
 Software Performance Models from System Scenarios in
Use Case Maps

Dorin Petriu, Murray Woodside
Dept. of Systems and Computer Engineering

Carleton University, Ottawa K1S 5B6, Canada.
{dorin,cmw}@sce.carleton.ca

Abstract. Software performance concerns begin at the very outset of a new
project. The first definition of a software system may be in the form of Use
Cases, which may be elaborated as scenarios: this work creates performance
models from scenarios. The Use Case Maps notation captures the causal flow
of intended execution in terms of responsibilities, which may be allocated to
components, and which are annotated with expected resource demands. The SPT
algorithm was developed to transform scenario models into performance mod-
els. The UCM2LQN tool implements SPT and converts UCM scenario models
to layered queueing performance models, allowing rapid evaluation of an evolv-
ing scenario definition. The same reasoning can be applied to other scenario
models such as Message Sequence Charts, UML Activity Graphs (or Collabora-
tion Diagrams, or Sequence Diagrams), but UCMs are particularly powerful, in
that they can combine interacting scenarios and show scenario interactions. Thus
a solution for UCMs can be applied to multiple scenarios defined with other
notations.

1 Introduction
Software performance analysis often begins from scenario definitions, which

describe the system behaviour during a response. For example Smith’s Execution
Graphs [28][29] can be used to capture a performance analyst’s version of system sce-
narios, and can be used in the earliest stages of planning. Kahkipuro [16] used scenar-
ios expressed as UML collaborations, and this approach has been extended in a
proposed UML performance profile [26]. Other authors have used Petri nets to capture
the scenarios.

Because software designers are (usually) not also performance analysts, the per-
formance-specific scenario models (such as Execution Graphs) create a conceptual gap
between the design and the performance analysis. To avoid this gap, it would be better
to use a software engineering scenario notation. This work is based on a well-devel-
oped scenario language called Use Case Maps (UCMs) [7], but it is extensible to other
notations such as UML. UCMs expand Use Cases into scenarios described as causal
sequences of responsibilities, either unbound or associated with components. UCMs
can be used to reason about architecture and to develop an architecture within a struc-
tural notation, possibly based on the UML, such as is described by Hofmeister, Nord
and Soni [15].

To provide continuous re-evaluation during the evolution of an architecture there
must be automation. This paper describes the UCM2LQN converter, a tool which

Report SCE-02-02, Feb. 6, 2002. Dept. of Systems and Computer Engineer-
ing, Carleton University, Ottawa K1S 5B6, Canada. Accepted for publication in
Proc. Performance TOOLS 2002, London, April 2002.

Copyright Springer-Verlag 2002.

automates the conversion of UCM scenario models into Layered Queueing Network
(LQN) performance models. It is integrated into the UCM Navigator, which is an edi-
tor and repository tool for UCMs, so that the UCMNav can be used as a front-end edi-
tor for design models which are also performance models. The concepts of the
converter can in principle be extended to other scenario modeling tools such as Stories
[8] or UML [5] which provides Activity Diagrams, Collaboration Diagrams and
Sequence Diagrams. Conversion of Collaboration models into layered queues has pre-
viously been described by Kahkipuro [16]. Eventually the ideas of UCM2LQN may be
applied to annotated UML models using a standard profile for performance annota-
tions [26].

The performance model notation used here is Layered Queueing, because this
form of model captures logical resource effects and provides good traceability between
the performance measures and the emerging software architecture. It incorporates the
software components as servers, and logical resources (such as buffers, locks and
threads), as well as the hardware resources. Essentially, layered queueing is a canoni-
cal form for simultaneous resource queues, that are common in software resources.
Simpler queueing models could be used instead, but they would model fewer features
of the resource architecture, as described in [32]. Petri net models capture these fea-
tures very well, as described by Pooley [23], but sometimes have problems with larger
system scales.

The difficult problem solved by UCM2LQN applies to any scenario notation
which binds actions to software components, and not just to Use Case Maps. The prob-
lem is in interpreting paths as interactions between software objects which may have
resource attributes. Interactions which imply waiting for logical resources (blocking)
have performance effects and are captured by analyzing the entire path. A second kind
of difficulty comes from interactions between scenarios, either in competition or in
collaboration.

There has been considerable effort expended on methods for Software Perfor-
mance Engineering (SPE), and an overview can be obtained from the proceedings of
the two international Workshops on Software and Performance (WOSP’98 [33] and
WOSP2000 [34]). Despite this effort, SPE has proven to be more appealing in concept
than in practice. The effort needed to cross into the realm of performance analysis, in
the course of any design project, is too high, and the concepts are alien to the devel-
oper. Using automated model-building reduces the need for special performance
expertise. There is still a requirement to specify the appropriate performance data -
such as service demands by responsibilities, arrival rates at start points, branching
probabilities, loop repetitions, and device speed factors - as annotations in the UCM in
order to get meaningful results. These values can be obtained from known workloads
or they can be approximated by using a budgeting approach and supplying values
based on an estimate of much time operations have to complete [27][30]. The results
may validate the performance aspects of the design by confirming the budgets, or may
identify problems such as bottlenecks, and this work can be a partnership between the
designer and the performance expert.

This research pins its hopes on embedding most of the description into the soft-
ware definition as it emerges, and on tracking this definition through its stages into

code. It is important to begin early, and the automatic converter described here cap-
tures the first step in design.

2 Models for Scenarios and Performance

2.1 Use Case Maps

UCM notation was invented by Buhr and his co-workers [6][7] to capture
designer intentions while reasoning about concurrency and partitioning of a system, in
the earliest stages of design. It was derived by watching designers discussing and mas-
saging ideas into architectures, and is intended to be intuitive, and high-level. Details
can be represented, but are not the purpose. Compared to the Unified Modeling Lan-
guage (UML), UCMs fit in between Use Cases and UML behavioural diagrams. In
UML Class Diagrams are used to describe how a system is constructed, but do not
describe how it works; this task is taken up by UCM’s. Collaboration Diagrams do
provide a high-level description of how the system works, but only one scenario at a
time [3].

