
1

Understanding Performance Aspects of
Layered Software with Layered Resources

Murray Woodside
Department of Systems and Computer Engineering

Carleton University, Ottawa, Canada
cmw@sce.carleton.ca, www.layered queues.org

Jan.27, 2003

2

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

The Challenge of Performance
in Distributed and Parallel Software

■ several programs interact to complete one response
� clients and servers..... peers.... pipelines

■ they execute partly in sequence and partly in parallel

■ models are required
� systems are difficult to measure in the lab (too big)

■ performance is governed by many kinds of factors:
� congestion at different kinds of resources

� layering of resources

� layered system overheads

� unbalanced parallel paths

3

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Advantages of the layered queueing approach

■ an elegant formulation of extended queueing for
layered resources
� scales up to many resources and complex holding patterns

■ layered resources have understandable patterns
� layered resources are common...

� client-server, parallel service, pipeline, and others

� bottleneck patterns

■ the model notation resembles software design
notations such as UML
� UML performance profile can provide parameter

annotations for scenarios in UML.

4

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Example: layered modeling of a
Building Security System BSS

.....e.g., for a hotel or a
university building

■ video surveillance:
� poll N web cameras

� 1 second cycle (on
95% of polling cycles)

■ door access:
� respond to an access

card within 1 second,
95% of the time

� card reader DCR,
lock actuator DLA

LAN

ApplicCPU

Disks

DataBaseCPU

V
D

DCR

DLA

5

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

System behaviour in BSS.... (1) data paths

LAN

ApplicCPU

Disks

DataBaseCPU

V
D

Class 1...
VideoScan

Class 2...
DoorAccess

6

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

System behaviour in BSS... (2) causality paths

LAN

ApplicCPU

Disks

DataBaseCPU

V
D

Class 1...
VideoScan
... one token,
cycling
through the
cameras

Users

Class 2...
DoorAccess
... one token per
user, triggered by
a request
... many users
who wait, then
activate a door

7

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

A queueing model of BSS

■ focuses on
hardware
servers only

LAN

ApplicCPU

Disks

DataBaseCPU

Class 1...
VideoScan
... one token,
cycling
through the
cameras
... or more
than one, for
double
buffering

Users

Class 2...
DoorAccess
... one token per
user, triggered by
a request
... many users
who wait, then
activate a door

V

DCR

DLA

8

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Additional resources that impact performance

■ multiple buffers,
size of buffer pool

■ access control task
can have a message
queue

■ database task may
have a queue of
requests

■ software resources

■ layered service

LAN

ApplicCPU

Disks

DataBaseCPU

V
D

Users

BufferPool

9

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Layered servers in the
Access Control path
with service classes

Access Control Task
[local processing]

unlock LockActuator other readRights writeLogEvent Database

read write Disk

common queue
of requests

delay server
(infinite server)

delay but no queue,
as there is one actuator
per door)

Flow of user requests

competing database
requests for other
operations

single server

(requests)

ApplicCPU

DataBaseCPU

Disk

Task resource is
a server!
Possibly multiple!

(a notational convention used here is to separate
the Disk service definition from the Disk device)

10

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Analysis must include the software description
■ software operations

■ resources that they require
� task thread resources, buffers, devices

■ a useful concept is the resource context of an operation:
� its context is the set of operations during which the resource

must be held

� e.g., outside rectangle represents a client task resource

� within this context it acquires other resources

ApplicationTask

AppCPU

Client Task
DataBaseTask

DBCPU DBDiskAppDisk

11

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Nested resource contexts gives layered
resources

■ like a
procedure
call tree

Application Task

AppCPU

Client Task
DataBase Task

DBCPU DBDiskAppDisk

Client Task

DataBase TaskApplication Task

AppCPU AppDisk DBCPU DBDisk

12

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Software Specification of the
Building Security System (BSS): (1) Use Cases

Access
control

Log entry/
exit

Acquire/store
video

Manage
access rights

Manager

Database Video
Camera

<<includes>> User

(not evaluated in
this study)

Use Cases define
responses!

