
Performance Analysis of Client-Server Systems with Aggressive Server

Replies

Greg Franks C. M. Woodside

Department of Systems and Computer Engineering

Carleton University
Ottawa, Ontario, Canada, K1S 5B6

Abstract
Client-Server systems generally use the send-

receive-reply messaging paradigm for inter-process
communication. In the most general case, the server
process can be structured to continue to execute af-
ter replying to the client. Analytic models for closed
queueing networks have only recently appeared, but
they su�er from poor accuracy in some instances. A
new approach is presented here which improves the
accuracy of previous approaches, integrates into the
standard Mean Value Analysis algorithms for layered
queueing models, and broadens the scope of systems
that can be modelled. Two examples are given showing
both the e�ects of aggressive replies, and the improve-
ments in approximation accuracy.

1 Introduction
The send-receive-reply pattern of communication

is widely used in distributed systems, often using an
RPC (remote procedure call) service. This imposes
waiting on the sender or client in the interaction,
which can be reduced by sending the reply as early as
possible { what we will call here \aggressive" replies.
To perform an aggressive reply, any server operations
which can be done later are postponed until after re-
plying; the deferred work is termed a \second phase
of service" [19, 10]. This will give performance advan-
tages when the client executes on a di�erent processor
from the server, since it lets the two processes pro-
ceed in parallel. Examples of second-phase operations
include delayed writes to stable storage in database
systems, logging of non-critical data, and deallocation
of resources [4, page 131]. Smith and Williams [17]
give an example of real-time system performance en-
gineering of a design which includes a second phase.
Many existing distributed operating systems support
second phase execution, including Ameoba [18], Cho-
rus [16], V [2], and Sun RPC [4]. Second phase ser-
vice is also directly supported in the programming lan-
guage Ada [1].

The two phases of service are illustrated in Figure 1.
The time interval from the instant of the receive at the
server to the time of the reply is described as phase
one; the server execution after the reply, is phase two.
From the standpoint of the customers (clients), the
server's phase two is a vacation { a client cannot re-

ceive service during this period. When a client makes a
request while the vacation caused by its own previous
service request is still underway, we call it \overtak-
ing" (see Figure 2).

Phase 1

Task i

Task j

ReplySend Send

Phase 1Phase 2

Figure 1: Non-overtaking event

Send

Task i

Task j

ReplySend

Phase 1 Phase 2

Figure 2: Overtaking event

This kind of system has been thoroughly analyzed
for open systems as type GNENP (General Non-
Exhaustive Service, Non-Preemptive), SV (Single Va-
cation) [5, x2]. An early version of the model, the
\walking server" [7, Chapter 2] has been used to model
drum-based memories [9] and other computer devices,
but in general there has been little work on closed
models apart from [10]. The special form of closed
model called a \Rendezvous Network" [20, 21, 12] or
a Layered Queueing Network [14, 15, 13] has second
phases and the references given contain a simple anal-
ysis of their e�ects. Both approaches used essentially
the same approximation, which for this paper will be
called the \old overtaking approximation".

This work was stimulated by �nding that the old
overtaking algorithm gives large approximation errors
in certain important cases. These tend to occur in
deeply layered systems, which occur in information



systems and which have been described, for instance,
by Febish and Sarna [6]. Even in a large system, the
middle layers may have a server with just a few clients,
in which both the clients and the server have impor-
tant second phases. The old approximation ignored
the phases of the clients while the new approxima-
tion takes these into account. The present paper is
intended to give insight into the whole overtaking phe-
nomenon, which has not been much studied but which
will be more important in the future, then to show
where second phases and aggressive replies give perfor-
mance advantages, and �nally to present a much bet-
ter approximation. In the test cases the new overtak-
ing approximation reduced the peak errors in through-
put from the order of 50% to less than 6%. The evalu-
ation of the new approximation is con�ned to layered
systems, but they depend on solving a series of queue-
ing networks, so the approximation should be equally
good in closed queueing networks with second phases,
in general.