A Use Case Map is a collection of elements that describe one or more scenarios
unfolding throughout a system [7] [6]. The basic elements of the notation are shown in
Figure 1. A scenario is represented by a path, shown as a line from a start point (a
filled circle) to an end point (a bar), and traversed by a token from start to end. Paths
can be overlaid on components which represent functional or logical entities, which
may represent hardware or software resources. Responsibilities, denoted with an X-
shaped mark on the path, represent functions to be accomplished. The performance
modeling assumes that the computational workload is associated with responsibilities,
or is overhead implied by crossings between components. Responsibilities are anno-
tated by service demands (number of CPU or disk operations, or calls to other ser-
vices) and data store operations.

A path can be traversed by many tokens, and several tokens may occupy a single
path at once. The workload of a path is indicated by annotations to its start point
(closed or open arrivals, arrival rates and external delays). A path can be refined hier-
archically by adding stubs, which represent separately specified maps called plug-ins.
There may also be several alternative plug-ins for any stub.

Figure 1: Example of the UCM notation.

component

start point end pointresponsibility

alternate_branch1

alternate_branch2

parallel_branch1

parallel_branch2

stub

Paths have the usual behaviour constructs of OR fork/joins (representing alterna-
tive paths), AND fork/joins (representing parallel paths) and loops. OR forks and
loops are annotated by choice probabilities and mean loop counts. AND and OR forks
do not have to be nested, that is they do not have to join later. This is realistic for soft-
ware design, but creates problems for model creation, as the structured workload graph
reduction used by Smith ([28], chapter 4) does not always apply.

The UCM Navigator (UCMNav) [17] was developed by Miga as an editor and
repository manager, and has been used by our industrial associates to create large,
industry-scale scenario specifications. It supports
• drawing and editing UCMs, including multiple scenarios, and storing in an XML

format.
• annotations for deployment on system devices and for performance, as well as

comments and pseudo code,
• specifying delay requirements along a path,
• generating Message Sequence Charts (MSC) as well as performance models.

The UCM2LQN converter (to be described below) is implemented as an add-on to
UCMNav, and generates a file in the LQN language which can then be used (outside
the UCMNav) to compute performance measures using either a simulator called
LQSim, or an analytic solver LQNS.

2.2 Layered Queueing Networks

Layered Queueing Networks (LQN) model contention for both software and hard-
ware resources, based on requests for services. Entities in the role of clients make ser-
vice requests and queue at the server. In ordinary queueing networks there is one layer
of servers; in LQN, servers may make requests to other servers, with any number of
layers [24][48]. An LQN can thus model the performance impact of the software struc-
ture and interactions, and be used to detect software bottlenecks as well as hardware
performance bottlenecks [19]. There have been many applications [22][31][51].

In an LQN the software resources are called tasks, (representing a software pro-
cess with its own thread of execution, or some other resource such as a buffer) and the
hardware resources are called devices (typical devices are CPUs and disks). Tasks can
have priority on their CPU. The workload of a LQN is driven by arrival streams of
external requests, and by tasks which cycle and make requests, called reference tasks .

An LQN can be represented by a graph with nodes for tasks and devices, and
arrows for service requests (labelled by the mean number of messages sent). There are
two types of arc to represent asynchronous messages, with no reply, and synchronous
messages which block the sender until there is a reply (synchronous messages are also
called task calls; the model was created originally for Ada software). Tasks receive
either kind of request message at designated interface points called entries . A task has
a different entry for every kind of service it provides; an entry also represents a class of
service. Internally an entry has service demands defined by sequences of smaller com-
putational blocks called activities, which are related in sequence, loop, parallel (AND
fork/joins) and alternative (OR fork/joins) configurations. Activities have processor
service demands and generate calls to entries in other tasks.

A third type of interaction called forwarding is a combination of synchronous and

asynchronous behaviour. The sending client task makes a synchronous call and blocks
until it receives a reply. The receiving task partially processes the call and then for-
wards it to another server which becomes responsible for sending a reply to the
blocked client task; it can be forwarded with a probability, and any number of times.
The intermediate server task can begin a new operation after forwarding the call.

Models are created in a textual language which can be edited as text or with a sim-
ple graphical editor, and can be solved either by simulation, or by analytic approxima-
tions by the solver LQNS. LQNS is based on [31] and the Method of Layers [24], with
a number of additional approximations [10][11][12]. The approximations have limita-
tions in dealing with priorities (poor accuracy) and with AND-joins that do not have an
AND-fork in the same task, so simulation is often useful.

The interactions in LQN’s can be understood more clearly using UCMs to show
the sequences of events. Figure 2 has a series of UCMs describing the interactions
which must be detected when building an LQN model:

(a) a basic synchronous interaction between two tasks taskA and taskB has a path
launched by an activity (which is an inferred overhead activity for communi-
cations); the reply returns the path to the same activity. The interpretation of
this message is the same if the path goes on from taskB to other tasks, return-
ing to taskB before returning to taskA.

(b) two activities in taskA send messages, one to taskB and a later one to taskC.

(c) taskA sends an asynchronous message to taskB. The interpretation of the mes-
sage is the same if the path goes on from there, but never returns to taskA. The
LQN notation is an open arrowhead, here shown with one side only.

(d) taskA sends a message to taskB which is forwarded to taskC, before returning
directly to taskA. The forwarding path can include any number of intermediate
tasks; the assumption is that taskA (or a thread of the task) waits blocked for
the return, unless there is a fork in taskA before sending the request. The LQN
notation for the forwarding steps is a solid arrow for the original blocking call,
and dashed arrows for the other, non-blocking messages.

Figure 2 also shows the LQN notations for forks and joins and for loops.