13

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Software Specification (2) Deployment

ApplicCPU

Access
Controller

<<LAN>>

Video
Controller

DB CPU

Database

SecurityCard
Reader

DoorLock
Actuator

Video
Camera

Disk

14

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Spec. of
BSS (3):

Annotated
Sequence
Diagram
for the
VideoScan
Use Case
(scenario)

(using the
UML
Performance
Profile)

Video
Controller AcquireProc

Buffer
Manager StoreProc

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

passImage (i, b)

storeImage (i, b)

<<GRMrelease>>
releaseBuf (b)

freeBuf (b)

Database

writeImg (i, b)

getBuffer()

store (i, b)

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

<<PAcontext>>

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network, $P)}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($B * 0.9, ‘ms’)),,
PAextOp=(writeBlock, $B)}

<<PAclosedLoad>>
{PApopulation = $N,
 PAinterval =((‘req’,’percentile’,95,
 (1, ‘s’)),
 (‘pred’,’percentile’, 95, $Cycle)) }

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))} o

o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

{PAdemand=(‘asmd’,
‘meam’, (1.1, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (2, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.2,’ms’))}

o

15

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Details of
the UML
annotations

 <<PAcontext>>

Video
Controller AcquireProc Buffer

Manager
StoreP

*[$N] procOneImage(i)

<<GRMacquire>>
allocBuf (b)

getImage (i, b)

getBuffer()

<<PAstep>>
{PAdemand =(‘asmd’,
‘mean’, (1.5, ‘ms’)}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms))}

o

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, ($P * 1.5, ‘ms’)),
PAextOp = (network, $P)}

<<PAclosedLoad>>
{PApopulation = $N,

 PAinterval =((‘req’,’percentile’,95,
 (1, ‘s’)),

 (‘pred’,’percentile’, 95, $Cycle)) }

<<PAstep>>
{PArep = $N}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.5, ‘ms’))} o

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (0.9, ‘ms’))} <<PAstep>>

o

16

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Spec of BSS (4) Sequence Diagram
for the Door Access Control scenario

getRights()

 User

CardReader DoorLock Alarm Access
Controller Database Disk

readCard

admit (cardInfo)

readRights() [not_in_cache] readData()

checkRights()
[OK] openDoor()

[not OK] alarm()
[need to log?] logEvent()

writeRec()

enterBuilding

writeEvent()

<<PAstep>>
{PAextOp=(read, 1)}

<<PAopenLoad>>
{PAoccurencePattern = (‘poisson’, 120, ‘s’),

PArespTime =((‘req’,’per centile’,95, (1, ‘s’)),
 (‘pred’,’percentile’, 95, $RT))

}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (3, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

<<PAcontext>>

o

o

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’, (1.8, ‘ms’)),

PAextOp = (network, 1)}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(1.5, ‘ms’)), PAprob = 0.4}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(0.5, ‘ms’)), PAprob = 1}

<<PAstep>>
{PAprob = 0}

<<PAstep>>
{PAdemand=(‘asmd’,

‘mean’, (0.3, ‘ms’))}

<<PAstep>>
{PAdemand=(‘asmd’, ‘mean’,

(0.2, ‘ms’), PAprob=0.2}

<<PAstep>>
{PAdemand=(‘asmd’,
‘mean’, (1.8, ‘ms’))}

o

17

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Simplified view of the main scenarios:
VideoScan and Door Access Control

AcquireFrame can use multiple buffers to receive and store images

Database

BufferManager

VideoController

Network delay

NetInterface

AcquireFrame

WebCamera

cleanup

storeInDB

pollCamera

getBuffer

getImage

receivePackets

passImage

sendImage

Timer event
starts loop over
N cameras

Access
Controller

CardReader

LockActuator

alert

[fail]

unlockDoor

checkRights

log

triggerLock

User
[deny] [OK]

freeBuffer

18

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Resources are identified from annotations

■ directly...
� “active object” or active component == a task

� deployment of tasks

� task allocation of component

� logical resource acquire/release stereotypes

... and as attributes of the activities and components
� processor for an activity

� database queried by an activity

� process or task containing a component

� network conveying messages between components

� buffer acquired by an activity getBuffer, released

19

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Task resources: AcquireFrame, and
AccessController