2 Performance Enhancement through
Aggressive Server Replies

This section will show how system throughput im-
proves by using second phases at servers. Two cases
are considered, a very simple system consisting of a
set of clients calling a single server, and a more com-
plex case where multiple two-phase clients call three
two-phase servers.

2.1 Single Server, Single Phase Client
The client-server system system shown in Figure 3

will be used to show the potential performance im-
provements achieved by using aggressive replies. The
large parallelograms in the �gure represent tasks, the
parallelogram labeled entry is a service entry or port
on the server task that accepts messages from clients.
All tasks run on unique processors. The numeric label
on the client task represents its service time. The nu-
meric label on the arc \request" represents the num-
ber of visits to the server per cycle of the client, or visit
ratio, and the label on the entry entry represents the
service time per request.

The system was studied by varying the visit ratio
from the client to the server, the number of clients and
the fraction of phase two service. Varying the number
of visits varied the demand at the server so that the
second phase e�ect on throughput could be studied
at various server utilizations. The total service time
at the clients and the server were �xed at the values
shown in the �gure. However, the ratio of phase-one
to phase-two service was varied from 100% (a product-
form central server system) to 0% (a synchronous send
as is employed in transputers [8]).

Figure 4 shows the results for the di�erent con�g-
urations and were obtained by solving the underly-
ing Markov chain for the entire system using Great-
SPN [3]. Points on the graphs represent equivalent
demand from the clients; demand increases from left
to right. For all cases, a second phase of service im-
proves throughput (hence lowers response time), espe-
cially when the server is moderately loaded. At very
high and very low server loading, phase two service

Client
4.0

Server

entry
0.75
0.25

request
1

Figure 3: Simple two-level client-server system.

does not contribute substantially to improved perfor-
mance.

2.2 Multiple Servers, Two Phase Clients
The client-server system shown in Figure 5 is used

to demonstrate the e�ect of aggressive replies when
sending to multiple servers and when the client itself
has more than one phase. This system was also solved
for various levels of visits from the client and for var-
ious numbers of clients. This con�guration can arise
in deeply nested client-server systems where the task
`dispatcher' receives requests by way of `c0' from
higher-level clients.

For this system, the number of clients, the ratio
of phase-one to total service time, and the visit ratios
were varied, although the ratio of requests to the three
servers was �xed. The total service time at the clients
and servers was �xed at the values shown in the �gure.

The results of the performance experiments are
shown in Figure 6 with the results for all but the
10 customer case being exact. The results for the 10
customer case were generated using simulation due to
state space problems with the Markovian solver. The
simulation results were generated with 95% con�dence
intervals of �1%. For most cases, the throughput is
improved with increasing amounts of phase-two ser-
vice.

Two curious e�ects are apparent in the graphs.
First, for small numbers of clients, the curves turn
under at the right hand end. That is, the utilization
at the servers drops as the visit ratio increase. The
client throughput also drops. Second, the system with
100% of its service in phase two may have lower uti-
lization and throughput than the systems with smaller
amounts of phase two service for the same request
rate. Both e�ects are caused by the overtaking phe-
nomenon shown in Figure 2. As the visit ratio from
the dispatcher task increases there is a larger proba-
bility that the task will overtake itself, thus increasing



0

0.05

0.1

0.15

0.2

0.25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
lie

nt
 T

hr
ou

gh
pu

t

Server Utilization

1 Client

’0’
’25’
’50’
’75’

’100’

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
lie

nt
 T

hr
ou

gh
pu

t

Server Utilization

3 Clients

’0’
’25’
’50’
’75’

’100’

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
lie

nt
 T

hr
ou

gh
pu

t

Server Utilization

5 Clients

’0’
’25’
’50’
’75’

’100’

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
lie

nt
 T

hr
ou

gh
pu

t

Server Utilization

10 Clients

’0’
’25’
’50’
’75’

’100’

Figure 4: Throughput at client. The curves represent the ratio of phase-one to total service time, with `100' being
a product-form FCFS server.

