Understanding Performance Aspects of
Layered Software with Layered Resources

Murray Woodside
Department of Systems and Computer Engineering
Carleton University, Ottawa, Canada
cmw@sce.carleton.ca, www.layered queues.org
Jan.27, 2003

o Carleton 1

UNIVERSITY

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

The Challenge of Performance
In Distributed and Parallel Software

= Severabrograms interact to coptete one rgmonse
» clients and servers..... peers.... pipelines

= they execute partly in sequence and partly in paralle

= models are required
= systems are difficult to measure in the lab (too big)
= performance is governed by many kinds of factors:
» congestion at different kinds of resources
* layering of resources
* layered system overheads
* unbalanced parallel paths

o Carleton

" UNIVERSITY

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Advantages of the layered queueing approach

= an elgant formulation of extendeglieueiry for
layered resources
= scales up to many resources and complex holding pattern

» layered resources have understandpteerns
= |layered resources are common...
= client-server, parallel service, pipeline, and others
= pottleneck patterns

= the model notation resembles software glesi

notations such as UML

= UML performance profile can provide parameter
annotations for scenarios in UML.

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton
Example: layered modeling of a
Building Security System BSS =~ -PERe-y,

..... eg., for a hotel or a Q QP
D

universiy building

= video surveillance
= poll N web cameras

=] second cycle (on
95% of polling cycles)

= door access _
» respond to an access ApplicCPU

card within 1 second,

95% of the time
= card reader DCR, @

4 lock actuator DLA

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

System behaviour in BSS.... (1) data paths

Class 2...

Class 1... | VJ E DoorAccess
VideoScan ELE— D O#

 — NataRA: D!
s

(" Disks .
5 v

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

System behaviour in BSS... (2) ity-paths
___________________________ _Users
e 1 E: | Class 2.
ass 1... %VJ P DoorAccess
VideoScan = D/ 9 |11 /.. one token per
... one token, x/ / == ser, triggered by
cycling a4 a request
through the (LAN =) ... many users
cameras 7 ' J /L, who wait, then
T activate a door
[/ —
([[HES
d N\ annRageLDD

(ApPpicCru)

J\

6 \ Dis«s
v

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

A gqueueing model of BSS @

Class 1... @
VideoScan Class 2...
... one token, o DoorAccess
cycling ... one token per
through the user, triggered by
cameras a request
... Or more » ... many users
than one, for who walit, then
double activate a door
buffering f

- focuses on DataBaseCPU

hardware
., servers only

i

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Additional resources that impact performance

multiple buffers, “LUsers >

size of buffempool E<
access control task_ v] —@P
can have a messa = ')
queue T4
database tasknay (TL_{L 2
have agueue of I
f 11L& —
requeStS | qd | i)nfanqul-\‘}u
. _AppncCru A -
software resources 7 Disks D
~N

layered service BufferPool

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003
UNIVERSITY

Layered servers in the
/ Flow of user requests
Access Control path u
single server

o Carleton

with service classes

competing database Task resource is
requests for other Access Contrql Task 5 server!
operations [local processing] Possibly multiple!

(reques
delay but no queue,
common que A as there is one actuator

of requests per door)

‘other readRights writeLogEvent Data U”IOCk LockActuator
X><A / delay server
‘ (infinite server)

‘ read | write Disk‘ DataBaseCP

(a notational convention used here is to separate
> @ the Disk service definition from the Disk device)

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Analysis must include thesoftware description
= software @erations

= resources that tjaequire
= task thread resources, buffers, devices

= a useful conaqat is theresource contexf an geration:

" |ts context is the set of operations during which the resource
must be held

" e.g., outside rectangle represents a client task resource
= within this context it acquires other resources

4 Client Task N
ApplicationTask DataBaseTask
fppCPq‘ LAppDisﬂ LDBCPLMDBDisﬂ
10 K J / /

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

W UNIVERSITY

Nested resource contexts gives layere
resources

4 Client Task N
Application Task W DataBase Task

IENOloCF’? LAppDisi LDBCPL} LDBDisLI

Client Task

Y T = like a

Application Task DataBase Task procedure

call tree

/I

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Software Specification of the
Building Security System (BSS): (1) Use Cases

o Carleton

" UNIVERSITY

Use Cases define

\\\\ responses!

ser <<includes>>

Log entry/
Video Acquire/store Database
Camera video

Access
control

% Manage ot evaluated in

12

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

? Carleton

UNIVERSITY

Software Specification (2) Deployment

/ / / /
SecurityCard DoorLock Video Isk
Reader Actuator Camera
| | V V
<<LAN>>
ApplicCPU DB CPU

