4 85237 0 162499 0 122603 0 

0.6 113009 0 220080 0 162129 0 

0.8 137510 2607 290276 0 202723 559 

1 159523 20753 371497 11416 248365 17404 

 

 

 Node New York Node Washington 

multiplier Sn  Ln  Sn  Ln  

0.1 48635 0 65218 0 

0.15 67355 0 90192 0 

0.2 95013 0 127277 0 

0.25 112740 0 150824 0 

0.3 138880 0 186111 0 

0.4 185277 0 248026 0 

0.6 235106 11974 301038 0 

0.8 263602 56698 326810 0 

1 318420 95021 363203 0 

 

Table 6.1 Statistics of  a node for packets sent and loss 

 

GNet records the link loss in network statisitics report during the execution. We tabulated 

the link loss and the packets that each node sent or sinked in Table 6.1. We found that node 

NewYork started to drop a packet when the multiplier exceeded 0.6, node Atlanta started to 

drop packet at 0.8, and node Chicago and Dallas began to drop packets at 1.0. There is no 
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link loss in node Washington. 

 

 Atlanta Chicago Dallas New York Washington Summary 

multiplier RGn  RGn  RGn  RGn  RGn  � RGn  

0.1 11304 21422 16236 24553 21265 94780 

0.15 15582 29625 22403 33897 29408 130915 

0.2 21925 41775 31560 47865 41455 184580 

0.25 25926 49450 37322 56628 49093 218419 

0.3 31986 60975 46085 69756 60526 269328 

0.4 42702 81145 61476 92860 80603 358786 

0.6 60465 114724 86914 131431 77453 470987 

0.8 82815 157335 119203 180199 66019 605571 

1 112295 213371 161604 244392 72697 804359 

 

(a) Summary of  received packets RGn  from generator for each case 

 

 Atlanta Chicago Dallas New York Washington Summary 

multiplier SKn + Ln  SKn + Ln  SKn + Ln  SKn + Ln  SKn + Ln  � SKn + Ln  

0.1 11130 21835 16493 24121 21156 94735 

0.15 15504 30099 22532 33460 29242 130837 

0.2 21990 42118 31778 47214 41307 184407 

0.25 26003 49773 37472 56112 48988 218348 

0.3 32103 61206 46016 69199 60560 269084 

0.4 42593 81347 61212 92525 80863 358540 

0.6 52588 105413 75409 128543 107372 469325 

0.8 60751 132757 84660 197868 124751 600787 

1 89329 181650 122650 264993 139261 797883 

 

(b) Summary of  sinked packets  SKn  and lost packets Ln  for each case 

Table 6.2 Comparison for total received and total sinked and lost packets for each case 

 

The receiving loss is not recordable in the network statisitcs report because the packets have 
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been lost when they try to enter the incoming socket. The network statistics report is based 

on the incoming socket. Although the receiving loss has not been recorded, we still can get 

to know where it is lost. For the packets from the generator, we know how many packets 

generators generated and the packets RGn  that the nodes really received. For the packets 

from other nodes, we can get to know the number of  packets the node receives from 

upstream nodes and the number of  packets the upstream nodes have sent in the network 

statistics report.  

 

For the receiving loss from the upstream routers, we tabulated all packets RGn  received from 

the generators in table 6.2 (a), and the packets sinked SKn  and lost Ln  in each node in 

table 6.2 (b). Comparing the last column in table 6.2 (a) and table 6.2 (b), we know they are 

almost the same. The slight difference is due to CGNet performing statistics reports every 

30 seconds. Some packets can be received but have not been accounted in the last 30 seconds. 

We can infer there is no packet loss in the receiving loss from the upstream router. 

 

For the receiving loss from the generator, we know how long CGNet nodes executable runs 

for the time command when we performed the meausurements, and the capacity of  the 

generator. We can calculate the number of  the packets GSn  the local generator has sent and 

the node receives RGn . The difference is XXg  = GSn  - RGn  for each node. In addition, 

we also know every node performs statistics every 30 seconds and writes to statistics reports 

to a statistics file. We assume CGNet needs an extra 5 seconds to write a file. That means the 

maximum packets XXG  could enter the node but the node did not make statistics on them. 

They should not count as link loss. We have XXG  = 8)* /(8535*XXr  packets. We can 

tabulate the data collected from network statistics reports and the calculations based on 

configurations for each case in Table 6.3. The comparison between XXg  and XXG  is also 
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shown in the last two column for each node in table 6.3.  If  there is a XXg  > XXG , there 

must be receiving loss in that node at that case. From table 6.3 we can find there is receiving 

loss from the generator in node Washington since the multiplier is 0.6. There is no receiving 

loss from the generator in the other nodes. 

 

 Node Atlanta Node Chicago 

multiplier GSn  RGn  ATg  ATG  GSn  RGn  CHg  CHG  

0.1 11479 11304 175 345 21808 21422 386 656 

0.15 16095 15582 513 517 30548 29625 923 984 

0.2 22346 21925 421 690 42417 41775 642 1311 

0.25 26751 25926 825 862 50773 49450 1323 1639 

0.3 32337 31986 351 1035 61321 60975 346 1967 

0.4 43747 42702 1045 1379 83035 81145 1890 2623 

0.6 62428 60465 1963 2069 118482 114724 3758 3934 

0.8 85366 82815 2551 2759 161273 157335 3938 5246 

1 113900 112295 1605 3449 216393 213371 3022 6557 

 

(a) table for packets from generator in for Node Atlanta and Node Chicago 

 

 Node Dallas Node New York 

multiplier GSn  RGn  DAg  DAG  GSn  RGn  NYg  NYG  

0.1 16487 16236 251 496 24910 24553 357 751 

0.15 23093 22403 690 744 34823 33897 926 1126 

0.2 32067 31560 507 992 48490 47865 625 1502 

0.25 38312 37322 990 1240 57931 56628 1303 1877 

0.3 46357 46085 272 1489 70096 69756 340 2253 

0.4 62717 61476 1241 1985 94835 92860 1975 3004 

0.6 89567 86914 2653 2977 135301 131431 3870 4506 

0.8 121918 119203 2715 3969 184177 180199 3978 6008 

1 163313 161604 1709 4962 246957 244392 2565 7510 

 

(b) table for packets from generator in Node Dallas and Node New York  



 96

 Node Washington 

multiplier GSn  RGn  WAg  WAG  

0.1 21561 21265 296 651 

0.15 30165 29408 757 977 

0.2 42005 41455 550 1302 

0.25 50135 49093 1042 1628 

0.3 60664 60526 138 1953 

0.4 82076 80603 1473 2604 

0.6 117199 77453 39746 3907 

0.8 159539 66019 93520 5209 

1 213934 72697 141237 6511 

 

(c) table for packets from generator in Node Washington  

 

Figure 6.3 Receiving loss of  each node from the local generator 

 

The LQN model can capture the packet loss. It defines the asynchronous call to each entry 

of  the receiving task and sending task and the corresponding buffer that is associated with 

the task. We can also define the buffer size mentioned in section 5.2 when we invoke the 

simulator with  “messages=917” (see appendix C). The results of  the LQN model use the 

term as an Asynchronous Message Loss to indicate the packet loss as that we defined in the real 

system. If  there is packet loss for the receiving task, there is receiving loss; and the sending 

task is for link loss. Comparing the output files from the LQN model, we know that the 

LQN model provides the prediction of  the packet loss when the multiplier is 0.6. That is 

consistent with the measurement. 

 

The LQN model also offers which node is the busiest one. From the results, node 

Washington’s utilization is 0.99895 and that is the cause for the receiving loss from the 

generator. Packet loss is the critical factor to evaluate the design and configuration of  the 

network. The attractiveness of  the LQN can be used to predict what kind of  design and 

configuration will cause the packet loss and why there is packet loss.  
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Certainly, there are limitations of  the LQN model to capture packet loss for CGNet. Once 

there is the asynchronous message loss in the LQN model, it treats all the task fairly. It 

distributes the asynchronous message loss to each tasks. Thus, the LQN model results 

indicate that there is an asynchronous message loss for every task whose entries receive the 

asynchronous call. We cannot use it to make further prediction of  the packet loss 

proportion.  

 

6.3 Discussion 

 

The LQN model has provided the consistent prediction of  CGNet in utilzation and 

throughput in the low workload case. It effectively pointed out when packet loss happens 

and showed the reason which causes the packet loss in the link level and receiving level.  

 

We noticed that the LQN model can not predict the performance factors of  CGNet with a 

multiplier more than 0.6. That makes the modeling exercise difficult especially when one node 

is saturated. In the following we summarize the assumptions in building the model to help 

understand the modeling exercise, and discuss some points addressed in chapter 5. 

��Cost per packet in CGNet depends strongly on the number of  threads and overhead 

from polling among the sockets. (secton 5.6). 

��The UNIX system in time sharing mode does not obey the simple assumption that the 

CPU spends the same time in communication tasks with high workload as that with low 

workload. (secton 5.5, section 5.6) 

��Only the CPU time can be derived without more accurate profiling tools because of  the 

ISR for socket communication processing. (section 5.3) 

��Regression modelling is effective to predict the parameter. (secton 5.4) 

��Packet loss mechanisms in UNIX suystems is different from the assumption of  the LQN 

model.(section 6.2.3) 
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Chapter 7 Converter Tool 

 

In chapter 4, we have developed the compositional approach to building the performance 

model through detailed analysis for a typical network. The structure of  the performance 

model can be constructed from the configuration. Combined with the approach to 

measurement and parameter estimation in chapter 5, we can derive the parameters for the 

performance model. The converter tool integrating the compositional approach to the 

construction of  the performance model structure and parameters obtained from 

measurements has been developed in the thesis. The tool makes it possible to generate an 

LQN model from the configuration files automatically if  we assume the execution demands 

are the known variables. This chapter focuses on the automated tool and it covers the 

overview of  the automated tool in section 7.1, the algorithm of  the automated tool for 

gathering information in section 7.2, the algorithm of  the automated tool for outputting the 

spex input file in section 7.3 and the validation of  the automated tool in section 7.4. 

 

7.1 Overview of  Converter Tool 

 

CGNet is a configuration-oriented tool for a test network. Once CGNet starts up, the 

CGNet executables read network description files in order to configure them and connect to 

each other during the initialization. The routing table is constructed according to the 

configuration. Hence the packets traverse the network according to the routing table derived 

from the configuration. The compositional model building approach based on packet class 

along the path has been well described in chapter 4. This approach makes it possible to 

automate the procedure of  building the performance model, which integrates the execution 

demands derived in chapter 5. The idea can be illustrated in Figure 7.1. 
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Converter Tool 

 

Configuration 

[Network Description Files] 

Parameter 

[Execution Demand] LQN model 

[SPEX] 

 

 

Figure 7.1 An approach to building the LQN model from the configuration of  network. 

 

All description files are formatted as simple ASCII text with lines formatted as follows: 

<keyword>:<parameter1>;<parameter2>;....;<parameterN> 

Each line consists of a keyword followed by a colon and a series of parameters separated by 

semicolons. The converter tool reads each line in the network description files and defines 

the characteristics of the nodes, traffic generators, traffic sinks, and links. The routing tables 

for all nodes are generated in the same way as in CGNet. We assume that we have known 

execution demands for the LQN model, we will now generate the performance model to 

implement the compositional approach described in chapter 4. The output of the converter 

tool generates the LQN model in the format of the spex input file. The converter tool was 

written in Java. 

 

7.2 Algorithm of  Converter Tool in Information Collection 

 

In this section we focus on the algorithm of  the converter tool in gathering information and 

building the routing table. When we gather information, the corresponding host processors, 

and tasks are defined together. After building the routing table as CGNet, the entries are 

defined for the LQN model.  