server1

e1
1.0
1.0

server2

e2
1.0
1.0

server3

e3
1.0
1.0

s2
0
3

s3
1.5
1.5

s1
3
0

dispatcher
0.0

c0
0.5
0.5

Figure 5: Complex Client-Server system.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

D
is

pa
tc

he
r 

T
hr

ou
gh

pu
t

Server 1 Utilization

1 Dispatcher

’0’
’25’
’50’
’75’

’100’

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7

D
is

pa
tc

he
r 

T
hr

ou
gh

pu
t

Server 1 Utilization

3 Dispatchers

’0’
’25’
’50’
’75’

’100’

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0.2 0.3 0.4 0.5 0.6 0.7 0.8

D
is

pa
tc

he
r 

T
hr

ou
gh

pu
t

Server 1 Utilization

5 Dispatchers

’0’
’25’
’50’
’75’

’100’

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
is

pa
tc

he
r 

T
hr

ou
gh

pu
t

Server Utilization

10 Dispatchers

’0’
’25’
’50’
’75’

’100’

Figure 6: Throughput at client. The curves represent the ratio of phase-one to total service time, with `100' being
a product-form FCFS server.

the waiting time and decreasing the throughput. How-
ever, the overtaking e�ect is stable; utilization drops
as the demand increases.

3 Solution
The results from the previous section demonstrate

that aggressive replies during a remote procedure
call improves throughput and shortens response times
even for heavily loaded servers. This section will
give the new approximation for computing the per-
formance e�ects.

3.1 Analysis of Overtaking
This section summarizes the previous overtaking

approximation analysis, and shows its weaknesses, be-
fore introducing a more complete approximation. The
argument centers on the mean-value equation for the
mean total delay Wm(N ) of a customer arriving at a
queueing station labeled m

Wm(N ) = sm + smLm(N � 1) (1)

where sm is the delay for the customer's own service,
and smLm(N � 1) is the delay for other customers
present at the arrival instant. For a two phase server,

the second term is unchanged, but the �rst term is
replace by two new terms as follows:

Wm = sm1 +PrfOTmgsm2 + smLm(N � 1) (2)

where:

� sm1 is the mean delay for service, which is just
the phase-one service time, and

� PrfOTmgsm2 is the probability of the customer
arriving during the phase-two vacation caused by
its own previous visit to the server multiplied by
the phase-two service time.

This expression will be approximate, since phase-two
systems do not satisfy the product-form assumptions,
and the overtaking term also assumes exponentially-
distributed phase-two times, to make the remaining
phase-two time equal to its mean.

After a departure of a customer, the probability
of it overtaking depends on the outcome of a race be-
tween the completion of phase two (mean delay of sm2)
and the return of the customer. We will assume that



the return delay has a mean rate of �m and is also ex-
ponentially distributed for solution convenience. The
probability of the return event winning the race and
causing an overtaking event is:

PrfOTmg =
��1m

(��1m + s�1m )

which simpli�es to

PrfOTmg =
sm2

�m + sm2

The mean return time can be calculated if we know
the mean arrival rate of requests from this particular
customer, �m, and the mean total delay at the server,
Wm, as

�m =
1

�m
�Wm

giving:

PrfOTmg =
sm2

sm2 + 1=�m �Wm

(3)

Equations (2) and (3) make up the old overtaking
approximation.

3.1.1 Error with Two-Phase clients

Now we consider some client tasks which themselves
have second phases. They might be servers to higher-
level tasks in a deeply layered system, as discussed in
the Introduction. Figure 5 shown earlier is an example
in which this approximation behaves quite badly when
the server has a signi�cant fraction of its execution in
the second phase. The principle reason for the large
error is that (3) does not consider the variation in
the rate of arrivals for di�erent sending phase of the
client. Solving (3) with the model in Figure 5 where
�m = 0:204 and Wm = 0:589 results in PrfOTg =
0:231. However, the actual overtaking probability to
server1 and server2 is 0.535 and to server3, 0.354.

