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Abstract
Markovian performance models are impractical for large systems because their state space grows

very rapidly with the system size. This paper derives an approximate Mean Value Analysis (AMVA)
solution for Markov models that represent a composition of subsystems. The goal is robust scalable
analytical approximation. The approach taken here is to create approximate aggregated Markov
chain submodels, each representing a view of the Markov chain for the entire system from the
perspective of a selected set D of tagged components, and to derive mean value equations from
them. The analytic solutions of submodels are then combined using system-level relationships,
which must be identified for each system; this is not automatic but is usually straightforward. The
first point of novelty is the method used to create the aggregate submodels for different sets D,
building up each submodel by composition of the components in D rather than by aggregating
the entire state space. Another point of novelty is the use of partitioned Markov models to obtain
analytic solutions.

Index Terms: Performance models, Software performance, Compositional modeling, Markov
Chains, Aggregation by composition, Mean Value Analysis

1 Introduction

Markovian performance models based on system states and transitions are impractical for large
systems because of the very rapid increase of the state space with system size, also known as state
explosion. Different approaches have been identified to circumvent state explosion, such as:

• hierarchical decomposition into smaller submodels, linked by a high-level model, or by coor-
dination relationships at their boundaries; the solution is iterated among the submodels

• analytic solutions, usually in some kind of “product form”, developed for networks of queues
and for some classes of Stochastic Petri Nets.

Analytic solutions are the most efficient but even so, large networks of queues require efficient
numerical techniques such as Mean Value Analysis (MVA) (described for example by Bolch et al
in chapters 8 and 9 of [1]). MVA computes mean performance values for subsystems (which are
individual queues in a network) and combines them to give system performance measures. For
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systems with no exact analytic solution, approximate MVA (AMVA) have been developed based
on the solutions of individual queues, coordination relationships with other queues, and iteration.
These AMVA techniques are efficient and scalable and are often accurate, although important
questions about the size of errors usually remain unanswered.

This work describes a new approach to obtaining an approximate MVA solution for Markov
models that represent a composition of components. The goal is a robust scalable analytic approx-
imation. Similar to other AMVA solutions, it solves submodels for their performance measures,
and uses system-level relationships among the performance measures to coordinate the submod-
els, through fixed point iterations. The composed system does not have to be a queueing system,
although the examples studied here are special kinds of servers with queues.

Compositional modeling is an important capability for those who define system models in
practice, since it allows them to define behaviour by a state-transition model of a component
(a smaller task than a system model, and less error-prone), and to compose a set of components
in different ways. Components may be defined using process algebras (e.g. [7, 6]) or syncrhonized
stochastic automata networks [14, 15]. Formal methods and tools such as TIPP [6] or PEPA [4]
can generate the global model. However the problem of solving the global model is still serious.
The present work began with a study of a particular family of components representing software
tasks, and a particular approximate solution technique called “Task-directed Aggregation” (TDA)
[8, 9, 10]. This is generalized here to any set of components, and the particular TDA solution is
used as an example to expound the approach.

The approach taken here is to create approximate aggregated Markov chain submodels, each
representing a view of the Markov model for the entire system from the perspective of a selected
set D of “tagged” components, and to derive mean value equations from them. (A different set
D is considered for each aggregated submodel). The analytic solutions of submodels are then
combined using system-level relationships, which must be identified for each system; this is not
automatic but is sometimes straightforward. In our work the submodels have included parameters
which come from solutions of other submodels, so a fixed-point iteration has been used. The
first point of novelty is the method used to create the aggregate submodels for different sets D,
which builds up the submodel by composing the behaviour of the components in D, rather than by
aggregating the entire state space. However, such a submodel does not represent the aggregated
behaviour of the whole system, unless its transitions are modified to incorporate some interactions
with the components from the complementary set D̄ (which contains the “untagged” components).
This “Markov chain Aggregation by Composition” (MAC) uses composition techniques taken from
other work in compositional modeling such as [7, 5], but the augmentation is novel. Another point
of novelty is the use of partitioned Markov models to obtain analytic solutions, as explained below.
Both of these are generalizations of basic ideas implied in [8, 9, 10]. The present paper may be seen
as a combination of TDA with the more recent work on compositional modeling.

Compositional performance modeling is important, and MAC/MVA has the potential to solve
a key practical problem in providing scalable performance calculations for these models. It gives an
approach for deriving mean-value approximations for models based on stochastic process algebras,
composed stochastic petri nets, as well as layered queueing networks. The intention of this paper is
to demonstrate feasibility rather than to present a watertight theory, for which further research is
required. Some simplifying assumptions are satified by the example systems studied in the paper.