 

The procedure of  the converter tool may be formalized in the following steps: 
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1. Initialize the converter tool; 

2. Get node information from nodeinfo and process the information; 

3. Get generator information from generatorinfo and process the information; 

4. Get sink information from sinkinfo and process the information; 

5. Get link information from linkinfo and process the information; 

6. Build routing table for each node; 

7. Add entries to the corresponding task from the routing table; 

8. Output the initial information such as Model Title and Description, Setting Pragmas, 

Controls, and Parameters and the Global Information to the LQN model for SPEX; 

9. Output the processor information; 

10. Output the task information; 

11. Output the entry information; 

12. Output the report information; 

 

We discuss steps 1 through 7 in the following subsections. The remaining will be shown in 

section 7.3. Before we get into the detailed discussion, we define the following collection of  

objects as array in the converter tool: 

a set of  nodes N = {n
1
, n

2
, n

3
, ….}; 

a set of  generators G = { g
1
, g

2
, g

3
, ……}; 

a set of  links L = { l
1
, l

2
, l

3
, ……}; 

a set of  sinks S = { s
1
, s

2
, s

3
, ……}; 

a set of  processor P = { p
1
, p

2
, p

3
, ……}; 

a set of  routing table RT = { rt
1
, rt

2
, rt

3
, ……}; 

for each node n
i
 ∈  N, we define: 

 a set of  user tasks, Usr n
i
 = { usrni 

1
, usrni 

2
, usrni 

3
,……}; 

 a set of  reveiving tasks, Rcv n
i
 = {rcvni 

1
, rcvni 

2
, rcvni 

3
,……}; 

 a set of  switching tasks, Swi n
i
 = { swini 

1
, swini 

2
, swini 

3
,……}; 
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 a set of  sending tasks, Snd n
i
 = { sndni 

1
, sndni 

2
, sndni 

3
,……}; 

 a set of  sinking tasks, Snk n
i
 = { snkni 

1
, snkni 

2
, snkni 

3
,……}; 

 a set of  network delay tasks, Net n
i
 = { netni 

1
, netni 

2
, netni 

3
,……}; 

for each node n
i
 ∈  N or routing table rt

 i
 ∈  RT , we define: 

 a set of  routing entry, RE n
i
 = { reni 

1
, reni 

2
, reni 

3
,……}; 

 

7.2.1 Initialize the Converter Tool 

 

This subsection describes the initial step of  the converter tool and it initializes the variables 

that will be used in the following steps. 

1. Set a set of  nodes N = ; a set of  generators G = ; a set of  links L = ; a set of  sinks 

S =  

 

7.2.2 Get Node Information from nodeinfo 

 

This subsection deals with the file nodeinfo and collects information of  nodes. The switching 

task of  the LQN model should be created in this step. 

 

1. Open the file nodeinfo 

2. While getnextline() != null do 

2.1 if  line is effective 

2.1.1 Create node 

2.1.1.1 Set this node a set of  user tasks Usr = ; a set of  receiving tasks Rcv 

= ; a set of  switching tasks Swi = ; a set of  sending tasks Snd = ; a 

set of  sinking tasks Snk =  

2.1.2 Parse the line for characteristics and set the node variable 
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2.1.3 Add the switching task to a set of  switching tasks Swi for this node 

2.1.4 Add the node to the set of  nodes N 

3. Close the file nodeinfo 

 

7.2.3 Get Generator Information from generatorinfo 

 

This subsection handles the file generatorinfo and collects information of  the generators. The 

user and receiving tasks of  the LQN model should be created and the entry for different 

traffic destinations should be added in the receiving task and switching task for the node that 

this generator is connected to. 

 

1. Open the file generatorinfo 

2. While getnextline() != null do 

3.1 if  line is effective 

3.1.1 Create generator 

3.1.2 Parse the line for characteristics and set the generator variable 

3.1.3 Add the user task to a set of  user tasks Usr for the node which the generator 

is connected 

3.1.4 Add the receiving task to a set of  receiving tasks Rcv for the node which the 

generator is connected 

3.1.5 Parse the line for traffic destinations 

3.1.5.1 for each destination do 

3.1.5.1.1 Add entry with this destination for the receiving task Rcv for the 

node which the generator is connected 

3.1.5.1.2 Add entry with this destination for the switching task Swi for the 

node which the generator is connected 

3.1.6 Add the generator to the set of  generators G 



 103

3. Close the file generatorinfo 

 

7.2.4 Get Sink Information from sinkinfo 

 

This subsection deals with the file sinkinfo and collects information of  the traffic sinks. The 

switching task of  the LQN model should be created in the following steps.  

 

1. Open the file sinkinfo 

2. While getnextline() != null do 

3.2 if  line is effective 

3.2.1 Create sink 

3.2.2 Parse the line for characteristics and set the sink variable 

3.2.3 Add the sink task to a set of  sinking tasks Snk for this node that this traffic 

sink is connected to 

3.2.4 Add the entry with the destination (its self) for the sink task for this node 

that this traffic sink is connected to 

3.2.5 Add the entry with the destination (its self) for the switching task for this 

node that this traffic sink is connected to 

3.2.6 Add the sink to the set of  sinks S 

3. Close the file sinkinfo 

 

7.2.5 Get Link Information from linkinfo 

 

This subsection describes the collection of  information for traffic links from the file linkinfo. 

The receiving and sending tasks of  the LQN model should be created for each node the link 

is connected to. 
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1. Open the file linkinfo 

2. While getnextline() != null do 

3.3 if  line is effective 

3.3.1 Create link 

3.3.2 Parse the line for characteristics and set the link variable 

3.3.3 Add the receiving task to a set of  receiving tasks Rcv for each node that this 

link is connected to 

3.3.4 Add the sending task to a set of  sending tasks Snd for each node that this 

link is connected to 

3.3.5 Add the network delay task to a set of  network delay tasks Net for each node 

that this link is connected to 

3.3.6 Add the link to the set of  links L 

3. Close the file linkinfo 

 

7.2.6 Build Routing Table for Each Node 

 

The following algorithm fragment focuses on building the routing table following the same 

way as in CGNet. We put the routing tables of  all nodes in a set of  routing tables RT and 

one element in RT is defined for one node. The current routing policy is OSPF, Open 

Shortest Path First. For each node we can know the next hop for a packet class from the 

routing table and the shortest path to the destination is chosen for the packet class. 

 

1. for each node n
i
 ∈ the set of  Node N 

1.1 Create routing table rt
i
 for node n

i
  

1.2 Add routing table rt
i
 to the set of  routing table RT 

1.3 for each sink s
ij ∈  the set of  Sink S 

1.3.1 if  the sink is connect the node ni  
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1.3.1.1 add routing table entry for this destination with cost 0 

1.3.2 else 

1.3.2.1 add routing table entry for this destination with cost ∞ 

2. do 

2.1 for each node ni ∈  the set of  Node N 

2.1.1 for each link lk ∈  the set of  Link L (link lk cost = ck)  

2.1.1.1 for each entry rej ∈  the set of  routing entry RE for node ni 

(destination is dj  and cost is cj ) 

2.1.1.1.1 if  link lk is connected to node (the node on the other end of  link 

is ns) 

2.1.1.1.1.1 if  (cm + ck < cj) (the cost with the destination dj in node ns) 

2.1.1.1.1.1.1 Change entry rej next hop as ns   

2.1.1.1.1.1.2 Change entry rej new cost 

2.1.1.1.1.1.3 Recording the change in routing table 

3. while there is change in routing table 

 

7.2.7 Add Entries to the Task from Routing Table 

 

This subsection focuses the entries in the tasks in the LQN model. The algorithm generates 

the entries from the routing table and assigns the entries to the tasks. We traverse all routing 

entries in the routing table and define the corresponding entries in the LQN model. Then we 

assign the entry to the corresponding task.  

 

1. for each node n i ∈  the set of  nodes N 

1.1 for each routing entry re j ∈  the set of  Routing Entries RE n i 

1.1.1 Add the entry of  LQN model to the network delay task in node n i 

1.1.2 Add the entry of  LQN model to the sending task in node n i 
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1.1.3 Add the entry of  LQN model to the receiving task in next hop node 

1.1.4 Add the entry of  LQN model to the switching task in next hop node 

 

7.3 Algorithm of  Converter Tool in Model Output 

 

This section outputs the host processors, tasks, entries generated in section 7.3. Some 

necessary information including the parameters for the spex input file are output together. 

Thus we output the whole model.  

 

7.3.1 Output the Initial Information 

 

Now we have defined all the tasks and entries for the LQN model. The converter tool 

arrives at the stage of  outputting the input file for the SPEX tools. This subsection begins to 

output the lines of  text, which will form the initialization of  the model. The initialization of  

the model involves the solver the SPEX chooses, the control statements, parameters and 

expressions, and the global information. The following algorithm is related to create the 

initialization of  the spex input file. 

 

1. Open the spex input file 

2. Write the solver and related information 

3. Write the control statements  

4. Write the spex parameters 

4.1 Write the speed of  generators 

4.2 Write the speed of  the proportion for different destination 

4.3 Write the parameters for execution demand  

5 Write the global information 

6 Close the spex input file 
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7.3.2 Output the Processor Information 

 

In this subsection comes the processor information. The algorithm fragment writes the 

information of  the processor to the spex input file and the host processors of  the nodes and 

the network processor should be included. 

 

1. Open the spex input file 

2. for each node n
i
 ∈  the set of  Node N 

2.1 Write the user host processor 

2.2 Write the node host processor 

3. Write the network host processor 

4. Close the spex input file 

 

7.3.3 Output the Task Information 

 

The task information is in this subsection. The algorithm fragment outputs the task 

information in the spex input file. All the tasks such as user task, receiving task, switching 

task, sending task, sinking task and network delay task will be written into the spex input file.  

 

1. Open the spex input file 

2. for each node n
i
 ∈  the set of  Node N 

2.1 Write the user task 

2.2 Write the receiving task 

2.3 Write the switching task 

2.4 Write the sending task 

2.5 Write the sinking task 
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2.6 Write the network delay task 

3. Close the spex input file 

 

7.3.4 Output the Entry Information 

 

The entry information follows the task information in the spex input file and is described 

below in this subsection. The algorithm fragment implements the entry information in the 

spex input file. It not only handles the entries in the task, but also indicates the call between 

entries. 

 

1. Open the spex input file 

2. for each node n
i
 ∈  the set of  Node N 

2.1 Write the entries in the user task User 

2.2 Write the entries in the receiving task Rcv 

2.3 Write the calls from user task to receiving task 

2.4 Write the entries in the switching task Swi 

2.5 Write the calls from receiving task to switching task 

2.6 Write the entries in the sending task Snd 

2.7 Write the entries in the sinking task Snk 

2.8 Write the calls from switching task to the sending task and the sink task 

2.9 Write the entries in the network delay task Net 

2.10 Write the call from the sending task to the network delay task 

2.11 Write the call from the network delay task to the receiving task 

3. Close the spex input file 

 

7.3.5 Output the Report Information 
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The final section of the spex input file is the report section. The purpose of this section is to 

specify which variable values are to be printed in the spex result file. The algorithm fragment 

outputs the report information in the utilization of processor and throughput. We can define 

the different report information according to different requirement. 

 

1. Open the spex input file 

2. for each node n
i
 ∈  the set of  Node N 

2.1 Write the utilization of  the node 

2.2 Write the throughput of  the switching tasks 

3. Close the spex input file 

 

7.4 Validation of  the Converter Tool 

 

This section describes the example CGNets used to validate the converter tool algorithm. 

The examples are a linear unidirectional configuration of  CGNet, a linear bidirectional 

configuration of  CGNet and a five-node configuration of  CGNet. These configurations are 

used to validate the converter tool for different purposes 

 

The current LQN model generated by the converter tool is in the format of the input file for 

SPEX. SPEX checks both the syntax and the semantics of the LQN models by solver, 

LQNS or ParaSRVN tools, which is specified in the spex input file. SPEX generates the 

LQN models by variable substitutions, solves them by LQNS or the ParaSRVN tools, and 

then collect the data for performance characteristics. The LQN models generated by SPEX 

can be used as the input file for JlqnDef, which makes it possible to check the LQN model 

by JlqnDef. JlqnDef not only can perform a syntax check, but also can perform a visual 

check of the LQN model composition. So it can generate a graphical view of the LQN 

model and that makes it different from LQNS and the ParaSRVN tools. 
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7.4.1 The Linear Unidirectional Configuration Example 

 

We chose the configuration with four nodes. There is only one generator and one sink. The 

packets, generated by the generator, traverse the network through four nodes and arrive at 

the sink. The topology is shown the Figure 5.5. 