Figure 7 shows the percent relative error1 in
throughput using (2) and (3) for the example system
when the proportion of phase-one to phase-two service
time was varied from 0 to 100% for a variety of clients.
Very large errors occur even for moderate amounts of
phase 2 service.

3.2 The New Approximation
The new approximation begins with a state space

for the client i and the server j, following a departure
of the client from the server, shown in Figure 8. The
server is in phase 2 at the time of the departure; the
chain terminates when either the server �nishes its
second phase, or the client makes another request.

The states are named with a two digit combination
(pk) where p is the phase of the client i and k takes
the values of 0 to 3. Since we again assume that the
phase-two duration has an exponential distribution,

1
Relative error =

exact�estimate

exact
� 100.

-10

0

10

20

30

40

50

60

0 20 40 60 80 100

R
el

at
iv

e 
E

rr
or

Percent Phase 1

’n=1’
’n=3’
’n=5’

’n=10’
’n=20’

Figure 7: Percent Relative Error for the multiple
servers, two-phase client system using the old over-
taking approximation. The request rate and service
times used correspond to the values in the Figure 5.

states

Overtaking

states

Non-Overtaking

10

00

11 12

21 2223

13

20

�2

�j2

�j2

�j2

�j2

�i1�j1

�i2�j2

�i1�e1

�i2�e2

�i0

�i1�o1

�1

�i2�o2

Figure 8: Continuous time Markov chain for the new
overtaking calculation. States 10, and 20 represent the
phase of the client while it is executing, states 13, and
23 represent overtakes, states 11 and 21 represent time
blocked at other servers, states 12 and 22 represent
non-overtakes, and state 00 represent idle time by the
client..



the server j imposes a rate �j2 = s�1m2
of transition

from every state to a state where it has completed
without an overtake. This takes the state from 10 to
13, for example.

The client i may go through several changes before
a potential overtaking event. It can complete phase 1
and enter phase 2; it can then become idle waiting for
the request to reach it, before reaching phase 1 again.
We will say that the client is in phase 0 when it is idle.
Further, during each phase p the client task may be
executing on its own (in state p1) or blocked waiting
for some other server (in state p2). At the end of a pe-
riod executing on its own it may request the particular
server that is being analyzed for overtaking, and this
gives a transition from state p1 to an \overtaken" state
p3. This is a continuous-time Markov chain (CTMC)
which can be easily solved, if the times in states are
assumed to be exponentially distributed, and this is
assumed in the following.

State p1 and its associated transitions serves an im-
portant purpose. The overtaking probability is heav-
ily dependent on the race between the completion of
phase-two, and the next request from the client to the
server. If the time spent calling other servers is merged
into the rate parameter �i1, i.e., by removing state p1,
the race may be skewed signi�cantly in favour of the
server. Consequently, the overtaking probability may
also be heavily underestimated.

To provide the parameters to this Markov chain,
we need rates calculated from the remainder of the
performance model. In the iterative scheme used in
solving layered systems these rates are available from
the previous iteration, or in the initialization of the
calculation. As well as �j2, the rate of server's phase
2 execution, we require:

�ip = the mean execution rate of the client i in phase
p between requests to servers,

�p = the mean delay of the client i when blocked on
a server other than server j in phase p during a
remote procedure call.

�i0 = the inverse of the mean idle time of the client
i,

�ep = the probability that, at the end of an execution-
interval of the client i, the phase ends rather than
a new request being made to a server,

�op = the probability that, at the end of an execution-
interval of the client i, a request is made to a
server other than server j, and

�jp = the probability that, at the end of an execution-
interval of the client i, a request is made to the
particular server j.

Given the values, we can determine the probability
of terminating the chain in states 13 and 23, which
give overtaking, or in states 12 and 22, which do not,
by solving the �rst-passage equations for the Markov
chain [11].

A closed form solution for overtaking is given in
the Appendix, as follows. First, it �nds Pr(SpjSr),

which is the probability of overtaking on a request
from phase `p' of the client while the server is still
processing a request from phase `r'.