The accuracy of MAC/MVA is studied experimentally in section 6 by considering a special kind
of multiclass server with “early replies” which is often used to model software processes. This server
is also known as server with vacations or a “walking” server [13].
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Figure 1: Example of a component-based system
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Figure 2: Stochastic automata defining the behaviour of components in a CMC (Closed Multi-Class)
server with three clients

2 Component-based System Model

We will consider a system composed from a set of components which has a set of mean performance
measures, such as throughputs and delays. The behaviour of each component is described by a
finite stochastic automata, which is synchronized with the other components by the means of some
common events associated to different transitions.

Fig. 1 shows an example system with five components representing three clients C1, . . . , C3, a
FIFO queue Q and a server S, which has a different service time (exponentially distributed with rate
µi) for each client Ci. We will call it a CMC (Closed Multi-Class) server. The stochastic automaton
for client Ci, shown in Fig. 2.(a), has the states ei (executing on its own, or “thinking”), qi (queued),
and ri (in service at the server). The transitions are labeled with synchronizing events arr i (arrive
to the queue), deq i (dequeue to start service), and done i (service finished). Some transitions also
have a rate parameter governing the rate at which the transition is triggered from the source state
(the inverse of the time in the source state; these times are exponentially distributed). These are
called “active” transitions and their source states are called “active” states. Transitions with no
rate parameter are called “passive”.

We have adopted some restrictions on the component automata, so that no state has more than
one active outgoing transition (no timed conflicts), and when the same transition label appears in
more than one component, only one of them is active.
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State ei is an active state, in which the client performs some activity. When the activity ends,
the client produces a synchronizing event arr i , which forces a transition labeled with the same
event in component Q. The other two client states, qi and ri, are passive, because their outgoing
transitions are driven by the server through the synchronizing events deq i and done i , and not by
the client. All states of Q, shown in Fig. 2.(b) are passive, being synchronized either with arrival
events from the clients or with dequeueing events from the server. The automaton for the server
S, shown in Fig. 2.(c), has n active service states si, i = 1, n and one passive state idle.

The composition of the components is governed by the sharing of events (or equivalently, by
the synchronization of transitions with the same labels), where the shared events are defined in
the interfaces between components. For simplicity in this presentation we shall assume that all
events are shared between all components, however a more structured sharing can be defined, as
described for example in [5]. When all the components are composed together, the Markov model
M is obtained. For example, Fig. 3.(a) shows the continuous time Markov chain obtained for the
system given in Fig. 1. The notation for a system state is a tuple containing the corresponding
states for each component, with the state of the queue Q shown as an ordered list of queue contents
in square brackets. For example, in state (q1q2r3[c2, c1]s3) the first two clients are in queue (the
second before the first) and the third is in service. The Markov chain model for three clients is
quite small and can be solved directly. However, for an arbitrary number n of clients the state
space size |M(n)| =

∑n
i=0

(n)!
(n−i)! grows combinatorially with the number of clients [8], reaching for

example close to one million states for only nine clients. For this reason, we prefer to avoid building
and solving M directly, and use aggregation instead.

2.1 System-level Performance Relationships

From the interactions of the components, overall performance relationships can be deduced involv-
ing rates of flow between components, and delays imposed by one component on another. While
a formal derivation may be possible, these performance relationships are often obvious to the ana-
lyst. The MVA equations for the example system from Fig. 1 have been defined using throughputs,
waiting times and arrival-instant probabilities, in line with the usual MVA analysis of queues [1].
For example, in Fig. 1 the flow rate Fi of client Ci arrivals equals the flow rate of Ci departures
from the server and it can be computed as in (1). Also, the mean delay in the queue for Ci can be
expressed in terms of arrival instant probabilities as in (2). Both MVA equations are exact.

Fi = 1/(λ−1
i + wi + µ−1

i ) (1)

wi =
n∑

j=1

(Aijµ
−1
j + Bijµ

−1
j ) (2)

where A and B are arrival-instant probabilities defined as follows:

Aij = the probability that a Ci request arriving to the server finds it serving client Cj

Bij = the probability that a Ci request arriving to the server finds Cj in queue.

In general, we will collect all such system-level relationships into a set called R that typically
includes:

• flow identities (flow in = flow out),
• some applications of Little’s result (mean tokens = mean arrival rate times mean delay, where

“tokens” are any measure of occupancy of some abstract state in a system),
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• delay equations, expressing a delay in terms of component delays,
• waiting times, in terms of system state probabilities.

For example, the A and B probabilities can be computed from the aggregated Markov Chain models.
At the modeler’s discretion, some of these relationships may be approximate.

3 Markov chain Aggregation by Composition (MAC)

The arrival probabilities used in the MVA equation (2) suggest using an aggregation that shows
the state of two clients Ci and Cj , which we will call “tagged clients”, together with the queue and
the server. For a complete analysis of the system we shall build such an aggregated submodel for
each pair of clients.