 

This configuration is very simple but is good for testing the converter tool. We get to know 

there are three bidirectional traffic links in the network and the links exist between 

Vancouver and Calgary, between Calgary and Toronto, and between Toronto and Montreal. 

From the current configuration, there is only unidirectional traffic that is from Vancouver to 

Montreal along the links. That could be a trick in the converter tool. 

 

The converter tool generates the LQN model for the linear unidirectional configuration. 

Figure 7.2 is the visual output from JlqnDef  for the LQN model generated by SPEX with 

the variable substitutions. The LQN model is solvable by LQNS and ParaSRVN, which 

shows that the LQN model generated by the converter tool is both syntactically and 

semantically correct.  
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Figure 7.2 The LQN model generated by the converter tool from the linear unidirectional 

configuration. 

 

7.4.2 The Linear Bidirectional Configuration Example 

 

We chose another configuration with four nodes and it is still a linear configuration. There is 
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two traffic generators located in the end of  the line nodes, and two traffic sinks are in each 

end of  the line. The traffic generated by a generator connected to the edge router traverses 

four node and arrives at a traffic sink connected to the other edge router. The topology is 

shown in the Figure 5.5. 

 

 

Vancouver Calgary Toronto Montreal 

vastats castats tostats mostats 
smo1 

sva1 

gva1 

gmo1 

 

 

Figure 7.3 Linear Bidirectional Configuration of  CGNet with four nodes 

 

This configuration is still simple but it well deploys the bidirectional characteristics of  the 

traffic links. The traffic generated by two generators follows the links between Vancouver 

and Calgary, between Calgary and Toronto, and between Toronto and Montreal. Some nodes 

lack traffic generators and traffic sinks. For example in the linear configuration, there are no 

traffic generators and traffic sinks that connect to nodes Calgary and Toronto.  

 

We use the converter tool to generate the LQN model for the linear bidirectional 

configuration. JlqnDef  performs a syntax check for the LQN model generated by SPEX 

with variable substitutions. Figure 7.4 shows the visual output for the LQN model generated 

by SPEX. The LQN model of  the converter tool can be solved with LQNS as well as 

simulated with ParaSRVN. The syntactical and semantic correctness has been demonstrated 

for the LQN model generated by the converter tool. 
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Figure 7.4 The LQN model generated by the converter tool from the linear bidirectional 

configuration. 
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7.4.3 The Five-Node Configuration Example 

 

We chose the complicated five-node configuration for a network: there are five nodes, and 

there are traffic generators and traffic sinks, which connect to each node. Every bidirectional 

traffic links are fully used for data traffic. This configuration is more complex than the two 

previous configurations. The topology is shown in Figure 4.1 

 

The converter tool generates a large number of  entries, tasks, and call relationships that 

correspond to the spex input file. This results in the LQN model with lots of  entries. The 

graphical view is not presented here because it is constrained by the page size. The spex 

input file generated by the converter tool is shown in Appendix D. 

 

The LQN model for the complex configuration can be solved by the LQNS analytic solver 

as well as by the ParaSRVN simulator. We can solve it and derive the same result as the 

model created by hand. This demonstrates that the output from the converter tool is both 

syntactically and semantically correct.  
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Chapter 8 Conclusions 

 

We draw the conclusions of  the thesis in this chapter. This chapter can be broken into the 

following sections: firstly, section 8.1 summarizes the thesis; secondly, section 8.2 discusses 

the conclusions of  thesis; thirdly, section 8.3 provides suggestions for performance purpose; 

fourthly, section 8.4 outlines the contributions in detail; next, section 8.5 addresses the 

limitations of  the research; and finally, in section 8.6, we propose some future works which 

focus on the limitations of  the research. 

 

8.1 Summary 

 

It is the original motivation to predict the performance of  the software system, identify the 

performance problems and solve the problems for performance critical systems. The 

performance modeling approach is the cornerstone of  performance predictions and it also 

provides the basis for performance problem detection and performance optimization in the 

future. The challenges in the performance modeling approach have been well addressed. 

 

Based on the research for CGNet, We chose the LQN model as the performance model. 

One of  the characteristics of  CGNet is that it can well emulate the behaviour of  operational 

network. The LQN model for CGNet can bridge the gap between the operational network 

and performance analysis. The LQN model is constructed to predict the performance 

characteristics and identify performance problems. 

 

During the construction of  the performance model, we highlighted the packet class in 

CGNet and traced the scenarios of  the packet class. With our understanding of  CGNet, we 

built the template node-path sub models for the scenario fragments. The compositional 

approach to merging the sub model has been proposed especially for the application CGNet. 
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We can derive the node-path sub models by substitution for template node-path sub model 

within one node and merge them to the node sub models. We can then acquire the entire 

model through the composition of  the node sub model for each node. 

 

We parameterized the performance model through the collection of  the configuration 

information, the measurement of  the execution information and the estimation of  

parameters. Measurements of  CGNet where the model is fully busy with communication 

processing were the most challenging in the thesis. We made use of  the “Displacement” 

technique to obtain the CPU cost of  processing for the model. Simple regression and multi 

regression models have been used for the least square estimations. Therefore, we completed 

the performance model with parameters with our option. 

 

We built the LQN model based on the packet class. In fact, we can derive the packet class 

from the configuration of  CGNet, and the network description file. That makes the 

converter tool possible, which generate the LQN model from the configuration. The thesis 

offers a detailed description for the algorithm of  the converter tool and validates the 

converter tool with three typical configurations. 

 

We can derive the predicted performance by solving the LQN model and obtain the 

performance characteristics by collection and measurements of  the execution information. 

Thus we can validate the performance model in the performance characteristics of  CGNet 

such as throughput, utilization, and packet loss. This has proven that the LQN model can be 

deployed in the prediction of  network performance effectively.  

 

From the predicted performance, we can make the analysis and provide the suggestions in 

the architecture redesign and reconfiguration for high performance in the network system. 
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8.2 Conclusions 

 

The compositional framework for the constructing model approach is to be capable of  

modeling arbitrary large configurations. The converter tool was developed and it makes 

modeling of  CGNet convenient and efficient. 

 

Adequate measurements in CGNet for model parameters are difficult. The “Displacement” 

technique was good enough to give repeatable measurements for the total execution time. 

Parameters were found by regressions; however the values were not stable for different cases, 

and sometimes were not reasonable. 

 

A notable discovery in the measurements was the much larger packet-handling cost in the 

five-node configuration. It was almost nearly double as that in the four-node configuration. 

The most likely cause of  this phenomenon is thread switching overhead, as there are more 

threads (one per link for sending).   

 

The model structure may not be adequate, in particular due to it ignoring the 

thread-switching overhead. The layered queueing framework has not addressed this problem; 

but it can be simulated. However, measurement of  the thread switching would be necessary. 

 

The contribution of  the measurement is not so much for the model, but is the discovery of  

these problems during the model building. 

 

8.3 Suggestions for Performance Purpose 

 

Performance optimization is what people are concerned the most with and that meets the 

objective of  the traffic-engineering framework described in chapter 1. This section discusses 
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the optimization of  performance after the modeling exercise.  

 

Through constructing the LQN model, measuring and estmating parameters for the model, 

we derived the behaviour of  CGNet from one configuration and understand its execution. 

The results of  the LQN model and the discussions of  the modeling exercise provided the 

necessary evidence for the software architecture redesign and network reconfiguration. Some 

suggestions are listed as follows: 

1. Decreasing the number of  threads in the node: The CPU cost in processing a packet in 

CGNet depends strongly on the number of  threads. We can reduce the number of  

threads to decrease the overhead of  thread switching.. Currently, there is one thread for 

each outgoing link. We can consider to use a reduced number of  threads to manage all 

the outgoing links.  

2. Batching for socket communications: For the main thread, we can change it to read all 

the data in the socket through one operation of  reading the socket. For the 

sending/sinking thread, we can write several packets with the same next hop to the 

socket through one operation of  writing the socket. The batching operation can save the 

overhead of  I/O socket operation. 

3. Load redistribution: We know there are link level and receiving level packet loss. The 

LQN model can predict what kind of  load can lead to packet loss. If  the arrival rate  

exceeds the capacity of  the link, that will lead to link loss. For OSPF/IS-IS it could 

implement load balance through adjusting the cost of  some specific links for its use, we 

can refer the paper [Fortz02]. For MPLS [Xiao00], it looks simple and we add an LSP to 

reroute the traffic. That means that we can add one packet class on CGNet and add one 

request class in the LQN model. We also need to update the converter tool in favor of  

widen usage . 
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8.4 Contributions 

 

One of  the contributions of  this thesis is that the compositional model building approach 

based on assembling the sub models has been proposed. This approach is used in CGNet for 

constructing performance models and the sub models describe the network operations based 

on the packet class. The packet class can be derived from the configuration of CGNet. The 

routing table can be used to determine the path of the packet class.  

 

The converter tool is the glue between the configuration of CGNet and the performance 

analysis using Layered Queueing Network (LQN). The converter tool bridges the 

configuration to the performance characteristics and enhances the prediction of the 

compositional strategy by its automated nature. The output of the tool can be analyzed by 

existing performance model tools such as the LQNS analytic solver and the ParaSRVN 

simulator. Although the tool is developed for OSPF, it can be changed to fit any 

source-destination pair routing algorithm. 

 

The other contribution of the thesis is that the investigation of parameters estimation has been 

deployed for the concrete CGNet system. The parameters estimation approach integrates the 

“Displacement” technique in measurement and the least square estimation techniques for 

parameters from execution information. A notable finding is that the thread-switching 

overhead could be significant in a multithreaded application and cannot be ignored in the 

performance model building, which could lead to the unstable values of predicted parameters 

from the regression models.  

 

8.5 Limitations 

 

There are limitations to the research in the performance model of  the communication 
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system.  

 

The thread-switching overhead has been ignored in the LQN model structure. Actually the 

layered queueing framework has not addressed this problem. The solution of  this thesis is to 

distribute thread-switching overhead evenly; but that may lead to the inconsistency between 

predicted and measured performance characteristics in the validation stage. In particular, 

there is inconsistency for high loads.  

 

The parameters derived from measurements and estimation may be too coarse. We only 

obtained the total CPU execution demand of  the process from “Displacement” technique. 

Then we broke it into two parts, the receiving part and the sending part per packet. We 

detected the overhead of  CPU scheduling among threads in our measurement but we still 

can not figure out how much the overhead is.  

 

8.6 Future Work 

 

Future work should be done to address the limitations in section 8.5. We can focus on the 

improvement of  the Layered Queueing framework and make it simulate the overhead of  

thread switching. 