3 Extracting a Layered Performance Model
The novel contribution in this work is finding disguised synchronous and forward-

ing interactions. These identify potential software blocking which may have signifi-
cant performance implications. Compared to many scenario analyses (such as used in
[28]), which only determine device demands by class, the layered model also retains
the component context of each demand. Other models which retain the software con-
text of demand, e.g. Kahkipuro’s AQN [16], require that blocking interactions be
explicitly identified.

3.1 Correspondences between UCMs and LQN’s

There are some quite close correspondences between some of the scenario enti-

ties, and LQN model entities that can represent them.

UCM Construct LQN Construct

start point reference task

responsibility activity

AND/OR forks and joins LQN AND/OR forks and joins

component task

device device

service
entry in a task (with a dedicated
processor)

Table 1: Corresponding UCM and LQN constructs.

ta skA_dup

*

ta skA

g) loo ping structure
& &

ta skA

f) structure w ith ‘AND ’ fo rk and join

ta skA

+ +

e) structure w ith ‘OR’ fork a nd jo in

ta skA

ta skB

a) synchro nous
 interaction

b) multiple syn chronous intera ctions

ta skA

ta skB ta skC ta skB

ta skA

c) asynch ronou s
 interaction

ta skA

ta skB

ta skC

d) forwarding interactio

Figure 2: Corresponding interactions and structures in UCM and LQN.

Considering these in order,
• A reference task can serve either as an open workload generator inserting asyn-

chronous requests, or a closed workload generator, in which case it has a multi-
plicity equal to the population, and each task makes synchronous requests (and
waits for the response).

• A UCM responsibility can represent an arbitrarily complex set of operations, how-
ever here we are restricting its significance to a sequential operation, which can
make calls to services. A complex operation can be captured in many cases by
these calls, which are mapped to servers and service requests in the LQN.

• A component may represent an operating system process, or an object or module
of some kind. An LQN task has a primary meaning as a separate operating system
process, but it also represent an object or module executing in the context of some
task. A synchronous call to the module is effectively sequential, because of the
blocking of the main task, so it is equivalent to including the module inside the
main task... modeling a module in this way exposes its contributions to perfor-
mance.

• A “service” in UCM is an annotation representing a service used by the software
but outside the scope of the UCM, such as a file service or a database service.
Ultimately a submodel for this subsystem will be added to the model, but as a
placeholder, a task with a dedicated processor is inserted to take the calls for the
service.

3.2 Correspondences of Path Structure in LQN

Within a component the scenario expression of path structure translates directly to
the LQN activity sequence notation, with the usual constructs of alternate and parallel
branching (and joining), as well as looping. The LQN notation supports the same con-
structs. Figure 2(e) shows a UCM interpretation of an LQN task with an OR fork and
join (in the LQN model the OR is indicated by a ‘+’ connector). Figure 2(f) shows an
AND fork and join (the LQN model uses ‘&’ in the connector). A UCM loop point is
indicated by an OR join followed immediately by an OR fork; the LQN notation has a
loop traversal count. A complex loop body can be represented in the LQN by a
pseudo-task which is “called” by the loop controller and executes the activities of the
body, as indicated in Figure 2(g).

3.2.1 Fork and Join in Separate Components

In a scenario, paths may fork in one component and join in another. Both UCMs
and LQN’s support this feature; the path is conveyed from the first component to the
second by asynchronous or forwarding interactions. Simulation evaluation in our tools
assumes that any token on the joining paths is a candidate, but applications may
require that only tokens that are siblings from the fork should be allowed to join. If the
scenario is such that tokens cannot pass each other this is no problem, otherwise it is a
headache both to model and (indeed) to implement.

3.3 Performance Annotations in UCMs

The performance annotations on UCM elements were mentioned in the descrip-
tion of the UCM notation above, but it is worth summarizing them more formally since
they provide the parameters and some of the elements of the performance model. Table
2 shows the annotations and their default values.

4 Scenario to Performance Model Transformation Algorithm
The algorithm for scenario to performance transformation (SPT) must do the fol-

lowing:
• identify when the path crosses component boundaries
• determine the type of messages sent or received when crossing component bound-

aries
• capture the path structure and the correct sequence of path elements

• create the LQN objects that correspond directly to UCM elements
• handle forks, joins, and loops

The UCM is transformed into an LQN on a path by path basis. Each start point is
assumed to begin an independent path, and as such is assigned to its own reference
task. Reference tasks act as the work generators for the LQN model. Each reference
tasks is assigned arrival rates and distributions as specified by the start points in the
UCM. Similarly, LQN activities are assigned workload demands as specified in the
corresponding UCM responsibility and OR branches are assigned probabilities set in
the UCM. If any performance data is missing from the UCM, default values are
assigned as noted in Table 2.

UCM Element Performance Annotation Default

responsibility number of calls 1.0 calls

component associated devices one infinite processor

device speed-up factor 1.0

OR fork probability of each branch
 (as a weight)

equal probability for
each branch

loop number of loop iterations 1.0 iterations

start point open system arrival rate
and distribution

1 arrival/sec, with
deterministic delay

OR closed system popula-
tion and delay

10 jobs with deterministic
delay of 1 sec.

Table 2: UCM constructs, the necessary performance data needed to
create meaningful LQNs, UCMNav support for entering the
data, and default values used if the data is not specified.

The SPT algorithm follows a UCM path from its start point. Each element along
the path is checked for its enclosing component, and if the enclosing component has
changed then a boundary has been crossed. Each boundary crossing corresponds to a
message between components. The message may be a synchronous call, a reply, an
asynchronous call, or a forwarding; to resolve its role in an interaction requires exam-
ining a portion of the history of the path. This is called resolving the interaction. There-
fore there is a need to keep track of all messages that have been discovered, but not yet
resolved.