As a general strategy, we propose aggregating with respect to various sets D of tagged compo-
nents, to obtain for each set D an aggregated submodel M′(D). The macrostates of the submodel
are tuples of the states of the tagged components from D, which hide the states of the untagged
components from D̄. Fig. 3.(b) illustrates the aggregated Markov chain M′(D) obtained from the
model M in Fig. 3.(a) for the tagged set D = {C1, C2, Q, S}. The darker shaded areas in part
(a) define the states which are aggregated in part (b). For instance, the states (r1 q2 e3 [c2] s1),
(r1 q2 q3 [c2, c3] s1) and (r1 q2 q3 [c3, c2] s1), contained within a darker shading in Fig. 3.(a), are
lumped together to create the macrostate (r1 q2 [c2] s1) in Fig. 3.(b). The aggregation affects also
the states of the queue, which will show only the relative position of the tagged clients, whereas
the position of the untagged client is hidden. Even though the state of the untagged client C3 ∈ D̄
is not shown directly in the aggregated state tuple, and its arrival events are hidden inside the
macrostates, the effect of its behaviour is nonetheless represented in M′(D) indirectly. First, C3

has an effect on the state space of M′(D), by the fact that the server state is s3, serving C3, in
some of the macrostates (enclosed in the rightmost shaded cluster in the figure). Second, some
transitions in M′(D) (shown with dotted lines) correspond to the beginning/ending of service for
C3 and are the effect of the interaction between the tagged components and C3.

It is interesting to note at this point that both M from Fig. 3.(a) and M′(D) from Fig. 3.(b)
can be partitioned into n + 1 clusters based on the states of the server (the clusters are enclosed in
lightly shaded areas). Each one of these clusters groups all the states in which a certain client Ci

is in service, except for one cluster that contains the idle state. Note also that each cluster in M
has a corresponding cluster in M′(D).

Even though M′(D) can be obtained from M by aggregation, we intend to avoid the expensive
process of constructing the entire Markov chain and lumping its states. We propose instead to
build M′(D) by composing the tagged components, and to add the missing pieces due to the effect
of the untagged component behaviour. The “aggregation by composition” proposed in this paper
differs from the “compositional aggregation” from [5] in that we must consider all the states of the
components in D, even if they are reached by interactions with untagged components. For example,
if we were to consider a direct composition of the tagged components D = {C1, C2, Q, S}, we would
obtain only those M′(D) clusters of states where C1 and C2 are in service, but would never reach
the cluster where C3 is in service. We must add this cluster, and the transitions between it and
ther other clusters. In general, in a system with n clients, only 2 are tagged and n−2 are unttaged.
When building the aggregated submodels by composition, we must add the clusters for all the
untagged clients, in order to capture the relationship between arrivals from the two tagged clients
when S is serving other clients (needed for the derivation of the arrival instant probabilities).
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In this general strategy, the tagged components in D are composed to give a “submodel”
automaton ST (D). Fig. 3.(c) shows the ST (D) model for the CMC example system with 3 clients.
It contains both timed states (drawn with continuous lines in the figure) and instantaneous or
vanishing states (drawn with dashed lines). In our example, instantaneous states are reached
immediately after the end of a service, which is marked by a server event donei. A dequeueing
event follows immediately, generated by the server and synchronized with the queue. Depending
on the queue state, either the server will begin a new service for the first client in the queues, or the
the system will move to the idle state. The instantaneous transitions leaving instantaneous states
are represented with dashed lines in the figure.

Transitions between two states in ST (D) correspond to either a single transition in one compo-
nent, in which case it has the rate of that transition if it is active, or to a synchronized combination
of transitions with the same label, in which case it has the rate of the single instance that is active.
(It was assumed that only one transition with a given label is active). Any of these transitions may
be passive, as well.

By composing the tagged components D = {C1, C2, Q, S} directly, we obtain at first only the
states where C1 and C2 are in service. We will augment the state space of ST (D) to contain all the
feasible combinations of tagged component states, as explained above. Now the submodel ST (D)
has a complete state space but it does not have the correct transition rates for an aggregated system,
and some transitions are missing (marked in Fig 3.(c) with “TBD” for “to be determined”). These
are transitions which enter/leave states of ST (D) that represent the effect of tagged component
interactions with untagged componets (such as serving untagged clients). In Fig 3.(c), transitions
into states with σs = s3, in which the server is serving C3 are added and labelled “TBD”. Where to
add these transitions must be discovered in each case by understanding the whole system behaviour.
Here, such “TBD” transitions can occur after an end of service for a tagged client (representing
hidden cases in which C3 is in the queue), or after an idle period (when C3 arrives to an idle server).
Also, missing “TBD” transitions are added for the end of service of an untagged client.