 

Kernel measurements can be performed to detect the amount of  overhead of  thread 

switching and the overhead of  polling among receiving sockets. 
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APPENDIX A BNF Description of  Naming Notation of  LQN Model 

 

Rule of  Naming Notation of  LQN model for CGNet 

 

<host_node_name>  ::= 

   The first two capital letter of  the name for the node 

<destination_node_name> ::= 

   The first two capital letter of  the name for the node 

<from_node_name>  ::= 

   The first two capital letter of  the name for the node 

<to_node_name>  ::= 

   The first two capital letter of  the name for the node 

 

<Hostprocessor_def>   ::= 

<User_processor> | <node_host_processor> | <network_processor> 

 

<User_processor> ::= <host_node_name>UserProc 

<node_host_processor> ::= <host_node_name>Server 

<network_processor> ::= Network  

 

<Task_def>   ::= <User_task> | <Receiving_task>| <Switching_task>| <Sending_task>| 

<Sinking_task>| <NetworkDelay_task> 

 

<User_task>    ::=   <host_node_name>UserT             

Based on generator connected to node 

<entry_def>  ::=  <host_node_name>User 
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<Receiving_task>   ::=  <Rcv_generator_task>  |  <Rcv_node_task> 

 

<Rcv_generator_task>  ::=  <host_node_name>_RCV      

Based on generator 

<entry_def>  ::=  RCV_<host_node_name>_<destination_node_name> 

 

<Rcv_node_task> ::=  <from_node_name><host_node_name>_RCV    

Based on link connected to node 

<entry_def>  ::= 

  <from_node_name><host_node_name>_<host_node_name>_<destination_node_name> | 

<from_node_name><host_node_name>_<host_node_name>_SE 

 (if  <host_node_name> = <destination_node_name>) 

 

<Switching_task>   ::=  <host_node_name>_SW 

<entry_def>  ::=  SW_<host_node_name>_<destination_node_name>| 

     SW_<host_node_name>_SE 

(if  <host_node_name> = <destination_node_name>) 

 

<Sending_task>   ::=  <host_node_name>_SEND_<to_node_name>     

Based on link associated to node 

<entry_def>  �  SEND_<host_node_name>_<destination_node_name> 

 

<Sinking_task> ::=   <host_node_name>_SINK            

Based on sink associated to node 

<entry_def>  ::=  D_<host_node_name>_SINK 

 

<NetworkDelay_task>  ::=  <host_node_name><to_node_name>DELAY  
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Based on link associated to node 

<entry_def>  ::=  <host_node_name><to_node_name>DEL<destination_node_name>* 

 (*<destination_node_name> are in the small letter) 
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Appendix B the Code of  compulmt Process 

 

#include <stdio.h> 

#include <time.h> 

#include <math.h> 

#define ITERATIONS 60000000 

 

int do_something(int CPU_loops) 

{ 

 

double temp, temp2; 

int i, max_i; 

static int flip_flop = 0; 

 

max_i = CPU_loops; 

 

for (i=0; i< max_i; i++) { 

 

temp = 0.0; 

 

temp = sin(1.4); 

temp = cos(temp); 

temp = sin(temp); 

temp = cos(temp); 

temp = sin(temp); 

temp2 = sin(1.4); 

temp2 = cos(temp2); 

temp2 = sin(temp2); 

temp2 = cos(temp2); 

temp2 = sin(temp2); 

} 

return 1; 

} 

 

double output_timespec(struct timespec *t) 

{ 

double res; 

res=(double)(t->tv_sec) + (double)(t->tv_nsec)/1.000000000e9; 

// printf("\n The time is %d.%09ld =  %.9lf% ", (double) t->tv_sec, t->tv_nsec, 
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res); 

return res; 

} 

 

int main() 

{ 

int i; 

struct timespec start, end; 

double starttime, endtime, elaptime; 

 

clock_gettime(CLOCK_REALTIME, &start); 

do_something(ITERATIONS); 

clock_gettime(CLOCK_REALTIME, &end); 

 

starttime = output_timespec(&start); 

endtime = output_timespec(&end); 

 

elaptime = endtime - starttime; 

 

printf("\nelapsed from \t %.9lf\t to \t %.9lf\t and difference is \t %.9lf\n.", 

starttime, endtime, elaptime); 

} 
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Appendix C LQN Model Constructed by Hand for Five-Node Network 

 

$solver = parasrvn -B 10,100000,150000 -P messages=917 

 

$factor1=0.2:2,0.2 

$ATrate=0.0985294*$factor1   #67000/(85*8)=98.5294 

$CHrate=0.1873529*$factor1   #127400/(85*8)=187.3529 

$DArate=0.1417647*$factor1   #96400/(85*8)=141.7647 

$NYrate=0.2145588*$factor1   #145900/(85*8)=214.5588 

$WArate=0.1860294*$factor1   #126500/(85*8)=186.0294 

 

$factor2=1 

$Delay075=9.067*$factor2      #8*85/75000=0.009067 

$Delay105=6.476*$factor2      #8*85/105000=0.006476 

$Delay120=5.667*$factor2      #8*85/120000=0.005667 

$Delay150=4.533*$factor2      #8*85/150000=0.004533 

 

$RCVp1=0 

$RCVp2=0 

$ATSWIp1=1.6536 

$ATSWIp2=0 

$CHSWIp1=1.6536 

$CHSWIp2=0 

$DASWIp1=1.6536 

$DASWIp2=0 

$NYSWIp1=1.6536 

$NYSWIp2=0 

$WASWIp1=1.6536 

$WASWIp2=0 

$SNDp1=1.7764 

$SNDp2=0 

$SNKp1=1.7764 

$SNKp2=0 

 

 

 

G "Router Software System" .000001 100 1 0.9 -1 

 

P 0 

p ATUserProc f i 
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p ATServer f %u $ATRU 

 

p DAUserProc f i 

p DAServer f %u $DARU 

 

p CHUserProc f i 

p CHServer f %u $CHRU 

 

p NYUserProc f i 

p NYServer f %u $NYRU 

 

p WAUserProc f i 

p WAServer f %u $WARU 

 

p NETProc f i 

-1 

 

T 0 

t ATUserT n ATUser -1 ATUserProc  # Pseudo AT Task 

t AT_RCV n RCV_AT_CH RCV_AT_DA RCV_AT_NY RCV_AT_WA -1 ATServer %f $ATGThr %pu $ATGU 

# Task for AT generator 

 

t DAAT_RCV n DAAT_AT_SE -1 ATServer %pu $ATDARU    # Task for ATDA link (rcv) 

t WAAT_RCV n WAAT_AT_SE -1 ATServer %pu $ATWARU    # Task for ATWA link (rcv) 

 

t AT_SW n SW_AT_SE SW_AT_CH SW_AT_DA SW_AT_NY SW_AT_WA -1 ATServer %f $ATAThr %pu 

$ATSWU 

 

t AT_SINK n D_AT_SINK -1 ATServer %f $ATSThr %pu $ATSINKU   # Thread Task for AT sink 

t AT_SEND_DA n SEND_AT_DA -1 ATServer %f $ATDAThr %pu $ATDASU 

# Thread Task for ATDA link (send) 

t AT_SEND_WA n SEND_AT_CH SEND_AT_NY SEND_AT_WA -1 ATServer %f $ATWAThr %pu $ATWASU 

# Thread Task for ATWA link (send) 

 

t CHUserT n CHUser -1 CHUserProc   # Pseudo CH Task 

t CH_RCV n RCV_CH_AT RCV_CH_DA RCV_CH_NY RCV_CH_WA -1 CHServer %f $CHGThr %pu $CHGU 

# Task for CH generator 

 

t DACH_RCV n DACH_CH_SE -1 CHServer %pu $CHDARU    # Task for CHDA link (rcv) 

t NYCH_RCV n NYCH_CH_SE -1 CHServer %pu $CHNYRU    # Task for CHNY link (rcv) 

t WACH_RCV n WACH_CH_SE -1 CHServer %pu $CHWARU    # Task for CHWA link (rcv) 
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t CH_SW n SW_CH_SE SW_CH_AT SW_CH_DA SW_CH_NY SW_CH_WA -1 CHServer %f $CHAThr %pu 

$CHSWU 

 

t CH_SINK n D_CH_SINK -1 CHServer %f $CHSThr %pu $CHSINKU  # Thread Task for CH sink 

t CH_SEND_DA n SEND_CH_DA -1 CHServer %f $CHDAThr %pu $CHDASU  # Thread Task for CHDA 

link (send) 

t CH_SEND_NY n SEND_CH_NY -1 CHServer %f $CHNYThr %pu $CHNYSU  # Thread Task for CHNY 

link (send) 

t CH_SEND_WA n SEND_CH_AT SEND_CH_WA -1 CHServer %f $CHWAThr %pu $CHWASU 

# Thread Task for CHWA link (send) 

 

t DAUserT n DAUser -1 DAUserProc    # Pseudo DA Task 

t DA_RCV n RCV_DA_AT RCV_DA_CH RCV_DA_NY RCV_DA_WA -1 DAServer %f $DAGThr %pu $DAGU 

# Task for DA generator 

 

t ATDA_RCV n ATDA_DA_SE -1 DAServer  %pu $DAATRU    # Task for ATDA link (rcv) 

t CHDA_RCV n CHDA_DA_SE -1 DAServer  %pu $DACHRU    # Task for CHDA link (rcv) 

t WADA_RCV n WADA_DA_SE -1 DAServer  %pu $DAWARU    # Task for WADA link (rcv) 

 

t DA_SW n SW_DA_SE SW_DA_AT SW_DA_CH SW_DA_NY SW_DA_WA -1 DAServer %f $DAAThr %pu 

$DASWU 

 

t DA_SINK n D_DA_SINK -1 DAServer %f $DASThr %pu $DASINKU    # Thread Task for DA 

sink 

t DA_SEND_AT n SEND_DA_AT -1 DAServer %f $DAATThr %pu $DAATSU 

# Thread Task for ATDA link (send) 

t DA_SEND_CH n SEND_DA_CH -1 DAServer %f $DACHThr %pu $DACHSU 

# Thread Task for CHDA link (send) 

t DA_SEND_WA n SEND_DA_NY SEND_DA_WA -1 DAServer %f $DAWAThr %pu $DAWASU 

# Thread Task for DAWA link (send) 

 

t NYUserT n NYUser -1 NYUserProc  # Pseudo NY Task 

t NY_RCV n RCV_NY_AT RCV_NY_CH RCV_NY_DA RCV_NY_WA -1 NYServer %f $NYGThr %pu $NYGU 

# Task for NY generator 

 

t CHNY_RCV n CHNY_NY_SE -1 NYServer  %pu $NYCHRU    # Task for CHNY link (rcv) 

t WANY_RCV n WANY_NY_SE -1 NYServer  %pu $NYWARU    # Task for NYWA link (rcv) 

 

t NY_SW n SW_NY_SE SW_NY_AT SW_NY_CH SW_NY_DA SW_NY_WA -1 NYServer %f $NYAThr %pu 

$NYSWU 
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t NY_SINK n D_NY_SINK -1 NYServer %f $NYSThr  %pu $NYSINKU   # Thread Task for NY 

sink 

t NY_SEND_CH n SEND_NY_CH -1 NYServer %f $NYCHThr %pu $NYCHSU 

# Thread Task for CHNY link (send) 

t NY_SEND_WA n SEND_NY_AT SEND_NY_DA SEND_NY_WA -1 NYServer %f $NYWAThr %pu $NYWASU 

# Thread Task for NYWA link (send) 

 

t WAUserT n WAUser -1 WAUserProc  # Pseudo WA Task 

t WA_RCV n RCV_WA_AT RCV_WA_CH RCV_WA_DA RCV_WA_NY -1 WAServer %f $WAGThr %pu $WAGU 

# Task for WA generator 

 

t ATWA_RCV n ATWA_WA_CH ATWA_WA_NY ATWA_WA_SE -1 WAServer %pu $WAATRU # Task for 

ATWA link (rcv) 

t CHWA_RCV n CHWA_WA_AT CHWA_WA_SE -1 WAServer %pu $WACHRU # Task for ATWA link (rcv) 

t DAWA_RCV n DAWA_WA_NY DAWA_WA_SE -1 WAServer %pu $WADARU # Task for ATWA link (rcv) 

t NYWA_RCV n NYWA_WA_AT NYWA_WA_DA NYWA_WA_SE -1 WAServer %pu $WANYRU # Task for 

ATWA link (rcv) 

 

t WA_SW n SW_WA_SE SW_WA_AT SW_WA_CH SW_WA_DA SW_WA_NY -1 WAServer %f $WAAThr %pu 