4.1 Call and Reply Stack (CRS)

The Call and Reply Stack (CRS) is the mechanism that stores the unresolved mes-
sage history as the path is traversed. Whenever a component boundary is crossed, the
message event is pushed onto the stack and then the pattern of messages in the stack is
analyzed to see if they satisfy one of the interaction patterns illustrated in Figure 2. For
example, if the most recent message can be interpreted as a reply to a previous mes-
sage on the CRS, the interpretation is performed and a synchronous interaction is gen-
erated and attached to the LQN elements. The priority in resolving interactions is to
interpret them first as synchronous, and then as forwarding; interactions are interpreted
as asynchronous only as a last resort. The operations of the CRS can be summarized as
follows:
• unresolved messages, with the LQN entries and activities involved in sending and

receiving, are pushed on the CRS
• when messages are resolved as LQN interactions, the associated LQN entries and

activities are popped off the CRS
• any messages remaining on the CRS when the end of the path is reached are

resolved as being involved in asynchronous calls.
A result of this approach is that no message (with its associated workload) is ever lost.

Figure 3 shows a UCM with multiple boundary crossings and the state of the CRS
after each of those crossings.

The path traversal is made more complicated by the presence of forks and joins. If
a fork is encountered along the path, then the outgoing branches are followed one by
one, until either a join or an end point is reached. Figure 4 shows the order in which a
set of path segments with forks and joins are traversed, starting from the start point on
the left. When a join is encountered the traversal proceeds past it only after all the
incoming branches that can be reached from the current start point have been tra-
versed.

Branching can also affect the structure of the CRS. When a fork is encountered the
CRS is also forked, so that there is a separate CRS sub-stack for each branch of the
fork. Branches are explored in an arbitrary order. When exploring a branch, interac-
tions are resolved as they are found. If, after an OR fork, the resolution of messages on
a branch involves messages sent before the fork (and therefore in a previous CRS sub-
stack), then the fork is moved back to just before them. The CRS elements back to the
new fork are duplicated for all branches.

Figure 3: UCM showing the contents of the CRS after each of a series of component
boundary crossings.

taskA

taskB

taskC

r1

r2

r3

r4

CRS contents after boundary crossing a:
[1] - message sent by taskA

CRS contents after boundary crossing b:
[1] - call made from taskA to taskB

CRS contents after boundary crossing c:
[2] - message sent by taskB
[1] - call made from taskA to taskB

CRS contents after boundary crossing d:
[2] - call made from taskB to taskC
[1] - call made from taskA to taskB

CRS contents after boundary crossing e:
[3] - message sent by taskC
[2] - call made from taskB to taskC
[1] - call made from taskA to taskB

CRS contents after boundary crossing f:
(empty)

Final resolution of messages
after boundary crossing f:
....taskA makes a synchronous

call to taskB
....taskB makes a forwarding call

to taskC
...taskC sends a reply to taskA

fa

e

c

b

d

Figure 4: UCM path showing the order in which branches are traversed.

1

4

63
5

2

4.2 SPT Algorithm

The following high-level description of the algorithm describes the operations
carried out at each point along the path:

(a) create appropriate LQN objects for the current path point

1.1. if the current point is a start point then

1.1.1. create a reference task for the start point

1.2. if the current point is an end point then go to
step 4

1.3. if the current point is a responsibility or a stub
with no plugin then

1.3.1. create an LQN activity and update it with the
service requests of the responsibility or stub

1.4. if the current point is a fork then

1.4.1. create an LQN fork of an appropriate type

1.4.2. create a branch CRS for the next branch path to
be traversed

1.5. if the current point is a join then

1.5.1. if all the incoming branches have been tra-
versed then proceed past the join and merge the
CRS for the last branch to be traversed with the
main path CRS before the branch

1.5.2. else go back and traverse the next incoming
branch

1.5.2.1. create a branch CRS for the next branch
path to be traversed

1.6. if the current point is a loop head then

1.6.1. create a repeated LQN activity to be the loop
control activity

1.6.2. create an LQN task to handle the loop body

1.6.3. add a synchronous call from the loop control
activity to the loop body

(b) look ahead to the next point on the path

(c) analyze inter-component interactions (identify any component boundary
crossings and resolve the nature of the inter-component messages)

3.1. if the current point resides in a component then

3.1.1. if the next point does not reside in a compo-
nent then create an unresolved message, with an
activity to send it, and push them on the CRS

3.1.2. else if the next point resides in a different
component that has a message pending on the CRS
then identify a synchronous or forwarding inter-
action and resolve it

3.1.3. else if the next point resides in a different
component that does not have any message pending
on the CRS then identify a call of unknown type
(synchronous, forwarding, or asynchronous).

3.2. else the current point does not reside in a compo-
nent

3.2.1. if the next point resides in a component that
does not have any message pending on the CRS then
identify the reception of a call

3.2.2. else if the next point resides in a component
that has a message pending on the CRS then iden-
tify a synchronous or forwarding interaction and
resolve it

(d) if the current point is an end point then any unresolved interactions are asyn-
chronous

(e) else set the next point as the current path point and go to step 1

The algorithm ensures that every responsibility in the scenario is traversed and
that a corresponding LQN activity is generated with the specified service demands. A
more detailed description of the algorithm can be found in [20].