The next step is to eliminate the instantaneous transitions (considered to have an infinite rate)
and to remove their source states from the model (similar to the elimination of “vanishing states”
in GSPN [2]). If there are conflicts between two instantaneous transitions, they must be resolved
by means not described here, for example by assigning them priorities or probabilities. In the
CMC and CMC-ER examples studied here, there are no conflicts. Thus a Markov chain M′(D)
is obtained for the submodel, which may have some unknown transition rates (In our example in
Fig 3.(b), the unknown rates contain a factor π).

3.1 Partitioned Submodels

Rather than determining the individual unknown rates in the aggregated submodels, it is convenient
to further simplify the submodels by partitioning them, and then determine some corresponding
transition flows. The aggregated submodel M′(D) is partitioned into clusters of states (or parti-
tions) based on the server states, as mentined before. In a case with n clients, n + 1 clusters can
been identified based on the server state, denoted by G′

j(D) (where client Cj is in service) or G′
0(D)

(where the server is idle).
The importance of this partitioning resides in the fact that a cluster G′

k(D) has the same
structure and size independent of the number of clients n [8]. The form of a cluster depends only
on whether the client in service is tagged or untagged, as shown in Fig. 4.(a) and (b), respectively.
Since M′(D) contains n + 1 clusters for n clients, its size grows only linearly with n despite the
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fact that the original model M grows combinatorially with n. This is the basic reason for the
proposed AMVA algorithm having a lower complexity (as shown in section 5.4) than the direct
solution of M.

The balance equations for the clusters are much simpler than those for the entire submodel,
and will be used to derive the solutions for the arrival probabilities. It should be emphasized that
partitioning is a convenience, which has been used in some cases, but this work does not present
a general procedure for partitioning. In writing the balance equations for a cluster, the transitions
into a cluster state from other partitions are represented as an aggregated in-flow rate, (shown in
Fig. 4.(a) and (b) by thick grey arrows). They indicate in-flows with rates in units of transitions/sec.
There are also out-flows indicated by ordinary transitions terminating outside the partition. In the
example system considered here, the partitions have the following properties (proved in [8]) that
lead to a mean value solution.

Property 1. In any partition G′
k(D), the transition rates corresponding to “arrival from Ci”, and

“arrival from Cj” events are given by λi and λj, respectively. Also, for each macrostate in which
the server is serving a client Ck, the sum of rates over all outgoing transitions corresponding to
“end of service” events is constant and equal to µk.

Property 2. The in-flows to a partition G′
j(D) where a tagged client Cj is in service, given

in Fig. 4.(a) can be expressed exactly in term of system-level mean values (i.e., arrival-instant
probabilities and system throughputs) as follows:

Inflow(qi rj [ci] sj) = Bij Fi (3)

Inflow(ei rj [ ] sj) = Fj − Bij Fi (4)

Symmetrical expressions exist for the in-flows to G′
i(D).

A sketch for the proof for (3) is that the input flow to (qi rj [ci] sj) comes from different
macrostates of the form (qi qj [cj , ci] sk) for any k, in which Cj was queued ahead of Ci. Retracing
back to the moment of the Ci arrival, this means that Cj was already in the queue. Moreover, due
to flow conservation, all Ci arrivals that have found Cj queued ahead of them, are still queued when
the service for Cj begins by entering (qi rj [ci] sj). From the arrival-instant probability definitions,
the frequency of the Ci arrivals that find Cj in the queue equals BijFi.
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The proof for the second relationship (4) is based on the fact that the total input flow to the
cluster G′

j(D) equals the frequency of Fj arrivals to the server.
Unfortunately, the in-flows of a partition G′

k(D) where an untagged client Ck is in service, shown
in Fig. 4.(b), cannot be expressed exactly in terms of system mean values, so some approximations
will be used instead.

3.2 Arrival instant probabilities equations from aggregated Markov submodels

The arrival-instant probabilities A and B used in the queueing delay equation (2) can be expressed
in terms of steady-state solution of Mn as the ratio between the frequency of Ci arrivals occuring
in some specific states over the total frequency Fi of Ci arrivals. More exactly, Aij in (5) is the
ratio between the frequency of Ci arrivals that find S serving another client Cj (computed as the
occurrence rate of all transitions leaving a state σ with rate λi, in which Ci is executing and S in
serving Cj) and the frequency Fi.

Aij =
∑

σ∈Ω
(λi P(σ|σi = ei, σs = sj)/Fi (5)

Similarly, Bij in (6) is the ratio between the frequency of Ci arrivals that find another client Cj in
queue (computed as the occurrence rate of all transitions leaving a state σ with rate λi, in which
Ci is executing and Cj in queue) and the frequency Fis.