$WASWU 

 

t WA_SINK n D_WA_SINK -1 WAServer %f $WASThr %pu $WASINKU    # Thread Task for WA 

sink 

t WA_SEND_AT n SEND_WA_AT -1 WAServer %f $WAATThr %pu $WAATSU 

# Thread Task for WAAT link (send) 

t WA_SEND_CH n SEND_WA_CH -1 WAServer %f $WACHThr %pu $WACHSU 

# Thread Task for WACH link (send) 

t WA_SEND_DA n SEND_WA_DA -1 WAServer %f $WADAThr %pu $WADASU 

# Thread Task for WADA link (send) 

t WA_SEND_NY n SEND_WA_NY -1 WAServer %f $WANYThr %pu $WANYSU 

# Thread Task for WANY link (send) 

 

t ATDADELAY n ATDADELAYda -1 NETProc 

t DAATDELAY n ATDADELAYat -1 NETProc 

t ATWADELAY n ATWADELAYch ATWADELAYny ATWADELAYwa -1 NETProc 

t WAATDELAY n ATWADELAYat -1 NETProc 

t CHDADELAY n CHDADELAYda -1 NETProc 

t DACHDELAY n CHDADELAYch -1 NETProc 

t CHNYDELAY n CHNYDELAYny -1 NETProc 

t NYCHDELAY n CHNYDELAYch -1 NETProc 
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t CHWADELAY n CHWADELAYwa -1 NETProc 

t WACHDELAY n CHWADELAYat CHWADELAYch -1 NETProc 

t DAWADELAY n DAWADELAYny DAWADELAYwa -1 NETProc 

t WADADELAY n DAWADELAYda -1 NETProc 

t NYWADELAY n NYWADELAYat NYWADELAYda NYWADELAYwa -1 NETProc 

t WANYDELAY n NYWADELAYny -1 NETProc 

 

-1 

 

E 0 

s ATUser 0 0 0 -1 

#Z ATUser 0 0 0 -1 

a ATUser $ATrate 

z ATUser RCV_AT_CH 0.276 0 -1  #185/(185+103+204+178)=185/670=0.2761 

z ATUser RCV_AT_DA 0.154 0 -1  #103/(185+103+204+178)=103/670=0.1537 

z ATUser RCV_AT_NY 0.304 0 -1  #204/(185+103+204+178)=204/670=0.3045 

z ATUser RCV_AT_WA 0.266 0 -1  #178/(185+103+204+178)=178/670=0.2657 

 

y RCV_AT_CH SW_AT_CH 1 0 -1 

y RCV_AT_DA SW_AT_DA 1 0 -1 

y RCV_AT_NY SW_AT_NY 1 0 -1 

y RCV_AT_WA SW_AT_WA 1 0 -1 

 

z SW_AT_SE D_AT_SINK 1 0 -1 

z SW_AT_CH SEND_AT_CH 1 0 -1 

z SW_AT_DA SEND_AT_DA 1 0 -1 

z SW_AT_NY SEND_AT_NY 1 0 -1 

z SW_AT_WA SEND_AT_WA 1 0 -1 

 

s RCV_AT_CH $RCVp1 $RCVp2 -1 

s RCV_AT_DA $RCVp1 $RCVp2 -1 

s RCV_AT_NY $RCVp1 $RCVp2 -1 

s RCV_AT_WA $RCVp1 $RCVp2 -1 

s DAAT_AT_SE $RCVp1 $RCVp2 -1 

s WAAT_AT_SE $RCVp1 $RCVp2 -1 

 

s SW_AT_SE $ATSWIp1 $ATSWIp2 -1 

s SW_AT_CH $ATSWIp1 $ATSWIp2 -1 

s SW_AT_DA $ATSWIp1 $ATSWIp2 -1 

s SW_AT_NY $ATSWIp1 $ATSWIp2 -1 

s SW_AT_WA $ATSWIp1 $ATSWIp2 -1 
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s D_AT_SINK $SNKp1 $SNKp2 -1 

s SEND_AT_CH $SNDp1 $SNDp2 -1 

s SEND_AT_DA $SNDp1 $SNDp2 -1 

s SEND_AT_NY $SNDp1 $SNDp2 -1 

s SEND_AT_WA $SNDp1 $SNDp2 -1 

 

 

s CHUser 0 0 0 -1 

#Z CHUser 0 0 0 -1 

a CHUser $CHrate 

z CHUser RCV_CH_AT 0.145 0 -1  #185/(185+314+450+325)=185/1274=0.1452 

z CHUser RCV_CH_DA 0.247 0 -1  #314/(185+314+450+325)=314/1274=0.2465 

z CHUser RCV_CH_NY 0.353 0 -1  #450/(185+314+450+325)=450/1274=0.3532 

z CHUser RCV_CH_WA 0.255 0 -1  #325/(185+314+450+325)=325/1274=0.2551 

 

y RCV_CH_AT SW_CH_AT 1 0 -1 

y RCV_CH_DA SW_CH_DA 1 0 -1 

y RCV_CH_NY SW_CH_NY 1 0 -1 

y RCV_CH_WA SW_CH_WA 1 0 -1 

 

z SW_CH_SE D_CH_SINK 1 0 -1 

z SW_CH_AT SEND_CH_AT 1 0 -1 

z SW_CH_DA SEND_CH_DA 1 0 -1 

z SW_CH_NY SEND_CH_NY 1 0 -1 

z SW_CH_WA SEND_CH_WA 1 0 -1 

 

s RCV_CH_AT $RCVp1 $RCVp2 -1 

s RCV_CH_DA $RCVp1 $RCVp2 -1 

s RCV_CH_NY $RCVp1 $RCVp2 -1 

s RCV_CH_WA $RCVp1 $RCVp2 -1 

s DACH_CH_SE $RCVp1 $RCVp2 -1 

s NYCH_CH_SE $RCVp1 $RCVp2 -1 

s WACH_CH_SE $RCVp1 $RCVp2 -1 

 

s SW_CH_SE $CHSWIp1 $CHSWIp2 -1 

s SW_CH_AT $CHSWIp1 $CHSWIp2 -1 

s SW_CH_DA $CHSWIp1 $CHSWIp2 -1 

s SW_CH_NY $CHSWIp1 $CHSWIp2 -1 

s SW_CH_WA $CHSWIp1 $CHSWIp2 -1 

s D_CH_SINK $SNKp1 $SNKp2 -1 

s SEND_CH_AT $SNDp1 $SNDp2 -1 
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s SEND_CH_DA $SNDp1 $SNDp2 -1 

s SEND_CH_NY $SNDp1 $SNDp2 -1 

s SEND_CH_WA $SNDp1 $SNDp2 -1 

 

 

s DAUser 0 0 0 -1 

#Z DAUser 0 0 0 -1 

a DAUser $DArate 

z DAUser RCV_DA_AT 0.107 0 -1  #103/(103+314+295+252)=103/964=0.1068 

z DAUser RCV_DA_CH 0.326 0 -1  #314/(103+314+295+252)=314/964=0.3257 

z DAUser RCV_DA_NY 0.306 0 -1  #295/(103+314+295+252)=295/964=0.3060 

z DAUser RCV_DA_WA 0.261 0 -1  #252/(103+314+295+252)=252/964=0.2614 

 

y RCV_DA_AT SW_DA_AT 1 0 -1 

y RCV_DA_CH SW_DA_CH 1 0 -1 

y RCV_DA_NY SW_DA_NY 1 0 -1 

y RCV_DA_WA SW_DA_WA 1 0 -1 

 

z SW_DA_SE D_DA_SINK 1 0 -1 

z SW_DA_AT SEND_DA_AT 1 0 -1 

z SW_DA_CH SEND_DA_CH 1 0 -1 

z SW_DA_NY SEND_DA_NY 1 0 -1 

z SW_DA_WA SEND_DA_WA 1 0 -1 

 

s RCV_DA_AT $RCVp1 $RCVp2 -1 

s RCV_DA_CH $RCVp1 $RCVp2 -1 

s RCV_DA_NY $RCVp1 $RCVp2 -1 

s RCV_DA_WA $RCVp1 $RCVp2 -1 

s ATDA_DA_SE $RCVp1 $RCVp2 -1 

s CHDA_DA_SE $RCVp1 $RCVp2 -1 

s WADA_DA_SE $RCVp1 $RCVp2 -1 

 

s SW_DA_SE $DASWIp1 $DASWIp2 -1 

s SW_DA_AT $DASWIp1 $DASWIp2 -1 

s SW_DA_CH $DASWIp1 $DASWIp2 -1 

s SW_DA_NY $DASWIp1 $DASWIp2 -1 

s SW_DA_WA $DASWIp1 $DASWIp2 -1 

s D_DA_SINK $SNKp1 $SNKp2 -1 

s SEND_DA_AT $SNDp1 $SNDp2 -1 

s SEND_DA_CH $SNDp1 $SNDp2 -1 

s SEND_DA_NY $SNDp1 $SNDp2 -1 
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s SEND_DA_WA $SNDp1 $SNDp2 -1 

 

 

s NYUser 0 0 0 -1 

#Z NYUser 0 0 0 -1 

a NYUser $NYrate 

z NYUser RCV_NY_AT 0.140 0 -1  #204/(204+450+295+510)=204/1459=0.1398 

z NYUser RCV_NY_CH 0.308 0 -1  #450/(204+450+295+510)=450/1459=0.3084 

z NYUser RCV_NY_DA 0.202 0 -1  #295/(204+450+295+510)=295/1459=0.2022 

z NYUser RCV_NY_WA 0.350 0 -1  #510/(204+450+295+510)=510/1459=0.3496 

 

y RCV_NY_AT SW_NY_AT 1 0 -1 

y RCV_NY_CH SW_NY_CH 1 0 -1 

y RCV_NY_DA SW_NY_DA 1 0 -1 

y RCV_NY_WA SW_NY_WA 1 0 -1 

 

z SW_NY_SE D_NY_SINK 1 0 -1 

z SW_NY_AT SEND_NY_AT 1 0 -1 

z SW_NY_CH SEND_NY_CH 1 0 -1 

z SW_NY_DA SEND_NY_DA 1 0 -1 

z SW_NY_WA SEND_NY_WA 1 0 -1 

 

s RCV_NY_AT $RCVp1 $RCVp2 -1 

s RCV_NY_CH $RCVp1 $RCVp2 -1 

s RCV_NY_DA $RCVp1 $RCVp2 -1 

s RCV_NY_WA $RCVp1 $RCVp2 -1 

s CHNY_NY_SE $RCVp1 $RCVp2 -1 

s WANY_NY_SE $RCVp1 $RCVp2 -1 

 

s SW_NY_SE $NYSWIp1 $NYSWIp2 -1 

s SW_NY_AT $NYSWIp1 $NYSWIp2 -1 

s SW_NY_CH $NYSWIp1 $NYSWIp2 -1 

s SW_NY_DA $NYSWIp1 $NYSWIp2 -1 

s SW_NY_WA $NYSWIp1 $NYSWIp2 -1 

s D_NY_SINK $SNKp1 $SNKp2 -1 

s SEND_NY_AT $SNDp1 $SNDp2 -1 

s SEND_NY_CH $SNDp1 $SNDp2 -1 

s SEND_NY_DA $SNDp1 $SNDp2 -1 

s SEND_NY_WA $SNDp1 $SNDp2 -1 
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s WAUser 0 0 0 -1 