5 Example - Ticket Reservation System
The Ticket Reservation System (TRS) allows users to browse through a catalogue

of events and seat availability, and to buy tickets using a credit card. The UCM design
for the TRS is shown in Figure 5, with the components being as follows:
• User : TRS customer
• WebServer: web interface to the TRS, executes CGI scripts
• Netware: the underlying network software and the network itself
• CCReq: credit card verification and authorization server
• Database: database server

A User can access the TRS can be used either to browse events by displaying an
event schedule and seating availability, or to buy tickets using a credit card. A typical
scenario involves the User logging on to the system by requesting a connection. The
WebServer then logs the user on and opens a session, then confirms that the connection
was made. Once she is connected to the system, the User enters a loop where she has
two options. She can either choose to browse and check information about an event, or
she can buy a ticket. If the browsing option is chosen, the WebServer sends an event
information request to the Database, through the Netware. The Database is responsi-
ble for retrieving the data requested and send it to the WebServer. The information can

then be displayed back to the User, who can now choose whether to continue brows-
ing, purchase tickets or disconnect. If the ticket purchasing option is chosen, the User
must supply a credit card number to which the purchase price can be billed. The Web-
Server then begins to confirm the transaction by contacting the CCReq through the
Netware and requesting that the credit card be verified. Once the credit card is checks
out, CCReq forwards the purchase request to the Database so it may update its
records. The transaction is now completed and a confirmation is sent to the WebServer,
which in turn relays it back to the User. The User may continue to browse or purchase
more tickets as she wishes. Once the User is done, she can make a disconnection

Figure 5: Ticket Reservation System Use Case Map model.

Database

WebServer

CCReq

Netware

User

Connect

ConnectWeb

Disconnect

DisconnectWeb

DisplayWeb

DisplayNetDisplayDb

ConfirmWeb

ConfirmNet

ConfirmDb VerifyCC

request and the WebServer closes the session and confirms that the she has been logged
out.

The TRS LQN is shown in Figure 6. The LQN shows an initial asynchronous call
from the reference task to the User, due to the open nature of the model’s arrivals. This
example requires the conversion of a complex loop, the body of which features forking
and joining and makes service requests of other tasks.

Examining the flow of activities and messages in the LQN, the UCM path is
readily identifiable. The loop control activity is shown as the diagonally shaded activ-
ity marked with an asterisk in the User task. The loop body was abstracted away from
the loop head and is represented by the User_dup1 task. The rest of the loop body is
taken care of by the activities in User_dup1. The activities for the WebServer task
incorporate the OR fork and join necessary to separate the sequence of actions for
browsing or buying. Calls from the WebServer are forwarded by the Netware, and by
the CCReq if a reservation was made, before being replied to by the Database.

The resulting LQN file has been solved by the solver LQNS, to demonstrate that it
is a correctly formed model definition. However the model results are not critical to
the present discussion and will not be presented here. With the model, one could
address such issues as
• the CPU load imposed by the servers
• the levels of concurrency needed in the servers,
• the impact on capacity, if there are longer sessions or longer internet delays for

each interaction.

6 Transforming Other Scenario Models (e.g. UML Sequence Dia-
grams)

The SPT algorithm can work with any scenario notation which is based on the
sequence connectors described here (sequence, alternative paths, AND forks and joins,
and loops), and which binds elements to components. Thus any of the three UML dia-
grams which show scenarios (Sequence Diagrams, Collaboration Diagrams, and
Activity Diagrams) can be transformed by the SPT algorithm. Other scenario notations
that can be handled include the ITU standards, Message Sequence charts and High-
Level Message Sequence Charts.

For example, in Sequence Diagrams, each participating instance will be treated as
a component and transformed to a LQN task. If necessary these can be aggregated later
on the basis of concurrent processes. Messages are clearly identified and do not need
to be inferred. Looping may be represented by an enclosed set of interactions, which is
identifiable as a loop body for the transformation. AND forks (and joins) have to be
recognized implictly by multiple message send events (or receive events). OR forks
may occur in two ways; by multiple messages leaving the same point, or by a split in
the instance lifeline (the vertical timeline associated witht he instance). An OR join
may be shown by a merging of the split lifelines, or by messages arriving at the same
point. Operations can be inferred for handling the receipt of messages (which activate
methods) and for the purposes of the transformation can be treated similarly to UCM
responsibilities. This covers all the key elements of the scenario, so the interaction
types can be determined by the SPT algorithm. The problem of parameter annotations

Figure 6: TRS LQN showing activity connections based on the output generated by
the UCM2LQN converter from the UCM shown in Figure 5.

User_dup1

+

WebServer

+

Database

Netware

CCReq

User

*

RefTask1

may be resolved by a proposed standard profile for this purpose [26].

7 Conclusions
The tool described here addresses the problem of capturing performance issues in

the earliest software design efforts. The UCM2LQN converter connects high level
design in the form of Use Case Maps with performance analysis using Layered Queue-
ing Networks. It demonstrates close integration between the software specification
tool (the UCMNav editor) and the performance analysis programs (the LQNS analytic
solver and the LQSim simulator).

The SPT algorithm used in UCM2LQN can be applied equally to scenario specifi-
cations in other languages, such as sequence diagrams in UML. Some interpretation of
the sequence diagram is needed to establish the corresponding constructs for the pur-
poses of the algorithm. Only a sketch of the interpretation of sequence is given here,
but it does not appear to be difficult to fill in the details. Since one UCM may present
many paths, the equivalent conversion may involve many sequence diagrams.

The key difficulty in the conversion is in identifying blocking interactions
between software entities, and potential contention for servers and other logical
resources. This involves matching patterns for two kinds of synchronous interactions
(synchronous and forwarding), delaying the matching to obtain sufficient information
from the path traversal, and careful handling of forks in the path that occur during one
of these interactions.

The model-building tool is integrated into the UCM Navigator, which is freely
distributed and has over a hundred users (see the web site www.usecasemaps.org
for the UCM User Group).

Some improvements to the model building are still needed in the use of data con-
ditions to define which paths are part of a given scenario, and the handling of paths
which are parts of larger paths.

Acknowledgements

This research was funded by the Natural Sciences and Engineering Research
Council of Canada (NSERC), through its program of Research Grants, and by Com-
munications and Information Technology Ontario (CITO).

References.