� If AcquireFrame is single-threaded it sequentializes the
acquisition

� double buffering requires another thread, or a concurrent
task, let us call it Store

Access
Controller

CardReader

LockActuator

alert
[fail]

unlockDoor

log

triggerLock

User [deny] [OK]
VideoController

Network delay

NetInterface

AcquireFrame

WebCamera

cleanup

storeInDB

pollCamera

getBuffer

getImage

receivePackets

passImage

sendImage

Timer event

Store

writeVideoImage Database

freeBuffer

20

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

The service time of a task covers its resource context

Access
Control

CardReader

LockActuator

alert

[fail]

unlockDoor

checkRights log

User
[deny] [OK]

readRights writeLogEvent Database

read write Disk

triggerLock

■ includes lower servers

■ here AccessControl
includes lower layers:

� LockActuator,

� Database, and

� Disk

■ service time of
AccessControl

can be found
recursively

■ it includes waiting
time at the database

■ alert includes logging

21

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Layered queueing applies...

Access Control Task
[local processing]

unlock LockActuator other readRights writeLogEvent Database

read write Disk

common queue of
requests

multiclass server
(possibly a multiserver also
= multithreaded task

delay server
(infinite server)

delay but no queue,
as there is one actuator
per door)

Flow of user requests

competing database
requests for other
operations

single server

(requests)

22

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Service time in layered queue systems...

... is not knowable without a full analysis

■ because it includes contention at lower servers

■ the queueing delay is affected by competing
scenarios and applications

■ this is the key difficulty in understanding
performance in layered systems

� for example, bottleneck location may be unstable

23

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Notation for layered queueing models

■ by convention, call
� all servers and resources “tasks”,

� all resource-operations “entries” ,

� all requests for operations by a server “calls” .

■ all requests to a task enter a common queue, which
can have any discipline,
� entries define classes of service

� many kinds of tasks cannot support pre-emptive disciplines

■ synchronous calls (that block the caller) are
distinguished from asynchronous (that do not).
� sync calls always lead to a single reply

� more complex request types can be built up

24

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQ Model (2)
■ a sub-scenario defines entry behaviour, by a

sequence of operations and requests.
� can use a default stochastic model for entry behaviour:

� random “slices”, with a given coefficient of variation

� either random requests with given mean numbers, or
deterministic numbers of requests, in random order

■ there is a “host” processor server for every task, not
always shown
� host service time is divided into slices between requests for

other services

� host servers have the same semantics as tasks, all requests
are synchronous, every software entry generates an entry
on its host,

25

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Simplified notation for a LQ model
■ with default entry behaviour (random order of calls)

■ parallelograms are optional....

Client Task
entry E1

[y-host-E1]
entry E2

[y-host-E2]

entry for a service
“serv”

Synchronous call with
mean number
 (y-serv)

Server Task

P1

P2

host attachment for processor

{25} multiple resource
or multithreaded
task (25 threads)

entries with host demand in sec.

26

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQN fragment
for the Door
Access Control

■ “alarm” has no calls or
load

■ doesn’t show database
operations to store video
frames

■ some parameters show
“second phase”
operations: (0,0.2) or [3.9,
0.2]

� after the reply

log
[500]

Log

alarm
[0]

Alarm

user
rate=2/min

Users

readCard
[1]

CardReader

admit
[3.9,0.2]

AccessController

DataBase writeEvent
[1.8]

readRights
[1.8]

Disk writeRec
[3]

readData
[15]

(1)

(0,0.2)

(0.4) (1)

(1)

(0)

DB
CPU

27

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

■ includes ordinary QN as a single layer of client and
servers
� “program” entity calling its servers

■ an LQN describes any Extended Queueing Network
with nested resource use

■ advantage: it easily describes a system with hundreds
of logical resources, many held at once, in many
patterns.