Pr(SpjSr) =

cp

p�1Y
y=r

by
1� dy

1�

0
@bp
Y
x6=p

bx
1� dx

+ dp

1
A

(4)

bp =
1

1 + Yip + �jsip

cp =
yijp

1 + Yip + �jsip

dp =
Yip � yijp

1 + Yip + �jsip
�

�kp
�kp + �j

Yip =
X
k

yikp

�kp =
1P

kwikp

�j =
�ijPn

p=2 �ijpsjp

where:

yijp is the mean number of calls from client i to server
j during phase p of i,

wijp is the mean waiting time for the client i to the
server j during phase p, and

�ij is the mean throughput from the client i to the
server j during phase p.

The �nal overtaking probability for client i calling
server j is then found using:

PrfOT(i; j)g =
nX

p=1

nX
r=0

�iyijr
�ij

Pr(SpjSr) (5)

3.2.1 Waiting Time Calculation

For mean value analysis, the queue length Lm:

Lm = vmWm

NP
i(viWi(N )) + Z

(6)

where vi is the number of visits to station i and Z
is the think time. The Wm term in (6) for the two-
phase server is calculated using the phase-one service
time plus overtaking. However, the server is, in fact,
busy for both the phase-one and phase-two service
time intervals. During the next step of mean value
analysis, i.e. when the population is increased by one
customer, the value of Lm is taken to be Lm(N � 1)
in (2). This value is not correct because of the unac-
counted for second phase service time while the server



is busy and the client is not overtaking. The di�er-
ence sm2�PrfOTmgsm2 must be added back into the
station to fully account for the vacation of the server.

The Lm(N � 1) term in (2) represents both the
queue at the server plus its utilization:

Lm(N � 1) = L�m(N � 1) + Um(N � 1) (7)

The Um(N � 1) term itself can be split into two com-
ponents, the phase-one and phase-two utilization, of
which, the phase-two utilization includes the overtak-
ing component. Therefore, to correct the Lm(N � 1)
for the server's utilization when the client does not
overtake, the following term must be added to (7):

(1� PrfOTmg)Um2(N � 1) (8)

Equation (2) becomes:

Wm = sm1 + PrfOTmgsm2 + smLm(N � 1)

+ (1 � PrfOTmg)Um2(N � 1) (9)

3.3 Generalizations to the Markov Chain
The Markov chain shown in Figure 8 can be ex-

tended to increase its generality and accuracy in a
number of ways. The two considered in this paper ex-
tend the chain to handle more than two client and two
server phases.

3.3.1 Multi-phase Clients

Additional client phases can be added to the Markov
chain by adding the subchain shown in Figure 9 for
each additional phase of the client. The subchains
are connected together from state p0 to state (p+ 1)0
with transition of rate �ip�ep. The �nal state p0 is
connected to state 00.

�p

�j2

�j2
p2 p0 p1 p2

�ip�jp

�ip�ep

�ip�op

Figure 9: Subchain for extending the Markov chain
Figure 8 for multiple client phases.

3.3.2 Multi-phase Servers

Additional server phases can be accommodated by
modifying the subchain for a phase of the client (Fig-
ure 9) in the manner shown in Figure 10. States are
now named with a three digit combination ijk where
i is the phase of the client, j is the phase of the server
and k takes the values of 0 to 2. State 10 in the orig-
inal chain in Figure 8 becomes state 120 in the new

chain, which similar changes for for states 11 and 13.
States 110, 111 and 113 do not exist because the server
is never in phase 1 for this analysis.

State 13 in the original chain denoted the comple-
tion of phase 2 for the server without overtaking; this
state is renamed to 130 with outgoing transitions for
the server completing phase 3, the client sending to the
server, and the client sending to some other server.
State 140 becomes the new non-overtaking terminal
state for a three-phase server.