#Z WAUser 0 0 0 -1 

a WAUser $WArate 

z WAUser RCV_WA_AT 0.141 0 -1  #178/(178+325+252+510)=178/1265=0.1407 

z WAUser RCV_WA_CH 0.257 0 -1  #325/(178+325+252+510)=325/1265=0.2569 

z WAUser RCV_WA_DA 0.199 0 -1  #252/(178+325+252+510)=252/1265=0.1992 

z WAUser RCV_WA_NY 0.403 0 -1  #510/(178+325+252+510)=510/1265=0.4032 

 

y RCV_WA_AT SW_WA_AT 1 0 -1 

y RCV_WA_CH SW_WA_CH 1 0 -1 

y RCV_WA_DA SW_WA_DA 1 0 -1 

y RCV_WA_NY SW_WA_NY 1 0 -1 

 

z SW_WA_SE D_WA_SINK 1 0 -1 

z SW_WA_AT SEND_WA_AT 1 0 -1 

z SW_WA_CH SEND_WA_CH 1 0 -1 

z SW_WA_DA SEND_WA_DA 1 0 -1 

z SW_WA_NY SEND_WA_NY 1 0 -1 

 

s RCV_WA_AT $RCVp1 $RCVp2 -1 

s RCV_WA_CH $RCVp1 $RCVp2 -1 

s RCV_WA_DA $RCVp1 $RCVp2 -1 

s RCV_WA_NY $RCVp1 $RCVp2 -1 

s ATWA_WA_CH $RCVp1 $RCVp2 -1 

s ATWA_WA_NY $RCVp1 $RCVp2 -1 

s ATWA_WA_SE $RCVp1 $RCVp2 -1 

s CHWA_WA_AT $RCVp1 $RCVp2 -1 

s CHWA_WA_SE $RCVp1 $RCVp2 -1 

s DAWA_WA_NY $RCVp1 $RCVp2 -1 

s DAWA_WA_SE $RCVp1 $RCVp2 -1 

s NYWA_WA_AT $RCVp1 $RCVp2 -1 

s NYWA_WA_DA $RCVp1 $RCVp2 -1 

s NYWA_WA_SE $RCVp1 $RCVp2 -1 

 

s SW_WA_SE $WASWIp1 $WASWIp2 -1 

s SW_WA_AT $WASWIp1 $WASWIp2 -1 

s SW_WA_CH $WASWIp1 $WASWIp2 -1 

s SW_WA_DA $WASWIp1 $WASWIp2 -1 

s SW_WA_NY $WASWIp1 $WASWIp2 -1 

s D_WA_SINK $SNKp1 $SNKp2 -1 

s SEND_WA_AT $SNDp1 $SNDp2 -1 
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s SEND_WA_CH $SNDp1 $SNDp2 -1 

s SEND_WA_DA $SNDp1 $SNDp2 -1 

s SEND_WA_NY $SNDp1 $SNDp2 -1 

 

 

s ATDADELAYda $Delay075 0 -1           #8*85/75000=0.009067 

s ATDADELAYat $Delay075 0 -1 

 

s ATWADELAYch $Delay105 0 -1           #8*85/105000=0.006476 

s ATWADELAYny $Delay105 0 -1 

s ATWADELAYwa $Delay105 0 -1 

s ATWADELAYat $Delay105 0 -1 

 

s CHDADELAYda $Delay105 0 -1           #8*85/105000=0.006476 

s CHDADELAYch $Delay105 0 -1 

 

s CHNYDELAYny $Delay120 0 -1           #8*85/120000=0.005667 

s CHNYDELAYch $Delay120 0 -1 

 

s CHWADELAYat $Delay150 0 -1           #8*85/150000=0.004533 

s CHWADELAYwa $Delay150 0 -1 

s CHWADELAYch $Delay150 0 -1 

 

s DAWADELAYny $Delay120 0 -1           #8*85/120000=0.005667 

s DAWADELAYwa $Delay120 0 -1 

s DAWADELAYda $Delay120 0 -1 

 

s NYWADELAYat $Delay120 0 -1           #8*85/120000=0.005667 

s NYWADELAYda $Delay120 0 -1 

s NYWADELAYwa $Delay120 0 -1 

s NYWADELAYny $Delay120 0 -1 

 

 

 

y SEND_AT_DA ATDADELAYda 1 0 -1 

z ATDADELAYda ATDA_DA_SE 1 0 -1 

y ATDA_DA_SE SW_DA_SE 1 0 -1 

y SEND_AT_CH ATWADELAYch 1 0 -1 

z ATWADELAYch ATWA_WA_CH 1 0 -1 

y ATWA_WA_CH SW_WA_CH 1 0 -1 

y SEND_AT_NY ATWADELAYny 1 0 -1 
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z ATWADELAYny ATWA_WA_NY 1 0 -1 

y ATWA_WA_NY SW_WA_NY 1 0 -1 

y SEND_AT_WA ATWADELAYwa 1 0 -1 

z ATWADELAYwa ATWA_WA_SE 1 0 -1 

y ATWA_WA_SE SW_WA_SE 1 0 -1 

 

y SEND_CH_DA CHDADELAYda 1 0 -1 

z CHDADELAYda CHDA_DA_SE 1 0 -1 

y CHDA_DA_SE SW_DA_SE 1 0 -1 

y SEND_CH_NY CHNYDELAYny 1 0 -1 

z CHNYDELAYny CHNY_NY_SE 1 0 -1 

y CHNY_NY_SE SW_NY_SE 1 0 -1 

y SEND_CH_AT CHWADELAYat 1 0 -1 

z CHWADELAYat CHWA_WA_AT 1 0 -1 

y CHWA_WA_AT SW_WA_AT 1 0 -1 

y SEND_CH_WA CHWADELAYwa 1 0 -1 

z CHWADELAYwa CHWA_WA_SE 1 0 -1 

y CHWA_WA_SE SW_WA_SE 1 0 -1 

 

y SEND_DA_AT ATDADELAYat 1 0 -1 

z ATDADELAYat DAAT_AT_SE 1 0 -1 

y DAAT_AT_SE SW_AT_SE 1 0 -1 

y SEND_DA_CH CHDADELAYch 1 0 -1 

z CHDADELAYch DACH_CH_SE 1 0 -1 

y DACH_CH_SE SW_CH_SE 1 0 -1 

y SEND_DA_NY DAWADELAYny 1 0 -1 

z DAWADELAYny DAWA_WA_NY 1 0 -1 

y DAWA_WA_NY SW_WA_NY 1 0 -1 

y SEND_DA_WA DAWADELAYwa 1 0 -1 

z DAWADELAYwa DAWA_WA_SE 1 0 -1 

y DAWA_WA_SE SW_WA_SE 1 0 -1 

 

y SEND_NY_CH CHNYDELAYch 1 0 -1 

z CHNYDELAYch NYCH_CH_SE 1 0 -1 

y NYCH_CH_SE SW_CH_SE 1 0 -1 

y SEND_NY_AT NYWADELAYat 1 0 -1 

z NYWADELAYat NYWA_WA_AT 1 0 -1 

y NYWA_WA_AT SW_WA_AT 1 0 -1 

y SEND_NY_DA NYWADELAYda 1 0 -1 

z NYWADELAYda NYWA_WA_DA 1 0 -1 

y NYWA_WA_DA SW_WA_DA 1 0 -1 
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y SEND_NY_WA NYWADELAYwa 1 0 -1 

z NYWADELAYwa NYWA_WA_SE 1 0 -1 

y NYWA_WA_SE SW_WA_SE 1 0 -1 

 

y SEND_WA_AT ATWADELAYat 1 0 -1 

z ATWADELAYat WAAT_AT_SE 1 0 -1 

y WAAT_AT_SE SW_AT_SE 1 0 -1 

y SEND_WA_CH CHWADELAYch 1 0 -1 

z CHWADELAYch WACH_CH_SE 1 0 -1 

y WACH_CH_SE SW_CH_SE 1 0 -1 

y SEND_WA_DA DAWADELAYda 1 0 -1 

z DAWADELAYda WADA_DA_SE 1 0 -1 

y WADA_DA_SE SW_DA_SE 1 0 -1 

y SEND_WA_NY NYWADELAYny 1 0 -1 

z NYWADELAYny WANY_NY_SE 1 0 -1 

y WANY_NY_SE SW_NY_SE 1 0 -1 

-1 

 

R 0 

$0=$factor1 

$factor2 

 

$ATRU1 = $ATGU + $ATDARU + $ATWARU + $ATSWU + $ATDASU + $ATWASU + $ATSINKU 

$CHRU1 = $CHGU + $CHDARU + $CHNYRU + $CHWARU + $CHSWU + $CHDASU + $CHNYSU + $CHWASU 

+ $CHSINKU 

$DARU1 = $DAGU + $DAATRU + $DACHRU + $DAWARU + $DASWU + $DAATSU + $DACHSU + $DAWASU 

+ $DASINKU 

$NYRU1 = $NYGU + $NYCHRU + $NYWARU + $NYSWU + $NYCHSU + $NYWASU + $NYSINKU 

$WARU1 = $WAGU + $WAATRU + $WACHRU + $WADARU + $WANYRU + $WASWU + $WAATSU + $WACHSU 

+ $WADASU + $WANYSU + $WASINKU 

\ 

 

$ATGThr 

$ATAThr 

$ATSThr 

$ATDAThr 

$ATWAThr 

 

\ 

 

$CHGThr 
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$CHAThr 

$CHSThr 

$CHDAThr 

$CHNYThr 

$CHWAThr 

 

\ 

 

$DAGThr 

$DAAThr 

$DASThr 

$DAATThr 

$DACHThr 

$DAWAThr 

 

\ 

 

$NYGThr 

$NYAThr 

$NYSThr 

$NYCHThr 

$NYWAThr 

 

\ 

 

$WAGThr 

$WAAThr 

$WASThr 

$WAATThr 

$WACHThr 

$WADAThr 

$WANYThr 

-1 
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Appendix D LQN Model Generated by Tool for Five-Node Network 

 
#Define the solver of LQN model with specified option. 

$solver = parasrvn -B 10,100000,150000 -P messages=917 

 

#Define the speed of generator,proportion of traffic to destinaiton. 

#and the networkdelay here. 

 

$factor1=0.05:0.4,0.05 

 

$ATrate =6700*$factor1/(85*8*1000) 

 

$ATNEP =204/(204+178+185+103) 

$ATWAP =178/(204+178+185+103) 

$ATCHP =185/(204+178+185+103) 

$ATDAP =103/(204+178+185+103) 

 

$CHrate =12740*$factor1/(85*8*1000) 

 

$CHNEP =450/(450+185+325+314) 

$CHATP =185/(450+185+325+314) 

$CHWAP =325/(450+185+325+314) 

$CHDAP =314/(450+185+325+314) 

 

$DArate =9640*$factor1/(85*8*1000) 

 

$DANEP =295/(295+252+314+103) 

$DAWAP =252/(295+252+314+103) 

$DACHP =314/(295+252+314+103) 

$DAATP =103/(295+252+314+103) 

 

$NErate =14590*$factor1/(85*8*1000) 

 

$NEATP =204/(204+510+295+450) 

$NEWAP =510/(204+510+295+450) 

$NEDAP =295/(204+510+295+450) 

$NECHP =450/(204+510+295+450) 

 

$WArate =12650*$factor1/(85*8*1000) 
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$WANEP =510/(510+178+252+325) 

$WAATP =178/(510+178+252+325) 

$WADAP =252/(510+178+252+325) 

$WACHP =325/(510+178+252+325) 

 

 

$ATDA= 8*85*1000/75000 

$ATWA= 8*85*1000/105000 

$CHDA= 8*85*1000/105000 

$CHNY= 8*85*1000/120000 

$CHWA= 8*85*1000/150000 

$DAWA= 8*85*1000/120000 

$NYWA= 8*85*1000/120000 

 

#Define the CPU demand for each operation on each node. 

$RCVp1=0 

$RCVp2=0 

$ATSWIp1=1.597822 

$ATSWIp2=0 

$CHSWIp1=1.537822 

$CHSWIp2=0 

$DASWIp1=1.897822 

$DASWIp2=0 

$NESWIp1=1.637822 

$NESWIp2=0 

$WASWIp1=1.437822 

$WASWIp2=0 

$SNDp1=1.732178 

$SNDp2=0 

$SNKp1=1.732178 

$SNKp2=0 

 

G "Router Software System" .000001 100 1 0.9 -1 

 

 

#Define the hostprocessors in LQN model. 

P 0 

p ATUserProc f i 

p sputnik f %u $ATRU 
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p CHUserProc f i 

p alouette f %u $CHRU 

 

p DAUserProc f i 

p mariner f %u $DARU 

 

p NEUserProc f i 

p helicon f %u $NERU 

 

p WAUserProc f i 

p mira f %u $WARU 

 

p NETProc f i 

-1 

 

 

#Define the tasks in LQN model. 