■ it has an economical, concise set of parameters for
the stochastic default entry behaviour

Layered Queues are a Canonical
Generalization of Queueing Networks

28

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Different considerations for a logical
resource: the Buffer pool for Video frames

■ its service time includes parts of the execution of
various tasks
� it is not identified with any particular process

■ it will be modeled by a “task” which we can call a
pseudo-task
� runs on a pseudo-host

� no execution time of its own

� makes calls that define the operation executed with the
resource

■ sometimes the place of the pseudo-task can be taken
by an actual “resource manager” task, if it exists

29

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Path showing the holding time of a buffer

VideoController

Network delay

NetInterface

AcquireFrame

WebCamera

cleanup

storeInDB

pollCamera

getBuffer

getImage

receivePackets

passImage

sendImage

Timer event

Store

writeVideoImage Database

freeBuffer

storeImage

30

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Modeling technique for a logical resource

■ A buffer or critical section ….

Wait for resource,
then use it

Leave context,
release resource

Resource
Context,
e.g. Critical
section CS

Execution path

CPU1 DISK2DISK1 CPU2PRINTER

typical business
 software, all lumped

together

typical business
 software, all lumped

together

program instances
executing outside of

resource context

Request
and wait
for resource RES

execution inside of
resource context

(zero or one instance)

RES

31

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Resource pseudo-task when
user tasks are distributed...

■ Tasks A and B must enter a critical
section (call it CS) for some
work....
� but this doesn’t express what they do

within CS

■ So:
� Separate out the computation within

CS into Shadow Tasks A|CS and B|CS

� to direct the call from A to A|CS,
make CS a pseudo-task with two
pseudo-entries

A B

not a suitable model
PA

RES
PB

A B

B|RESA|RES

RES

PBPA

32

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQN fragment for the video buffer

■ AcquireFrame has a
fragment Acquire2 within
the buffer resource context

■ BufferManager also

■ call to StoreImage is second
phase

bufEntry

getImage
[12,0]

passImage
[0.9, 0]

Buffer

Acquire2

releaseBuf
[0.5, 0]

BufMgr2 network
[0, 1]

Network

storeImage
[3.3, 0]

StoreProc

DataBase writeEvent
[1.8, 0]

writeImg
[7.2, 0]

readRights
[1.8,0]

Disk writeRec
[3, 0]

writeBlock
[1, 0]

readData
[15,0]

(1,0) (1,0) (0,1)

($P, 0) (1,0) (1,0)

($B,0) (0.4,0) (1,0)
DB
CPU

procOneImage
[1.5,0]

alloc
[0.5, 0]

AcquireFrame
(2 threads)

BufferManager

(1,0)

33

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

■ Idea: often used to enhance performance
� give a reply as early as possible

� Do postponeable work after the reply, as “phase 2”

■ e.g..: Database server update operation:
� write to log file before returning, execute final writes later.

■ Second-phase model may
� place this work right after the return (approx), or

� send a message to a clean-up process that does it later

■ Queueing approximation paper in Performance 99

 “Second Phase Service” in software servers

phase 1 phase 2, asynchronous and parallel

client

server

34

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Overall LQN: $N cameras, $R buffers

procOneImage
[1.5,0]

alloc
[0.5, 0]

bufEntry

getImage
[12,0]

passImage
[0.9, 0]

AcquireProc
($A threads)

BufferManager

Buffer {$R}

AcquireProc2

acquireLoop
[0.18]

VideoController

log
[500, 0]

Log

releaseBuf
[0.5, 0]

BufMgr2

alarm
[0,0]

Alarm

network
[0, 1]

Network

storeImage
[3.3, 0]

StoreProc

user
rate=2/min

Users

readCard
[1, 0]

CardReader

admit
[3.9,0.2]

AccessController

DataBase writeEvent
[1.8, 0]

writeImg
[7.2, 0]

readRights
[1.8,0]

Disk writeRec
[3, 0]

writeBlock
[1, 0]

readData
[15,0]

(1,0)

(forwarded)

(1,0) (1,0) (0,1)

($P, 0) (1,0) (1,0)

($N)

(1,0)

(0,0.2)

($B,0) (0.4,0) (1,0)

(1,0)

(0,0)

Applic
CPU

DB
CPU

35

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

procOneImage
[1.5,0]

alloc
[0.5, 0]

bufEntry

getImage
[12,0]

passImage
[0.9, 0]

AcquireProc
(2 threads)