E Access
Controller Database

Video /
Controller
V

13

Understanding Performance Aspects of Layered Software with Layered Resources

NCSU, Jan 27 / 03 © Murray Woodside 2003 <<PAcontext>>
Video : Buffer
Spec. of Controller | | AcauireProc Manager StoreProc

BSS (3):

<<PAstep>> <<PAstep>>
{PArep = $N} {PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

An n Otate d N procOneImageS) ' getBuffer()
Sequence

<<GRMacquire>>

<

allocBuf (b) <<PASIED>>
<<PAclosedLoad>> > 4 {PAdemang,:EEgsmd’
. {PApopulation = $N, _ ‘mean’, (0.5, ‘ms"))} ’
Iag ral I l PAinterval =((‘req’,'percentile’,95, Cmmmmmmmmm AN
(1,'s),
(‘pred’,’percentile’, 95, $Cycle)) } <<PAstep>>

for the {Phdemand (asmd,

PAextOp = (network, $P)

. " .
Vldeoscan ',' | | getimage (i, b)
Use Case |gzizs | A

‘mean’, (1.8, ‘ms))} ‘mean’, (0.9, ‘ms’))}

|
|
1
1
)
|
|
|
|
1
1
1
1
. |
scenario passimage (.5) | (PAcemand-=asru
1 ‘meam’, (1.1, ‘ms’))}
1
1
1
1
|
|
|
|
1
1
1
1
|
|
|
|
1

| R ettt

<<PAstep>> <<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}
storelmage (i, b) store (i, b)
<<PAstep>>
i +—{PAdemand=(asmd’}
th D S ‘mean’, ($B * 0.9, ‘ms’)i,,
u S I n g e <<PAstep>> PAextOp=(writeBlock, $B)}
{PAdemand=(‘asmd|, writelmg (i, b) ‘J'_
‘mean’, (0.2,'ms’))} »
U M L freeBuf (b) €mmmm e

releaseBuf (b)

~
<<GRMrelease>> | ;']

Performance
“Profile)

<<PAstep>>
{PAdemand=(‘asmd’y
‘mean’, (0.5, ' ms))} |\

—------1

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

<<PAcontext>>

’
/
/
/

D

<<PAclosedLoad>>
{PApopulation = $N,
PAinterval =((‘req’,'percentile’|9%,

(1,°s)),

(‘pred’,’percentile’, 95, $Cycle

=

“[$N] procOnelmage(i) Mean’ (1.5, 'ms’}
>

? getBuffer()
«— <<GRMacquire>>

allocBuf (b)

Video .
Controller | AcquirePrac Manager
. i :
Detalls of | ;
1
the UML ! :
_ " <<PAstep>> ! <<PAstep>>
annOtathnS {PArep = $N} 1{PAdemand =(‘asmd’,

UNIVE

SITY

Storel

~~—~
\

!
!
!
Vi

0

<<FAstep>>
15 {PAdemand=(‘asmd’,

‘mear?’, .(1'8’ ‘ms))}

<.
<<PAstep>>
{PAdemand=(‘asmd’, |
‘mean’, ($P * 1.5, ‘ms")),
PAextOp = (network, $P?}

'getlmage (i, b)

<<PAstep>>
{PAdemand(‘asmd’,
‘mean’, (0.9, ‘ms’))}

) <<PAstep>>
- fPAdemand=(‘asmd’,
D mean’, (0.5, ‘ms’))}

<<PAstep>>

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

16

<<PAopenLoad>>
{PAoccurencePattern = (‘poisson’, 120, ‘s’),
PArespTime =((‘req’,’per centile’,95, (1, ‘'s")),

Spec of BSS (4) Sequence Diagram
for the Door Access Control scenario

Carleton

UNIVERSITY

¢ <<PAstep>>
{PAextOp=(read, 1)}

(‘pred’,’percentile’, 95, $RT)) << PACO nteXt>>
/ GardReader|DoorLockl | Alarm Access Databas Disk
Controlle

i

]

]

: <<PAstep>>

: {PAdempnd=(‘asmd’, ‘mean’, (1. }5 ‘ms’)), <<PAstep>>

readCard.__

PAextOp = (network, 1)}
admit (cardiInfo)

{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

enterBuilding

________________-|

<<PAstep>>
{PAdemand=(‘asmd’, =
‘mean’, (1.8, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,gmean’,
(0.5, ‘ms’)), PAprod = 1}

[OK] openDoor(}

<<PAstep>>
{PAprob = 0}

[not OK] alarm()

| (0.2, 'ms’),

L

<<PAstep>>
{PAdemand=(‘asmd’, =11
‘mean’, (1.8, ‘ms’))}

writeEvent()