3.3.3 Other extensions

The transient Markov chain used for this approxi-
mation assumes exponential time distributions for all
of the rate parameters. The accuracy could be fur-
ther improved by breaking down the server's phase
into a set of stages which represent its own execution
and blocking times. However, the state space would
rapidly explode, so the addition is not considered fur-
ther here.

4 Examples
The two examples presented earlier in section 2 will

be used to show the improvements in accuracy using
the new approximation.

4.1 Single Server, Single Phase Client
Figure 11 contains eight graphs, all of which plot

the relative error in client throughput for the four
cases in Section 2.1. The four graphs on the left side
of the �gure plot the relative error for the old overtak-
ing approximation, while the four graphs on the right
show the results for the new version. For the old ap-
proximation, the error is proportional to the ratio of
second-phase service present at the server. The error
peaks when the server is moderately utilized, which
is also where the proportion of second-phase service
has the greatest performance improvement e�ect. The
new overtaking approximation is better than the old
method for all cases, but exhibits errors which are
roughly equivalent to the old approximation in cases
where the server has almost all phase-two service and
serves only a few clients. All of the examples exhibit
the highest error when the server is heavily utilized.

4.2 Multiple Servers, Two Phase Sends
Figure 12 shows relative error in throughput for the

system in Section 2.2 and using the same parameters.
The approximations were compared against exact re-
sults except for the 10-customer case where simulation
was used. The graphs show that the relative error for
the new algorithm is much better than the old algo-
rithm, especially when the server is heavily utilized.
Furthermore, error for the new overtaking approxima-
tion tends towards zero for all four cases when the
demand at the server is high whereas the old approxi-
mation only exhibits this e�ect when there are a large
number of customers.

5 Conclusions
Client-server systems can bene�t from the use of ag-

gressive replies at the server because the clients in the
system are blocked for shorter periods. Servers which



Overtaking

states

Non-Overtaking

states

140120

123 133

121 130 131

c
�j2

�j2

�i1�e1

�i1�j1

�i1�e1

�j3

�j3

�i1�j1

�i1�o1

�1

�i1�o1

�1

Figure 10: A single client phase subchain from Figure 8 extended for three server phases.

use aggressive replies complicate analytic modeling be-
cause the corresponding queueing network is no longer
product form. Accurate models are necessary because
the two-phase servers can have counter-intuitive char-
acteristics when clients overtake execution in phase-
two caused by their own earlier requests.

This paper presents a new algorithm for estimat-
ing the waiting time at two-phase servers which is,
in most cases much more accurate than older meth-
ods, and never any worse. In some important cases
where the server is heavily utilized, the accuracy is
improved by an order of magnitude. The new approx-
imation uses a simple closed-form expressions which is
e�cient for incorporation in an iterative algorithm for
solving performance models of deeply layered client-
server systems.

Acknowledgments

This research was funded by the Telecommunica-
tions Research Institute of Ontario (TRIO) and the
Natural Science and Engineering Research Council
of Canada (NSERC). Helpful discussions with Do-
rina Petriu are gratefully acknowledged. She and
Shikharesh Majumdar, John Neilson and Jerome Ro-
lia all have contributed to the overall model in which
this calculation is used.

A Solution for Overtaking Probability
The overtaking probabilities, Pr(SpjSr), are found

using the jump chain shown in Figure 13 which is
based on the continuous-time Markov chain in Fig-
ure 8. The states are named with the two digit com-
bination pk where p represents the phase of the client,
k = 4 represents overtake events, and k = 3 non-
overtaking events. The starting states are 00, 10
through p0 which correspond to the identically named
states in the continuous Markov chain.

The rates for the transitions q are as follow:

qp0 = the probability that some other server k replies
to client i before server j completes its phase-two
service.

qp1 = the probability that client i completes its own
execution interval before server j completes its
phase two service.

qp2 = the probability that client i calls some other
server other than server j.

qp3 = the probability that server j completes its own
phase-two service before the client i �nishes its
execution interval.

qp4 = the probability that client i calls server j and
overtakes.

qp5 = the probability that server j completes its phase
two service before some other server k replies to
client i.

qp6 = the probability that client i completes phase p
and goes to phase p+ 1.