BufferManager

Buffer

AcquireProc2

acquireLoop
[0.18]

VideoController

log
[500, 0]

Log

releaseBuf
[0.5, 0]

BufMgr2

alarm
[0,0]

Alarm

network
[0, 1]

Network

storeImage
[3.3, 0]

StoreProc

user
rate=2/min

Users

readCard
[1, 0]

CardReader

admit
[3.9,0.2]

AccessController

DataBase writeEvent
[1.8, 0]

writeImg
[7.2, 0]

readRights
[1.8,0]

Disk writeRec
[3, 0]

writeBlock
[1, 0]

readData
[15,0]

(1,0)

(forwarded)

(1,0) (1,0) (0,1)

($P, 0) (1,0) (1,0)

($N)

(1,0)

(0,0.2)

($B,0) (0.4,0) (1,0)

(1,0)

(0,0)

Applic
CPU

DB
CPU

BSS
LQN...
follow
the
scenarios

36

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Results for varying buffers.

Buffers Cameras Prob(miss)

1 10 0

1 20 0.001

1 30 0.417

3 10 0

3 20 0

3 30 0.003

3 40 0.319

37

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Building layered models
■ identify resource contexts

■ identify interaction patterns between them
� synchronous, asynchronous, forwarding

■ synchronous: request-reply from nested resources

Application Task

AppCPU

Client Task
DataBase Task

DBCPU DBDiskAppDisk

Client Task

DataBase TaskApplication Task

AppCPU AppDisk DBCPU DBDisk

38

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Building layered models (2)
■ forwarding shows execution passed directly from

one server to another, without returning in between
� may traverse a route before returning

Application Task

AppCPU

Client Task
DataBase Task

DBCPU DBDiskAppDisk

Client Task

DataBase Task

Application Task

AppCPU AppDisk

DBCPU DBDisk

4 in sequence:

39

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Building layered models (3)

■ forking to a new context is an asynchronous
interaction

A

B

A

B

40

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Interaction summary

■ Resource == “task”

■ Resource-operation (simple): one activity....

■ requests for other resources:

� expressed via interaction types: sync, async,
forward

Task
(resource)

sync

async

activity activityactivity

forwarding

41

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Activity sequence detail in an entry

■ an activity has a workload (CPU demand and requests)

■ sequence relationships
� (AND/OR fork/joins)

■ interaction types again: sync, async, forward

Task
(resource)

activity activity
activity

sync

async
syncsync

42

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

An example with activity sequence detail

ServerT
getData

[4]

AppTcompute[AppE]
[45 ms]

log

cleanup

UserTUserE UserT
userE
[8 sec]

AppP

ServerP
LogT

logE
[12]

appE

cleanup
[3,8]

1 sync call

multiple (25) UserT
entities with default
activity and its host
demand

(1)

(2)
async call

host association

UserPUserP inf

one server for
each client

return

2 sync
calls (1)

(1)

{25}

43

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Example: visualize the scenario

ServerT
getData

[4]

AppTcompute[AppE]
[45 ms]

log

cleanup

UserTUserE UserT
userE
[8 sec]

AppP

ServerP
LogT

logE
[12]

appE

cleanup
[3,8]

1 sync call

multiple UserT
entities with default
activity and its host
demand

(1)

(2)
async call

host association

UserPUserP inf

one server for
each client

return

2 sync
calls (1)

(1)

44

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQN pattern for parallel operations

■ Server A requests services from S1 and S2 in parallel,
that is it sends both requests and then waits for both
replies.

■ This happens once during an execution of an entry A:

a3a1
a2 a4[A!]

S1 S2

(1) (1)

Entry A

45

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Other patterns of resource contexts

Resource pipeline (above), and
sliding overlapping resource

contexts over time

Separate resource context for
each activity

Task1

RA

RB

RC

Task2

RA

RD

RE

Task3

RX

RF

Task4

RC

Some resource context patterns...