{PAdemandz(‘asmd"
‘ ‘mean’, (0.3, 'ms’))}

checkRights{)
[

<<PAstdp>>
{PAdemand=

[need to log?} logEvent()

etRights
9eiRig O <<PAstep>> |
{PAdemand=(‘asmd’, ymean’,
(1.5, ‘ms’)), PAproby= 0.4}
readRights() ot_in_cache] readlbata()
—==-U
<<PAstep>> |

(‘apmd’, ‘mean’,
PAprob=0.2}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (3, ‘ms’))}

writeRec()

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Simplified view of the main scenarios:
VideoScan and Door Access Control

w2 Carleton

" UNIVERSITY

_ User
_ < Timer event [deny] [OK]
VideoController ‘starts loop over | CardReader .
N cameras |
AcquireFramé cleanup ACCESS
freeBuffer Controller
getBuffer storelnDB alert log
getimage passimage [fal
| — | checkRights triggerLock.
- LockActuator
Netlnterface] receivePackets | artockBoor
Network deley | Database
Webcamerasendlmag W BufferManager

" AcquireFrame can use multiple buffers to receive and store image:

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

" UNIVERSITY

Resources are identified from annotations

= directly...
= “active object” or active component == a task
= deployment of tasks
= task allocation of component
* |ogical resource acquire/release stereotypes

... and as attributes of the activities and ponents
= processor for an activity
= database queried by an activity
" process or task containing a component
= network conveying messages between components

= puffer acquired by an activity getBuffer, released
18

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

UNIVERSITY

Task resources: AcquireFrame, and
AccessController

» If AcquireFrameis single-threaded it sequentializes the
acquisition

= double buffering requires another thread, or a concurrent
task, let us call it Store

VideoController __Timer event

AcquireFrame 'ﬂeanup

CardResgey [0eMyT TOK]

CACCESS

etBuffer |
J toreInDB torc Controlle
getlmage pa_ss'mag “, f eeBUﬁer
alert log

— fail
Netﬁﬁ&ﬁéﬁ%ra _ receiv | [fail — —
LockActuatgP9errock

Network delay :| writeVidzolmage DatabaIse i

19 WebCamera | |

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

20m

o Carleton

" UNIVERSITY

The service time of a task covers Its resource context

Includes lower servers Ysel

CardReader [Ny TOK] ‘ \
hereAccessControl |
Includes lower layers: ACCESS

= | ockActuator, Control

= Database, and
= Disk checkRight

service time of

AccessControl | L ockActu ator
can be found uTTrockDoT
recursively

ogEver

Wwrite Disk ‘

1t Databasei

time at the database
alertincludes logging

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

UNIVERSITY

Layered queueing applies...

\Flow of user requests

u single server

competing database
requests for other Access Control Tas

operations [local processing]

(reques
delay but no queue,
common queue of as there is one actuator

requests per door)

‘other readRights writeLogEvent DatadasgunIOCk LockActuator

X ><A multiclass server delay server
(possibly a multiserver also (infinite server)

= multithreaded task

21

read | write Disk‘

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Service time In layered queue systems...

... IS not knowable without a full aryals
s because It Includes contention at lower servers

= thequeueiy delay Is affected B conpeting
scenarios andpglications

= this is the kg difficulty in understandig
performance in lgered gstems

* for exanple, bottleneck location nyabe unstable

22

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

" UNIVERSITY

Notation for layered queueing models

= by convention, call
= all servers and resourcégasks”,
= all resource-operatiorientries”,
= all requests for operations by a seriaalls” .

= all requests to a task entecammon queugwhich
can have andiscpline,
» entries definelassesof service
= many kinds of tasks cannot support pre-emptive discipline

= synchronous callgthat block the caller) are
distinguished from aghchronous (that do not).

= sync calls always lead to a single reply
23 = more complex request types can be built up

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Y.
Y

o Carleton

UNIVERSITY

LQ Model (2)

= a sub-scenario definentry behaviour by a
seguence of perations and kgiests.
= can use a default stochastic model for entry behaviour:
* random “slices”, with a given coefficient of variation
= either random requests with given mean numbers, or
deterministic numbers of requests, in random order
= there is &host” processorserver for evertask, not
always shown

* host service time is divided into slices between requests ft
other services

* host servers have the same semantics as tasks, all reque:
are synchronous, every software entry generates an entry
24 on its host,

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Simplified notation for a LQ model

= With default enty behaviour (random order of calls)
= parallelggrams are ptional....