1. D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien,
and T. Ware, “Feature Description and Feature Interaction Analysis with Use
Case Maps and LOTOS”, Sixth International Workshop on Feature Interactions
in Telecommunications and Software Systems (FIW'00), Glasgow, Scotland,
May 2000

2. D. Amyot, L. Logrippo, R.J.A. Buhr, and T. Gray, “Use Case Maps for the Cap-
ture and Validation of Distributed Systems Requirements”, Fourth International
Symposium on Requirements Engineering (RE'99), Limerick, Ireland, June
1999

3. D. Amyot and G. Mussbacher, “On the Extension of UML with Use Case Maps
Concepts”, The 3rd International Conference on the Unified Modeling Lan-
guage (UML2000), York, UK, October 2000.

4. S. Balsamo and M. Simeoni, “Deriving Performance Models from Software
Architecture Specifications”, European Simulation Multiconference 2001
(ESM 2001), Prague, June 2001

5. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

6. R. J. A. Buhr, "Use Case Maps as Architectural Entities for Complex Systems,"
IEEE Transactions on Software Engineering, vol. 24, no. 12 pp. 1131 - 1155,
1998.

7. R.J.A. Buhr and R.S. Casselman, “Use Case Maps for Object-Oriented Sys-
tems”, Prentice Hall, 1996

8. L. Constantine, L. Lockwood , "Software for Use", Addison Wesley 1999
9. V. Cortellessa and R. Mirandola, “Deriving a Queueing Network-based Perfor-

mance Model from UML Diagrams”, ACM Proceedings of the Workshop on
Software and Performance (WOSP2000), Ottawa, Canada, 2000, pp. 58-70

10. G. Franks and M. Woodside, "Effectiveness of early replies in client-server sys-
tems," Performance Evaluation, vol. 36--37, pp. 165-183, August 1999.

11. G. Franks and M. Woodside, "Performance of Multi-level Client-Server Sys-
tems with Parallel Service Operations," in Proc. of Workshop on Software
Performance (WOSP98), October 1998, pp. 120-130.

12. Greg Franks, “Performance Analysis of Distributed Server Systems”, Report
OCIEE-00-01, Ph.D. thesis, Carleton University, Ottawa, Jan. 2000

13. H. Gomaa and D. A. Menasce, “Design and Performance Modeling of Compo-
nent Interconnection Patterns for Distributed Software Architectures”, ACM
Proceedings of the Workshop on Software and Performance (WOSP2000),
Ottawa, Canada, 2000, pp. 117-126

14. J. Hodges and J. Visser, “Accelerating Wireless Intelligent Network Standards
Through Formal Techniques”, IEEE 1999 Vehicular Technology Conference
(VTC’99), Houston, 1999

15. C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture. Addison-
Wesley, 1999.

16. P. Kahkipuro, "UML Based Performance Modeling Framework for Object Ori-
ented Systems," in UML99, The Unified Modeling Language, Beyond the
Standard, LNCS 1723, Springer-Verlag, Berlin, 1999, pp. 356-371.

17. A. Miga, “Application of Use Case Maps to System Design With Tool Sup-
port”, M.Eng. Thesis, Department of Systems and Computer Engineering, Car-
leton University, Ottawa, Canada, 1998

18. O. Monkewich, “NEW QUESTION 12: URN: User Requirements Notation”,
ITU-T Study Group 10, Temporary Document 99, November 1999

19. J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, “Software Bottle-
necking in Client-Server Systems and Rendez-vous Networks”, IEEE Trans.
On Software Engineering, Vol. 21, No. 9, pp. 776-782, September 1995

20. Dorin Petriu, “Layered Software Performance Models Constructed from Use
Case Map Specifications”, M.A.Sc thesis, Carleton University, May 2001.

21. Dorin Petriu and C. M. Woodside, “Evaluating the Performance of Software
Architectures”, The 5th Mitel Workshop (MICON2000), Mitel Networks,
Ottawa, August 2000

22. D. C. Petriu, C. Shousha, and A. Jalnapurkar, “Architecture-Based Perfor-
mance Analysis Applied to a Telecommunication System”, IEEE Transactions
on Software Engineering, Vol. 26, No. 11, Nov 2000, pp. 1049-1065

23. R. Pooley, "Software Engineering and Performance: a Roadmap," in The
Future of Software Engineering, part of the 22nd Int. Conf. on Software Engi-
neering (ICSE2000), Limerick, Ireland, June 2000, pp. 189-200.

24. J. A. Rolia, K. C. Sevcik, “The Method of Layers”, IEEE Transactions on Soft-
ware Engineering, Vol. 21, No. 8, 1995, pp. 682-688

25. C. Scratchley, C. M. Woodside, “Evaluating Concurrency Options in Software
Specifications”, Proceedings of the 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecomm Systems (MASCOTS99),
College Park, Md., October 1999, pp 330 - 338

26. B. Selic, A. Moore, M. Bjorkander, M. Gerhardt, B. Watson, and M. Woodside,
"Response to the OMG RFP for Schedulability, Performance and Time," Obect
Management Group, OMG document ad/01-06-14, June 12,2001.

27. K. H. Siddiqui, C. M. Woodside, “A description of Time/Performance Budget-
ing for UCM Designs”, The 5th Mitel Workshop (MICON2000), Mitel Net-
works, Ottawa, August 2000

28. C. U. Smith, “Performance Engineering of Software Systems”, Addison-Wes-
ley, 1990

29. C. U. Smith, L.G. Williams, “Performance Engineering Evaluation of Object
Oriented Systems with SPE-ED”, Computer Performance Evaluation: Model-
ing Techniques and Tools (LNCS 1245), Springer-Verlag, 1997

30. C. U. Smith, Murray Woodside, “Performance Validation at Early Stages of
Development”, Position paper, Performance 99, Istanbul, Turkey, October 99

31. C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The Stochastic
Rendezvous Network Model for Performance of Synchronous Client-Server-
Like Distributed Software”, IEEE Transactions on Computers, Vol. 44, No. 1,
Jan 1995, pp. 20-34