T 0 

t ATUserT n ATUser -1 ATUserProc # Pseudo AT Task 

 

t AT_RCV n RCV_AT_NE RCV_AT_WA RCV_AT_CH RCV_AT_DA -1 sputnik %pu $ATRCVU0 

t DAAT_RCV n DAAT_AT_SE -1 sputnik %pu $ATRCVU1 

t WAAT_RCV n WAAT_AT_SE -1 sputnik %pu $ATRCVU2 

 

t AT_SW n SW_AT_NE SW_AT_WA SW_AT_CH SW_AT_DA SW_AT_SE -1 sputnik %pu $ATSWIU0 %f 

$ATThr0 

 

t AT_SINK n D_AT_SINK -1 sputnik %pu $ATSNKU0 

 

t AT_SEND_DA n SEND_AT_DA -1 sputnik %pu $ATSNDU0 

t AT_SEND_WA n SEND_AT_CH SEND_AT_WA SEND_AT_NE -1 sputnik %pu $ATSNDU1 

 

t ATDADELAY n ATDADELda -1 NETProc 

t ATWADELAY n ATWADELch ATWADELwa ATWADELne -1 NETProc 

 

 

t CHUserT n CHUser -1 CHUserProc # Pseudo CH Task 

 

t CH_RCV n RCV_CH_NE RCV_CH_AT RCV_CH_WA RCV_CH_DA -1 alouette %pu $CHRCVU0 

t DACH_RCV n DACH_CH_SE -1 alouette %pu $CHRCVU1 

t NECH_RCV n NECH_CH_SE -1 alouette %pu $CHRCVU2 
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t WACH_RCV n WACH_CH_SE -1 alouette %pu $CHRCVU3 

 

t CH_SW n SW_CH_NE SW_CH_AT SW_CH_WA SW_CH_DA SW_CH_SE -1 alouette %pu $CHSWIU0 %f 

$CHThr0 

 

t CH_SINK n D_CH_SINK -1 alouette %pu $CHSNKU0 

 

t CH_SEND_DA n SEND_CH_DA -1 alouette %pu $CHSNDU0 

t CH_SEND_NE n SEND_CH_NE -1 alouette %pu $CHSNDU1 

t CH_SEND_WA n SEND_CH_WA SEND_CH_AT -1 alouette %pu $CHSNDU2 

 

t CHDADELAY n CHDADELda -1 NETProc 

t CHNEDELAY n CHNEDELne -1 NETProc 

t CHWADELAY n CHWADELwa CHWADELat -1 NETProc 

 

 

t DAUserT n DAUser -1 DAUserProc # Pseudo DA Task 

 

t DA_RCV n RCV_DA_NE RCV_DA_WA RCV_DA_CH RCV_DA_AT -1 mariner %pu $DARCVU0 

t ATDA_RCV n ATDA_DA_SE -1 mariner %pu $DARCVU1 

t CHDA_RCV n CHDA_DA_SE -1 mariner %pu $DARCVU2 

t WADA_RCV n WADA_DA_SE -1 mariner %pu $DARCVU3 

 

t DA_SW n SW_DA_NE SW_DA_WA SW_DA_CH SW_DA_AT SW_DA_SE -1 mariner %pu $DASWIU0 %f 

$DAThr0 

 

t DA_SINK n D_DA_SINK -1 mariner %pu $DASNKU0 

 

t DA_SEND_AT n SEND_DA_AT -1 mariner %pu $DASNDU0 

t DA_SEND_CH n SEND_DA_CH -1 mariner %pu $DASNDU1 

t DA_SEND_WA n SEND_DA_WA SEND_DA_NE -1 mariner %pu $DASNDU2 

 

t DAATDELAY n DAATDELat -1 NETProc 

t DACHDELAY n DACHDELch -1 NETProc 

t DAWADELAY n DAWADELwa DAWADELne -1 NETProc 

 

 

t NEUserT n NEUser -1 NEUserProc # Pseudo NE Task 

 

t NE_RCV n RCV_NE_AT RCV_NE_WA RCV_NE_DA RCV_NE_CH -1 helicon %pu $NERCVU0 

t CHNE_RCV n CHNE_NE_SE -1 helicon %pu $NERCVU1 
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t WANE_RCV n WANE_NE_SE -1 helicon %pu $NERCVU2 

 

t NE_SW n SW_NE_AT SW_NE_WA SW_NE_DA SW_NE_CH SW_NE_SE -1 helicon %pu $NESWIU0 %f 

$NEThr0 

 

t NE_SINK n D_NE_SINK -1 helicon %pu $NESNKU0 

 

t NE_SEND_CH n SEND_NE_CH -1 helicon %pu $NESNDU0 

t NE_SEND_WA n SEND_NE_WA SEND_NE_AT SEND_NE_DA -1 helicon %pu $NESNDU1 

 

t NECHDELAY n NECHDELch -1 NETProc 

t NEWADELAY n NEWADELwa NEWADELat NEWADELda -1 NETProc 

 

 

t WAUserT n WAUser -1 WAUserProc # Pseudo WA Task 

 

t WA_RCV n RCV_WA_NE RCV_WA_AT RCV_WA_DA RCV_WA_CH -1 mira %pu $WARCVU0 

t ATWA_RCV n ATWA_WA_CH ATWA_WA_SE ATWA_WA_NE -1 mira %pu $WARCVU1 

t CHWA_RCV n CHWA_WA_SE CHWA_WA_AT -1 mira %pu $WARCVU2 

t DAWA_RCV n DAWA_WA_SE DAWA_WA_NE -1 mira %pu $WARCVU3 

t NEWA_RCV n NEWA_WA_SE NEWA_WA_AT NEWA_WA_DA -1 mira %pu $WARCVU4 

 

t WA_SW n SW_WA_NE SW_WA_AT SW_WA_DA SW_WA_CH SW_WA_SE -1 mira %pu $WASWIU0 %f $WAThr0 

 

t WA_SINK n D_WA_SINK -1 mira %pu $WASNKU0 

 

t WA_SEND_AT n SEND_WA_AT -1 mira %pu $WASNDU0 

t WA_SEND_CH n SEND_WA_CH -1 mira %pu $WASNDU1 

t WA_SEND_DA n SEND_WA_DA -1 mira %pu $WASNDU2 

t WA_SEND_NE n SEND_WA_NE -1 mira %pu $WASNDU3 

 

t WAATDELAY n WAATDELat -1 NETProc 

t WACHDELAY n WACHDELch -1 NETProc 

t WADADELAY n WADADELda -1 NETProc 

t WANEDELAY n WANEDELne -1 NETProc 

 

 

-1 

 

 

#Define the entries of tasks in LQN model. 
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E 0 

s ATUser 0 0 -1 

a ATUser $ATrate 

 

z ATUser RCV_AT_NE $ATNEP 0 -1 

z ATUser RCV_AT_WA $ATWAP 0 -1 

z ATUser RCV_AT_CH $ATCHP 0 -1 

z ATUser RCV_AT_DA $ATDAP 0 -1 

 

s RCV_AT_NE $RCVp1 $RCVp2 -1 

s RCV_AT_WA $RCVp1 $RCVp2 -1 

s RCV_AT_CH $RCVp1 $RCVp2 -1 

s RCV_AT_DA $RCVp1 $RCVp2 -1 

 

y RCV_AT_NE SW_AT_NE 1 0 -1 

y RCV_AT_WA SW_AT_WA 1 0 -1 

y RCV_AT_CH SW_AT_CH 1 0 -1 

y RCV_AT_DA SW_AT_DA 1 0 -1 

 

 

s DAAT_AT_SE $RCVp1 $RCVp2 -1 

 

y DAAT_AT_SE SW_AT_SE 1 0 -1 

 

 

s WAAT_AT_SE $RCVp1 $RCVp2 -1 

 

y WAAT_AT_SE SW_AT_SE 1 0 -1 

 

 

s SW_AT_NE $ATSWIp1 $ATSWIp2 -1 

s SW_AT_WA $ATSWIp1 $ATSWIp2 -1 

s SW_AT_CH $ATSWIp1 $ATSWIp2 -1 

s SW_AT_DA $ATSWIp1 $ATSWIp2 -1 

s SW_AT_SE $ATSWIp1 $ATSWIp2 -1 

 

s D_AT_SINK $SNKp1 $SNKp2 -1 

 

z SW_AT_SE D_AT_SINK 1 0 -1 

 

s SEND_AT_DA $SNDp1 $SNDp2 -1 
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z SW_AT_DA SEND_AT_DA 1 0 -1 

y SEND_AT_DA ATDADELda 1 0 -1 

z ATDADELda ATDA_DA_SE 1 0 -1 

s SEND_AT_CH $SNDp1 $SNDp2 -1 

s SEND_AT_WA $SNDp1 $SNDp2 -1 

s SEND_AT_NE $SNDp1 $SNDp2 -1 

 

z SW_AT_CH SEND_AT_CH 1 0 -1 

y SEND_AT_CH ATWADELch 1 0 -1 

z ATWADELch ATWA_WA_CH 1 0 -1 

z SW_AT_WA SEND_AT_WA 1 0 -1 

y SEND_AT_WA ATWADELwa 1 0 -1 

z ATWADELwa ATWA_WA_SE 1 0 -1 

z SW_AT_NE SEND_AT_NE 1 0 -1 

y SEND_AT_NE ATWADELne 1 0 -1 

z ATWADELne ATWA_WA_NE 1 0 -1 

 

s ATDADELda $ATDA 0 -1 

s ATWADELch $ATWA 0 -1 

s ATWADELwa $ATWA 0 -1 

s ATWADELne $ATWA 0 -1 

 

 

s CHUser 0 0 -1 

a CHUser $CHrate 

 

z CHUser RCV_CH_NE $CHNEP 0 -1 

z CHUser RCV_CH_AT $CHATP 0 -1 

z CHUser RCV_CH_WA $CHWAP 0 -1 

z CHUser RCV_CH_DA $CHDAP 0 -1 

 

s RCV_CH_NE $RCVp1 $RCVp2 -1 

s RCV_CH_AT $RCVp1 $RCVp2 -1 

s RCV_CH_WA $RCVp1 $RCVp2 -1 

s RCV_CH_DA $RCVp1 $RCVp2 -1 

 

y RCV_CH_NE SW_CH_NE 1 0 -1 

y RCV_CH_AT SW_CH_AT 1 0 -1 

y RCV_CH_WA SW_CH_WA 1 0 -1 

y RCV_CH_DA SW_CH_DA 1 0 -1 
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s DACH_CH_SE $RCVp1 $RCVp2 -1 

 

y DACH_CH_SE SW_CH_SE 1 0 -1 

 

 

s NECH_CH_SE $RCVp1 $RCVp2 -1 

 

y NECH_CH_SE SW_CH_SE 1 0 -1 

 

 

s WACH_CH_SE $RCVp1 $RCVp2 -1 

 

y WACH_CH_SE SW_CH_SE 1 0 -1 

 

 

s SW_CH_NE $CHSWIp1 $CHSWIp2 -1 

s SW_CH_AT $CHSWIp1 $CHSWIp2 -1 

s SW_CH_WA $CHSWIp1 $CHSWIp2 -1 

s SW_CH_DA $CHSWIp1 $CHSWIp2 -1 

s SW_CH_SE $CHSWIp1 $CHSWIp2 -1 

 

s D_CH_SINK $SNKp1 $SNKp2 -1 

 

z SW_CH_SE D_CH_SINK 1 0 -1 

 

s SEND_CH_DA $SNDp1 $SNDp2 -1 

 

z SW_CH_DA SEND_CH_DA 1 0 -1 

y SEND_CH_DA CHDADELda 1 0 -1 

z CHDADELda CHDA_DA_SE 1 0 -1 

s SEND_CH_NE $SNDp1 $SNDp2 -1 

 

z SW_CH_NE SEND_CH_NE 1 0 -1 

y SEND_CH_NE CHNEDELne 1 0 -1 

z CHNEDELne CHNE_NE_SE 1 0 -1 

s SEND_CH_WA $SNDp1 $SNDp2 -1 

s SEND_CH_AT $SNDp1 $SNDp2 -1 

 

z SW_CH_WA SEND_CH_WA 1 0 -1 
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y SEND_CH_WA CHWADELwa 1 0 -1 

z CHWADELwa CHWA_WA_SE 1 0 -1 

z SW_CH_AT SEND_CH_AT 1 0 -1 

y SEND_CH_AT CHWADELat 1 0 -1 

z CHWADELat CHWA_WA_AT 1 0 -1 

 

s CHDADELda $CHDA 0 -1 

s CHNEDELne $CHNY 0 -1 

s CHWADELwa $CHWA 0 -1 

s CHWADELat $CHWA 0 -1 

 