entries with host demand In sec. .
{25} multiple resource

1 or multithreaded

entry E1 | entry E2
[y-host-E1] [y-host-E2]
|

|

\
Synchronous call with ost attachment for processor

mean number @
(y-serv)
v

entry for a servig
y Server Task

uservn)
25

Client Task

task (25 threads)

Understanding Performance Aspects of Layered Software with Layered Resources

NCSU, Jan 27 / 03 © Murray Woodside 2003

3 Carleton

UNIVERSITY

user |Users
rate=2/min
LOQN fragment
dCard
for the Door hy | CardReader
Access Control
admit [AccessController
[3.9,0.2]

s “alarm” has no calls or
load

= doesn’'t show database
operations to store video
frames

= Some parameters show
“second phase”
operations: (0,0.2) or [3.9,
0.2]

= after the reply

26

(1)

alarm
o1 Alarm
)
log

[500] Log
readRights\writeEvent[DataBase
[1.8] [1.8]
(o.4i (1)i \
readData | writeRec [Disk <Py

[15)

3]

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Layered Queues are £anonical
Generalization of Queueing Networks

= Includes ordinar QN as a sigle layer of client and
servers

= “program” entity calling its server§/ g} \ \\

= an LQN describes greExtended Queueing Network
with nested resource use

= advantge: it easy describes aystem with hundreds
of logical resources, marheld at once, in man
patterns.

= it has areconomical, conciseet ofparameters for
21 the stochastic default egitbehaviour

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Different considerations for a logical
resource: the Buffer pool for Video frames

= IS service time includgsarts of the execution of
various tasks
" |t is not identified with any particular process

= It will be modeled i a “task” which we can call a
pseudo-task
" runs on a pseudo-host
" No execution time of its own
* makes calls that define the operation executed with the
resource
= sometimes thelace of thgpseudo-task can be taken
28 by an actual “resource magex” task, If it exists

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

29

2 Carleton

UNIVERSITY

Path showing the holding time of a buffer

. ' Timer event
VideoController l

~Eleanup
AcquireFrame

getBuffe
orelnDB

getimags feeBuffer

passimage
store s

receivePackets

Network dela age Databas

WebCamera
|

Qpndlmagc—‘

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

UNIVERSITY

Modeling technique for a logical resource

= A buffer or critical section

program instances

_ executing outside o
Execution path resource context

Request

|

| .
/ ll and wait

|

|

/

_Wait for resource,
————————————— | _ / for resource RES
| Resource then use it / !
|Context | / | ion inside of
leg Critical | / |
| / .
'§E_39t'_0_”_(_3_5_______||_eave context, / | (zero or one mstanée\)
|
release resource / Jl// ‘\/ NN \
| ANN
|

\

" G G e e G

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

e Carleton

UNIVERSITY

Resource pseudo-task when E
user tasks are distributed... | ; ‘
= Tasks A and B must enter a crltlcal
not a suitable model
section (call it CS) for some

work.... OE
= put this doesn’t express what they d \ /

within CS

s SO:

= Separate out the computation within
CS intoShadow Tasks A|G&dB|CS

* to direct the call from A to A|CS,
make CS gpseudo-taskvith two

a1 pseudo-entries @ @

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

B Carleton
LON fragment for the video buffer

procOnelmage

= AcquireFrame has a

AcquireFramT

[1.5,0] (2 threads) . Cy
[0 fragment Aquire2 within
Aloc | Butfervanager the buffer resource context
[0.5, 0]
= BufferManajer also
butEntry| Buffer = call to Storelmge issecond
(14:/ \XO) 0,1) phase
getimaggpassimagjAcquire2 storelma%StorePro:
[12.0] [0.9, O] 3.3. 0]
(8P, 0) L0) (1O
network | Network releaseBlU BufMgr2 writelmg |readRigrg|writeEveniDataBasp
[0, 1] [0.5, O] [7.2,0] | 11.8,01 | [1.8, 0]
($B,O)l (0.4,01 (1,0)1
32 writeBlocK readDatg writeRec|Disk =
[1. O] [15.0] [3. O]

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

“Second Phase Service” in software servers

= |ldea: often used to enhanperformance
= give areply as early as possible
= Do postponeable work after the reply, as “phase 2”

client T
server L% *—

phase 1 phase 2, asynchronous and parall

= eg... Database servepdate geration:
= write to log file before returning, execute final writes later.