Bij =
∑

σ∈Ω
(λi P(σ|σi = ei, σj = qj)/Fi (6)

The probability Aij defined in (5) is obtained from the balance equations for the states of the
partition G′

j(D), where task j ∈ D is in service. Due to Property 2, the two balance equations can
be written as:

µj1 P(qi rj [ci] sj) = Bij Fi + λi P(ei rj [ ] sj) (7)

(µj1 + λi) P(eirjsj1) = Fj − BijFi (8)

The first arrival probability equation (9) is obtained by a little algebraic manipulation from (5),
(7) and (8):

(µj/λi + 1)Aij + Bij = Fj/Fi for i, j = 1, . . . , n; i �= j (9)

Since arrivals from Ci that find Cj in queue happen in all partitions G′
k(D) for all k �= i, j, the

probability Bij is computed by summing up its components Bij,k:

Bij =
∑

k �=i,j

Bij,k for i, j, k = 1, . . . , n; i �= j; k �= i, j (10)

where Bij,k is the arrival-instant probability of Ci finding Cj in queue and Ck in service. By
definition, similar to (5) and (6) we have:

Bij,k =
∑

σ∈Ω
λi P(σ|σi = ei, σj = qj, σs = sk)/Fi (11)

Similarly, we can define B̄ij,k as the probability that a request from Ci arriving when S is serving
Ck, does not find Cj either in queue or in service (i.e., Cj is executing in state ej):
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B̄ij,k = λiP(ei ej [ ] sk)/Fi (12)

If we can compute B̄ij,k and write Aik by applying definition (5) to the states of G′
k(D) in

Fig. 4.(b):
Aik = λi(P(ei ej [ ] sk) + P(ei qj [cj ] sk))/Fi (13)

then Bij,k can be found from the difference. To compute B̄ij,k an approximation is needed, because
the in-flows to the cluster G′

k(D) cannot be expressed exactly in terms of mean values. We make
an independence assumption regarding the arrivals from Ci and Cj when Ck is in service. More
exactly, we assume that when Ck is in service, the probability that Ci is in state ei (when arrivals
occur) is independent of the fact that Cj is executing or is in queue.

P (ei|ejsk) = P (ei|sk) (14)

By the general multiplication rule we can write:

P (eiejsk) = P (ei|ejsk) P (ej |sk) P(sk) (15)

By replacing (14) in (15) we obtain:

P (eiejsk) = P (ei|sk) P (ej |sk) P(sk) =

=
P(eisk) P(ejsk)

P(sk)
(16)

P(eisk) can be expressed, by using (9), as follows:

P(eisk) = P(eiejsk) + P(eiqj[cj ]sk) = Fiλ
−1
i Aik (17)

There is a similar expression for P(ejsk):

P(ejsk) = Fjλ
−1
j Ajk (18)

P(sk) represents the lumping of all macrostates from G′
k(D), thus:

P(sk) = Fkµ
−1
k (19)

From (16), (17), (18), (19) and definition (12) for B̄ij,k1 we obtain:

Bij,k = Aik − Ai,kAj,k(Fjλ
−1
j )/(Fksµ

−1
k ) for i, j, k = 1, . . . , n; i �= j; k �= i, j (20)

The equations for the arrival-instant probabilities A and B of the CMC system are (9), (10) and
(20). They will be solved iteratively, together with the mean value equations for Fi (1) and wi

(2) by the approach of simultaneous displacements (analogous to Jacobi’s method), similar to the
algorithm described in section 5.4.
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4 Summary of Steps in MAC/MVA

1. Mean value breakdown at the system level.
At the level of system components and flows of tokens, representing customers, messages, re-

quests etc., identify a set P of average performance measures and a set R of relationships between
them. The relationships in R are (typically) flow and delay identities, and mean value delay equa-
tions.

2. Define state-transition models for components.
For each component, create a model in which transitions have labels and (in some cases) rate

parameters. Transitions with no rate parameter are termed “passive”.
3. Create the MAC submodels.
Define sets D1, D2,... of components as a basis of aggregation, chosen to provide estimates

of the measures in P . Form the composed state-transition model ST (D) for each set D. From
this, create the aggregated submodel M′(D), with “TBD” transition rates representing interactions
with components not included in D. Rates for these transitions must be determined, probably by
approximation.

4. Optionally, partition the MAC submodels so the partitions have known transition rates
inside, but may have unknown transition rates between partitions. These rates are given by either
exact or approximate mean-value considerations.