Buffer

Program

Server

Agent

Buffer Manager

A separate context for each
activity

Pipeline

Chaotic, unstructured

Resource pass-back:
... an interesting pattern that
needs work...... the Buffer
is released by the Agent

46

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Summary of model-building from software
descriptions

■ can be seen as a generalization of the methods
defined by Connie Smith

■ based on tracing scenarios, detecting resources and
interpreting nesting and interaction types
� from scenarios in Use Case Maps: TOOLS 2002 paper

� from tracing (“angio traces”): MASCOTS 95 and TSE
2000 (Hrischuk)

� (“TLC” = trace-based load characterization)

� now analyzing UML scenarios, expressed with the UML
Profile on Schedulability, Performance and Time (2002)

47

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Proposed PUMA toolset architecture......
(Performance by Unified Model Analysis)

 Software Design Tool
(UML, UCM, etc.)

Performance Tool
(LQN, QN, etc.)

Sensitivity
and

Optimization
Tools

Core Model
CSM

Core Scenario
Model
 (in L1)

CPM

Core Perf.
Model
 (in L2)

Annotated
Design
Spec

Results
 and

 guidance

Performance
Model

Results

solve

diagnose performance
problems

place recommendations
in design context

translate
 to L1

transform
L1 to L2

generate
perf.

model

feedback
results

transform
L2 to L1

Figure 1: The proposed system to support scenario-based performance engineering
■ general software model input via CSM (not only UML)

■ general performance model types via CPM (not only
layered queues)

■ includes heavy element of model investigation, sensitivity
tools, optimization

■ proposal also for component libraries for completions

48

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQ network solvers

■ www.layeredqueues.org site to provide resources

■ LQNS (Franks/Rolia/Petriu/Sevcik/Woodside) (84 on)

� iterative basic MVA with lots of approximations for
variance, multiservers, parallel paths, and other aspects

■ Fontenot described one open layered server (Sigmetrics 1988)

■ Petriu (1993) Markov model by TDA “Task Derived
Aggregation”

■ Ramesh/Perros (98 - 2000)

� open systems, with close attention paid to variance effects,
and a structured sequence of classes of service

■ Kahkipuro (UML2000), a basic multilayer solution

■ Menasce (2 layers) (2002) for critical sections, etc.

49

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

LQNS: Iterative MVA Solver for LQN
“Active Server” closed queueing sub-model for each layer (1984)

“Delay Server” with
tokens that represent
clients or active servers
from layers above

Tokens represent requests
from upper layer servers

Servers represent server tasks at layer N:
• Service times of the servers include delays at
lower layers, including processors
• Servers may be non-standard (two phase!)

Higher
Layers

Layer N

50

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

“Layerize”: Layer 1 Submodel

m=2 1

m=1 1 1

N1 3 1 N2

E6E5

E3

Z1 Z2

P6

P1 P2

P3

P4

m = N1 N2

3, z3’ 1, z4’

x’ s,s x’

T5 P4 T6

N2, z2’

Layer 2

N1, Z1 N2, Z2

s x’ x’ s
P1 T3 T4 P2

x’

Layer 1

3, z3’’

1, z5’

s,s

P3 P6

1,z6’

s,s

Layer 3

Entire system
s Processor

(serviceT s)

x’ Surrogate
server
(serviceT x’)

n,z
Infinite server
(tokens n, thinkT z)

E4a E4b

51

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

“Layerize”: Layer 2 Submodel

m=2 1

m=1 1 1

N1 3 1 N2

E6E5

E3

Z1 Z2

P6

P1 P2

P3

P4

m = N1 N2

E4a E4b

3, z3’ 1, z4’

x’ s,s x’

T5 P4 T6

N2, z2’

N1, Z1 N2, Z2

s x’ x’ s
P1 T3 T4 P2

x’

Layer 2

Layer 1

3, z3’’

1, z5’

s,s

P3 P6

1, z6’

s,s

Layer 3

Entire system
s Processor

(serviceT s)

x’ Surrogate
server
(serviceT x’)

n,z
Infinite server
(tokens n, thinkT z)

52

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

“Layerize”: Layer 3 Submodel

m=2 1

m=1 1 1

N1 3 1 N2

E6E5

E3

Z1 Z2

P6

P1 P2

P3

P4

m = N1 N2

E4a E4b

3, z3’ 1, z4’

x’ S,S x’