The rates are found using the following equations:

qp0 =
�kp

�kp + �j

qp1 =
�ip

�ip + �j

qp2 =
Yip � yijp
Yip + 1

qp3 =
�j

�kp + �j

qp4 =
yijp

Yip + 1

qp5 =
�j

�ip + �j



0

1

2

3

4

5

6

7

8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

1 Client, Old Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e 
er

ro
r

Server utilization

1 Client, New Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

-2

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

3 Clients, Old Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

-2

0

2

4

6

8

10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

3 Clients, New Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

0

2

4

6

8

10

12

14

16

18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

5 Clients, Old Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

-2

0

2

4

6

8

10

12

14

16

18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

5 Clients, New Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

-2

0

2

4

6

8

10

12

14

16

0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e 
er

ro
r

Server utilization

10 Clients, Old Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

-2

-1.5

-1

-0.5

0

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e 
er

ro
r

Server utilization

10 Clients, New Overtaking Approximation

’p1=0’
’p1=5’

’p1=25’
’p1=50’
’p1=75’
’p1=95’

’p1=100’

Figure 11: Relative error versus server utilization for the Single-Server, Single Phase Client system in x2.1.
Curves on the graphs represent the percentage of phase 1 service time with `p1=100' being a product-form
queueing network.



0

10

20

30

40

50

60

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
el

at
iv

e 
er

ro
r

Server utilization

1 Client, Old Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

0

1

2

3

4

5

6

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
el

at
iv

e 
er

ro
r

Server utilization

1 Client, New Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

-10

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
el

at
iv

e 
er

ro
r

Server utilization

3 Clients, Old Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

-5

-4

-3

-2

-1

0

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
el

at
iv

e 
er

ro
r

Server utilization

3 Clients, New Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

-5

0

5

10

15

20

25

30

35

40

0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

5 Clients, Old Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

-5

-4

-3

-2

-1

0

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
el

at
iv

e 
er

ro
r

Server utilization

5 Clients, New Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

-5

0

5

10

15

20

25

30

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e 
er

ro
r

Server utilization

10 Clients, Old Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

R
el

at
iv

e 
er

ro
r

Server utilization

10 Clients, New Overtaking Approximation

’p1=0’
’p1=25’
’p1=50’
’p1=75’

’p1=100’

Figure 12: Relative error versus server utilization for the Three Server, Two-Phase Client system in x2.2. Curves
on the graphs represent the percentage of phase 1 service time with `p1=100' being a product-form queueing
network.



00

0104

10

1114 12

02

03

13

p2

qn6

q01

q04

q06

q12

q11

q14

q16

q02

q13

q05

q03

q15q10

q00

p0
qp3

p3

qp1 qp0 qp5

p4
qp4

p1
qp2

Figure 13: Jump chain for �nding overtaking prob-
abilities. The states are named with the two digit
combination pk where p represents the phase of the
client, k = 4 represents overtake events, and k = 3
non-overtaking events.

qp6 =
1

Yip + 1

Next, the terms bp, cp and dp which make up the so-
lution, (4), are found using:

bp = qp1qp6
cp = qp1qp4
dp = qp0qp1qp2

ap = qp5 + qp1qp2qp3 (10)

Equation (10) is used to �nd Pr(Sp4jSr0), the prob-
ability no overtaking occurs when the client makes a
request from phase p after a reply to a request from
phase r. This probability is used as the starting prob-
ability for overtaking during phase three of the server
when the server has more than two phases. To �nd
Pr(Sp4jSr0), replace cp with ap in (4).

References
[1] The Programming Language Ada: Reference

Manual, volume 155 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, 1983.

[2] D. R. Cheriton. The V distributed system. Com-
munications of the ACM, 31(3):314{333, March
1988.

[3] G. Chiola. A graphical Petri net tool for perfor-
mance analysis. In Serge Fdida and Guy Pujolle,
editors, Modelling Techniques and Performance
Evaluation. Elsevier Science, Amsterdam, March
1987.