5. Solve each partition or each submodel analytically for its mean performance measures, in
terms of its parameters. This gives a set of equations for each submodel for a vector of measures
which may also depend on measures from other submodels.

6. Collect together the MVA equations, consisting in general of mean-value equations from
each submodel, and system-level relationships and solve these equations, for instance by fixed
point iteration.

5 MAC/MVA for a multi-class FIFO server with early reply (CMC-

ER)

The MAC/MVA strategy will be applied to a more complex queueing system representing a kind of
server found in software systems such as web services systems [17, 3, 12]. The clients are software
tasks such as browsers running in workstations, or applications in network servers. The n clients
send request messages to a certain server. The service offered to each client starts by executing
a so-called first phase of service, after which the server replies to the client. The performance
optimization of this type of server, however, has led to sending the reply early, before all the work
of the server is completed; the remaining work is called the second phase, and must be performed
before the next client request can be handled, as described in [3]. We will call this example a
Closed Multi-Class server with Early Reply (CMC-ER). Servers with early replies are common in
practice. The second phase work includes delayed writes to storage, logging, billing, buffer cleanup,
and preparing the server for the next request.

The components of this system are the same as shown in Fig. 1, except that the server has two
phases of service which are exponentially distributed with rates µi1, and µi2. The client automaton
is unaffected, showing that the client returns to the state ei after receiving its reply; the queue is
also the same. The server model is now as shown in Fig. 5.(a).

This server was studied first in [13] under the name of “walking server”, and in other work
is called a “server with vacations”. In software systems the use of second phases is not due to
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Figure 5: Models for the CMC-ER server with early reply

gaps in operation, but is working time deliberately introduced to increase the concurrency in the
system. There is no closed-form solution for the multiclass closed “walking server”, so analysis of
systems with these servers must use numerical approximations; some of these approximations were
described in [17, 3].

5.1 System Level Performance Measures for CMC-ER

The performance measures Fi and wi are similar to those defined for the previous example. As
before, the throughput Fi of the client Ci is given by (1), but with µi replaced by µi1. The waiting
time is modified to include the effects of the second phase as follows:

wi =
n∑

j=1

[Ai,j1(µ−1
j1 + µ−1

j2 ) + Ai,j2 µ−1
j1 + Bij(µ−1

j1 + µ−1
j2 )] (21)

where A and B are arrival-instant probabilities; Bij is defined as for CMC, and Ai,jp is defined as:

Ai,jp = the probability that a request from Ci arriving to S finds it busy in phase p serving a
request from another client Cj (i.e., rate of arrivals of Ci when server S is in state sip over
Fi)

Thus we can write a slightly different definition for A, including the phases, whereas (6) is still
valid for B:

Aij =
∑

σ∈Ω
(λi P(σ|σi = ei, σs = sjp)/Fi (22)
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where P(σ) is the steady-state probability of a global state σ ∈ Ω.
The derivation of Bij is similar to the CMC example, but modified to account for second phases.

A Ci arrival may find S completing a second phase started earlier by itself (state si2). By the same
arguments as used above we can derive:

Bij = Bij,i2 + Bij,j2 +
∑

k �=i,j

∑

p

Bij,kp for i, j, k = 1, . . . , n; i �= j; k �= i, j (23)

where Bij,kp is the arrival-instant probability of finding Cj in the queue and Ck in service in
phase p, defined as:

Bij,kp =
∑

σ∈Ω
λi P(σ|σi = ei, σj = qj, σs = skp)/Fi (24)

5.2 Markov model for CMC-ER: aggregation and partitioning

The aggregation of the Markov model may be performed similarly to the CMC system. For the
general case with n clients, there are two kinds of partitions in an aggregated submodel. The first,
shown in Fig. 5.(b), includes states in which one of the tagged clients Ci and Cj is in service. The
second, shown in Fig. 5.(c), includes states in which a third client (designated as Ck, with k running
over all the other clients) is in service. The in-flows are defined as before.

The reasoning to determine A is exactly the same as in CMC, except that Ai,i2 is not zero,
because Ci can overtake its own previously-initiated second phase of service. Bij will be derived
by summing its components over the various server states as in (23).

An auxiliary arrival-instant probability used in the derivation process is the probability B̄ij,kp

that a request from Ci arriving when S is serving Ck in phase p, does not find Cj either in queue
or in service. The following relation is immediately obtained from the probability definitions:

Ai,kp = Bij,kp + B̄ij,kp (25)

5.3 Arrival-instant probability equations for CMC-ER

The balance equations of the partitions G′ from Fig 5.(b) and (c) are solved analyticaly to derive the
arrival-instant probability equations, by using the definitions (5)–(24) to eliminate the macrostate
probabilities. The in-flow rates are calculated as for the CMC case.