32. Murray Woodside, "Software Resource Architecture", to appear in Int. Journal
on Software Engineering and Knowledge Engineering (IJSEKE), 2001

33. ACM Proceedings of the Workshop on Software and Performance (WOSP’98),
Santa Fe, USA, 1998

34. ACM Proceedings of the Workshop on Software and Performance
(WOSP2000), Ottawa, Canada, 2000

	Software Performance Models from System Scenarios in Use Case Maps
	Dorin Petriu, Murray Woodside
	Dept. of Systems and Computer Engineering
	Carleton University, Ottawa K1S 5B6, Canada.
	{dorin,cmw}@sce.carleton.ca
	Abstract. Software performance concerns begin at the very outset of a new project. The first defi...
	1 Introduction
	Software performance analysis often begins from scenario definitions, which describe the system b...
	Because software designers are (usually) not also performance analysts, the performance-specific ...
	To provide continuous re-evaluation during the evolution of an architecture there must be automat...
	The performance model notation used here is Layered Queueing, because this form of model captures...
	The difficult problem solved by UCM2LQN applies to any scenario notation which binds actions to s...
	There has been considerable effort expended on methods for Software Performance Engineering (SPE)...
	This research pins its hopes on embedding most of the description into the software definition as...

	2 Models for Scenarios and Performance
	2.1 Use Case Maps
	UCM notation was invented by Buhr and his co-workers [6][7] to capture designer intentions while ...
	Figure 1: Example of the UCM notation.

	A Use Case Map is a collection of elements that describe one or more scenarios unfolding througho...
	A path can be traversed by many tokens, and several tokens may occupy a single path at once. The ...
	Paths have the usual behaviour constructs of OR fork/joins (representing alternative paths), AND ...
	The UCM Navigator (UCMNav) [17] was developed by Miga as an editor and repository manager, and ha...
	The UCM2LQN converter (to be described below) is implemented as an add-on to UCMNav, and generate...

	2.2 Layered Queueing Networks
	Layered Queueing Networks (LQN) model contention for both software and hardware resources, based ...
	In an LQN the software resources are called tasks, (representing a software process with its own ...
	An LQN can be represented by a graph with nodes for tasks and devices, and arrows for service req...
	A third type of interaction called forwarding is a combination of synchronous and asynchronous be...
	Models are created in a textual language which can be edited as text or with a simple graphical e...
	The interactions in LQN’s can be understood more clearly using UCMs to show the sequences of even...
	(a) a basic synchronous interaction between two tasks taskA and taskB has a path launched by an a...
	(b) two activities in taskA send messages, one to taskB and a later one to taskC.
	(c) taskA sends an asynchronous message to taskB. The interpretation of the message is the same i...
	(d) taskA sends a message to taskB which is forwarded to taskC, before returning directly to task...

	Figure 2 also shows the LQN notations for forks and joins and for loops.
	Figure 2: Corresponding interactions and structures in UCM and LQN.

	3 Extracting a Layered Performance Model
	The novel contribution in this work is finding disguised synchronous and forwarding interactions....
	3.1 Correspondences between UCMs and LQN’s
	There are some quite close correspondences between some of the scenario entities, and LQN model e...
	Considering these in order,

	3.2 Correspondences of Path Structure in LQN
	Within a component the scenario expression of path structure translates directly to the LQN activ...
	3.2.1 Fork and Join in Separate Components

	In a scenario, paths may fork in one component and join in another. Both UCMs and LQN’s support t...

	3.3 Performance Annotations in UCMs
	The performance annotations on UCM elements were mentioned in the description of the UCM notation...

	4 Scenario to Performance Model Transformation Algorithm
	The algorithm for scenario to performance transformation (SPT) must do the following:
	The UCM is transformed into an LQN on a path by path basis. Each start point is assumed to begin ...
	The SPT algorithm follows a UCM path from its start point. Each element along the path is checked...
	4.1 Call and Reply Stack (CRS)
	The Call and Reply Stack (CRS) is the mechanism that stores the unresolved message history as the...
	A result of this approach is that no message (with its associated workload) is ever lost.
	Figure 3: UCM showing the contents of the CRS after each of a series of component boundary crossi...

	Figure 3 shows a UCM with multiple boundary crossings and the state of the CRS after each of thos...
	The path traversal is made more complicated by the presence of forks and joins. If a fork is enco...
	Figure 4: UCM path showing the order in which branches are traversed.

	Branching can also affect the structure of the CRS. When a fork is encountered the CRS is also fo...

	4.2 SPT Algorithm
	The following high-level description of the algorithm describes the operations carried out at eac...
	(a) create appropriate LQN objects for the current path point
	1.1. if the current point is a start point then
	1.1.1. create a reference task for the start point
	1.2. if the current point is an end point then go to step 4
	1.3. if the current point is a responsibility or a stub with no plugin then
	1.3.1. create an LQN activity and update it with the service requests of the responsibility or stub
	1.4. if the current point is a fork then
	1.4.1. create an LQN fork of an appropriate type
	1.4.2. create a branch CRS for the next branch path to be traversed
	1.5. if the current point is a join then
	1.5.1. if all the incoming branches have been traversed then proceed past the join and merge the ...
	1.5.2. else go back and traverse the next incoming branch
	1.5.2.1. create a branch CRS for the next branch path to be traversed
	1.6. if the current point is a loop head then
	1.6.1. create a repeated LQN activity to be the loop control activity
	1.6.2. create an LQN task to handle the loop body
	1.6.3. add a synchronous call from the loop control activity to the loop body

	(b) look ahead to the next point on the path
	(c) analyze inter-component interactions (identify any component boundary crossings and resolve t...
	3.1. if the current point resides in a component then
	3.1.1. if the next point does not reside in a component then create an unresolved message, with a...
	3.1.2. else if the next point resides in a different component that has a message pending on the ...
	3.1.3. else if the next point resides in a different component that does not have any message pen...
	3.2. else the current point does not reside in a component
	3.2.1. if the next point resides in a component that does not have any message pending on the CRS...
	3.2.2. else if the next point resides in a component that has a message pending on the CRS then i...