= Secondphase model ma
= place this work right after the return (approx), or
* send a message to a clean-up process that does it later

= Queuely approximationpaper in Performance 99

33

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

34

acquireLoop

VideoControllen

[0.18]
loN)
procOnelmag] AcquireProc readCard CardReaddr
[1.5,0] ($A threads [1, O]
(1,0
' .
alloc | BufferManage} admit AccessControIIelr
[0.5, 0] [3.9.0.2]
i(forwarded) 0,0)
bufEnt alarm |Alarm
ufentry] Buffer {$R} | 0.0l
(1,(:/ \&o) 1 (1,0
\
getimaggpassimag{AcquireProc} Storelma§18torePro: log Log‘
[12.0] [0.9. 0] /[3.3. Q] [500. O]
($P, 0) /(1,0) (1,0
network | Network releaseBlU BufMgr2 writelmg [readRiglg{writeEveniDataBask
[0, 1] [0.5, O] [7.2,0] | 11.8.01 | [1.8, 0]
($B,O)l (0.4,01 (1,0)ly N
writeBlocK readDatg writeRec|Disk <
[1, O] [15.0] [3. 0]

Understanding Performance Aspects of Layered Software with Layered Resources

NCSU, Jan 27 / 03 © Murray Woodside 2003

BSS
LON

follow

the
scen

35

acquimt.oop | VideoController user Users‘
0.4 rete=27nil
l(er) l
procQnelragq AcquireProc leadCard CardReadelr
[1.5,0] (2 threads) | 1,0
(1,0) \£
] .\»
alloc BufferManagerl/ adiiie | AccessControllef
Aarioge?2 -QEQEL\\\
| 0,0
J (forwarded) k_‘)
|_tn fEntivy r;drfpr—i ‘- ?'%;n Alarm
(Ly \Q o)\@,lk 1,0 ’
[T BN
gedmagepassimagqAcquireProc} [storelmag[StoreProt | ((0:0-2] Icg |Log
112,01 | [0.9 Q] |’ [3.2.00 \ 1.[500, 0]
(P, 0) //(1,0) (1,0
v e _ |)
I_ret\ﬁ ork | Network releaseBU BufMgr2 writeling |road ighsjwritet veniDataBasg
ICI Il [051 q I.7'.2’ (\] ‘J.._8,0] [1|8’ O]
($B,Ol (o.4,oi (1,0)1
writeBlbckl reedlatal writeRec |Disk -
[1,.5] [15,0] [3, O]

Understanding Performance Aspects of Layered Software with Layered Resources

NCSU, Jan 27 / 03 © Murray Woodside 2003

36

Results for varying buffers.

Buffers Cameras Prob(miss)

10
20
30

0
0.001
0.417

10
20
30
40

w wWw w wkk E

0
0
0.003
0.319

o Carleton

4 UNIVERSITY

Understanding Performance Aspects of Layered Software with Layered Resources

i
NCSU, Jan 27 / 03 © Murray Woodside 2003 N2 C l t
%2 Carleton

UNIVERSITY

Building layered models
= Identify resource contexts

= Identify interactionpatterns between them
= synchronous, asynchronous, forwarding

[SynChI’OnOUS' IQJGS'[-I'EP)W from nested resources
Client Task N
Application Task DataBase lask
EppCP? [DBCP% LDBDISIﬂ
'L y
Client Task

¥

Application Task |PataBase Task

37 Gt ok 0y G

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Building layered models (2)

= forwarding shows executiopassed direcyl from
one server to another, without retumpin between
= may traverse a route before returning

Client Task I
pplication Tas DataBase Task
fppCPqJ ppDis DBCPU [DBDisk _
4 In sequence:
N g,)
Client Task v
¥

Application Task

<. 4
DataBase Task |

: -

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Building layered models (3)

= forking to a new context is amsynchronous
Interaction

f A

.

—

39

Understanding Performance Aspects of Layered Software with Layered Resources

i
NCSU, Jan 27 / 03 © Murray Woodside 2003 N2 C l t
%2 Carleton

UNIVERSITY

Interaction summary

= Resource == “task”
= Resource-peration (sinple): one activy....
= reguests for other resources:

» expressed via interactioypes: ync, agnc,
forward

f | |
‘ \L # sSync

activ’jcﬂ/ activity

Task
(resource

aCtIVIt\

[
forwardingy
o ‘ | async

Understanding Performance Aspects of Layered Software with Layered Resources

NCSU, Jan 27 / 03 © Murray Woodside 2003

Activity sequence o

= an activiy has a work

o Carleton

" UNIVERSITY

etall in an entry

oad (CPU demand anduests)

seguence relationsps
* (AND/OR fork/joins)