T5 P4 T6

N2, z2’

N1, Z1 N2, Z2

S x’ x’ S
P1 T3(m=3) T4 P2

x’

Layer 2

Layer 1

3, z3’’

1, z5’

S,S

P3(m=2) P6

1,z6’

S

Layer 3

Entire system
s Processor

(serviceT s)

x’ Surrogate
server
(serviceT x’)

n,z
Infinite server
(tokens n, thinkT z)

53

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Layerizing strategies can be interesting

■ Woodside 1984/ 88/ 95...one task per layer

� calls can jump layers (causes a dependence effect
“interlocking”

■ Rolia/Sevcik 1988/92/95... wide layers, greedy from the
bottom.

� strict layering (calls cannot jump over)

� accommodation for jumping over

■ Ramesh/Perros 1998... strict layering

■ Franks thesis 1999.... in LQNS... flexible choice, OR greedy
from the top, OR all in one big layer (!!)

� balanced layer sizes are best for solution time.

� a detailed submodel for dependence effect

� detailed study of second phases

54

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Exploiting the solutions to improve the
software design

■ sensitive parameters point to aspects with most
leverage
� sensitive execution demands can be reduced

� sensitive interaction counts can be reduced

� long entry service times can perhaps be parallelized

■ sensitivity is highest around bottlenecks!!
� look at resource utilization

� task utilization includes all its nested service times
when it is blocked

� reduce service time of bottleneck server

� increase resource multiplicity (buffers, threads)

55

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Recognizing layered bottlenecks

B’NECK

■ a saturated server

■ but.... a saturated server pushes
back on its clients
� the long waiting time becomes part

of the client service time!!

� result is often a cluster of saturated
tasks above the bottleneck

■ thus: the “real” bottleneck is the
“lowest” saturated task
� its servers (including its processor)

are not saturated

� some or all of its clients are
saturated

56

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Recognizing the “real” bottleneck

■ a saturated task with unsaturated servers and host

■ Strength measure (UB/MB)/[max (Us/Ms)]

■ IEEE TSE paper 1995

sat

unsat

bottleneck

■Notice that:
� if the bottleneck task has no servers, its host

utilization is the same as the task (it only computes)

� so it must have at least one additional server, a
device (e.g. disk), task, or other logical server

� also, it must have sufficient clients to build a queue

■thus, there is often an hourglass pattern

57

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Bottleneck patterns and threads or multiplicity

■ a task with M threads counts as M concurrent servers
or clients
� in identifying the “hourglass” pattern

■ in the “strength” measure, a server with M

threads saturates at U = M

■ a (very rough) rule of thumb for threads, based on
potential needs for concurrency:

M = min of (sum of server threads, +1)

 (sum of client threads)

58

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Curing a bottleneck
(1) provide additional resources at the bottleneck

� for a software server, provide multiple threads

� some “asynchronous server” designs provide
unlimited threads

� replicated servers can split the load and distribute it

� for a processor, a multiprocessor (or faster CPU)

(2) reduce its service time:
� reduced host demand

� reduced requests to its servers

(3) divert load away from it

59

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Curing Software bottlenecks by multithreading
■ bottleneck at task 4 limits the user throughput f

■ f depends on the threads at all servers
� m2 threads for task2, m3 for task 3, etc

...a multi-threaded server behaves like a multi-server;
two threads can execute in parallel. If they are
sequentialized by their processor servers, that
appears as waiting

■ 1 sec host demand at each server, one request to
each lower task

■ Ui = task utilization at level i

(m2, m3, m4)... f (U2, U3, U4, U5)

(1, 1, 1)..... 0.166, (1. 0.83 0.67 0.167)

(2, 1, 1)..... 0.200, (0.96 1. 0.8 0.2)

(3, 2, 1).... 0.223, (2.9 1.64 0.89 0.22)

(6, 5, 4).... 0.475, (5.5 3.9 2.75 0.475)

(10,10,10).. 0.65, (9.3 7.8 6.2 0.65)

10 Users

m2

m3

m4

Level
1

2

3

4

5
(single servers
at the bottom)

User throughput f,

60

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Software bottleneck relief by multithreading