The set of simultaneous equations for the arrival-instant probabilities are listed here. All equa-
tions are exact, except equation (31) that is the only approximation.

Ai,j2 =
µj1

λi + µj2
Ai,j1 for i, j = 1, . . . , n; i �= j (26)

Ai,i2 =
λi

λi + µi2
for i = 1, . . . , n (27)

(
µj1

λi
+ 1)Ai,j1 + Bij =

Fj

Fi
for i, j = 1, . . . , n; i �= j (28)

Bij,j2 =
λj

(λi + λj + µj2)
Ai,j2 for i, j = 1, . . . , n; i �= j (29)
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Bij,i2 =
λi

λi + µi2
· Fj

Fi
[Bji + (1 +

µi1

λi + λj + µi2
)Aj,i1] for i, j = 1, . . . , n; i �= j (30)

Bij,k1 = Ai,k1 −
Fjλ

−1
j

Fkµ
−1
k1

Ai,k1Aj,k1 for i, j, k = 1, . . . , n; i �= j; k �= i, j (31)

Bij,k2 = Ai,k2 − µk1

λi + λj + µk2
(Ai,k1 − Bij,k1) for i, j = 1, . . . , n; i �= j; k �= i, j (32)

Bij = Bij,i2 + Bij,j2 +
∑

k �=i,j

∑

p

Bij,kp for i, j, k = 1, . . . , n; i �= j; k �= i, j (33)

Equations (31) and (32) are used only when n > 2. Thus, for two clients the solution is exact.

5.4 MAC/MVA algorithm for CMC-ER

Equations (1) for Fi, (2) for wi and (26)–(32) for the arrival-instant probabilities represent a set
of nonlinear equations that are solved iteratively by the approach of simultaneous displacements
(analogous to Jacobi’s method) as follows:
Algorithm 1 : MAC/MVA algorithm for a CMC-ER server

a) Initialize all Fi, Bij with some feasible values;
b) Compute new values for Ai,i2 (eq. 27), Ai,j1 (eq. 28), Ai,j2 (eq. 26), Bij,kp (eqs. 30–32), Bij

(eq. 33);
c) Update the arrival-instant probabilities using an under-relaxation strategy, by applying only half

of the change for each probability, i.e. probnew = 0.5(probold + probcomputed);
d) Determine new values wi (eq. 2) and Fi (eq. 1);
e) Repeat steps b), c) and d) until the total change in the arrival-instant probabilities values is less

than a given tolerance.

Complexity. The number of equations for the arrival-instant probabilities used in step (b) of
the algorithm depends on the number of clients n as follows:

• n equations of form (27)
• n(n − 1) equations of each of the forms (26)–(29), (33)
• n(n − 1)(n − 2) equations of each of the forms (31), (32)

The reduction in the order of computational complexity of the MAC/MVA algorithm compared to
the complexity of the exact solution is a consequence of the approximation used by the algorithm,
which reduces the problem of building and solving a Markov chain with O(n!) states to the problem
of solving iteratively a system of O(n3) nonlinear equations.

Complexity when clients are grouped into classes. The previous algorithm, derived for the case
where each client is different from the others, can be easily generalized for the case where the clients
can be grouped into classes, such that each class contains statistically identical clients, and in total
there are c client classes.
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By symmetry, the number of arrival-instant probability equations is reduced to O(c3) from
O(n3), depending on the number of classes instead of the number of clients.

No theoretical proof has been found for the uniqueness of the solution or the convergence of the
MAC/MVA algorithm. However, the algorithm was applied to several hundred models in order to
assess its accuracy and convergence, as presented in section 6.

6 MAC/MVA Experimental results for CMC-ER

The accuracy of the MAC/MVA algorithm introduced in section 5.4 was investigated by comparing
its results with exact results for smaller models (up to seven clients) and with simulation results
for larger models. The exact solutions were obtained with the GreatSPN package for Generalized
Stochastic Petri Nets [2]. The simulations results were obtained with 99% confidence interval of
less than ±0.5%.

The following factors were found to affect the accuracy of MAC/MVA algorithm: the achieved
server utilization, the imbalance between server entries, the imbalance between clients, and the
number of clients. Two imbalance factors are defined:

Rs = server imbalance ratio, the ratio between the longest and the shortest service time among all
server entries (taken as the sum over the two phases)

Rc = client imbalance ratio, the ratio between the longest and the shortest client execution time.

Several test suites were designed to study the impact of different factors on accuracy. Each test
suite generates a curve plotted in one of Figures 6(a)–8(b), and contains a set of cases (models)
with the same imbalance Rs and Rc, as follows:

• the server is the same for all cases in a suite (the same number of entries and the same service
times)

• the client service times are varied from case to case with the same proportionality factor,
giving the same Rc for all cases.