= Interaction ypes @ain: s/nc, aync, forward

Task l
(resource

activity

async

: \ | | \ |

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

42

o Carleton

" UNIVERSITY

An example with activity sequence detall
{25}

multiple (25) UserT
entities with default
activity and its hos

userk

UserT

t| |8 sec]

host association

demand l) i
(1)1 sync cal one server for
appE each client
return 10
compute[AppE]\/ J AppT
[45 ms] cleanup
(2)/2 sync (1)
calls (1) asyqc call
getDatal cleanup logE
4] 3,8] ServerT 12] LogT

e

Understanding Performance Aspects of Layered Software with Layered Resources

NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Example: visualize the scenario

multiple UserT

entities with defaut

userk] .
UserT host association

activity and its host /8 set;
demand ' » f
(1771 syng call one server for
appE ‘ each client
retuin
corlpute[Ar‘p.?LL - ‘ AppT
__f_z ms] ' ?4Up
(Z \/) sync (1) AppP
calls (%) async caII

-
{gc,mata cléanup
[“] 13:8]

43

IogE
ServerT 12] LogT

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

LON pattern for parallel operations

= Server A rguests services from S1 and Saarallel,
that Is it sends both gaests and then waits for both

replies.
= This hgpens once durgpan execution of an entA:

Entry A /131 I az — /:|—>a4[A!]

]

(1)v (1x
44 [a] [=]

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton
Some(ﬁ??é%ﬁ?ﬂé?ﬁ%?%swm{mp{w S
Pipeline
Taskl (Task?2 (Task3 (Task4 . - .
‘RA| [RA (1
‘DD == = Q (M” 4 ﬂ |
RB RD RX =] J |
R R R R .) -
° @ @ @ @ | Chaotic, unstructured

—

A separate context for eacs=iR€SOUICe pipeline (above), and

activity severSIIAING OVerlapping resource
Buffer ManagerCONtEXES Over time

Resource pass-back:

... an interesting pattern tr
needs work...... the Buffe

IS released by the Agent

—
(all

Buffer
1

Agent }

Y

45

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Summary of model-building fromsoftware
descriptions

= can be seen agyaneralization of the methods
defined ly Connie Smith

= based on tracmscenarios, detectyresources and
Intempreting nestirg and interactionyipes
= from scenarios iJse Case MapsTOOLS 2002 paper

= from tracing {angio traces”): MASCOTS 95 and TSE
2000 (Hrischuk)

» (“TLC” = trace-based load characterization)

* now analyzindJML scenarios expressed with the UML
Profile on Schedulability, Performance and Time (2002)

46

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

3 Carleton

UNIVERSITY

Proposed PUMA toolset architecture......
(Performance by Unified Model Analysis)

Y ——,——, e, —————

Software Design Tool / Core Model A Performance Tool
1
(UML, UCM, etc.) | ,__QSM__\ /,__QF_’M_“ ', (LQN, QN, etc.)
. N Ei:’C re Scenario ni/ Core Perf. I gene;ate o X
I Annotated | translatg: Model transfor Model 1 Pe€rl. I '
| ! Performanc
| Design | tollii (nLl) iLitol2i (nL2) 1 model | L™= " = Ei Sensitivity
' Spec)
i ’ 1] I T B and
il X | transfornyj I| feedback solve Optimization
[! H | L2 to L1 L results - N Tool
: Results : - i | 00IS
L and S [NN NI, esults
| qui%r;ice i place recommendatlons dlagnose perforn'wance i E
~ ’ in deslgn context problems / . /

= generalsoftware model input via CSM (not only UML)

= generalperformance model types via CPM (not only
layered queues)

= Includes heavy element of model investigation, sensitivity
tools, optimization

47 = proposal also for component libraries for completions

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQ network solvers

48

Carleton

" UNIVERSITY

www.layeredqueues.orgjte to provide resources
LONS (Franks/Rolia/Petriu/Sevcik/Woodside) (84 on)

* jterative basic MVA with lots of approximations for
variance, multiservers, parallel paths, and other aspects

Fontenot described one open layered server (Sigmetrics 198
Petriu (1993) Markov model by TDA “Task Derived
Aggregation”

Ramesh/Perros (98 - 2000)

= open systems, with close attention paid to variance effects
and a structured sequence of classes of service

Kahkipuro (UML2000), a basic multilayer solution
Menasce (2 layers) (2002) for critical sections, etc.

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

“Active Server” closed queueing sub-model for each layer (1984)

“‘Delay Server” with o Higher
tokens that represent o o ® Layers
clients or active servers ®

from layers above t / i \'

Tokens represent reque stM u

from upper layer servers@ @_ @ Layer N

Servers represent server tasks at layer N:

e Service times of the servers include delays at
lower layers, including processors

e Servers may be non-standard (two phase!)