[4] John R. Corbin. The Art of Distributed Applica-
tions: Programming Techniques for Remote Pro-
cedure Calls. Springer-Verlag, New York, 1991.

[5] Bharat Doshi. Single server queues with vaca-
tions. In Hideaki Takagi, editor, Stochastic Anal-
ysis of Computer and Communication Systems,
pages 217{265. North Holland, Amsterdam, 1990.

[6] G. J. Febish and D. E. Y. Sarna. Building three-
tier client-server business solutions. White paper,
Object Soft. Corp., Englewood, NJ, 1995.

[7] E. Gelenbe and Mitrani I. Analysis and Synthe-
sis of Computer Systems. Computer Science and
Applied Mathematics. Academic Press, Toronto,
1980.

[8] M. Homewood, D. May, D. Shepherd, and
R. Shepherd. The IMS T800 transputer. IEEE
Micro, 7(5):10{26, October 1987.

[9] Stephen S. Lavenberg, editor. Computer Perfor-
mance Modeling Handbook, volume 4 ofNotes and
Reports in Computer Science and Applied Math-
ematics. Academic Press, Toronto, ON, 1982.



[10] Louis-Marie Le Ny and C. Murray Woodside.
Performance modelling of queues with rendezvous
service. Technical Report 941, Institut National
de Recherche en Informatique et en Automatique
(INRIA), Domaine de Voluceau, Rocquencourt,
B.P.105, 78153 Le Chesnay Cedex, France, De-
cember 1988.

[11] Emanuel Parzen. Stochastic Processes. Holden-
Day, San Francisco, 1962.

[12] Dorina C. Petriu. Approximate mean value
analysis of client{server systems with multi-class
requests. In Proceedings of the 1994 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems., pages 77{86,
Nashville, TN, U.S.A., May 1994. A.C.M. SIG-
METRICS.

[13] J. A. Rolia and K. C. Sevcik. The method of
layers. Submitted for publication in IEEE Trans-
actions on Software Engineering , 1994.

[14] Jerome Alexander Rolia. Performance estimates
for systems with software servers: The lazy boss
method. In Ignacio Casas, editor, VIII SCCC
International Conference On Computer Science,
pages 25{43, Santiago, Chile, July 1988. Chilean
Computer Science Society.

[15] Jerome Alexander Rolia. Predicting the Perfor-
mance of Software Systems. PhD thesis, Uni-
verisity of Toronto, Toronto, Ontario, Canada.
M5S 1A1, January 1992.

[16] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M Guillemont, F. Herrmann, C. Kaiser,
S. Langlois, P. L�eonard, and W. Neuhauser.
Overview of the chorus distributed operating sys-
tems. Technical Report CS/TR-90-25, Chorus
Syst�emes, February 1991.

[17] Connie U. Smith and Lloyd G. Williams. Soft-
ware performance engineering: A case study in-
cluding performance comparison with design al-
ternatives. IEEE Transactions on Software En-
gineering, 19(12):720{741, July 1993.

[18] Andrew S. Tanenbaum, Robbert Renesse,
Staveren Hans, Gregory J. Sharp, Sape J. Mul-
lender, Jansen Jack, and Guido Rossum. Experi-
ences with the Amoeba distributed operating sys-
tem. Communications of the ACM, 33(12):46{64,
December 1990.

[19] C. M. Woodside, E. Neron, E. D.-S. Ho, and
B. Mondoux. An \active server" model for the
performance of parallel programs written using
rendezvous. Journal of Systems and Software,
pages 844{848, 1986.

[20] C. Murray Woodside. Throughput calculation
for basic stochastic rendezvous networks. Per-
formance Evaluation, 9:143{160, 1989.

[21] C. Murray Woodside, John E. Neilson, Do-
rina C. Petriu, and Shikharesh Majumdar. The
stochastic rendezvous network model for per-
formance of synchronous client-server-like dis-
tributed software. IEEE Transactions on Com-
puters, 44(8):20{34, August 1995.