10 Users

m2

m3

m4

Level
1

2

3

4

5
(single servers
at the bottom)

(1 sec demand at each server, one
request to each lower task)

User throughput f,
task utn Ui

10

1,1,1

6,5,4

10,10,10 threadsUser
Thruput

Users

61

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Bottleneck: Results for a web server with net delay

N users 500 500 500 500 2000 2000 2000 2000

M threads 10 30 100 inf 10 30 100 inf

X server .512 .52 .52 .52 .512 .515 .55 4.99

f thruput 19.5 58.2 90.6 90.6 19.5 56.7 180 200

W user wait 20.6 3.6 0.51 0.5 97.6 29.4 6.1 5

U server 10 30 47 47 10 30 100 1000

U net 9.7 29.1 45.3 45.3 9.7 29.1 90.2 100

U CPU .097 .29 .45 .45 .097 .29 .90 1.0

UsersUsers

Server

Net delay
0.5 sec

DB
0.01

Disk
0.015

CPU

Server with M threads and
holding time X

0.005 0.2 0.4 1

N Users with
a thinking time
of 5 sec.

62

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Multiple independent bottlenecks

■ there may be a web of servers and interactions

■ perhaps there are multiple bottlenecks?
� in a flat queueing network there can be as many

independent bottlenecks as there are chains of customers

� each is an independent limitation on chain throughputs

■ in a layered queueing network there are only a few
independent throughputs... e.g. the top-layer tasks

63

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Using bound relationships in layered queues

■ reference throughputs fr at the “user” top-layer tasks

■ all other throughputs (fe at entry e) are proportional,
fe=Σr are fr

■ no-waiting service time of entry e is xe which can be
computed recursively using nested delays

■ reference throughputs must satisfy the utilization
constraint Ui < Mi ,

Σe in Task i fe xe < Mi

Σr fr Σe in Task i are xe < Mi

Σr fr Kir < 1
■ “rendezvous nets” paper 1995

f2

f1

Task i

64

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Bound relationships are only a crude guide to
bottleneck location

■ resources giving bounds that touch the feasible
region are likely candidates
� other bounds, e.g. for Taski, are prevented from saturating

■ however the bounds are not tight
� because they ignore queueing delays at intermediate levels

� since queueing delay can create a bottleneck... it really
needs a full queueing solution

f2

f1

Task i

65

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Converting results to software implications
■ long response or service times can be reduced by

� parallelizing some operations

� balancing and reduced variability in parallel paths

� latency masking (e.g. by pre-fetching)

� optimistic design

� removing bottlenecks within the response

■ bottlenecks can be reduced by...

� host demands reduced, server demands reduced

� demands made more deterministic

� changed allocations

� replication, threading

� task splitting for concurrent access (servers, pipelining...)

■ navigation of sensitive points (drill-down) (Maps and Paths
paper 1995)

66

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Acting on the recommendations

■ changes to software architecture and detailed design

■ reducing demands is a well studied topic, e.g. Smith
and Williams books
� detailed code changes based on hot spots, locality, early

binding of references

� caching

■ some of the other recommendations relate to
“performance antipatterns” described by the same
authors (WOSP 2000)
� the “one lane bridge” is any bottleneck task

� the “god class” is a task that can be split into smaller parts

67

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Summary
■ the layered queueing model is a middle ground between

software structure and queueing networks

� default stochastic semantics have few parameters

� scalable extended queueing canonical form

■ fairly direct traceability of

� software tasks to performance model objects

� object interactions into model interactions

� demands

� results connected back to software observations

■ similarity between model results and measurements on the
software

68

Understanding Performance Aspects of Layered Software with Layered Resources
NCSU, Jan 27 / 03 © Murray Woodside 2003

Where is this area going?

■ solvers still pose open questions
� improvements to accuracy and to features

■ support for building models
� models from UML

� models created or updated from monitoring

■ integration with discrete-state modeling methods
� failure states (IPDS paper 98, others)

� adaptation and variable configurations

� submodels for inter-task protocols, using Petri Nets etc

� submodels for more accurate delay distributions

■ optimization (e.g. Sigmetrics 2001)