>

49

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

" UNIVERSITY

“Layerize”: Layer 1 Submodel Infinite server

(tokens n, thinkT z)

Processor
Entire system Layer 1 (serviceT s)
sSurrogate
N1, 1] (N2, Zz2 &) oorver
X f \ (serviceT X’)
s @gb Cs> FerS
b2 N2 Pl T3 T4 P2

3 3’|—ZZ>,’9 N2, z2 @ 253[763
Yo' o &

50 T5 P4 T6 P3 P6

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Carleton

" UNIVERSITY

“Layerize”: Layer 2 Submodel '(;‘;'k”;f;iffﬁ:,w)

_ Processor
Entire system Layer 1 (serviceT s)

@ Surrogate
server

(serviceT Xx)

Layer 3

i

/

.9

51 T5 P4 T6 P3 P6

Understanding Performance Aspects of Layered Software with Layered Resources

7
NCSU, Jan 27 / 03 © Murray Woodside 2003 "*

o Carleton

UNIVERSITY

“Layerize”: Layer 3 Submodel Infinite server

(tokens n, thinkT z)

Processor
Entire system Layer 1 (serviceT s)
S t
£gv (N1,z1) (N2, 22 & orver

VRN Lay‘jf T

L
b0 (S &) @@@

Layer 2 @ zsj[lz@
s f

W

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Layerizing strategies can be interesting

= Woodside 1984/ 88/ 95...0ne task per layer

= calls can jump layers (causes a dependence effect
“Interlocking”

= Rolia/Sevcik 1988/92/95... wide layers, greedy from the
bottom.

= strict layering (calls cannot jump over)
= accommodation for jumping over
= Ramesh/Perros 1998... strict layering

= Franks thesis 1999.... in LONS... flexible choice, OR greedy
from the top, OR all in one big layer (1)

= palanced layer sizes are best for solution time.
* a detailed submodel for dependence effect
>3 = detailed study of second phases

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

" UNIVERSITY

Exploiting the solutions to improe the
software design

= Sensitiveparametergoint to apects with most
leverae
= sensitive execution demands can be reduced
= sensitive interaction counts can be reduced
= long entry service times can perhaps be parallelized

= Sensitiviy I1s highest around bottlenecks!!
= |look at resource utilization

= task utilization includes all its nested service times
when it is blocked

* reduce service time of bottleneck server
54 = Increase resource multiplicity (buffers, threads)

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

= a saturated server

= but.... a saturated seryaushes
backon its clients

of the client service time!!

= result is often a cluster of saturate

tasks above the bottleneck

= thus: the “real” bottleneck is the
“lowest” saturated task

" |ts servers (including its proces7ee7
are not saturated \ / / / /

= some or all of its clients are
55 saturated /

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Recognizing the “real” bottleneck

= a Saturated task with unsaturated servers and host
= Strengthmeasure (@/Mp)/[max (Uf/Mg)]
= |EEE TSEpaper 1995

= Notice that:

= if the bottleneck task has no servers, its host
utilization is the same as the task (it only comput

= 50 It must have at least one additional server, a
device (e.g. disk), task, or other logical server

= also, it must have sufficient clients to build a queu
- mthus, there Is often an hglesspattern

c)

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

UNIVERSITY

Bottleneck patterns andthreadsor multiplicity

= a task with M threads counts as M concurrent servel
or clients

* In identifying the “hourglass” pattern
= In the “stregth” measure, a server with M
threads saturates at U = M

= a (vel rough) rule of thumb for threads, based on
potential needs for concurrgnc

M = min of | (sum of server threads, +1)
(sum of client threads)

57

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Curing a bottleneck

(1) provide additional resources at the bottleneck
= for a software server, providaeultiple threads

= some “asynchronous server” designs provid
unlimited threads

= replicated servers can split the load and distribu
= for a processor, aultiprocessor(or faster CPU)

(2) reduce its service time:
* reduced host demand
* reduced requests to its server

(3) divert load aws from it

58

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

UNIVERSITY

Curing Software bottlenecks by multithreading

= Dbottleneck at task 4 limits the user throughput f

| evel User throughput f, f depends on the threads at all servers
1 1@8 = m2 threads for task2, m3 for task 3, etc
v ...a multi-threaded server behaves like a multi-server,
2 @ two threads can execute in parallethey are
7 Zequentlallzed ?% gthelr processor servers, that
ppears as waliti
3 @ = 1 sec host demand at each server, one request to
each lower task
4 = Ui =task utilization at level |
b (M2, m3, m4)... f (U2, U3, U4, U5)
S (1,1, 1).... 0.166, (1. 0.83 0.67 0.167)
(single servers 2,1, 1)..... 0.200, (0.96 1. 0.8 0.2)
at the bottom) (3,2,1).... 0223, (29 1.64 0.89 0.22)
(6, 5, 4).... 0.475, (5.5 3.9 2.75 0.475)