The following percentage errors were plotted in function of the achieved server utilizations for
various test suites: average throughput error ATE (the average relative error, in absolute value,
of all clients throughputs), and maximum throughput error MTE (the highest relative error, in
absolute value, among the client throughputs). In all cases, the errors are small when the server
is lightly utilized, grow with the utilization to a peak between 0.85 and 0.95 %, and then become
smaller when approaching saturation.

The first experiment studies the impact on accuracy of various imbalance ratios for test suites
with 7 clients, as shown in Figures 6(a) and 6(b). The worst case was found to be a combination of
server and client imbalance, where the service times of clients and server entries grow linearly from
the shortest to the longest, and the shorter client calls the shorter entry, etc. (The service time of
each entry is equally split between phases). The balanced suite fares best in terms of average error
ATE, and, with a single exception in terms of maximum error MTE.

Figures 7(a) and 7(b) show the ATE and MTE errors for suites with various degree of client
and server imbalance, where both Rc and Rs are simultaneously varied from 1 to 10. As expected,
a larger imbalance produces a worse accuracy.
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Figure 6: ATE and MTE for different unbalanced and balanced test cases with 7 clients
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Figure 7: ATE and MTE for test cases with 7 clients, where Rc, Rs range from 1 to 10
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Figure 8: ATE and MTE for unbalanced test cases with different numbers of clie nts

The number of clients has also a strong impact on accuracy. Figures 8(a) and 8(b) show the
ATE and MTE in function of server utilization for unbalanced test suites with 3, 5, 7, 14 21 and 28
clients, respectively (all with imbalance Rc = Rs = 10). The errors grow with n, but at a decreasing
rate, so a given increase in the number of clients has a stronger impact for cases with a few clients
than with many clients. This is to be expected since, in general, independence approximations such
as the one used for equation (31) work better for large numbers of clients. We can conclude that
the MAC/MVA algorithm works reasonably well even for a large number of clients.

The overall complexity of the MAC/MVA algorithm is dependent not only on the compu-
tational complexity of each iteration (which is O(n3), as shown in section 5.4), but also on the
number of iterations required. It is quite difficult to predict the number of iterations necessary
for the solution of a given model. Experiments have shown that the feasible values chosen for
initialization in the first step of the algorithm do not have any impact on the final results. As the
iteration progresses, the intermediate values for throughputs and arrival-instant probabilities are
not guaranteed to remain feasible at any time. However, the experiments have shown that they do
converge toward feasible values. Some cases of oscillatory convergence have been observed for test
cases with a very saturated server, when the nonlinear system of equations becomes ill-conditioned.

This is not surprising, since the linear system of balance equations of the MC model becomes
ill-conditioned itself at very high levels of saturation. From experience, the convergence of the
MAC/MVA algorithm is obtained quickly (a few dozen iterations) for the cases where the server
is not saturated, but the number of iterations grows when the server approaches saturation. This
phenomenon is stronger in unbalanced systems.

For seven clients (the largest model solved exactly with the GreatSPN package), the solution
time was about two orders of magnitudes faster for the MAC/MVA algorithm, than for the numer-
ical solution of the system Markov model M by the GreatSPN package.

7 Conclusions

The compositional approach described here for creating aggregated submodels avoids the effort of
aggregating from a very large state space. This has been applied earlier to exact aggregation for
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lumpable systems, essentially corresponding to systems with symmetries (references are given in
[5]). The innovation here is to

• create ad hoc approximate aggregated models for any kind of component based system,

• give a systematic approach to making the analysis simpler and more scalable, by partitioning
the submodels even after aggregation,

• give a systematic approach to generating the approximation as a Mean Value Analysis, by
combining solution of the submodels with system level mean value relationships.

Some modeling judgement is required to complete the aggregated submodels with parameters de-
scribed above as “TBD”, and to find the mean values from the submodels and the system level
relationships. More than one approximation can undoubtedly be found. Clearly it is easier to find
the mean value equations if the submodel partitions are small and repetitive.

Accuracy is adequate, as shown in Section 6. For the CMC server in Section 3, without a second
phase, results not included here showed somewhat better accuracy.

The examples shown here can easily be generalized to include classes with more than a single
client, and to servers with priorities and other kinds of queueing discipline. The model for a single
server has also been embedded in a network of servers, with iteration among the servers, to solve
layered queueing problems [10, 11]. The approach has been applied to systems with collections of
similar components (the clients here), and this makes the solutions simpler, but in principle the
approach applies to heterogeneous systems as well.

There is promise in this work for a general scalable technique for approximate numerical analysis
of all kinds of systems defined by composition of components, using process algebras, stochatic
automata or composable Petri Nets.
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