 

s DAUser 0 0 -1 

a DAUser $DArate 

 

z DAUser RCV_DA_NE $DANEP 0 -1 

z DAUser RCV_DA_WA $DAWAP 0 -1 

z DAUser RCV_DA_CH $DACHP 0 -1 

z DAUser RCV_DA_AT $DAATP 0 -1 

 

s RCV_DA_NE $RCVp1 $RCVp2 -1 

s RCV_DA_WA $RCVp1 $RCVp2 -1 

s RCV_DA_CH $RCVp1 $RCVp2 -1 

s RCV_DA_AT $RCVp1 $RCVp2 -1 

 

y RCV_DA_NE SW_DA_NE 1 0 -1 

y RCV_DA_WA SW_DA_WA 1 0 -1 

y RCV_DA_CH SW_DA_CH 1 0 -1 

y RCV_DA_AT SW_DA_AT 1 0 -1 

 

 

s ATDA_DA_SE $RCVp1 $RCVp2 -1 

 

y ATDA_DA_SE SW_DA_SE 1 0 -1 

 

 

s CHDA_DA_SE $RCVp1 $RCVp2 -1 

 

y CHDA_DA_SE SW_DA_SE 1 0 -1 
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s WADA_DA_SE $RCVp1 $RCVp2 -1 

 

y WADA_DA_SE SW_DA_SE 1 0 -1 

 

 

s SW_DA_NE $DASWIp1 $DASWIp2 -1 

s SW_DA_WA $DASWIp1 $DASWIp2 -1 

s SW_DA_CH $DASWIp1 $DASWIp2 -1 

s SW_DA_AT $DASWIp1 $DASWIp2 -1 

s SW_DA_SE $DASWIp1 $DASWIp2 -1 

 

s D_DA_SINK $SNKp1 $SNKp2 -1 

 

z SW_DA_SE D_DA_SINK 1 0 -1 

 

s SEND_DA_AT $SNDp1 $SNDp2 -1 

 

z SW_DA_AT SEND_DA_AT 1 0 -1 

y SEND_DA_AT DAATDELat 1 0 -1 

z DAATDELat DAAT_AT_SE 1 0 -1 

s SEND_DA_CH $SNDp1 $SNDp2 -1 

 

z SW_DA_CH SEND_DA_CH 1 0 -1 

y SEND_DA_CH DACHDELch 1 0 -1 

z DACHDELch DACH_CH_SE 1 0 -1 

s SEND_DA_WA $SNDp1 $SNDp2 -1 

s SEND_DA_NE $SNDp1 $SNDp2 -1 

 

z SW_DA_WA SEND_DA_WA 1 0 -1 

y SEND_DA_WA DAWADELwa 1 0 -1 

z DAWADELwa DAWA_WA_SE 1 0 -1 

z SW_DA_NE SEND_DA_NE 1 0 -1 

y SEND_DA_NE DAWADELne 1 0 -1 

z DAWADELne DAWA_WA_NE 1 0 -1 

 

s DAATDELat $ATDA 0 -1 

s DACHDELch $CHDA 0 -1 

s DAWADELwa $DAWA 0 -1 

s DAWADELne $DAWA 0 -1 
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s NEUser 0 0 -1 

a NEUser $NErate 

 

z NEUser RCV_NE_AT $NEATP 0 -1 

z NEUser RCV_NE_WA $NEWAP 0 -1 

z NEUser RCV_NE_DA $NEDAP 0 -1 

z NEUser RCV_NE_CH $NECHP 0 -1 

 

s RCV_NE_AT $RCVp1 $RCVp2 -1 

s RCV_NE_WA $RCVp1 $RCVp2 -1 

s RCV_NE_DA $RCVp1 $RCVp2 -1 

s RCV_NE_CH $RCVp1 $RCVp2 -1 

 

y RCV_NE_AT SW_NE_AT 1 0 -1 

y RCV_NE_WA SW_NE_WA 1 0 -1 

y RCV_NE_DA SW_NE_DA 1 0 -1 

y RCV_NE_CH SW_NE_CH 1 0 -1 

 

 

s CHNE_NE_SE $RCVp1 $RCVp2 -1 

 

y CHNE_NE_SE SW_NE_SE 1 0 -1 

 

 

s WANE_NE_SE $RCVp1 $RCVp2 -1 

 

y WANE_NE_SE SW_NE_SE 1 0 -1 

 

 

s SW_NE_AT $NESWIp1 $NESWIp2 -1 

s SW_NE_WA $NESWIp1 $NESWIp2 -1 

s SW_NE_DA $NESWIp1 $NESWIp2 -1 

s SW_NE_CH $NESWIp1 $NESWIp2 -1 

s SW_NE_SE $NESWIp1 $NESWIp2 -1 

 

s D_NE_SINK $SNKp1 $SNKp2 -1 

 

z SW_NE_SE D_NE_SINK 1 0 -1 

 

s SEND_NE_CH $SNDp1 $SNDp2 -1 
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z SW_NE_CH SEND_NE_CH 1 0 -1 

y SEND_NE_CH NECHDELch 1 0 -1 

z NECHDELch NECH_CH_SE 1 0 -1 

s SEND_NE_WA $SNDp1 $SNDp2 -1 

s SEND_NE_AT $SNDp1 $SNDp2 -1 

s SEND_NE_DA $SNDp1 $SNDp2 -1 

 

z SW_NE_WA SEND_NE_WA 1 0 -1 

y SEND_NE_WA NEWADELwa 1 0 -1 

z NEWADELwa NEWA_WA_SE 1 0 -1 

z SW_NE_AT SEND_NE_AT 1 0 -1 

y SEND_NE_AT NEWADELat 1 0 -1 

z NEWADELat NEWA_WA_AT 1 0 -1 

z SW_NE_DA SEND_NE_DA 1 0 -1 

y SEND_NE_DA NEWADELda 1 0 -1 

z NEWADELda NEWA_WA_DA 1 0 -1 

 

s NECHDELch $CHNY 0 -1 

s NEWADELwa $NYWA 0 -1 

s NEWADELat $NYWA 0 -1 

s NEWADELda $NYWA 0 -1 

 

 

s WAUser 0 0 -1 

a WAUser $WArate 

 

z WAUser RCV_WA_NE $WANEP 0 -1 

z WAUser RCV_WA_AT $WAATP 0 -1 

z WAUser RCV_WA_DA $WADAP 0 -1 

z WAUser RCV_WA_CH $WACHP 0 -1 

 

s RCV_WA_NE $RCVp1 $RCVp2 -1 

s RCV_WA_AT $RCVp1 $RCVp2 -1 

s RCV_WA_DA $RCVp1 $RCVp2 -1 

s RCV_WA_CH $RCVp1 $RCVp2 -1 

 

y RCV_WA_NE SW_WA_NE 1 0 -1 

y RCV_WA_AT SW_WA_AT 1 0 -1 

y RCV_WA_DA SW_WA_DA 1 0 -1 

y RCV_WA_CH SW_WA_CH 1 0 -1 
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s ATWA_WA_CH $RCVp1 $RCVp2 -1 

s ATWA_WA_SE $RCVp1 $RCVp2 -1 

s ATWA_WA_NE $RCVp1 $RCVp2 -1 

 

y ATWA_WA_CH SW_WA_CH 1 0 -1 

y ATWA_WA_SE SW_WA_SE 1 0 -1 

y ATWA_WA_NE SW_WA_NE 1 0 -1 

 

 

s CHWA_WA_SE $RCVp1 $RCVp2 -1 

s CHWA_WA_AT $RCVp1 $RCVp2 -1 

 

y CHWA_WA_SE SW_WA_SE 1 0 -1 

y CHWA_WA_AT SW_WA_AT 1 0 -1 

 

 

s DAWA_WA_SE $RCVp1 $RCVp2 -1 

s DAWA_WA_NE $RCVp1 $RCVp2 -1 

 

y DAWA_WA_SE SW_WA_SE 1 0 -1 

y DAWA_WA_NE SW_WA_NE 1 0 -1 

 

 

s NEWA_WA_SE $RCVp1 $RCVp2 -1 

s NEWA_WA_AT $RCVp1 $RCVp2 -1 

s NEWA_WA_DA $RCVp1 $RCVp2 -1 

 

y NEWA_WA_SE SW_WA_SE 1 0 -1 

y NEWA_WA_AT SW_WA_AT 1 0 -1 

y NEWA_WA_DA SW_WA_DA 1 0 -1 

 

 

s SW_WA_NE $WASWIp1 $WASWIp2 -1 

s SW_WA_AT $WASWIp1 $WASWIp2 -1 

s SW_WA_DA $WASWIp1 $WASWIp2 -1 

s SW_WA_CH $WASWIp1 $WASWIp2 -1 

s SW_WA_SE $WASWIp1 $WASWIp2 -1 

 

s D_WA_SINK $SNKp1 $SNKp2 -1 
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z SW_WA_SE D_WA_SINK 1 0 -1 

 

s SEND_WA_AT $SNDp1 $SNDp2 -1 

 

z SW_WA_AT SEND_WA_AT 1 0 -1 

y SEND_WA_AT WAATDELat 1 0 -1 

z WAATDELat WAAT_AT_SE 1 0 -1 

s SEND_WA_CH $SNDp1 $SNDp2 -1 

 

z SW_WA_CH SEND_WA_CH 1 0 -1 

y SEND_WA_CH WACHDELch 1 0 -1 

z WACHDELch WACH_CH_SE 1 0 -1 

s SEND_WA_DA $SNDp1 $SNDp2 -1 

 

z SW_WA_DA SEND_WA_DA 1 0 -1 

y SEND_WA_DA WADADELda 1 0 -1 

z WADADELda WADA_DA_SE 1 0 -1 

s SEND_WA_NE $SNDp1 $SNDp2 -1 

 

z SW_WA_NE SEND_WA_NE 1 0 -1 

y SEND_WA_NE WANEDELne 1 0 -1 

z WANEDELne WANE_NE_SE 1 0 -1 

 

s WAATDELat $ATWA 0 -1 

s WACHDELch $CHWA 0 -1 

s WADADELda $DAWA 0 -1 

s WANEDELne $NYWA 0 -1 

 

 

-1 

 

 

#Define the report in LQN model for SPEX. 

R 0 

$0=$factor1 

$ATU = $ATRCVU0 + $ATRCVU1 + $ATRCVU2 + $ATSNDU0 + $ATSNDU1 + $ATSNKU0 + $ATSWIU0 

$CHU = $CHRCVU0 + $CHRCVU1 + $CHRCVU2 + $CHRCVU3 + $CHSNDU0 + $CHSNDU1 + $CHSNDU2 

+ $CHSNKU0 + $CHSWIU0 

$DAU = $DARCVU0 + $DARCVU1 + $DARCVU2 + $DARCVU3 + $DASNDU0 + $DASNDU1 + $DASNDU2 

+ $DASNKU0 + $DASWIU0 

$NEU = $NERCVU0 + $NERCVU1 + $NERCVU2 + $NESNDU0 + $NESNDU1 + $NESNKU0 + $NESWIU0 
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$WAU = $WARCVU0 + $WARCVU1 + $WARCVU2 + $WARCVU3 + $WARCVU4 + $WASNDU0 + $WASNDU1 

+ $WASNDU2 + $WASNDU3 + $WASNKU0 + $WASWIU0 

 

$ATThr0 

$CHThr0 

$DAThr0 

$NEThr0 

$WAThr0 

 

$ATRU 

$CHRU 

$DARU 

$NERU 

$WARU 

-1 