59 (10,10,10).. 065, (9.3 7.8 6.2 0.65)

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Software bottleneck relief by multithreading

User throughput f,
Level task utn Ui

v

2 [m2/7 Usfr 10,10,10 threads
* Thruput

3 @ P 6,5,4

1,1,1

(single servers Users

at the bottom)

(1 sec demand at each server, one
rgguest to each lower task)

10

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

UNIVERSITY

Bottleneck: Results for a web server with net delay

N Users with
a thinking time
of 5 sec.
CGois
N users 500 500 500 500 2000 2000 2000 2000
M threads 10 30 100 Inf 10 30 100 Inf
X server 512 .52 52 52 512 515 55 4.9
f thruput 195 582 906 90.6f 195 56.7 180 20
W user wait || 20.6 3. 0.51 05 97.6 294 6.1 5
U server 10 30 47 47 10 30 10D 100
U net 9.7 29. 45.3 45.3] 9.7 29.1 90.2 10
61 UCPU .097 .291 45 45 097 .29 .90 1.0

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Multiple independent bottlenecks

= there m& be a web of servers and interactions

= perhas there are mulle bottlenecks?

* In a flat queueing network there can be as many
Independent bottlenecks as there are chains of customers

= each is an independent limitation on chain throughputs

= In a layeredqueueiy network there are opla few
e Independent throghputs... g. the tg-layer tasks

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

63

e Carleton

" UNIVERSITY

Using bound relationships in layered queues

reference throghputs f at the “user” tp-layer tasks
all other throghputs (fe at entr e) areproportional,
fe=2r e fr

no-waiting service time of emjre Is % which can be
conputed recursivel using nested delgs

reference throghputs must satigfthe utilization
constraint < M; ,
2¢in Task ifeXe< M
2; fr2Ze in Taski deXe < M;
2r fr Kiy < 1
“rendezvous nets” paper 1995 N i

Af2

~

ask |

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

o Carleton

" UNIVERSITY

Bound relationships are only a crude guide to
bottleneck location

= resourcegjiving bounds that touch the feasible
region are likey candidates

= other bounds, e.g. for Taski, are prevented from saturating
Af2

\%

i
= however the bounds are naglit

= pecause they ignhore queueing delays at intermediate leve

* since queueing delay can create a bottleneck... it really
needs a fulbueueim solution

64

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

ay IVERSITY

Converting results to software implications
= |long response or service times can be reduced by

= parallelizing some operations
= pbalancing and reduced variablility in parallel paths
= latency masking (e.g. by pre-fetching)
= optimistic design
= removing bottlenecks within the response
= bottlenecks can be reduced by...
* host demands reduced, server demands reduced
* demands made more deterministic
= changed allocations
= replication, threading
= task splitting for concurrent access (servers, pipelining...)

= havigation of sensitive points (drill-dow(iYlaps and Paths
°° paper 1995)

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

2 Carleton

" UNIVERSITY

Acting on the recommendations

= charges to software architecture and detailedgresi

= reducing demandss a well studied faic, eg. Smith
and Williams books

= detailed code changes based on hot spots, locality, early
binding of references

= caching
= some of the other recommendations relate to
“performance antipatterns”described ¥ the same
authors (WOSP 2000)
* the “one lane bridge” is any bottleneck task

* the “god class” is a task that can be split into smaller parts
66

Understanding Performance Aspects of Layered Software with Layered Resources

A
NCSU, Jan 27 / 03 © Murray Woodside 2003 X

AN/

Carleton

UNIVERSITY

Summary
= the layered queueing model is a middle ground between
software structure and queueing networks
= default stochastic semantics have few parameters
= scalable extended queueing canonical form
= fairly direct traceability of
= software tasks to performance model objects
= object interactions into model interactions
= demands
= results connected back to software observations

= sSimilarity between model results and measurements on the

software

67

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

w2 Carleton

4
W UNIVERSITY

Where Is this area going?

= Solvers stillpose penguestions
= Improvements to accuracy and to features

= Sypport for building models
* models from UML
* models created or updated from monitoring

= Integration with discrete-state modalimethods
= fallure states (IPDS paper 98, others)
= adaptation and variable configurations
* submodels for inter-task protocols, using Petri Nets etc
= submodels for more accurate delay distributions

= optimization (eg. Sigmetrics 2001)

68