	(d) if the current point is an end point then any unresolved interactions are asynchronous
	(e) else set the next point as the current path point and go to step 1

	The algorithm ensures that every responsibility in the scenario is traversed and that a correspon...

	5 Example - Ticket Reservation System
	The Ticket Reservation System (TRS) allows users to browse through a catalogue of events and seat...
	Figure 5: Ticket Reservation System Use Case Map model.

	A User can access the TRS can be used either to browse events by displaying an event schedule and...
	Figure 6: TRS LQN showing activity connections based on the output generated by the UCM2LQN conve...

	The TRS LQN is shown in Figure 6. The LQN shows an initial asynchronous call from the reference t...
	Examining the flow of activities and messages in the LQN, the UCM path is readily identifiable. T...
	The resulting LQN file has been solved by the solver LQNS, to demonstrate that it is a correctly ...

	6 Transforming Other Scenario Models (e.g. UML Sequence Diagrams)
	The SPT algorithm can work with any scenario notation which is based on the sequence connectors d...
	For example, in Sequence Diagrams, each participating instance will be treated as a component and...

	7 Conclusions
	The tool described here addresses the problem of capturing performance issues in the earliest sof...
	The SPT algorithm used in UCM2LQN can be applied equally to scenario specifications in other lang...
	The key difficulty in the conversion is in identifying blocking interactions between software ent...
	The model-building tool is integrated into the UCM Navigator, which is freely distributed and has...
	Some improvements to the model building are still needed in the use of data conditions to define ...
	Acknowledgements
	This research was funded by the Natural Sciences and Engineering Research Council of Canada (NSER...
	References
	1. D. Amyot, L. Charfi, N. Gorse, T. Gray, L. Logrippo, J. Sincennes, B. Stepien, and T. Ware, “F...
	2. D. Amyot, L. Logrippo, R.J.A. Buhr, and T. Gray, “Use Case Maps for the Capture and Validation...
	3. D. Amyot and G. Mussbacher, “On the Extension of UML with Use Case Maps Concepts”, The 3rd Int...
	4. S. Balsamo and M. Simeoni, “Deriving Performance Models from Software Architecture Specificati...
	5. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide. Addison-Wesl...
	6. R. J. A. Buhr, "Use Case Maps as Architectural Entities for Complex Systems," IEEE Transaction...
	7. R.J.A. Buhr and R.S. Casselman, “Use Case Maps for Object-Oriented Systems”, Prentice Hall, 1996
	8. L. Constantine, L. Lockwood , "Software for Use", Addison Wesley 1999
	9. V. Cortellessa and R. Mirandola, “Deriving a Queueing Network-based Performance Model from UML...
	10. G. Franks and M. Woodside, "Effectiveness of early replies in client-server systems," Perform...
	11. G. Franks and M. Woodside, "Performance of Multi-level Client-Server Systems with Parallel Se...
	12. Greg Franks, “Performance Analysis of Distributed Server Systems”, Report OCIEE-00-01, Ph.D. ...
	13. H. Gomaa and D. A. Menasce, “Design and Performance Modeling of Component Interconnection Pat...
	14. J. Hodges and J. Visser, “Accelerating Wireless Intelligent Network Standards Through Formal ...
	15. C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture. Addison- Wesley, 1999.
	16. P. Kahkipuro, "UML Based Performance Modeling Framework for Object Oriented Systems," in UML9...
	17. A. Miga, “Application of Use Case Maps to System Design With Tool Support”, M.Eng. Thesis, De...
	18. O. Monkewich, “NEW QUESTION 12: URN: User Requirements Notation”, ITU-T Study Group 10, Tempo...
	19. J.E. Neilson, C.M. Woodside, D.C. Petriu and S. Majumdar, “Software Bottlenecking in Client-S...
	20. Dorin Petriu, “Layered Software Performance Models Constructed from Use Case Map Specificatio...
	21. Dorin Petriu and C. M. Woodside, “Evaluating the Performance of Software Architectures”, The ...
	22. D. C. Petriu, C. Shousha, and A. Jalnapurkar, “Architecture-Based Performance Analysis Applie...
	23. R. Pooley, "Software Engineering and Performance: a Roadmap," in The Future of Software Engin...
	24. J. A. Rolia, K. C. Sevcik, “The Method of Layers”, IEEE Transactions on Software Engineering,...
	25. C. Scratchley, C. M. Woodside, “Evaluating Concurrency Options in Software Specifications”, P...
	26. B. Selic, A. Moore, M. Bjorkander, M. Gerhardt, B. Watson, and M. Woodside, "Response to the ...
	27. K. H. Siddiqui, C. M. Woodside, “A description of Time/Performance Budgeting for UCM Designs”...
	28. C. U. Smith, “Performance Engineering of Software Systems”, Addison-Wesley, 1990
	29. C. U. Smith, L.G. Williams, “Performance Engineering Evaluation of Object Oriented Systems wi...
	30. C. U. Smith, Murray Woodside, “Performance Validation at Early Stages of Development”, Positi...
	31. C. M. Woodside, J. E. Neilson, D. C. Petriu and S. Majumdar, “The Stochastic Rendezvous Netwo...
	32. Murray Woodside, "Software Resource Architecture", to appear in Int. Journal on Software Engi...
	33. ACM Proceedings of the Workshop on Software and Performance (WOSP’98), Santa Fe, USA, 1998
	34. ACM Proceedings of the Workshop on Software and Performance (WOSP2000), Ottawa, Canada, 2000
	Report SCE-02-02, Feb. 6, 2002. Dept. of Systems and Computer Engineering, Carleton University, O...
	Copyright Springer-Verlag 2002.

